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ON DEGENERACY OF ORBITS OF

NILPOTENT LIE ALGEBRAS

A.V. LOBODA, V.K. KAVERINA

Abstract. In the paper we discuss 7-dimensional orbits in C4 of two fami-
lies of nilpotent 7-dimensional Lie algebras; this is motivated by the problem on
describing holomorphically homogeneous real hypersurfaces. Similar to nilpotent
5-dimensional algebras of holomorphic vector fields in C3, the most part of alge-
bras considered in the paper has no Levi non-degenerate orbits. In particular,
we prove the absence of such orbits for a family of decomposable 7-dimensional
nilpotent Lie algebra (31 algebra). At the same time, in the family of 12 non-
decomposable 7-dimensional nilpotent Lie algebras, each containing at least three Abelian
4-dimensional ideals, four algebras has non-degenerate orbits. The hypersurfaces of two of
these algebras are equivalent to quadrics, while non-spherical non-degenerate orbits of other
two algebras are holomorphically non-equivalent generalization for the case of 4-dimensional
complex space of a known Winkelmann surface in the space C3. All orbits of the algebras
in the second family admit tubular realizations.

Keywords: homogeneous manifold, holomorphic function, vector field, Lie algebra, Abelian
ideal.
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1. Introduction

At present, in the problem on description of locally holomorphically homogeneous real hyper-
surfaces of multi-dimensional complex spaces, two-dimensional [1] and three-dimensional cases
[2] are completely studied. Basing on the classification of 3-dimensional real Lie algebras, E.
Cartan showed that in C2 all homogeneous hypersufraces are the orbits of exactly such Lie alge-
bras; a similar idea of using the classification of 5-dimensional Lie algebras allowed to complete
the description of locally homogeneous hypersurfaces of 3-dimensional complex spaces.
At that, an important step in the case of 3-dimensional complex spaces was a statement on

non-degeneracy of most 5-dimensional nilpotent Lie algebras: the orbits of only two of such
algebras are non-degenerate quadrics

Im 𝑧3 = |𝑧1|2 ± |𝑧2|2, (1.1)

while the other nilpotent algebras can not have non-degenerate 5-dimensional orbits in C3 [3].
In particular, this statement is true for three decomposable nilpotent Lie algebras of dimension
5.
In view of this, it seemed natural to conjecture on the Levi degeneracy of non-spherical (not

reducible to analogues of quadrics (1.1)) orbits of nilpotent Lie algebras in the space of arbitrary
dimensions. However, in [4], one-parametric families of 7-dimensional nilpotent Lie algebras
were studied and their non-spherical Levi non-degenerate orbits were found in C4.
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In the present paper we discuss 7-dimensional orbits in C4 of nilpotent 7-dimensional Lie
algebras in two rather wide families. The first of them is the family of decomposable Lie
algebras, while the other is the family of non-decomposable 7-dimensional nilpotent Lie algebras,
each containing at least a 4-dimensional Abelian ideal.
For the first family, containing 31 Lie algebra, we prove that similarly to the case of 3-

dimensional complex space, the statement on Levi degeneracy of 7-dimensional orbits of all
such algebras remains true, see Theorem 2.1. In view of this, it is natural to conjecture on Levi
degeneracy of all real hypersurfaces in the spaces C𝑛 of arbitrary dimensions being the orbits
of decomposable nilpotent (2𝑛− 1)-dimensional Lie algebras.
The second family we consider consists of 12 algebras and admits Levi non-degenerate orbits,

see Theorem 6.2. Here 8 algebras follow a common line related with the degeneracy of the orbits
of many nilpotent Lie algebras, see also [5] and [6]. At the same time, the orbits of two among
12 algebras are holomorphically equivalent to the quadrics

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 ± |𝑧3|2. (1.2)

An indefinite spherical surface corresponding to the minus sign at the term |𝑧3|2 in equation
(1.2) turns out to be the orbits of two different 7-dimensional Lie algebras being the subalgebras
of a complete 24-dimensional algebra of the symmetries of this surface. Such phenomenon was
mentioned in works [7], [4], [2] as rather natural for manifolds with rich algebras of symmetries,
in particular, for spherical hypersurfaces.
Non-spherical integral hypersurfaces of other two algebras among 12 are, up to holomorphic

equivalence, the surfaces described by the equations

Im 𝑧4 = 𝑧1𝑧2 + 𝑧2𝑧1 + |𝑧3|2 ± |𝑧1|4. (1.3)

These surfaces possess [8] the richest groups and algebras of symmetries among non-spherical
non-degenerate homogeneous hypersurfaces in C4. For each of them the dimension of the
holomorphic stabilizer, that is, of the local group of holomorphic transformations preserving
the surface and a fixed point on it, is equal to 6. Hence, the dimension of the total Lie algebra
of holomorphic vector fields on each of them is equal to 6 + 7 = 13.
We call a pair of homogeneous non-spherical surfaces (1.3) generalization of Winkelmann

surfaces ([9])

Im 𝑧3 = 𝑧1𝑧2 + 𝑧2𝑧1 + |𝑧1|4 (1.4)

in the space C3. On this pair, a maximum, equalling to 8, is attained by the dimension of
Lie algebra of the holomorphic vector fields in the class of homogeneous non-degenerate non-
spherical hypersurfaces in the space C3. A naturalness of the relation between surfaces (1.3)
and (1.4) is justified by the similarity of these equations.
We note that by simple transformations, the equations of non-spherical non-degenerate ho-

mogeneous hypersurfaces in C4 obtained in [4] are reduced exactly to form (1.3).
We also recall that the degeneracy at the point 0 of a smooth surface in C4 containing the

origin and given by the equation Im 𝑧4 = 𝐹 (𝑧1, 𝑧2, 𝑧3,Re 𝑧4), 𝑑𝐹 (0) = 0, means the degeneracy
of the matrix

𝐻 =
(︀
𝜕2𝐹/𝜕𝑧𝑘𝜕𝑧𝑗

)︀
(0), 𝑘, 𝑗 ∈ {1, 2, 3}.

Hereafter we suppose that the studied homogeneous hypersurfaces being the orbits of 7-
dimensional Lie algebras can be described exactly by such equations.
The technique used in this paper develops the ideas from [10] on representing abstract Lie

algebras as the algebras of holomorphic vector fields in the multi-dimensional complex spaces.
The consideration of only 7-dimensional orbits of such algebras in C4 determined by the system
of seven basis equations

Re
(︀
𝑒𝑘(Φ)|𝑀

)︀
≡ 0, 𝑘 = 1, . . . , 7, (1.5)
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means the completeness of the rank of these algebras. The condition of such completeness
and the Levi non-degeneracy of the orbits of the discussed algebras turn out to be rigid filters
allowing us to reduce the consideration of the large families of Lie algebras to studying just its
particular representatives. At a final stage, the systems of partial differential equations (1.5)
are integrated by means of standard methods.
The present paper is an extended version of a talk presented at the conference “Ufa Autumn

Mathematical School” in November, 2020, see [11], [12].
We mention one more issue arose in view of the remarks of the referee on this work. The

base for arguing in the paper is the classification of 7-dimensional (and also of 6-dimensional
and 5-dimensional) nilpotent Lie algebras. For the 7-dimensional case such classification is
provided, for instance, in a known paper by C. Seeley [13]. However, as M.P. Gong showed in
[14], the paper by C. Seeley contains some errors and inaccuracies. Because of this the authors
used needed classification lists from works [14] regarding them as more reliable.

2. Simplest cases of decomposable Lie algebras

The main result of the first part of the paper is the following statement.

Theorem 2.1. A real hypersurface in C4 being an orbit of a nilpotent decomposable 7-
dimensional Lie algebra is necessary Levi degenerate.

We split the proof of this theorem into several cases related with possible structures of
decomposable algebras and the dimensions of the Abelian ideals they contain. The complete
proof consists of particular cases discussed in Sections 2-5 of the paper.
Let us consider possible structures of decomposable 7-dimensional Lie algebras.
The list of such algebras can be easily formed in view of the representation of the number 7

as a sum of several smaller natural numbers equalling to the dimensions of non-decomposable
algebras-summands. Formally speaking, there are 14 decompositions; for instance, there are
three ways of representing the number 7 as a sum of two numbers:

7 = 6 + 1 = 5 + 2 = 4 + 3.

Apart of this, there are 4 representations of this number as a sum of three terms, 3 representa-
tions of this number as a sum of three terms, 3 representations of four terms, 2 representations
of five terms and two single representations of six and seven terms.
We note that the direct sum 𝑔 = 𝑔1 ⊕ . . .⊕ 𝑔𝑛 of Lie algebras is nilpotent if and only if each

term in the sum is nilpotent. Since there exist no two-dimensional nilpotent algebras, we should
remove from the formal representations of the seven as a sum of small terms all decompositions
containing at least one term «2». Then we get a specified list of 7 options:

7 = (6 + 1) = (4 + 3) = (5 + 1 + 1) = (3 + 3 + 1) = (4 + 1 + 1 + 1)

= (3 + 1 + 1 + 1 + 1) = (1 + 1 + 1 + 1 + 1 + 1 + 1).
(2.1)

One more point is taking into consideration the number of nilpotent (non-decomposable)
Lie algebras of «smaller» dimensions. According to [14], there exist 20 such algebras of the
dimension six and extra 6 nilpotent (non-decomposable) Lie algebras have the dimension five.
Each of the dimensions 1, 3, 4 has exactly one nilpotent non-decomposable representative. In
view of this, the list of decompositions (2.1) corresponds to

20 + 1 + 6 + 1 + 1 + 1 + 1 = 31

different nilpotent decomposable 7-dimensional Lie algebras.
For many of the mentioned 31 decomposable Lie algebras the absence of real Levi non-

degenerate hypersurfaces, being the orbits of holomorphic realizations of these algebras, can be
established rather easily. The base of such conclusion is the following statement proved in [5].
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Theorem 2.2. If a 7-dimensional Lie algebra 𝑔7 possesses a 5-dimensional Abelian subalge-
bra 𝐼5 and in the complement 𝑔7 ∖ 𝐼5 there exists an element commuting with a 4-dimensional
subalgebra ℎ4 ⊂ 𝐼5, then all integral hypersurfaces of the holomorphic realization of the algebra
𝑔7 in the space C4 are Levi degenerate.

Remark 2.1. An obvious corollary of this theorem is the statement on Levi degeneration
of all orbits in C4 of each holomorphic realization of 7-dimensional algebra 𝑔7 having a 6-
dimensional Abelian subalgebra.

We first apply Theorem 2.2 and its corollary to decomposable algebras containing in their
decompositions at most 4-dimensional terms.
Hereinafter nilpotent non-decomposable terms of smaller dimensions 𝑘 ∈ {1, 3, 4, 5, 6} form-

ing a discussed 7-dimensional algebra are denoted by g𝑘.

Proposition 2.1. 7-dimensional orbits in C4 of all realizations of the five algebras

g4 ⊕ g3, 2g3 ⊕ g1, g4 ⊕ 3g1, g3 ⊕ 4g1, 7g1 (2.2)

can be only Levi degenerate.

Proof. We begin the proof of Proposition 2.1 from the end of list (2.2). The Abelian algebra
7g1 contains a 6-dimensional Abelian ideal and this is why by the corollary of Theorem 2.2 it
can possess only Levi degenerate 7-dimensional orbits.
The three-dimensional Heisenberg algebra g3 with the only relation

[𝑒1, 𝑒2] = 𝑒3 (2.3)

contains a pair of commuting vectors 𝑒2, 𝑒3. A linear hull ℎ2 of these vectors is a 2-dimensional
Abelian subalgebra (and even an Abelian ideal) in g3. A sum of ℎ2 with four one-dimensional
Abelian algebras forms a 6-dimensional Abelian subalgebra in a 7-dimensional Lie algebra
g3 ⊕ 4g1.
Similarly, the only non-trivial 4-dimensional nilpotent Lie algebra with the relations

[𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒3] = 𝑒4

has a large by dimension 3-dimensional Abelian ideal ℎ3 =< 𝑒2, 𝑒3, 𝑒4 >. Then a 7-dimensional
algebra g4 ⊕ 3g1 also possesses a 6-dimensional Abelian ideal.
The first two Lie algebras in list (2.2) have only 5-dimensional Abelian ideal. In the case of

the algebra g4⊕g3 of two terms this is ℎ5 = ℎ3+ℎ2, and in this second case, ℎ5 = ℎ
(1)
2 +ℎ

(2)
2 +g1,

where ℎ
(1)
2 , ℎ

(2)
2 are two-dimensional Abelian ideals of two 3-dimensional terms belonging to the

algebra 𝑔7 = 2g3 ⊕ g1.
In addition to this ideal, there exists an element commuting with four independent vectors

in the ideal ℎ5.
In the first case, as such element, we can take 𝑒5 in g3 (assuming that this subalgebra of the

total algebra 𝑔7 is described by the relation [𝑒5, 𝑒6] = 𝑒7) not belonging to the two-dimensional
ideal ℎ2. This element commutes with the basis 𝑒2, 𝑒3, 𝑒4 in the ideal ℎ3 and also with the
element 𝑒7 in g3.

In the second case, we denote by g
(1)
3 and g

(2)
3 two 3-dimensional terms belonging to 𝑔7.

Here the element 𝑒1 is from the first 3-dimensional term (with relation (2.3)) complement to

ℎ
(1)
2 and it commutes with two basis elements of the two-dimensional ideal ℎ

(2)
2 of the second

3-dimensional algebra g
(2)
3 , with the one-dimensional term g1 and also with the element 𝑒3.

Then Theorem 2.2 and its corollary complete the proof on the absence of non-degenerate
orbits in C4 for all five Lie algebras in (2.2).

We proceed to studying decomposable Lie algebras containing according to (2.1) a 5-
dimensional or a 6-dimensional term.
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3. Algebras with 5-dimensional and 6-dimensional non-decomposable terms

Proposition 3.1. 7-dimensional orbits in C4 for all realizations of the Lie algebras of the
form g5⊕2g1 with nilpotent non-decomposable term of dimension 5 can be only Levi degenerate.

Proof. In accordance with [14] (see also [15]), we write the table of commutation relations for
all six nilpotent non-decomposable Lie algebras of dimension 5; hereinafter by 𝑠𝑗𝑘 we denote
the commutator [𝑒𝑗, 𝑒𝑘].

Table 3.1: Non-decomposable 5-dimensional nilpotent Lie algebras [14]

Algebras 𝑠12 𝑠13 𝑠14 𝑠15 𝑠23 𝑠24 𝑠25 𝑠34 𝑠35 𝑠45
𝑁5,1 𝑒3 𝑒4 𝑒5 𝑒5
𝑁5,2,1 𝑒3 𝑒4 𝑒5
𝑁5,2,2 𝑒4 𝑒5 𝑒5
𝑁5,2,3 𝑒3 𝑒4 𝑒5
𝑁5,3,1 𝑒5 𝑒5
𝑁5,3,2 𝑒4 𝑒5

By this table we see easily that the algebras𝑁5,2,1⊕2g1 and𝑁5,3,2⊕2g1 possess a 6-dimensional
Abelian ideal 𝐼6 =< 𝑒2, 𝑒3, 𝑒4, 𝑒5 > ⊕2g1.
For other four algebras g5 in this table the sum g5⊕ 2g1 has a 5-dimensional Abelian ideal of

form 𝐼3⊕2g1. Here for the algebra𝑁5,1 the Abelian ideal 𝐼3 is a linear hull< 𝑒3, 𝑒4, 𝑒5 >, for𝑁5,2,2

this is < 𝑒2, 𝑒4, 𝑒5 >, while for two remaining algebras 𝑁5,2,3 and 𝑁5,3,1 we let 𝐼3 =< 𝑒3, 𝑒4, 𝑒5 >.
It remains to observe that in the complement g5 ∖ 𝐼3 to each of these 5-dimensional ideals

there is an element commuting with two elements in 𝐼3:
𝑒2 commutes with < 𝑒4, 𝑒5 >⊂ 𝐼3 in the case of the algebras 𝑁5,1, 𝑁5,2,3 and 𝑁5,3,1,
𝑒3 commutes with < 𝑒4, 𝑒5 >⊂ 𝐼3 in the case of the algebra 𝑁5,2,2.
Then each 7-dimensional algebra g7 = g5 ⊕ 2g1 with the first term from Table 3.1 has a

5-dimensional Abelian ideal 𝐼5 and an element in the complement to this ideal commuting with
four independent elements in 𝐼5. By Theorem 2.2, all 7-dimensional orbits in C4 of the Lie
algebras discussed in this proposition can be only degenerate.

We begin the study of 20 decomposable algebras containing a 6-dimensional non-
decomposable term with the following technical statement.

Proposition 3.2. Thirteen of 20 algebras of the form g6 ⊕ g1 have a 5-dimensional ideal
and an element in the complement commuting with a 4-dimensional subalgebra of this ideal.
Five of seven remaining algebras have a 5-dimensional Abelian ideal and an element in its

complement commuting only with a 3-dimensional subalgebra of this ideal.
Two of seven algebras have only a 4-dimensional Abelian ideal and two elements in its com-

plement commuting with 2-dimensional subalgebras of such ideal.

Remark 3.1. For the mentioned 13 Lie algebras in Proposition 3.2 the statement of Theo-
rem 2.1 holds thanks to Theorem 2.2.

Remark 3.2. We specify that two of these 13 algebras have 6-dimensional Abelian ideal and
hence, they also satisfy formal conditions on a 5-dimensional ideal in Proposition 3.2.

Proof. The proof of Proposition 3.2 requires an accurate consideration, for example, with a
computer assistance, of commutation relations similar to ones given in Table 3.1 and provided,
for instance, in [14]. We briefly discuss just 3 algebras of the mentioned 13 and we discuss in
details 7most interesting algebras of form g6⊕g1 not satisfying the assumptions of Theorem 2.2.
So, two 6-dimensional algebras:
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𝑁6,2,1 with four commutation relations [𝑒1, 𝑒𝑖] = 𝑒𝑖+1, 2 ⩽ 𝑖 ⩽ 5 and 𝑁6,3,4 with three relations

[𝑒1, 𝑒2] = 𝑒3; [𝑒2, 𝑒3] = 𝑒5; [𝑒2, 𝑒4] = 𝑒6 contain Abelian ideals 𝐼
(1)
5 =< 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 > and

𝐼
(2)
5 =< 𝑒1, 𝑒3, 𝑒4, 𝑒5, 𝑒6 >, respectively.
The one-dimensional term g1 included into the direct sum with each of these algebras ob-

viously increases by one the dimension of the Abelian ideal of the obtained 7-dimensional
algebras.
As an example of a general situation for 13 algebras we consider three non-trivial com-

mutation relations defining 𝑁6,3,6, which is the last in the list [14] of 20 non-decomposable
6-dimensional nilpotent algebras:

[𝑒1, 𝑒2] = 𝑒4; [𝑒1, 𝑒3] = 𝑒5; [𝑒2, 𝑒3] = 𝑒6.

This algebra has only a 4-dimensional Abelian ideal 𝐼4 =< 𝑒3, 𝑒4, 𝑒5, 𝑒6 >, and in its direct
sum with the one-dimensional algebra g1 we obtain a 5-dimensional ideal 𝐼5 = 𝐼4 ⊕ g1. At the
same time, the element 𝑒2 in the complement to 𝐼5 commutes with three fields 𝑒4, 𝑒5, 𝑒6 in 𝐼4
as well as with the basis field of the one-dimensional term g1.
Now let us describe as a table the commutation relations for seven most interesting algebras

(of twenty) not satisfying the assumptions of Theorem 2.2. We also observe that the basis
element 𝑒6 belongs to the center of each of discussed 20 Lie algebras. This is the reason why
in Table 3.2 we write out only 10 instead of formal 15 commutation relations for each of the
involved algebras: trivial relations with 𝑒6 are omitted.

Table 3.2: 6-dimensional Lie algebras with «low-dimensional» Abelian ideals [14]

Algebras 𝑠12 𝑠13 𝑠1 𝑠15 𝑠23 𝑠24 𝑠25 𝑠34 𝑠35 𝑠45
𝑁6,1,1 𝑒3 𝑒4 𝑒5 𝑒6 𝑒5 𝑒6
𝑁6,1,2 𝑒3 𝑒4 𝑒5 𝑒5 𝑒6 −𝑒6
𝑁6,1,4 𝑒3 𝑒4 𝑒6 𝑒6 𝑒6
𝑁6,2,2 𝑒3 𝑒4 𝑒5 𝑒6 −𝑒6
𝑁6,2,3 𝑒4 𝑒5 𝑒6 𝑒5 −𝑒6
𝑁6,2,5 𝑒3 𝑒4 𝑒6 𝑒5 𝑒6
𝑁6,3,1 𝑒4 𝑒5 𝑒6 𝑒6

This table implies the following specifications of Proposition 3.2 on Abelian ideals 𝐼𝑘 of the
discussed 7-dimensional algebras and the elements in the complements to these ideals commut-
ing with the subalgebras of such ideals (g1 =< 𝑒7 >):

𝑁6,1,1 ⊕ g1 : 𝐼5 =< 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒2 commutes with < 𝑒5, 𝑒6, 𝑒7 >,
𝑁6,1,4 ⊕ g1 : 𝐼5 =< 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒1 commutes with < 𝑒5, 𝑒6, 𝑒7 >,
𝑁6,2,3 ⊕ g1 : 𝐼5 =< 𝑒2, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒3 commutes with < 𝑒5, 𝑒6, 𝑒7 >,
𝑁6,2,5 ⊕ g1 : 𝐼5 =< 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒1 commutes with < 𝑒4, 𝑒6, 𝑒7 >,
𝑁6,3,1 ⊕ g1 : 𝐼5 =< 𝑒1, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒2 commutes with < 𝑒4, 𝑒6, 𝑒7 >;
𝑁6,1,2 ⊕ g1 and 𝑁6,2,2 ⊕ g1 : 𝐼4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝑒2 commutes with < 𝑒4, 𝑒6, 𝑒7 > .
The proof is complete.

Our next considerations are related exactly with selected ideals of the seven discussed alge-
bras.

4. Auxiliary statements

Lemma 4.1. ([4]). Let a real hypersurface 𝑀 ⊂ C4 be Levi non-degenerate near some its
point 𝑄 and be an orbit of a 7-dimensional Lie algebra 𝑔 of holomorphic vector fields in this
space. Let 𝐼4 be a 4-dimensional Abelian subalgebra in 𝑔 with a fixed basis 𝑒4, 𝑒5, 𝑒6, 𝑒7. By a
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holomorphic change of coordinates in the space C4 defined in the neighbourhood of the point 𝑄
this basis can be reduced to one of the following three forms:

1)

(1, 0, 0, 0),

(0, 1, 0, 0),

(0, 0, 1, 0),

(0, 0, 0, 1),

2)

(0, 𝑏4(𝑧1), 𝑐4(𝑧1), 𝑑4(𝑧1)),

(0, 1, 0, 0),

(0, 0, 1, 0),

(0, 0, 0, 1),

3)

(0, 1, 0, 0),

(0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1)),

(0, 0, 1, 0),

(0, 0, 0, 1).

Lemma 4.2. Let 𝑀 ⊂ C4 be a Levi non-degenerate hypersurface, on which there exists a
7-dimensional algebra of holomorphic vector fields with a 5-dimensional Abelian subalgebra 𝐼5.
Then the first of three cases in Lemma 4.1 is possible for none of quadruple of independent
fields in 𝐼5.

Proof. We consider some basis 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 in a 5-dimensional Abelian algebra 𝐼5 assuming
that the quadruple of the fields in the basis is flattened and having the following form in some
coordinates:

𝑒1 = (1, 0, 0, 0), 𝑒2 = (0, 1, 0, 0), 𝑒3 = (0, 0, 1, 0), 𝑒4 = (0, 0, 0, 1).

The fifth basis field 𝑒5 in the algebra 𝐼5 commuting with this quadruple should have only
constant components since each field in the quadruple means differentiating with respect to one
of the complex variables in the space C4. Considering instead of 𝑒5 its linear combination with
the fields in the quadruple, we can suppose that it reads as

𝑒5 = (𝑖𝐴5, 𝑖𝐵5, 𝑖𝐶5, 𝑖𝐷5),

where 𝐴5, 𝐵5, 𝐶5, 𝐷5 are real constants.
But the vector field 𝑒*5 = −𝑖𝑒5 = (𝐴5, 𝐵5, 𝐶5, 𝐷5) is also tangential to 𝑀 as a linear com-

bination of the fields in the basis quadruple and this means that 𝑀 is Levi degenerate. The
obtained contradiction and the non-degeneracy of 𝑀 complete the proof.

Lemma 4.3. Let a 7-dimensional algebra 𝑔7 of holomorphic vector fields on a non-degenerate
hypersurface 𝑀 ⊂ C4 has a 5-dimensional Abelian subalgebra 𝐼5 containing a 3-dimensional
subalgebra ℎ3, with which some element in the complement 𝑔7 ∖ 𝐼5 commutes. Then under the
simplification of the quadruple of independent fields containing some basis ℎ3 and an arbitrary
fourth field in 𝐼5 ∖ ℎ3, the flattening only of two fields in ℎ3 and of the third field in 𝐼5 ∖ ℎ3 is
impossible.

Proof. As a basis in the 5-dimensional Abelian subalgebra 𝐼5, we regard the fields 𝑒3, 𝑒4, 𝑒5, 𝑒6,
𝑒7 and ℎ3 =< 𝑒5, 𝑒6, 𝑒7 >. Simplifying the quadruple of the fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 by the scheme of
Lemma 4.1, we need to show that in the discussed situation, under an arbitrary choice of the
basis fields 𝑒5, 𝑒6, 𝑒7 the third case of this lemma is impossible.
Supposing that it is possible, we have three flattened fields 𝑒4, 𝑒6, 𝑒7, two of which belong to

3-dimensional subalgebra, while the third does not. The field

𝑒3 = (𝑎3(𝑧), 𝑏3(𝑧), 𝑐3(𝑧), 𝑑3(𝑧)),

also belonging to the Abelian subalgebra 𝐼5, commutes with the flattened triple of the fields.
This is why its components can depend only on the variable 𝑧1. And the first component 𝑎3(𝑧1)
is to be identically zero, since otherwise by using the technique of work [10] the field 𝑒3 can be
flattened keeping the flattening for the fields 𝑒4, 𝑒6, 𝑒7, while this is impossible by Lemma 4.2.
Then the first components 𝑎𝑘(𝑧1) of entire basis quintuple 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 are zero. We use

the existence of the field

𝑒1 = (𝑎1(𝑧), 𝑏1(𝑧), 𝑐1(𝑧), 𝑑1(𝑧)) ∈ 𝑔7 ∖ 𝐼5
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commuting with the fields 𝑒5 = (0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1)), 𝑒6 = 𝜕/𝜕𝑧3, 𝑒7 = 𝜕/𝜕𝑧4. By the conditions
[𝑒1, 𝑒6] = [𝑒1, 𝑒7] = 0 the components of 𝑒1 depend at most on the variables 𝑧1, 𝑧2. Then

0 = [𝑒1, 𝑒5] = 𝑎1(𝑧1, 𝑧2) · (0, 0, 𝑐′5(𝑧1), 𝑑′5(𝑧1)).

Therefore, 𝑎1(𝑧1, 𝑧2)𝑐
′
5(𝑧1) ≡ 0, 𝑎1(𝑧1, 𝑧2)𝑑

′
5(𝑧1) ≡ 0. Here either 𝑎1(𝑧1, 𝑧2) ≡ 0 or both

coefficients 𝑐5(𝑧1), 𝑑5(𝑧1) are independent of the variable 𝑧1, that is, are constants.
But for a Levi non-degenerate surface 𝑀 the coefficient 𝑎1(𝑧) can not be zero since 6 zeroes

in the column of the first components of the basis fields indicate the degeneration of 𝑀 . And
a linear hull of independent over R triple of vector fields

𝑒5 = (0, 0, 𝐶5, 𝐷5), 𝑒6 = (0, 0, 1, 0), 𝑒7 = (0, 0, 0, 1)

with constant coefficients always contains two non-trivial fields of form 𝑍, 𝑖𝑍. The presence of
such pair of the fields tangential to the hypersurface 𝑀 also indicates its Levi degeneracy.
The obtained contradictions complete the proof.

Corollary 4.1. Under the assumptions of Lemma 4.3, it is possible to flatten each basis of
a three-dimensional subalgebra ℎ3 commuting with an element in the complement 𝑔7 ∖ 𝐼5.

Simply speaking, the search of non-degenerate homogeneous orbits for Lie algebras with such
properties can be made restricting oneself by Case 2 in Lemma 4.1.

5. Completing of proof of Theorem 2.1

Theorem 2.1 will be completely proved after the consideration of the orbits of the set of seven
«exceptional» Lie algebras in Table 3.2. Below we discuss two groups of algebras, into which
this set is naturally partitioned.

5.1. Decomposable algebras with 5-dimensional Abelian ideals.

Proposition 5.1. Holomorphic realizations in the space C4 of five algebras

𝑁6,1,1 ⊕ g1, 𝑁6,1,4 ⊕ g1, 𝑁6,2,3 ⊕ g1, 𝑁6,2,5 ⊕ g1, 𝑁6,3,1 ⊕ g1, (5.1)

containing a 5-dimensional Abelian ideal, do not have Levi non-degenerate 7-dimensional orbits.

Proof. For each of five mentioned 7-dimensional Lie algebras we employ the inclusions ℎ3 ⊂
𝐼5 ⊂ 𝑔7 given in Section 4 and corresponding discussions from the previous section; we also
recall that ℎ3 commutes with some element 𝑔7 ∖ 𝐼5.
At the same time, 𝐼5, ℎ3 are formed, generally speaking, in different ways for each of the five

algebras. For instance, for the algebra 𝑁6,1,1 ⊕ g1 we have 𝐼5 =< 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, while the
element 𝑒2 commutes with a 3-dimensional algebra ℎ3 =< 𝑒5, 𝑒6, 𝑒7 >.
We prove Proposition 5.1 exactly for this algebra; its validity for other algebras in list (5.1)

can be established in the same way.
Thus, according to Lemma 4.3, by means of a holomorphic change of the coordinates we

flatten the quadruple of the fields 𝑒2, 𝑒5, 𝑒6, 𝑒7. We fix the obtained form of the basis:

𝑒1 = (𝑎1(𝑧), 𝑏1(𝑧), 𝑐1(𝑧), 𝑑1(𝑧)),

𝑒2 = (1, 0, 0, 0),

𝑒3 = (0, 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑑3(𝑧1)),

𝑒4 = (0, 𝑏4(𝑧1), 𝑐4(𝑧1), 𝑑4(𝑧1)),

𝑒5 = (0, 1, 0, 0),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1)
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of the algebra 𝑁6,1,1 ⊕ g1 after such flattening and continue consideration of the commutation
relations in the realization of this algebra.
Among 21 relations for the pairs of basis fields, not considered ones are the conditions for

the six commutators [𝑒1, 𝑒𝑘], (𝑘 = 2, . . . , 7), and two commutators [𝑒2, 𝑒3], [𝑒2, 𝑒4]. By means of
the relations [𝑒2, 𝑒3] = 𝑒5, [𝑒2, 𝑒4] = 𝑒6 we easily specify the forms of the fields:

𝑒3 = (0, 𝑧1 +𝐵3, 𝐶3, 𝐷3), 𝑒4 = (0, 𝐵4, 𝑧1 + 𝐶4, 𝐷4), (5.2)

where 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 are some complex constants.
Extra two relations [𝑒1, 𝑒6] = [𝑒1, 𝑒7] = 0 mean that the components of the field 𝑒1 are

independent of the variables 𝑧3, 𝑧4. The relation [𝑒1, 𝑒5] = 𝑒6, allows us to specify the dependence
of this field on the variable 𝑧2 and it yields that

𝑒1 = (𝑎1(𝑧1), 𝑏1(𝑧1),−𝑧2 + 𝑐1(𝑧1), 𝑑1(𝑧1)) (5.3)

with some holomorphic functions 𝑎1, 𝑏1, 𝑐1, 𝑑1.
A field of such form should satisfy the following three relations

[𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒3] = 𝑒4, [𝑒1, 𝑒4] = 𝑒5.

However, the latter contains a contradiction since by (5.2) and (5.3) we have:

[𝑒1, 𝑒4] = 𝑎1(𝑧1) · (0, 0, 1, 0)−𝐵4 · (0, 0,−1, 0) ̸= (0, 1, 0, 0) = 𝑒5.

Thus, the assumption on the existence of at least one non-degenerate orbit of the Lie algebra
𝑁6,1,1 ⊕ g1 gives rise to the contradiction.
The proof of the proposition for this algebra is complete. As it has been mentioned above,

other algebras mentioned in the formulation of the proposition can be considered in the same
way.

5.2. Decomposable algebras with 4-dimensional Abelian algebras.

Proposition 5.2. Holomorphic realizations in the space C4 of the algebras 𝑁6,1,2 ⊕ g1 and
𝑁6,2,2 ⊕ g1 with 4-dimensional maximal Abelian ideals have no Levi non-degenerate orbits.

Proof. According to Table 3.2, two of these algebras differ just by one commutator [𝑒2, 𝑒3]. The
arguing below does not involve this commutator and is common for both discussed algebras.
Supposing that there exists a realization of one of the discussed 7-dimensional Lie algebras

𝑔7 with non-degenerate orbits, we consider three cases of Lemma 4.1 on simplification of the
fixed basis 𝑒4, 𝑒5, 𝑒6, 𝑒7 in the ideal 𝐼4 of this algebra related exactly with its non-degenerate
orbit.
In the first case for the flattened quadruple of the basis fields in the ideal 𝐼4 we consider the

commutation relation of each of the remaining basis fields in the algebra 𝑔7 with this quadruple.
For the field 𝑒1 we have:

[𝑒1, 𝑒4] = 𝑒5, [𝑒1, 𝑒5] = 0, [𝑒1, 𝑒6] = 0, [𝑒1, 𝑒7] = 0.

By these relations we obtain a simplified form of the field:

𝑒1 = (𝐴1,−𝑧1 +𝐵1, 𝐶1, 𝐷1)

with some complex coefficients 𝐴1, 𝐵1, 𝐶1, 𝐷1. Similar considerations related with the field 𝑒3
reduce it to the form

𝑒3 = (𝐴3, 𝐵3, 𝑧1 + 𝐶3, 𝐷3)

with constants 𝐴3, 𝐵3, 𝐶3, 𝐷3. Calculating the commutator of such field and employing the
relation [𝑒1, 𝑒3] = 𝑒4, we obtain a contradiction:

𝐴1(0, 0, 1, 0)− 𝐴3(0,−1, 0, 0) = (1, 0, 0, 0).
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In the second case we suppose that the quadruple of the fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 read as

𝑒4 = (0, 𝑏4(𝑧1), 𝑐4(𝑧1), 𝑑4(𝑧1)),

𝑒5 = (0, 1, 0, 0),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1).

Here we consider the commutators of the fields 𝑒1, 𝑒3 with three flattened fields in the ideal 𝐼4.
Since all six commutators vanish, we conclude that the components of the fields 𝑒1 and 𝑒3 depend
only on the variable 𝑧1. We note that in view of the simplified form of the basis in the ideal 𝐼4,
in this case the first components of the fields 𝑎1(𝑧1), 𝑎3(𝑧1) can not vanish simultaneously.
In view of this, we consider two subcases. In the first subcase we assume that 𝑎1(𝑧1) ̸= 0 and

then similar to the arguing of two previous section we can flatten the basis field 𝑒1 to the form
𝑒1 = (1, 0, 0, 0) keeping the triple of fields 𝑒5, 𝑒6, 𝑒7 flattened. The form of the fields 𝑒3 and
𝑒4 is also preserved but with changed, generally speaking, functional coefficients 𝑎𝑘(𝑧1), 𝑏𝑘(𝑧1),
𝑐𝑘(𝑧1), 𝑑𝑘(𝑧1), 𝑘 = 3, 4. Then by the pair of commutation relations [𝑒1, 𝑒4] = 𝑒5 and [𝑒1, 𝑒3] = 𝑒4
we obtain a specified form of the fields

𝑒4 = (0, 𝑧1 +𝐵4, 𝐶4, 𝐷4), 𝑒3 = (𝐴3,
1

2
(𝑧1 +𝐵4)

2 +𝐵3, 𝐶4𝑧1 + 𝐶3, 𝐷4𝑧1 +𝐷3).

However, calculating the commutator [𝑒3, 𝑒4] = −𝑒6, we arrive at a contradiction since the
left hand side of the latter identity 𝐴3 · (0, 1, 0, 0) does not coincide with the right hand side.
In the second subcase we let 𝑎1(𝑧1) ≡ 0 but then 𝑎3(𝑧1) ̸= 0. Similarly to the previous

subcase, we flatten the field 𝑒3 by a holomorphic change to 𝑒3 = (1, 0, 0, 0). Calculating in this
case the commutator [𝑒3, 𝑒4] = −𝑒6, we obtain a specified form of the field:

𝑒4 = (0, 𝐵4,−𝑧1 + 𝐶4, 𝐷4)

with some constants 𝐵4, 𝐶4, 𝐷4. Then by the relation [𝑒1, 𝑒3] = 𝑒4 we obtain a similar specifi-
cation with additional constants 𝐴1, 𝐵1, 𝐶1, 𝐷1:

𝑒1 = (𝐴1,−𝐵4𝑧1 +𝐵1,
1

2
(𝑧1 − 𝐶4),−𝐷4𝑧1 +𝐷1).

It remains to find the commutator of the fields 𝑒1, 𝑒4 taking into consideration the found
facts. We have:

[𝑒1, 𝑒4] = 𝐴1 · (0, 0,−1, 0),

and this contradicts to the commutation relation [𝑒1, 𝑒4] = 𝑒5 = (0, 1, 0, 0).
Finally, in the third case we have a quadruple of basis fields in the ideal 𝐼4 of the form

𝑒4 = (0, 1, 0, 0),

𝑒5 = (0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1)),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1).

We discuss here extra two fields in the complement to this ideal, namely, 𝑒1 and 𝑒3. The
commutator of each of these fields with the fields 𝑒6 and 𝑒7 vanishes. This is why the components
of the fields 𝑒1 and 𝑒3 depend at most on the variables 𝑧1, 𝑧2. Bearing this in mind and the
commutation relations

[𝑒1, 𝑒5] = 𝑎1(𝑧1, 𝑧2) · (0, 0, 𝑐′5(𝑧1), 𝑑′5(𝑧1)) = 0,

[𝑒3, 𝑒5] = 𝑎3(𝑧1, 𝑧2) · (0, 0, 𝑐′5(𝑧1), 𝑑′5(𝑧1)) = 0,

we obtain one of the two situations:
either 1) 𝑎1(𝑧1, 𝑧2) ≡ 0, 𝑎3(𝑧1, 𝑧2) ≡ 0,
or 2) 𝑐5(𝑧1) = 𝐶5 = 𝑐𝑜𝑛𝑠𝑡, 𝑑5(𝑧1) = 𝐷5 = 𝑐𝑜𝑛𝑠𝑡.
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In the first situation on a non-degenerate hypersurface 𝑀 ⊂ C4 we have six linearly in-
dependent holomorphic vector fields 𝑒𝑘, (𝑘 = 1, 3, 4, 5, 6, 7) with identically vanishing first
components. As it was mentioned above, this is impossible.
The second situation is also impossible on a non-degenerate hypersurface since in the linear

hull of independent over R triple of the vector fields

𝑒5 = (0, 0, 𝐶5, 𝐷5), 𝑒6 = (0, 0, 1, 0), 𝑒7 = (0, 0, 0, 1)

with constant coefficients there are two non-trivial fields 𝑍, 𝑖𝑍. The presence of such pair of
the fields tangential to the hypersurface 𝑀 indicates its Levi degeneracy.
The contradictions arising in each of the considered cases and subcases complete the proof.

This proposition is a completing part in the proof of Theorem 2.1 and the first part of the
paper.

Proceeding to the second part, we note that the main point of the above arguing is the
presence of Abelian subalgebras (ideals) of dimension at least 4 of considered 7-dimensional Lie
algebras. At the same time, at least some of the considered algebras contain more than one
Abelian subalgebra of the maximal possible dimension.
For instance, the algebra 𝑁6,1,2 ⊕ g1 (see Table 3.2), apart of the written 4-dimensional ideal

𝐼4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, possesses extra three similar Abelian ideals:

𝐼 ′4 =< 𝑒1, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′4 =< 𝑒2, 𝑒4, 𝑒6, 𝑒7 >, 𝐼 ′′′4 =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 > .

Such property of 7-dimensional algebras is also informative in the problem on describing their
orbits. We shall employ this in the concluding sections of the paper.

6. Non-decomposable algebras with three 4-dimensional ideals

Below we discuss 7-dimensional Lie algebras having only 4-dimensional Abelian ideals but
the number of such ideals in each considered algebra is supposed to be at least three. Among
149 non-decomposable nilpotent Lie algebras, 4 algebras (17, 157, 147𝐴, 37𝐷1 in the indexing
of work [14]) have more than three Abelian ideals and 8 algebras

247𝐷, 247𝐸, 247𝑄, 247𝑅, 147𝐷, 137𝐷, 1357𝐴, 1357𝐷 (6.1)

possess exactly three such ideals.
It turns out that opposite to the first part of the paper, 4 of these 12 Lie algebras have Levi

non-degenerate orbits in the space C4. An intermediate but important result on the description
of such surfaces is the following statement.

Theorem 6.1. Let a real non-degenerate hypersurface 𝑀 ⊂ C4 be an orbit of 7-dimensional
algebra of holomorphic vector fields. If this algebra does not contain 5-dimensional Abelian
subalgebras but contains three 4-dimensional Abelian subalgebras, then 𝑀 is holomorphically
equivalent to a tubular hypersurface, the equation of which depends only on the imaginary parts
of four complex variables.

A complete description of non-degenerate orbits of considered 12 algebras is provided by the
next theorem.

Theorem 6.2. 1) Up to a holomorphic equivalence, Levi non-degenerate orbits in C4 of 7-
dimensional Heisenberg algebra 17 containing eight different 4-dimensional Abelian ideals are
the spherical surfaces (quadrics):

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 ± |𝑧3|2; (6.2)
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2) three algebras 157, 147𝐴, 37𝐷1, each having four different Abelian ideals, do not admit
Levi non-degenerate 7-dimensional orbits in C4;
3) five algebras 247𝐷, 247𝐸, 247𝑄, 247𝑅, 147𝐷 containing three different Abelian ideals also

do not admit non-degenerate 7-dimensional orbits in the space C4;
4) up to a holomorphic equivalence, non-degenerate orbits of two algebras 137𝐷, 1357𝐴 are

only non-spherical surfaces

Im 𝑧4 = 𝑧1𝑧3 + 𝑧3𝑧1 + |𝑧2|2 ± |𝑧1|4; (6.3)

5) all non-degenerate orbits of the algebra 1357𝐷 are holomorphically equivalent to an indef-
inite quadrics

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 − |𝑧3|2. (6.4)

The remaining part of the paper is devoted to the proof of Theorem 6.2. We split all 12
discussed algebras into separated blocks; the properties of the algebras in the blocks we are
interesting in are formulated and proved in Propositions 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2.
Theorem 6.1 will be obtained as a corollary of one of these propositions.
Before we proceed to these statements, we first write commutation relations for all 12 dis-

cussed algebras. For the first quadruple of the algebras 17, 157, 147𝐴, 37𝐷1, in some bases
they read as:

17 : [𝑒1, 𝑒2] = [𝑒3, 𝑒4] = [𝑒5, 𝑒6] = 𝑒7

157 : [𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒3] = 𝑒7, [𝑒2, 𝑒4] = 𝑒7, [𝑒5, 𝑒6] = 𝑒7;

147𝐴 : [𝑒1, 𝑒2] = 𝑒4, [𝑒1, 𝑒3] = 𝑒5, [𝑒1, 𝑒6] = 𝑒7, [𝑒2, 𝑒5] = 𝑒7, [𝑒3, 𝑒4] = 𝑒7;

37𝐷1 : [𝑒1, 𝑒2] = 𝑒5, [𝑒1, 𝑒3] = 𝑒6, [𝑒1, 𝑒4] = 𝑒7, [𝑒2, 𝑒3] = −𝑒7,

[𝑒2, 𝑒4] = 𝑒6, [𝑒3, 𝑒4] = −𝑒5.

(6.5)

The commutation relations for eight algebras (6.1) are

247𝐷 : [𝑒1, 𝑒𝑘] = 𝑒𝑘+2, 𝑘 = 2, 3; [𝑒1, 𝑒4] = 𝑒6, [𝑒2, 𝑒5] = 𝑒7, [𝑒3, 𝑒4] = 𝑒7;

247𝐸 : [𝑒1, 𝑒𝑘] = 𝑒𝑘+2, 𝑘 = 2, 3, 4; [𝑒1, 𝑒5] = 𝑒6, [𝑒2, 𝑒5] = 𝑒7, [𝑒3, 𝑒4] = 𝑒7;

247𝑄 : [𝑒1, 𝑒𝑘] = 𝑒𝑘+2, 𝑘 = 2, 3, 4; [𝑒2, 𝑒3] = 𝑒6, [𝑒2, 𝑒5] = 𝑒7; [𝑒3, 𝑒4] = 𝑒7;

247𝑅 : [𝑒1, 𝑒𝑘] = 𝑒𝑘+2, 𝑘 = 2, 3, 4; [𝑒1, 𝑒5] = 𝑒6, [𝑒2, 𝑒3] = 𝑒6,

[𝑒2, 𝑒5] = 𝑒7; [𝑒3, 𝑒4] = 𝑒7;

(6.6)

147𝐷 : [𝑒1, 𝑒2] = 𝑒4, [𝑒1, 𝑒3] = −𝑒6, [𝑒1, 𝑒5] = 𝑒7, [𝑒1, 𝑒6] = 𝑒7, [𝑒2, 𝑒3] = 𝑒5,

[𝑒2, 𝑒6] = 𝑒7, [𝑒3, 𝑒4] = −2𝑒7;

137𝐷 : [𝑒1, 𝑒2] = 𝑒5, [𝑒1, 𝑒4] = 𝑒6, [𝑒1, 𝑒6] = 𝑒7, [𝑒2, 𝑒3] = 𝑒6,

[𝑒2, 𝑒4] = 𝑒7, [𝑒3, 𝑒5] = −𝑒7;

1357𝐴 : [𝑒1, 𝑒2] = 𝑒4, [𝑒1, 𝑒4] = 𝑒5, [𝑒1, 𝑒5] = 𝑒7, [𝑒2, 𝑒3] = 𝑒5,

[𝑒2, 𝑒6] = 𝑒7, [𝑒3, 𝑒4] = −𝑒7;

1357𝐷 : [𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒6] = 𝑒7, [𝑒2, 𝑒𝑘] = 𝑒𝑘+2, 𝑘 = 3, 4;

[𝑒2, 𝑒5] = 𝑒7, [𝑒3, 𝑒4] = 𝑒7.

(6.7)

We shall write out interesting for us 4-dimensional ideals of the considered algebras as needed.
We just note that it is natural to employ computer programs [16] for finding out such Abelian
subalgebras and ideals or ones of other dimensions in a long list in [14] of 149 algebras as well
as for determining the number of the ideals in each such algebra. For the discussed here 12
algebras, all statement on the ideals can be easily checked straightforwardly. For instance, in
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the algebra 247𝐷 with the above written commutation relations there are following Abelian
ideals:

𝐼 ′4 =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′′4 =< 𝑒4, 𝑒2, 𝑒6, 𝑒7 > . (6.8)

We observe one feature of the situation with three Abelian ideals for the considered 12
algebras useful for further discussions. It is convenient to formulate this feature in terms of
non-ordered sets of symbols in 7-valued alphabet {1, 2, 3, 4, 5, 6, 7} with a fixed number of the
elements in the set.
In order to do this, we encode a 4-dimensional linear ideal being a linear hull of the elements

{𝑒𝑗, 𝑒𝑘, 𝑒𝑙, 𝑒𝑚} in a 7-dimensional algebra by means a non-ordered set (𝑗, 𝑘, 𝑙,𝑚) of length 4.
Then we can measure a distance (of Hamming type) between such codings as the number of
symbols differing one coding from the other.
For instance, ideals (6.8) in the algeba 247𝐷 are associated with the sets

𝐽1 = (3, 5, 6, 7), 𝐽2 = (4, 5, 6, 7), 𝐽3 = (4, 2, 6, 7). (6.9)

At the same time, the distances from the set 𝐽2 both to 𝐽1 and 𝐽3 is equal 1, while 𝐽1 and
𝐽3 are separated by two units. We shall say in this case that an isosceles triangle with sides
(1,1,2) in the set of the discussed codings of lengths 4 corresponds to the ideals 𝐼 ′4, 𝐼

′′
4 , 𝐼

′′′
4 in

the algebra 247𝐷.
We also note that the algebra 37𝐷1 possesses 4 Abelian ideals with codings

𝐽1 = (1, 5, 6, 7), 𝐽2 = (2, 5, 6, 7), 𝐽3 = (3, 5, 6, 7), 𝐽4 = (4, 5, 6, 7).

Each two of them can be separated by the unit distance in the set of codings of length 4 and this
differs the algebra 37𝐷1 from the algebra 247𝐷. It turns out that among 12 discussed algebras
only the algebra 37𝐷1 turns to be exceptional in the sense of the structure of 4-dimensional
ideals.

Proposition 6.1. Among 4-dimensional Abelian ideals for each of 12 algebras (6.1), (6.5),
except the algebra 37𝐷1, there exist three ideals forming (1, 1, 2)-triangle in the set of codings
of length 4.

Proof. The proof of this statement can be made by a simple enumerations; the provided dis-
cussions of the ideals in the algebras 247𝐷 and 37𝐷1 serve as illustrations.

We consider separately the algebra 37𝐷1 selected in Proposition 6.1 and after that we proceed
to considering other 11 algebras in set (6.1), (6.5).

Proposition 6.2. A realization of algebra 37𝐷1 as an algebra of holomorphic vector fields
on a Levi non-degenerate hypersurface C4 is impossible.

Proof. Supposing the existence of Levi non-degenerate orbit of such algebra and using
Lemma 4.1, we discuss separately three cases, which arise while trying to simplify the basis 𝑒4,
𝑒5, 𝑒6, 𝑒7 of the Abelian ideal 𝐼 ′′4 in this algebra.
In the first case we assume that

𝑒4 = (1, 0, 0, 0), 𝑒5 = (0, 1, 0, 0), 𝑒6 = (0, 0, 1, 0), 𝑒7 = (0, 0, 0, 1). (6.10)

Commutation relations (6.5) for each of three remaining basis fields of a 7-dimensional algebra
37𝐷1 with flattened fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 allow simplify essentially the form of the fields 𝑒1, 𝑒2,
𝑒3. For instnace, by the only non-trivial relation [𝑒1, 𝑒4] = 𝑒7 of such type involving the field 𝑒1
we get:

𝑒1 = (𝐴1, 𝐵1, 𝐶1,−𝑧1 +𝐷1),

where 𝐴1, 𝐵1, 𝐶1, 𝐷1 are some complex constants.
In the same way we can get simplified representations for the fields 𝑒2, 𝑒3:

𝑒2 = (𝐴2, 𝐵2,−𝑧1 + 𝐶2, 𝐷2), 𝑒3 = (𝐴3, 𝑧2 +𝐵3, 𝐶3, 𝐷3).
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Remark 6.1. If a Lie algebra of vector fields in C4 contains two fields of form

𝑒1 = (𝑎1(𝑧), 𝐵1, 𝑐1(𝑧), 𝑑1(𝑧)),

𝑒2 = (𝑎2(𝑧), 𝐵2, 𝑐2(𝑧), 𝑑2(𝑧)),

where 𝐵1, 𝐵2 are some constants, then the second component of the commutator [𝑒1, 𝑒2] is zero.

Taking into consideration this remark and the relation

[𝑒1, 𝑒2] = 𝑒5 = (0, 1, 0, 0),

which holds in the algebra 37𝐷1, we arrive at a contradiction.
In the second case of Lemma 4.1, only three fields 𝑒5, 𝑒6, 𝑒7 in the same ideal are flattened to

condition (6.10), and 𝑒4 = (0, 𝑏4(𝑧1), 𝑐4(𝑧1), 𝑑4(𝑧1)). We also employ the presence of one more
4-dimensional ideal 𝐼 ′4 =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 > in the discussed algebra. The components of the field
𝑒3 commuting with other three basis fields 𝐼 ′4 can depend only on the variable 𝑧1, that is, the
entire field can be represented as

𝑒3 = (𝑎1(𝑧1), 𝑏1(𝑧1), 𝑐1(𝑧1), 𝑑1(𝑧1)).

If at the same time 𝑎1(𝑧1) ≡ 0, then [𝑒3, 𝑒4] = 0 and this contradicts to the relation [𝑒3, 𝑒4] =
−𝑒5 in this algebra. Therefore, 𝑎1(𝑧1) ̸= 0 (possibly, at a shifted point of the surface) and then
entire field 𝑒3 can be flattened to the form 𝑒3 = (1, 0, 0, 0) using the technique of work [10] (see
also [7]).
Considering now the commutators of the fields 𝑒1, 𝑒2 with the flattened basis of the ideal 𝐼 ′4,

similarly to the Case 1 we can simplify these fields to the form

𝑒1 = (𝐴1, 𝐵1, 𝑧1 + 𝐶1, 𝐷1), 𝑒2 = (𝐴2, 𝐵2, 𝐶2, 𝑧1 +𝐷2).

By the remark used above, the second component of the commutator [𝑒1, 𝑒2] is zero and this
contradicts to the relation [𝑒1, 𝑒2] = 𝑒5.

Finally, in the third case, it is important for us that 𝑒5 = (0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1)) in the coordi-
nates obtained under the holomorphic transformation and only the pair of the fields 𝑒6, 𝑒7 is of
the same form as in (6.10). Since these two fields belong to the center 𝑍 =< 𝑒5, 𝑒6, 𝑒7 > of the
algebra 37𝐷1, the components of all fields in this algebra can depend only on the variables 𝑧1,
𝑧2.
Calculating in this case the commutators of the fields 𝑒1, 𝑒2, 𝑒3 with the field 𝑒5, we obtain:

[𝑒1, 𝑒5] = 𝑎1(𝑧1, 𝑧2)(0, 0, 𝑐
′
5(𝑧1), 𝑑

′
5(𝑧1)) = 0,

[𝑒2, 𝑒5] = 𝑎2(𝑧1, 𝑧2)(0, 0, 𝑐
′
5(𝑧1), 𝑑

′
5(𝑧1)) = 0,

[𝑒3, 𝑒5] = 𝑎3(𝑧1, 𝑧2)(0, 0, 𝑐
′
5(𝑧1), 𝑑

′
5(𝑧1)) = 0.

Formally speaking, three such identities are possible only in two cases:
𝑎) 𝑐5(𝑧1) = 𝐶𝑜𝑛𝑠𝑡, 𝑑5(𝑧1) = 𝐶𝑜𝑛𝑠𝑡;
𝑏) 𝑎1(𝑧) = 𝑎2(𝑧) = 𝑎3(𝑧) = 0.
But for the basis vector fields of 7-dimensional algebra tangential to a non-degenerate hyper-

surface𝑀 ⊂ C4, none of these cases is possible, see the proofs of Lemma 4.3 and Proposition 5.1.
Thus, under the assumption on the existence of a non-degenerate orbit of the algebra 37𝐷1

all three possible situations of the simplification of the ideal 𝐼 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 > of this algebra
lead to contradictions.

In order to describe the orbits of remaining 11 Lie algebras in the set (6.1), (6.5) and to prove
Theorems 6.1 and 6.2, we shall employ the property of mutual location of their 4-dimensional
Abelian ideals stated in Proposition 6.1.
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7. Reduction to tubes and degeneracies of orbits for 8 algebras

Proposition 7.1. Let a 7-dimensional algebra of holomorphic vector fields on a real non-
degenerate hypersurface 𝑀 ⊂ C4 contains no 5-dimensional Abelian subalgebras but has three
Abelian 4-dimensional subalgebras forming (1, 1, 2)-triangle in the set of their codings of length
4. Then it is possible to flatten a quadruple of basis field in one of the Abelian subalgebras by
a holomorphic change of variables.

Proof. Let 𝑔 be a 7-dimensional algebra of holomorphic vector fields in C4 satisfying the as-
sumptions of Proposition 7.1. For the sake of convenience, we redenote the basis fields of the
algebra 𝑔 and its 4-dimensional Abelian subalgebras 𝐼 ′, 𝐼 ′′, 𝐼 ′′′ in accordance with formula (6.9),
that is,

𝐼 ′ =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′ =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′′ =< 𝑒2, 𝑒4, 𝑒6, 𝑒7 > .

Remark 7.1. Since the Lie algebra 𝑔 contains no 5-dimensional Abelian subalgebras, then
none of the two commutators [𝑒3, 𝑒4], [𝑒2, 𝑒5] can vanish.

Then we apply Lemma 4.1 to the basis of the ideal 𝐼 ′′. If it is possible to flatten completely
this basis (Case 1), then the proposition is true.
Let the set of fields (𝑒4, 𝑒5, 𝑒6, 𝑒7) be in the second case of Lemma 4.1. Then we consider the

field 𝑒3 and the Abelian ideal 𝐼 ′. Since all three its fields 𝑒5, 𝑒6, 𝑒7 are flattened, the components
of the commuting with it field 𝑒3 = (𝑎3, 𝑏3, 𝑐3, 𝑑3) can depend only on the variable 𝑧1.
If at the same time 𝑎3(𝑧1) ̸= 0, then the entire field

𝑒3 = (𝑎3(𝑧1), 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑑3(𝑧1)) (7.1)

can be reduced, as in the proof of Lemma 4.3, by a holomorphic change of variables to the form
𝑒3 = 𝜕/𝜕𝑧1 with simultaneous keeping of other basis fields 𝑒5, 𝑒6, 𝑒7 of subalgebra 𝐼 ′. This also
proves the proposition.
The situation 𝑎3(𝑧1) ≡ 0 in this case is impossible. Indeed, for two fields 𝑒3 and 𝑒4 depending

only on the variable 𝑧1 and having identically vanishing components 𝑎3, 𝑎4, their commutator
[𝑒3, 𝑒4] should also vanish. But this contradicts to the remark made in the beginning of the
proof.
Finally, in the third case of Lemma 4.1, the fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 read as

𝑒4 = (0, 1, 0, 0),

𝑒5 = (0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1)),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1).

Recalling the third Abelian subalgebra 𝐼 ′′′, we obtain a simplified form of the field 𝑒2, the
components of which, similar to (7.1), turn out to be depending at most on 𝑧1. At the same
time, similar to the arguing in Case 2, the component 𝑎2(𝑧1) can not vanish identically since
then [𝑒2, 𝑒5] = 0.
The field 𝑒2 = (𝑎2(𝑧1), 𝑏2(𝑧1), 𝑐2(𝑧1), 𝑑2(𝑧1)) with a non-zero component 𝑎2(𝑧1) can be flattened

to the form 𝑒2 = (1, 0, 0, 0) keeping the fields 𝑒4, 𝑒6, 𝑒7 flattened. The proposition turns out to
be true also in this case.

Remark 7.2. Together with Proposition 7.1, Theorem 6.1 is also proved since the flattening
of a quadruple of independent fields on the hypersurface 𝑀 means the tubularity property for
it.

This property plays an important role in general descriptions of holomorphically homogeneous
hypersurfaces in the complex spaces of arbitrary dimensions similarly to the studied cases with
the homogeneous property in C2 and C3. However, for an informative illustration of Theorem 6.1
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and for completing the proof of Theorem 6.2 we also need to reduce the number of the discussed
Lie algebras.

Proposition 7.2. Seven Lie algebras 157, 147𝐴, 247𝐷, 247𝐸, 247𝑄, 247𝑅, 147𝐷, the 4-
dimensional ideal of which form (1, 1, 2)-triangles in set of codings, have no non-degenerate
orbits in C4.

Proof. Proposition 7.1 allows us to reduce the consideration of each algebra, three Abelian
ideals of which has structure (1, 1, 2)-triangle to three rather simple checkings. As an example,
we consider them for the algebra 247𝐷.
Supposing that this algebra has a Levi non-degenerate orbit, we consider separately three

cases of flattening basis fields for each of three Abelian ideals in the algebra. We first flatten
the fields

𝑒4 = (1, 0, 0, 0),

𝑒5 = (0, 1, 0, 0),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1),

corresponding to the set 𝐽2 in (6.9).
Commutation relations (6.6) for each of three remaining basis fields of the 7-dimensional

algebra 𝑔 with flattened fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 allow us to simplify essentially the form of the fields
𝑒1, 𝑒2, 𝑒3. For instance, by the only nontrivial relation [𝑒1, 𝑒4] = 𝑒6 of such type involving the
field 𝑒1 we get

𝑒1 = (𝐴1, 𝐵1,−𝑧1 + 𝐶1, 𝐷1),

where 𝐴1, 𝐵1, 𝐶1, 𝐷1 are some complex constants.
Similarly, for the fields 𝑒2, 𝑒3 we obtain simplified representations of the form

𝑒2 = (𝐴2, 𝐵2, 𝐶2,−𝑧2 +𝐷2), 𝑒3 = (𝐴3, 𝐵3, 𝐶3,−𝑧1 +𝐷3).

For such fields 𝑒1, 𝑒2 the first component of its commutator vanishes and this contradicts to
the relation [𝑒1, 𝑒2] = 𝑒4 = (1, 0, 0, 0) in the algebra 247𝐷.
Similar contradictions are obtained also under the flattening of the bases in the ideals 𝐼 ′ and

𝐼 ′′′ in the algebra 247𝐷. For the ideal 𝐼 ′, the flattening of its basis fields 𝑒3, 𝑒5, 𝑒6, 𝑒7 and
consideration of these fields with the remaining triple 𝑒1, 𝑒2, 𝑒4 of the basis fields in the algebra
247𝐷 give rise to the formulae

𝑒1 = (𝐴1,−𝑧1 +𝐵1, 𝐶1, 𝐷1), 𝑒4 = (𝐴4, 𝐵4, 𝐶4, 𝑧1 +𝐷4). (7.2)

Applying the above used remark to the commutator [𝑒1, 𝑒4] = 𝑒6 = (0, 0, 1, 0) and to the
third components of the fields (7.2), we obtain a contradiction in this case, too.
Finally, after flattening of the basis fields,

𝑒2 = (1, 0, 0, 0),

𝑒4 = (0, 1, 0, 0),

𝑒6 = (0, 0, 1, 0),

𝑒7 = (0, 0, 0, 1),

in the ideal 𝐼 ′′′ we obtain a similar representation for

𝑒1 = (𝐴1,−𝑧1 +𝐵1,−𝑧2 + 𝐶1, 𝐷1),

𝑒3 = (𝐴3, 𝐵3, 𝐶3,−𝑧2 +𝐷3), (7.3)

𝑒5 = (𝐴5, 𝐵5, 𝐶5, 𝑧1 +𝐷5).
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Considering then the commutation relations [𝑒1, 𝑒5] = 0 and [𝑒3, 𝑒5] = 0, we obtain:

𝐴1(0, 0, 0, 1)− (𝐴5(0,−1, 0, 0) +𝐵5(0, 0,−1, 0)) = 0,

𝐴3(0, 0, 0, 1)−𝐵5(0, 0, 0,−1) = 0.

The vanishing of two separate components of two commutators [𝑒1, 𝑒5] and [𝑒3, 𝑒5] we obtain
easily the identities 𝐴1 = 𝐴3 = 𝐴5 = 0, meaning that six basis fields of the algebra 247𝐷
possess in this case identically zero first components. This situation is incompatible with the
Levi non-degeneracy of 7-dimensional surface, on which the algebra of tangential fields 247𝐷
is defined.
In the same way we establish that the assumption on the existence of non-degenerate orbits

for all three algebras in Item 2 of Theorem 6.2 and of remaining four algebras in Item 3 is
contradictory.

8. Spherical orbits of algebras 17 and 1357𝐷

In this section we show that the algebras 17 and 1357𝐷 have only spherical 7-dimensional
orbits in the space C4.

Proposition 8.1. Levi non-degenerate orbits of the algebra 17 with the relations [𝑒1, 𝑒2] =
[𝑒3, 𝑒4] = [𝑒5, 𝑒6] = 𝑒7 are only spherical surfaces (quadrics)

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 ± |𝑧3|2

up to a holomorphic equivalence.

Proof. For a complete consideration it is sufficient to consider only three of eight 4-dimensional
Abelian ideals, for instance,

𝐼 ′4 =< 𝑒2, 𝑒4, 𝑒5, 𝑒7 >, 𝐼 ′′4 =< 𝑒2, 𝑒4, 𝑒6, 𝑒7 >, 𝐼 ′′′4 =< 𝑒2, 𝑒3, 𝑒6, 𝑒7 > . (8.1)

By Proposition 7.1 it is sufficient to describe all non-degenerate surfaces being the orbits of
the discussed algebra under the flattening of each of these ideals separately. We also note that
a symmetry of relations (6.5) allows us to discuss only one such ideal.
Indeed, the passage from 𝐼 ′4 to 𝐼 ′′4 or from 𝐼 ′′4 to 𝐼 ′′′4 means just a re-indexation of the pair of

the fields involved in the only commutation relation of the algebra 17 containing this pair. It
does not change qualitatively a final picture with the orbits of this algebra.
Thus, we consider the ideal 𝐼 ′′4 =< 𝑒2, 𝑒4, 𝑒6, 𝑒7 > assuming that it is flattened after some

holomorphic change of the coordinates. Commutations relations (6.5) for each of three remain-
ing basis fields in the 7-dimensional algebra 𝑔 with flattened fields 𝑒2, 𝑒4, 𝑒6, 𝑒7 allow us to
simplify essentially the form of the fields 𝑒1, 𝑒3, 𝑒5. By these relations, all of them turn out to
be of a same structure:

𝑒1 = (𝐴1, 𝐵1, 𝐶1,−𝑧1 +𝐷1),

𝑒3 = (𝐴3, 𝐵3, 𝐶3,−𝑧2 +𝐷3), (8.2)

𝑒5 = (𝐴5, 𝐵5, 𝐶5,−𝑧3 +𝐷5),

where 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘, 𝑘 = 1, 3, 5, are some complex constants.
By the shifts of the variables it is easy to remove the constants 𝐷𝑘 in the last components of

these three fields. And considering instead of the obtained fields their combinations with the
quadruple of flattened fields, we can suppose that all constants 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 are pure imaginary.
We introduce the notations

𝐴𝑘 = 𝑖𝑎𝑘, 𝐵𝑘 = 𝑖𝑏𝑘, 𝐶𝑘 = 𝑖𝑐𝑘, 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 ∈ R,
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and consider one more matrix ⎛⎜⎝𝑎1 𝑏1 𝑐1

𝑎3 𝑏3 𝑐3

𝑎5 𝑏5 𝑐5

⎞⎟⎠ . (8.3)

By the complete rank condition of the discussed realization of the algebra 17 this matrix is
non-degenerate.

Remark 8.1. We can obtain additional restrictions for the entries of this matrix taking into
consideration extra three relations [𝑒1, 𝑒3] = [𝑒3, 𝑒5] = [𝑒1, 𝑒5] = 0 not used yet. But in fact we
do not need such restrictions.

We proceed from fields (8.2) to a system of partial differential equations Re (𝑒𝑘(Φ)|𝑀) = 0,
𝑘 = 1, 3, 5, describing the basis of the tubular orbit of the algebra 17. In the matrix form this
system can be written as⎛⎝ 𝑎1 𝑏1 𝑐1

𝑎3 𝑏3 𝑐3
𝑎5 𝑏5 𝑐5

⎞⎠ ·

⎛⎝ 𝜕𝐹/𝜕𝑦1
𝜕𝐹/𝜕𝑦2
𝜕𝐹/𝜕𝑦3

⎞⎠ =

⎛⎝ −𝑦1
−𝑦2
−𝑦3

⎞⎠ .

The non-degeneracy of the matrix (8.3) allows us to rewrite the latter equation in a form
resolved with respect to the partial derivates of the function 𝐹 (𝑦1, 𝑦2, 𝑦3):

𝜕𝐹

𝜕𝑦1
= 𝑙1(𝑦1, 𝑦2, 𝑦3),

𝜕𝐹

𝜕𝑦2
= 𝑙2(𝑦1, 𝑦2, 𝑦3),

𝜕𝐹

𝜕𝑦3
= 𝑙3(𝑦1, 𝑦2, 𝑦3)

with some linear functions 𝑙𝑘(𝑦1, 𝑦2, 𝑦3).
It is clear that the solutions of such system of equations (under the validity of the matching

conditions) are some quadratic forms

𝐹 = 𝑄(𝑦1, 𝑦2, 𝑦3).

Returning back to the complex variables in the space C4, we necessarily obtain the equa-
tions of possible orbits of the discussed realization of Heisenberg algebra in the form Im 𝑧4 =
𝑄(Im 𝑧1, Im 𝑧2, Im 𝑧3). By removing holomorphic and anti-holomorphic terms in the right hand
side of the latter equation reduces it to the form

Im 𝑧4 = 𝐻(𝑧1, 𝑧2, 𝑧3, 𝑧1, 𝑧2, 𝑧3)

with some Hermitian form in the right hand side. Interesting only in non-degenerate orbits and
using linear transformations of complex variables, we get only two possibilities for the orbits of
the Heisenberg algebra under realization associated with flattening the ideal 𝐼 ′′4 :

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 ± |𝑧3|2.

It remains to note that both these spherical surfaces are known homogeneous surfaces and
their homogeneous property is realized by simple linear shifts along the first triple of the
variables and square, with respect to the shift parameters, transformation of the variable 𝑧4.
The Lie algebra corresponding to such group of transformations is exactly the Heisenberg
algebra.
Completing the proof of Proposition 8.1, we once again recall on the symmetricity of this

algebra and on the literal reproducing of the obtained conclusions under the flattening of each
two other ideals 𝐼 ′4, 𝐼

′′′
4 .

Remark 8.2. After such consideration of the algebra 17, it is easy to show the absence of
non-degenerate 7-dimensional orbits in C4 of the algebra 157 defined by the relations

[𝑒1, 𝑒2] = 𝑒3, [𝑒1, 𝑒3] = [𝑒2, 𝑒4] = [𝑒5, 𝑒6] = 𝑒7.



70 A.V. LOBODA, V.K. KAVERINA

Indeed, after the permutation 𝑒2 ↔ 𝑒3, three of four commutation relations in the last algebra
coincide with formulae (6.5) for the algebra 17, while the additional fourth relation is rewritten
as [𝑒1, 𝑒3] = 𝑒2. Abelian ideals (8.1) are also present in the algebra 157. The flattening of each
of them leads to similar form (8.2) of the fields complement to these ideals. As it is easy to
confirm, the fourth relation for these fields leads to contradictions in all cases.

Proposition 8.2. Each Levi non-degenerate orbit of the algebra 1357𝐷 in C4 is holomor-
phically equivalent to an indefinite quadrics

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 − |𝑧3|2.

Proof. For the algebra 1357𝐷 from Item 5 in Theorem 6.2 the flattening of the bases of two
ideals 𝐼 ′4 =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 > and 𝐼 ′′4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 > leads to contradictions after applying the
remark on the commutator of the fields containing the constants in a fixed component. But for
the ideal 𝐼 ′′′4 =< 𝑒1, 𝑒3, 𝑒5, 𝑒7 > we obtain a quadruple of flattened fields

𝑒1 =
𝜕

𝜕𝑧1
, 𝑒3 =

𝜕

𝜕𝑧2
, 𝑒5 =

𝜕

𝜕𝑧3
, 𝑒7 =

𝜕

𝜕𝑧4
(8.4)

and, after consideration of extra 12 commutators of the flattened fields with the remaining
triple, we also get simplified representations

𝑒2 = (𝐴2, 𝑧1 +𝐵2,−𝑧2 + 𝐶2,−𝑧3 +𝐷2),

𝑒4 = (𝐴4, 𝐵4, 𝐶4, 𝑧2 +𝐷4), (8.5)

𝑒6 = (𝐴6, 𝐵6, 𝐶6, 𝑧1 +𝐷6).

At this stage it remains to check three commutation relations:

[𝑒2, 𝑒4] = 𝑒6, [𝑒2, 𝑒6] = [𝑒4, 𝑒6] = 0.

By these relations we have (after the shifts of each of three complex variables 𝑧1, 𝑧2, 𝑧3) the
following specifications of the form of the triple of fields (8.5):

𝑒2 = (𝐴2, 𝑧1 +𝐵2,−𝑧2,−𝑧3),

𝑒4 = (0,−𝐴2, 𝐵2, 𝑧2 +𝐷4), (8.6)

𝑒6 = (0, 0,−𝐴2, 𝑧1).

Then we need to integrate the algebra of vector fields 1357𝐷 with simplified basis (8.4), (8.6).
As it has been mentioned above, the presence of the quadruple of fields (8.4) indicated a tubular
structure of the discussed hypersurface 𝑀 . This is why we can suppose that it is defined by
the equation Φ(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 0 or, in view of the non-degeneracy of 𝑀 we are interesting in,
it can be written as resolved with respect to one of the variables

𝑦4 = 𝐹 (𝑦1, 𝑦2, 𝑦3). (8.7)

In this case we have to integrate the system of three partial differential equations correspond-
ing to fields (8.6). We note that by considering, instead of the fields 𝑒2, 𝑒4, 𝑒6, the flattening of
their combinations with the fields in the flattened quadruple, we can suppose that the constants
𝐴2, 𝐵2, 𝐷4 are pure imaginary. Moreover, for zero 𝐴2 we get a Levi degenerate situation with
six zeroes in the first components of the basis fields of the algebras and this is we assume that
𝐴2 ̸= 0.
For a practical integration we employ a formal writing expressing that an arbitrary field 𝑒𝑘

is tangential to the studied surface 𝑀 as the equation

Re
(︀
𝑒𝑘(Φ)|𝑀

)︀
≡ 0, 𝑘 = 1, . . . , 7.
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In the variables 𝑦1, 𝑦2, 𝑦3, in view of simplifying notations 𝐴2 = 𝑖𝑎, 𝐵2 = 𝑖𝑏, 𝐷2 = 𝑖𝑑 we
then obtain the following system of equations:

𝑎
𝜕𝐹

𝜕𝑦1
+ (𝑦1 + 𝑏)

𝜕𝐹

𝜕𝑦2
+ 𝑦2

𝜕𝐹

𝜕𝑦3
= 𝑦3, −𝑎

𝜕𝐹

𝜕𝑦2
+ 𝑏

𝜕𝐹

𝜕𝑦3
= 𝑦2 + 𝑑, −𝑎

𝜕𝐹

𝜕𝑦3
= 𝑦1. (8.8)

Starting with the simplest equation and successively solving others in this system, in view of
the notation 𝜆 = 1/𝑎 we arrive at the formulae:

𝐹 = 𝜆𝑦1𝑦3 +𝐺(𝑦1, 𝑦2),
𝜕𝐺

𝜕𝑦2
= 𝜆2𝑏𝑦1 − 𝜆(𝑦2 + 𝑑), 𝐺 = 𝜆2𝑏𝑦1𝑦2 −

1

2
𝜆(𝑦2 + 𝑑)2 +𝐻(𝑦1).

For the function 𝐻(𝑦1) we get the equation

𝐻 ′ = −𝜆3𝑏𝑦21 +𝑚𝑦1 + 𝑛

with some coefficients 𝑚, 𝑛 in the right hand side. Then a final formula describing all solutions
of system (8.8) reads as

𝑦4 = 𝜆𝑦1𝑦3 + 𝜆2𝑏𝑦1𝑦2 −
1

2
𝜆(𝑦2 + 𝑑)2 − 1

3
𝜆3𝑏𝑦31 + 𝑃2(𝑦1), (8.9)

where 𝑃2(𝑦1) is some second order polynomial.
We note that under the condition 𝑏 = 0 equation (8.9) contains no third order terms and

this is why it describes, up to affine transformations of the variables, an indefinite quadrics

𝑣 = 𝑦1𝑦3 + 𝑦22 (8.10)

in the space R4
𝑦.

In the case 𝑏 ̸= 0, by means of affine transformations

𝑦*1 = 𝑦1 + 𝛼, 𝑦2* =, 𝑦*3 = 𝑦3 + 𝜆𝑏𝑦2 +𝑚𝑦1 + 𝑛, 𝑦*4 =
1

𝜆
𝑦4 +𝑄𝑦2 +𝑀𝑦1 +𝑁,

with appropriate coefficients this equation is transformed to the form

𝑦4 = 𝑦1𝑦3 + 𝑦22 + 𝑦31. (8.11)

However, returning back to complex variables and using at most square transformations, it is
easy to reduce both equations (8.10) and (8.11) (see Appendix) to a common form

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 − |𝑧3|2

of an indefinite quadrics in the space C4.

9. Non-spherical orbits of algebras 137𝐷 and 1357𝐴

Let us discuss now most interesting algebras 137𝐷 and 1357𝐴 in Item 4 of Theorem 6.2.
We begin with writing 4-dimensional Abelian ideals in these algebras. In view of descriptions

(6.7), we confirm easily that such ideals corresponding to coding (1, 1, 2)-triangles are

137𝐷 : 𝐼 ′4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′4 =< 𝑒2, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′′4 =< 𝑒3, 𝑒4, 𝑒6, 𝑒7 >,

1357𝐴 : 𝐼 ′4 =< 𝑒4, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′4 =< 𝑒3, 𝑒5, 𝑒6, 𝑒7 >, 𝐼 ′′′4 =< 𝑒2, 𝑒4, 𝑒5, 𝑒7 > .

At the same time, two first ideals 𝐼 ′4, 𝐼
′′
4 for each of these algebras can be flattened under the

existence of at least one non-degenerate orbit of these algebras. For instance, by the scheme
described above, for the basis fields of the algebra 137𝐷, complement to the ideal 𝐼 ′4, we obtain:

𝑒1 = (𝐴1, 𝐵1,−𝑧1 + 𝐶1, 𝐷1), 𝑒2 = (𝐴2, 𝐵2, 𝐶2,−𝑧1 +𝐷2).

But then their commutator should obey the identity [𝑒1, 𝑒2] = 𝑒5 = (0, 1, 0, 0) being inconsistent
with the facts that the second components of these fields are constants.
Under the flattening of the ideal 𝐼 ′′4 in the same algebra we have:

𝑒1 = (𝐴1,−𝑧1 +𝐵1, 𝐶1,−𝑧3 +𝐷1), 𝑒4 = (𝐴4, 𝐵4, 𝐶4, 𝑧1 +𝐷4).



72 A.V. LOBODA, V.K. KAVERINA

Such form of these fields contradicts to the condition [𝑒1, 𝑒4] = 𝑒6 = (0, 0, 1, 0).
For the algebra 1357𝐴, under the flattening of the basis in 𝐼 ′4, we have similar simplified

representations:

𝑒1 = (𝐴1, 𝐵1, 𝐶1,−𝑧2 +𝐷1), 𝑒4 = (𝐴4, 𝐵4, 𝐶4,−𝑧1 +𝐷4)

contradicting the relation [𝑒1, 𝑒4] = 𝑒5 = (0, 1, 0, 0). And flattening the basis 𝐼 ′′4 , we get:
𝑒1 = (𝐴1,−𝑧1 + 𝐵1, 𝐶1, 𝐷1), 𝑒2 = (𝐴2, 𝐵2, 𝐶2,−𝑧3 + 𝐷2), and this contradicts the relation
[𝑒1, 𝑒2] = 𝑒4 = (1, 0, 0, 0).
We proceed to flattening the ideal 𝐼 ′′′4 for the algebra 1357𝐴. Reproducing in this case a

previous scheme of discussing all 21 commutation relations, we arrive at non-contradictory
descriptions of the triples of the fields

𝑒1 = (𝑖𝑎,−𝑧1,−𝑧2,−𝑧3),

𝑒3 = (0,−𝑖𝑎, 𝑧1, 𝑧2 + 𝑖𝑑3), (9.1)

𝑒6 = (0, 0,−𝑖𝑎, 𝑧1 + 𝑖𝑑6).

Here 𝑎, 𝑑3, 𝑑6 are some real coefficients. We can suppose that 𝑎 ̸= 0 since as 𝑎 = 0, the first
components of the six basis fields of the algebra 1357𝐴 turn out to be zero and this is impossible
for independent fields tangential to a non-degenerate hypersurface 𝑀 .
Now let us consider the ideal 𝐼 ′′′4 for the algebra 137𝐷. The above described procedures of

specifying the form of the triples of basis fields 𝑒1, 𝑒2, 𝑒5 complement to 𝐼 ′′′4 give rise to the
following non-contradictory formulae (as in (9.1), here 𝑎 ̸= 0):

𝑒1 = (𝑖𝑎, 𝑖𝑏,−𝑧2 + 𝑖𝑐,−𝑧3),

𝑒2 = (0, 2𝑖𝑎,−𝑧1,−𝑧2), (9.2)

𝑒5 = (0, 0, 𝑖𝑎,−𝑧1 + 𝑖𝑑).

The integration of the algebras 1357𝐴 and 137𝐷 with simplified bases is made by the scheme
described in the previous section. In each of two cases it is reduced to solving a system of three
partial differential equations.
We first discuss a system corresponding to fields (9.1) of the algebra 1357𝐴. Defining an

integral surface of this algebra by the equation

𝑦4 = 𝐹 (𝑦1, 𝑦2, 𝑦3), (9.3)

we have three relations for the partial derivatives of the function 𝐹 :

𝑎
𝜕𝐹

𝜕𝑦1
− 𝑦1

𝜕𝐹

𝜕𝑦2
− 𝑦2

𝜕𝐹

𝜕𝑦3
= −𝑦3,

− 𝑎
𝜕𝐹

𝜕𝑦2
+ 𝑦1

𝜕𝐹

𝜕𝑦3
= 𝑦2 + 𝑑3, (9.4)

𝑎
𝜕𝐹

𝜕𝑦3
= 𝑦1 + 𝑑6.

Proposition 9.1. As 𝑎 ̸= 0, each tubular hypersurface in the space C4 described by equations
(9.3)-(9.4) is holomorphically equivalent to the surface

𝑣 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 + |𝑧1|4.

Proof. Solving equations in system (9.4) in order of increasing its complexity, we obtain (for
instance, by means of computer-assisted calculations) the following formulae:

𝐹 = −1

𝑎
𝑦3(𝑦1 + 𝑑6) +𝐺(𝑦1, 𝑦2), 𝐺(𝑦1, 𝑦2) = − 1

2𝑎
𝑦22 −

1

𝑎2
𝑦1𝑦2(𝑦1 + 𝑑6)−

𝑑3
𝑎
𝑦2 +𝐻(𝑦1).
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At the same time, for the function 𝐻(𝑦1) we obtain the equation

𝑎𝐻 ′(𝑦1) =
𝑦1
𝑎
(𝑦21 + 𝑑6𝑦1 + 𝑑3𝑎).

Finally, the general solution to system (9.4) is described by the formula:

𝑦4 =− 1

12𝑎3
(3𝑦41 + 4𝑑6𝑦

3
1)−

1

𝑎2
𝑦2𝑦

2
1

− 𝑦1
2𝑎2

(2 𝑑6𝑦2 + 𝑑3𝑦1 + 2 𝑦3𝑎)−
1

2𝑎

(︀
𝑦2

2 + 2𝑑3𝑦2 + 2𝑑6𝑦3
)︀
.

(9.5)

We temporarily complicate this equation selecting interesting for us terms and introducing some
new, less essential coefficients:

𝑦4 =− 1

4𝑎3

(︂
𝑦1 +

1

3
𝑑6

)︂4

− 1

𝑎2
𝑦2

(︂
𝑦1 +

1

3
𝑑6

)︂2

− 1

𝑎

(︂
𝑦1 +

1

3
𝑑6

)︂
(𝑦3 +𝑚𝑦1 + 𝑛𝑦2)

− 1

2𝑎
𝑦22 + (𝛼1𝑦1 + 𝛼2𝑦2 + 𝛼3𝑦3) + 𝛽.

(9.6)

Then we employ an affine transformation of the coordinates:

𝑦*1 = 𝑦1 +
1

3
𝑑6, 𝑦*3 =

1

2𝑎
(𝑦3 +𝑚𝑦1 + 𝑛𝑦2), 𝑦*4 = 𝑦4 − (𝛼1𝑦1 + 𝛼2𝑦2 + 𝛼3𝑦3 + 𝛽). (9.7)

Then the equations of the obtained orbits are simplified to

𝑦4 = − 1

4𝑎3
𝑦41 −

1

𝑎2
𝑦2𝑦

2
1 − 𝑦1𝑦3 −

1

2𝑎
𝑦22. (9.8)

Remark 9.1. Tubular hypersurface (9.8) is holomorphically equivalent in the space C4 (see
Appendix below) to a generalization of the Winkelmann surface:

𝑣 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 + |𝑧1|4. (9.9)

This remark completes the proof.

We proceed to similar considering the orbits of the algebra 137𝐷. In this case, the set of
fields (9.2) produces the following system of partial differential equations for defining functions
(9.3) of such orbits:

𝑎
𝜕𝐹

𝜕𝑦1
+ 𝑏

𝜕𝐹

𝜕𝑦2
+ (𝑐− 𝑦2)

𝜕𝐹

𝜕𝑦3
= −𝑦3,

2𝑎
𝜕𝐹

𝜕𝑦2
− 𝑦1

𝜕𝐹

𝜕𝑦3
= −𝑦2, (9.10)

𝑎
𝜕𝐹

𝜕𝑦3
= 𝑑− 𝑦1.

Proposition 9.2. As 𝑎 ̸= 0, each tubular hypersurface in the space C4 described by equations
(9.3), (9.10) is holomorphically equivalent to the surface

𝑣 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 − |𝑧1|4.

Proof. As for system (9.4), the solution of system (9.10) can be obtained by a step-by-step
study of separate equations. For the function 𝐹 = 𝐹 (𝑦1, 𝑦2, 𝑦3) describing the orbits of the
algebra 137𝐷 we have

𝐹 = −1

𝑎
(𝑏+ 𝑦1)𝑦3 +𝐺(𝑦1, 𝑦2); 𝐺 = − 1

4𝑎2
𝑦22 −

1

2𝑎2
(𝑏+ 𝑦1)𝑦1𝑦2 +𝐻(𝑦1),

where 𝐻(𝑦1) solves an ordinary differential equation

𝑎𝐻 ′ =
𝑏𝑦1

2

2𝑎2
+

(2𝑎𝑐+ 𝑏2) 𝑦1
2𝑎2

+
𝑏𝑐

𝑎
.
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This means that a general solution to system (9.10) reads as

𝑦4 = −1

𝑎
(𝑏+ 𝑦1)𝑦3 −

1

4𝑎2
𝑦22 −

1

2𝑎2
(𝑏+ 𝑦1)𝑦1𝑦2 +

𝑏

6𝑎3
𝑦31 + (𝛼𝑦21 + 𝛽𝑦1 + 𝛾).

Simplifying this equation by means of affine transformations of the variables 𝑦𝑘 similarly as
this was done for the solutions of system (9.4), we easily reduce it to the form

𝑦4 = 𝑦1𝑦3 −
1

4𝑎2
𝑦22 −

1

2𝑎2
𝑦21𝑦2 +

𝑏

6𝑎3
𝑦31. (9.11)

In its turn, such tubular algebraic third order surface in the space C4 is holomorphically
equivalent (see Appendix) to a fourth order surface:

𝑣 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 − |𝑧1|4. (9.12)

The proof is complete.

Proven Propositions 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2 allow us to regard the proof of
Theorem 6.2 as completed.
We note that surfaces (9.9) and (9.12) are two holomorphically non-equivalent generalization

of the known Winkelmann surface

𝑣 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧1|4

in the 3-dimensional complex space. As it was shown in [8], these surfaces are non-spherical and
posses richest 13-dimensional algebras of symmetries among all homogeneous non-spherical hy-
persurfaces in C4. The considered subalgebras 1357𝐴 and 137𝐷 are 7-dimensional subalgebras
of the complete algebras of symmetries for surfaces (9.9) and (9.12).

10. Appendix: transformations of algebraic tubes

In this section we provide calculations relating with three different fragments of the papers
but having a common nature. We consider holomorphic transformations of three families of
algebraic tubular hypersurfaces in the space C4 described by «similar» equations (𝐴,𝐵,𝐶,𝐷 ∈
R):

𝑦4 = 𝑦1𝑦3 + 𝐴𝑦22 + 𝐶𝑦31, (10.1)

𝑦4 = 𝑦1𝑦3 + 𝐴𝑦22 +𝐵𝑦21𝑦2 + 𝐶𝑦31, (10.2)

𝑦4 = 𝑦1𝑦3 + 𝐴𝑦22 +𝐵𝑦21𝑦2 +𝐷𝑦41. (10.3)

Proposition 10.1. As 𝐴 ̸= 0, independent of the value of the coefficient 𝐶, the following
statements hold:
1) surface (10.1) is holomorphically equivalent to an indefinite quadrics

Im 𝑧4 = |𝑧1|2 + |𝑧2|2 − |𝑧3|2;
2) as 𝐵 ̸= 0, surface (10.2) is equivalent to the generalization of the Winkelmann surface

Im 𝑧4 = 𝑧1𝑧3 + 𝑧3𝑧1 + |𝑧2|2 − |𝑧4|2;
3) as 6𝐴𝐷 − 𝐵2 = 0, surface (10.3) is spherical, while as 6𝐴𝐷 − 𝐵2 ̸= 0, it is equivalent to

one of two generalizations of the Winkelmann surface:

Im 𝑧4 = 𝑧1𝑧3 + 𝑧3𝑧1 + |𝑧2|2 ± |𝑧4|2.

Proof. We observe that we can discuss three equations (10.1)–(10.3) as a single general equation

Im 𝑧4 = 𝑥1𝑥3 + 𝐴𝑥2
2 +𝐵𝑥2

1𝑥2 + 𝐶𝑥3
1 +𝐷𝑥4

1, (10.4)

in which we have not passed yet from the imaginary parts of the complex variables 𝑧1, 𝑧2, 𝑧3
to their real parts by means of the change 𝑧𝑘 → 𝑖𝑧*𝑘.



ON DEGENERACY OF ORBITS OF NILPOTENT LIE ALGEBRAS 75

By dilatations of two variables 𝑧2 = 𝐴𝑧*2 , 𝑧4 = 𝐴𝑧*4 , the non-zero coefficient 𝐴 in (10.4)
becomes one, while the coefficients 𝐵, 𝐶, 𝐷 are replaced by 𝐵/𝐴, 𝐶/𝐴, 𝐷/𝐴, respectively.
We pass to complex variables by substituting the formulae 𝑥𝑘 = (𝑧𝑘 + 𝑧𝑘)/2 for 𝑘 = 1, 2, 3

into (10.4). Opening then the brackets in the right hand of equation (10.4), we note that the

arising sum 𝜙(𝑧) + 𝜙(𝑧) of holomorphic and antiholomorphic terms can be removed. This can
be done by means of the change 𝑤* = 𝑤 − 2𝑖𝜙(𝑧) followed by omitting the asterisk. Hence,
instead of (10.4) we get

Im 𝑧4 =
1

4
(𝑧1𝑧3 + 𝑧3𝑧1) +

1

4
|𝑧2|2 +

𝐵

8𝐴
(𝑧21𝑧2 + 2𝑧1𝑧2𝑧1 + 𝑧2𝑧

2
1 + 2𝑧1𝑧1𝑧2)

+
3𝐶

8𝐴
(𝑧21𝑧1 + 𝑧1𝑧

2
1) +

𝐷

16𝐴
(4𝑧31𝑧1 + 6|𝑧4|2 + 4𝑧1𝑧

3
1).

We employ one more change of coordinates

𝑧*2 = 𝑧2 +
𝐵

2𝐴
𝑧21 , 𝑧*3 = 𝑧3 +

𝐵

𝐴
𝑧1𝑧2 +

3𝐶

2𝐴
𝑧21 +

𝐷

𝐴
𝑧31 , 𝑧*4 = 4𝑧4,

under which equation (10.4) becomes

Im 𝑧4 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 +
(︂
3𝐷

2𝐴
− 𝐵2

4𝐴2

)︂
|𝑧1|4.

Now it is clear that each surface with equation (10.4) is transformed by holomorphic changes
either into an indefinite quadrics

Im 𝑧4 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 (or Im 𝑧4 = |𝑧1|2 − |𝑧3|2 + |𝑧2|2),

if the condition 6𝐴𝐷 −𝐵2 = 0 holds or into the surface

Im 𝑧4 = (𝑧1𝑧3 + 𝑧3𝑧1) + |𝑧2|2 +𝑁 |𝑧1|4 (10.5)

with a non-zero real 𝑁 = (6𝐴𝐷−𝐵2)/4𝐴2. It remains to note that for a non-zero 𝑁 one more
change

𝑧2 →
√︀

|𝑁 |𝑧2, 𝑧3 → |𝑁 |𝑧3, 𝑧4 → |𝑁 |𝑧4
turns this coefficient into 𝑠𝑔𝑛(𝑁) = ±1.
Completing the proof, we take into consideration that 𝐵 = 𝐷 = 0 in equation (10.1) and this

is why it satisfies the sphericity condition 6𝐴𝐷 − 𝐵2 = 0. For equation (10.2) the coefficient
𝑁 = (6𝐴𝐷−𝐵2)/4𝐴2 is obviously negative. And for equation (10.3) this coefficient can be an
arbitrary real number, positive or negative or zero. This completes the proof.

Returning back to the orbits of the above considered algebras, we conclude on the sphericity
in the case of the algebra 1357𝐷 in Proposition 8.2.
In its turn, for the orbits of the algebras 137𝐷 and 1357𝐴 described by equations (9.8)

and (9.11), respectively, the sets of the parameters (𝐴,𝐵,𝐶,𝐷) are of the form(︂
1

2𝑎
,
1

𝑎2
, 0,

1

4𝑎3

)︂
and

(︂
− 1

4𝑎2
,− 1

2𝑎2
,

𝑏

6𝑎3
, 0

)︂
.

For the first set the parameter 𝑁 = (6𝐴𝐷 − 𝐵2)/4𝐴2 is positive, while for the second it is
negative and this leads to two different equations (10.5).

Remark 10.1. Equations of obtained in [4] homogeneous surfaces

𝑦4 = 𝑦1𝑦3 + 𝑦22 + 𝑦21𝑦2 +𝐷𝑦41 and 𝑦4 = 𝑦1𝑦3 + 𝑦22 + 𝑥1𝑦1𝑦2 +𝐷𝑦41, (10.6)

are reduced by similar calculations to (9.9) and (9.12) for 𝐷 ̸= 1/12. And the sphericity of the
first surface in (10.6) for 𝐷 = 1/12 was proved in [17].
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