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NON SELF-ADJOINT WELL-DEFINED RESTRICTIONS

AND EXTENSIONS WITH REAL SPECTRUM

B.N. BIYAROV, Z.A. ZAKARIYEVA, G.K. ABDRASHEVA

Abstract. In this paper we study the spectral properties of relatively bounded well-defined

perturbations of the well-defined restrictions and extensions. The work is devoted to the

study of the similarity of a well-defined restriction to some self-adjoint operator in the case

when the minimal operator is symmetric. We show that the system of eigenvectors forms

a Riesz basis in the case of discrete spectrum. The resulting theorem is applied to the

Sturm-Liouville operator and the Laplace operator.

Singular perturbations for differential operators have been studied by many authors for

the mathematical substantiation of solvable models of quantum mechanics, atomic physics,

and solid state physics. For the Sturm-Liouville operator with a potential from the Sobolev

space𝑊𝛼
2 [0, 1] with−1 ⩽ 𝛼 ⩽ 0, the Riesz basis property of the system of eigenvectors in the

Hilbert space 𝐿2(0, 1) was proved. In all those cases, the problems were self-adjoint. In this

paper, we consider non-self-adjoint singular perturbation problems for the Sturm-Liouville

operator with a potential from the Sobolev space 𝑊𝛼
2 [0, 1] with −2 ⩽ 𝛼 ⩽ 0. We also

obtained a similar result for the Laplace operator. A new method has been developed that

allows investigating the considered problems. It is shown that the spectrum of a non-self-

adjoint singularly perturbed operator is real and the corresponding system of eigenvectors

forms a Riesz basis in the considered Hilbert space.

Keywords: maximal (minimal) operator, correct restriction, correct extension, real spec-

trum, non self-adjoint operator, perturbation.
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1. Introduction

In a Hilbert space 𝐻, we consider a linear operator 𝐿 with a domain 𝐷(𝐿) and a range 𝑅(𝐿).
By the kernel of the operator 𝐿 we mean the set

Ker𝐿 =
{︀
𝑓 ∈ 𝐷(𝐿) : 𝐿𝑓 = 0

}︀
.

The linear equation

𝐿𝑢 = 𝑓 (1.1)

is said to be well-solvable on 𝑅(𝐿) if ‖𝑢‖ ⩽ 𝐶‖𝐿𝑢‖ for all 𝑢 ∈ 𝐷(𝐿) (where 𝐶 > 0 is independent
on 𝑢) and everywhere solvable if 𝑅(𝐿) = 𝐻. If (1.1) is simultaneously well and everywhere
solvable, then we say that 𝐿 is a properly defined operator. A well-solvable operator 𝐿0 is said
to be minimal if 𝑅(𝐿0) ̸= 𝐻. A closed operator ̂︀𝐿 is called a maximal operator if 𝑅(̂︀𝐿) = 𝐻

and Ker ̂︀𝐿 ̸= {0}. An operator 𝐴 is called a restriction of an operator 𝐵 and 𝐵 is said to be
an extension of 𝐴 if 𝐷(𝐴) ⊂ 𝐷(𝐵) and 𝐴𝑢 = 𝐵𝑢 for all 𝑢 ∈ 𝐷(𝐴).
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Note that if a well-defined restriction 𝐿 of a maximal operator ̂︀𝐿 is known, then the inverses
of all well-defined restrictions of ̂︀𝐿 are of the form [1]

𝐿−1
𝐾 𝑓 = 𝐿−1𝑓 +𝐾𝑓, (1.2)

where 𝐾 is an arbitrary bounded linear operator from 𝐻 into Ker ̂︀𝐿.
Let 𝐿0 be some minimal operator, and let 𝑀0 be another minimal operator related to 𝐿0

by the equation (𝐿0𝑢, 𝑣) = (𝑢,𝑀0𝑣) for all 𝑢 ∈ 𝐷(𝐿0) and 𝑣 ∈ 𝐷(𝑀0). Then ̂︀𝐿 = 𝑀*
0 and̂︁𝑀 = 𝐿*

0 are maximal operators such that 𝐿0 ⊂ ̂︀𝐿 and 𝑀0 ⊂ ̂︁𝑀 . A well-defined restriction 𝐿

of a maximal operator ̂︀𝐿 such that 𝐿 is simultaneously a well-defined extension of the minimal
operator 𝐿0 is called a boundary well-defined extension. The existence of at least one boundary
well-defined extension 𝐿 was proved by Vishik in [2], that is, 𝐿0 ⊂ 𝐿 ⊂ ̂︀𝐿.
The inverse operators to all possible well-defined restrictions 𝐿𝐾 of the maximal operator ̂︀𝐿

have the form (1.2). Hence, 𝐷(𝐿𝐾) is dense in 𝐻 if and only if Ker(𝐼 + 𝐾*𝐿*) = {0}. All
possible well-defined extensions 𝑀𝐾 of 𝑀0 have inverses of the form

𝑀−1
𝐾 𝑓 = (𝐿*

𝐾)
−1𝑓 = (𝐿*)−1𝑓 +𝐾*𝑓,

where 𝐾 is an arbitrary bounded linear operator in 𝐻 with 𝑅(𝐾) ⊂ Ker ̂︀𝐿 such that

Ker(𝐼 +𝐾*𝐿*) = {0}.

Lemma 1.1 (Hamburger [3]). Let 𝐴 be a bounded linear transformation in 𝐻 and 𝑁 a linear

manifold. If we write 𝐴(𝑁) =𝑀 then

𝐴*(𝑀⊥) = 𝑁⊥ ∩𝑅(𝐴*).

Proposition 1.1 ([4]). Well-defined restrictions 𝐿𝐾 of the maximal operator ̂︀𝐿 are well-

defined extensions of the minimal operator 𝐿0 if and only if

𝑅(𝐾) ⊂ Ker ̂︀𝐿 and 𝑅(𝑀0) ⊂ Ker𝐾*.

The main result of this work is as follows.

Theorem 1.1. Let 𝐿0 be symmetric minimal operator in a Hilbert space 𝐻, 𝐿 be a self-

adjoint well-defined extension of 𝐿0, and 𝐿𝐾 be a well-defined restriction of the maximal oper-

ator ̂︀𝐿(̂︀𝐿 = 𝐿*
0). If

𝑅(𝐾*) ⊂ 𝐷(𝐿), 𝐼 +𝐾𝐿 ⩾ 0,

and 𝐼 +𝐾𝐿 is invertible, where 𝐿 and 𝐾 are the operators in representation (1.2), then 𝐿𝐾 is

similar to a self-adjoint operator.

Corollary 1.1. If 𝐾 satisfies the assumptions of Theorem 1.1, then the spectrum of 𝐿𝐾 is

real, that is, 𝜎(𝐿𝐾) ⊂ R.

Corollary 1.2. If 𝐾 satisfies the assumptions of Theorem 1.1 and 𝐿−1 is the compact op-

erator, then the system of the eigenvectors of 𝐿𝐾 forms a Riesz basis in 𝐻.

Corollary 1.3. The results of Theorem 1.1 are also valid if conditions “𝐼 + 𝐾𝐿 ⩾ 0 and

𝐼 +𝐾𝐿 is invertible” are replaced with the condition “𝐾𝐿 ⩾ 0”.

Corollary 1.4. The results of Theorem 1.1, Corollary 1.1-1.3 are also valid for the 𝐿*
𝐾.
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2. Preliminaries

In this section, we present some results on well-defined restrictions and extensions which are
used in Section 3.
If 𝐴 is a bounded linear transformation from a complex Hilbert space 𝐻 into itself, then the

numerical range of 𝐴 is by definition the set

𝑊 (𝐴) = {(𝐴𝑥, 𝑥) : 𝑥 ∈ 𝐻, ‖𝑥‖ = 1}.

It is well known and easy to prove that if 𝜎(𝐴) denotes the spectrum of 𝐴, then

𝜎𝑝(𝐴) ⊂ 𝑊 (𝐴), 𝜎(𝐴) ⊂ 𝑊 (𝐴),

for the point spectrum 𝜎𝑝(𝐴) and the spectrum 𝜎(𝐴) of 𝐴, where the bar indicates the closure.
The numerical range of an unbounded operator 𝐴 in a Hilbert space 𝐻 is defined as

𝑊 (𝐴) = {(𝐴𝑥, 𝑥) : 𝑥 ∈ 𝐷(𝐴), ‖𝑥‖ = 1},

and similarly to the bounded case, 𝑊 (𝐴) is convex and satisfies 𝜎𝑝(𝐴) ⊂ 𝑊 (𝐴). In general,

the conclusion 𝜎(𝐴) ⊂ 𝑊 (𝐴) does not surely hold for unbounded operators 𝐴 (see [5]).

Theorem 2.1 (Theorem 2 in [6]). The following are equivalent conditions on an operator 𝑇 :
(1) 𝑇 is similar to a self-adjoint operator.

(2) 𝑇 = 𝑃𝐴, where 𝑃 is positive and invertible and 𝐴 is self-adjoint.

(3) 𝑆−1𝑇𝑆 = 𝑇 * and 0 /∈ 𝑊 (𝑆).

Theorem 2.2 (Theorem 1 in [7]). Let 𝐴 and 𝐵 be operators on the complex Hilbert space

𝐻. If 0 /∈ 𝑊 (𝐴), then

𝜎(𝐴−1𝐵) ⊂ 𝑊 (𝐵)/𝑊 (𝐴).

Corollary 2.1 (Corollary in [7]). If 𝐴 > 0, 𝐵 ⩾ 0 and 𝐶 = 𝐶*, then 𝜎(𝐴𝐵) is positive and

𝜎(𝐴𝐶) is real.

Theorem 2.3 (Theorem A in [8]). The numerical range 𝑊 (𝑇 ) of 𝑇 is convex and

𝑊 (𝑎𝑇 + 𝑏) = 𝑎𝑊 (𝑇 ) + 𝑏

for all complex numbers 𝑎 and 𝑏.

3. Proof of Theorem 1.1

We transform (1.2) to the form

𝐿−1
𝐾 = 𝐿−1 +𝐾 = (𝐼 +𝐾𝐿)𝐿−1. (3.1)

Then 𝐿𝐾 is defined as the restriction of the maximal operator ̂︀𝐿 on the domain

𝐷(𝐿𝐾) = {𝑢 ∈ 𝐷(̂︀𝐿) : (𝐼 −𝐾̂︀𝐿)𝑢 ∈ 𝐷(𝐿)}.

Now let us prove Theorem 1.1. It was proved in [9] that 𝐾𝐿 is bounded on 𝐷(𝐿) (that is,
𝐾𝐿 ∈ 𝐵(𝐻)) if and only if

𝑅(𝐾*) ⊂ 𝐷(𝐿*).

It follows from 𝐷(𝐿) = 𝐻 that 𝐾𝐿 is bounded on 𝐻. In what follows, instead of 𝐾𝐿, we
shall write 𝐾𝐿. Then, by virtue of Theorem 2.1, and taking into account the conditions
of Theorem 1.1 that 𝐼 + 𝐾𝐿 ⩾ 0 and 𝐼 + 𝐾𝐿 is invertible, we arrive at the statement of
Theorem 1.1.
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The proof of Corollary 1.1 follows from Theorem 1.1 or Corollary 2.1. Corollary 1.2 can be
easily obtained from the fact that the operator

𝐶 = (𝐼 +𝐾𝐿)
1
2𝐿−1(𝐼 +𝐾𝐿)

1
2

is self-adjoint and

𝐿−1
𝐾 = (𝐼 +𝐾𝐿)

1
2𝐶(𝐼 +𝐾𝐿)−

1
2 = (𝐼 +𝐾𝐿)𝐿−1. (3.2)

Let us proof Corollary 1.3. By Theorem 2.3, we get that 0 /∈ 𝑊 (𝐼 +𝐾𝐿). Then 𝐼 +𝐾𝐿 ⩾ 0
and 𝐼 +𝐾𝐿 is invertible.
The statement of Corollary 1.4 follows from (3.2), since 𝐶 is a self-adjoint operator and in

the case Corollary 1.2 the self-adjoint operator 𝐶 is compact.

4. Non self-adjoint perturbations for some differential operators

Example 1. We consider the Sturm-Liouville equation̂︀𝐿𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦 = 𝑓 (4.1)

on the interval (0, 1), where 𝑞(𝑥) is the real-valued function of 𝐿2(0, 1). We denote by 𝐿0 the

minimal operator and by ̂︀𝐿 the maximal operator generated by the differential equation (4.1)
in the space 𝐿2(0, 1). It is clear that

𝐷(𝐿0) = �̊� 2
2 (0, 1)

and

𝐷(̂︀𝐿) = {︀
𝑦 ∈ 𝐿2(0, 1) : 𝑦, 𝑦′ ∈ 𝐴𝐶[0, 1], 𝑦′′ − 𝑞(𝑥)𝑦 ∈ 𝐿2(0, 1)

}︀
.

Then Ker ̂︀𝐿 = {𝑎11𝑐(𝑥) + 𝑎12𝑠(𝑥)}, where 𝑎11, 𝑎12 are arbitrary constants, and the functions
𝑐(𝑥) and 𝑠(𝑥) are defined as follows

𝑐(𝑥) = 1 +

∫︁ 𝑥

0

K (𝑥, 𝑡; 0) 𝑑𝑡, 𝑠(𝑥) = 𝑥+

∫︁ 𝑥

0

K (𝑥, 𝑡;∞)𝑡 𝑑𝑡,

where

K (𝑥, 𝑡; 0) = K (𝑥, 𝑡) + K (𝑥,−𝑡), K (𝑥, 𝑡;∞) = K (𝑥, 𝑡)− K (𝑥,−𝑡),

and K (𝑥, 𝑡) is the solution of the following Goursat problem⎧⎪⎪⎨⎪⎪⎩
𝜕2K (𝑥, 𝑡)

𝜕𝑥2
− 𝜕2K (𝑥, 𝑡)

𝜕𝑡2
= 𝑞(𝑥)K (𝑥, 𝑡),

K (𝑥,−𝑥) = 0, K (𝑥, 𝑥) =
1

2

∫︁ 𝑥

0

𝑞(𝑡)𝑑𝑡,

in the domain

Ω =
{︀
(𝑥, 𝑡) : 0 < 𝑥 < 1, −𝑥 < 𝑡 < 𝑥

}︀
.

Note that 𝑐(0) = 𝑠′(0) = 1, 𝑐′(0) = 𝑠(0) = 0 and Wronskian satisfies the identity

𝑊 (𝑐, 𝑠) ≡ 𝑐(𝑥)𝑠′(𝑥)− 𝑐′(𝑥)𝑠(𝑥) = 1.

As a fixed boundary well-defined extension 𝐿, we take the operator corresponding to the
Dirichlet problem for equation (4.1) on (0, 1). Then

𝐷(𝐿) =
{︀
𝑦 ∈ 𝑊 2

2 (0, 1) : 𝑦(0) = 0, 𝑦(1) = 0
}︀
.
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Hence, the inverse of all correct restrictions 𝐿𝐾 of the maximal operator ̂︀𝐿 is of the form

𝑦 ≡ 𝐿−1
𝐾 𝑓 =

∫︁ 𝑥

0

[︀
𝑐(𝑥)𝑠(𝑡)− 𝑠(𝑥)𝑐(𝑡)

]︀
𝑓(𝑡) 𝑑𝑡

− 𝑠(𝑥)

𝑠(1)

∫︁ 1

0

[︀
𝑐(1)𝑠(𝑡)− 𝑠(1)𝑐(𝑡)

]︀
𝑓(𝑡) 𝑑𝑡

+ 𝑐(𝑥)

∫︁ 1

0

𝑓(𝑡)𝜎1(𝑡)𝑑𝑡+ 𝑠(𝑥)

∫︁ 1

0

𝑓(𝑡)𝜎2(𝑡) 𝑑𝑡,

where 𝜎1(𝑥), 𝜎2(𝑥) ∈ 𝐿2(0, 1) and this determines uniquely the operator 𝐾 in (1.2) as follows

𝐾𝑓 = 𝑐(𝑥)

∫︁ 1

0

𝑓(𝑡)𝜎1(𝑡)𝑑𝑡+ 𝑠(𝑥)

∫︁ 1

0

𝑓(𝑡)𝜎2(𝑡)𝑑𝑡, for all 𝑓 ∈ 𝐿2(0, 1).

𝐾 is a bounded operator in 𝐿2(0, 1) acting from 𝐿2(0, 1) into Ker ̂︀𝐿. The operator𝐿𝐾 is the

restriction of ̂︀𝐿 on the domain

𝐷(𝐿𝐾) =

{︂
𝑦 ∈ 𝑊 2

2 (0, 1) : 𝑦(0) =

∫︁ 1

0

(︀
− 𝑦′′(𝑡) + 𝑞(𝑡)𝑦(𝑡)

)︀
𝜎1(𝑡)𝑑𝑡;

𝑦(1) = 𝑐(1)𝑦(0) + 𝑠(1)

∫︁ 1

0

(︀
− 𝑦′′(𝑡) + 𝑞(𝑡)𝑦(𝑡)

)︀
𝜎2(𝑡)𝑑𝑡

}︂
.

By the condition

𝑅(𝐾*) ⊂ 𝐷(𝐿*) = 𝐷(𝐿)

we have

𝐾𝐿𝑦 = 𝑐(𝑥)

1∫︁
0

𝑦(𝑡)[−𝜎′′
1(𝑡) + 𝑞(𝑡)𝜎1(𝑡)]𝑑𝑡+ 𝑠(𝑥)

1∫︁
0

𝑦(𝑡)[−𝜎′′
2(𝑡) + 𝑞(𝑡)𝜎2(𝑡)]𝑑𝑡,

where

𝑦 ∈ 𝐷(𝐿), 𝜎1, 𝜎2 ∈ 𝑊 2
2 (0, 1), 𝜎1(0) = 𝜎1(1) = 𝜎2(0) = 𝜎2(1) = 0.

If 𝐼 +𝐾𝐿 ⩾ 0 and 𝐼 +𝐾𝐿 is invertible, then the spectrum of the operator 𝐿𝐾 consists only of
real eigenvalues {𝜆𝑘}∞𝑘=1 and the corresponding eigenfunctions {𝜙𝑘}∞𝑘=1 forms a Riesz basis in
𝐿2(0, 1), since 𝐿−1 is a compact self-adjoint positive operator. In particular, if

𝜎1(𝑥) = 𝛼(𝐿−1𝑐)(𝑥), 𝜎2(𝑥) = 𝛽(𝐿−1𝑠)(𝑥), 𝛼, 𝛽 ⩾ 0,

then 𝐾𝐿 ⩾ 0. Therefore, by Corollary 1.3, the results of Theorem 1.1 are valid for 𝐿𝐾 . In this
case, 𝐿−1

𝐾 has the form

𝑦 = 𝐿−1
𝐾 𝑓 = 𝐿−1𝑓 + 𝑐(𝑥)

1∫︁
0

𝑓(𝑡)(𝐿−1𝑐)(𝑡)𝑑𝑡+ 𝑠(𝑥)

1∫︁
0

𝑓(𝑡)(𝐿−1𝑠)(𝑡)𝑑𝑡.

Then (𝐿−1
𝐾 )* = (𝐿*

𝐾)
−1 has form

𝑣(𝑥) = (𝐿−1𝑓)(𝑥) + 𝛼(𝐿−1𝑐)(𝑥)

1∫︁
0

𝑓(𝑡)𝑐(𝑡)𝑑𝑡+ 𝛽(𝐿−1𝑠)(𝑥)

1∫︁
0

𝑓(𝑡)𝑠(𝑡)𝑑𝑡.

Thus, we have

(𝐿*
𝐾𝑣)(𝑥) = −𝑣′′(𝑥) + 𝑞(𝑥)𝑣(𝑥) + 𝑎(𝑥)𝑣′(0) + 𝑏(𝑥)𝑣′(1) = 𝑓(𝑥),

𝐷(𝐿*
𝐾) = {𝑣 ∈ 𝑊 2

2 (0, 1) : 𝑣(0) = 𝑣(1) = 0},



92 B.N. BIYAROV, Z.A. ZAKARIYEVA, G.K. ABDRASHEVA

where

𝑎(𝑥) =
𝛼𝛽(𝑐, 𝑠)𝑠(𝑥)− 𝛼(1 + 𝛽‖𝑠‖2)𝑐(𝑥)

(1 + 𝛼‖𝑐‖2)(1 + 𝛽‖𝑠‖2)− 𝛼𝛽|(𝑐, 𝑠)|2
,

𝑏(𝑥) =
𝛼[𝑐(1)(1 + 𝛽‖𝑠‖2)− 𝛽𝑠(1)(𝑠, 𝑐)]𝑐(𝑥)− 𝛽[𝛼𝑐(1)(𝑐, 𝑠)− 𝑠(1)(1 + 𝛼‖𝑐‖2)]𝑠(𝑥)

(1 + 𝛼‖𝑐‖2)(1 + 𝛽‖𝑠‖2)− 𝛼𝛽|(𝑐, 𝑠)|2
,

𝑎(𝑥), 𝑏(𝑥) ∈ Ker ̂︀𝐿 and (·, ·) is scalar product in 𝐿2(0, 1). The operator 𝐿*
𝐾 acts as

𝐿*
𝐾 = 𝐿* +𝑄,

where

𝐿* = − 𝑑2

𝑑𝑥2
+ 𝑞(𝑥),

(𝑄𝑣)(𝑥) = 𝑎(𝑥) < 𝛿′(𝑥), 𝑣(𝑥) > +𝑏(𝑥) < 𝛿′(𝑥− 1), 𝑣(𝑥) >= 𝑎(𝑥)𝑣′(0) + 𝑏(𝑥)𝑣′(1),

that is, the function 𝑄 ∈ 𝑊−2
2 (0, 1). Thus, we have constructed an example of a non self-

adjoint singularly perturbed Sturm-Liouville operator with a real spectrum and the system of
eigenvectors that forms a Riesz basis in 𝐿2(0, 1).

Example 2. In the Hilbert space 𝐿2(Ω), where is a bounded domain in R𝑚 with an infinitely

smooth boundary 𝜕Ω, let us consider the minimal 𝐿0 and maximal ̂︀𝐿 operators generated by
the Laplace operator

−∆𝑢 = −
(︂
𝜕2𝑢

𝜕𝑥21
+
𝜕2𝑢

𝜕𝑥22
+ · · ·+ 𝜕2𝑢

𝜕𝑥2𝑚

)︂
. (4.2)

The closure 𝐿0, in the space 𝐿2(Ω) of Laplace operator (4.2) with the domain 𝐶∞
0 (Ω), is

the minimal operator corresponding to the Laplace operator. The operator ̂︀𝐿, adjoint to the
minimal operator 𝐿0 corresponding to Laplace operator, is the maximal operator corresponding

to the Laplace operator. Then

𝐷(̂︀𝐿) = {𝑢 ∈ 𝐿2(Ω) : ̂︀𝐿𝑢 = −∆𝑢 ∈ 𝐿2(Ω)}.
Denote by 𝐿 the operator, corresponding to the Dirichlet problem with the domain

𝐷(𝐿) = {𝑢 ∈ 𝑊 2
2 (Ω) : 𝑢|𝜕Ω = 0}.

We have (1.2), where 𝐾 is an arbitrary linear operator bounded in 𝐿2(Ω) with

𝑅(𝐾) ⊂ Ker ̂︀𝐿 = {𝑢 ∈ 𝐿2(Ω) : −∆𝑢 = 0}.
Then the operator 𝐿𝐾 is defined by ̂︀𝐿𝑢 = −∆𝑢,

on
𝐷(𝐿𝐾) = {𝑢 ∈ 𝐷(̂︀𝐿) : [(𝐼 −𝐾̂︀𝐿)𝑢]|𝜕Ω = 0},

where 𝐼 is the identity operator in 𝐿2(Ω). Note that 𝐿−1 is a self-adjoint compact operator.
If 𝐾 satisfies the conditions of Theorem 1.1, then 𝐿𝐾 is non self-adjoint operator with a real
positive spectrum (i.e., 𝜎(𝐿𝐾) ⊂ R+), and the system of eigenvectors 𝐿𝐾 forms a Riesz basis
in 𝐿2(Ω). In particular, if

𝐾𝑓 = 𝜙(𝑥)

∫︁
Ω

𝑓(𝑡)𝜓(𝑡)𝑑𝑡,

where 𝜙 ∈ 𝑊 2
2,𝑙𝑜𝑐(Ω) ∩ 𝐿2(Ω) is a harmonic function and 𝜓 ∈ 𝐿2(Ω), then 𝐾 ∈ 𝐵(𝐿2(Ω)) and

𝑅(𝐾) ⊂ Ker ̂︀𝐿. From 𝑅(𝐾*) ⊂ 𝐷(𝐿) it follows that 𝜓 ∈ 𝑊 2
2 (Ω) and 𝜓|𝜕Ω = 0. From the
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condition 𝐾𝐿 ⩾ 0 we have that 𝜓(𝑥) = 𝛼(𝐿−1𝜙)(𝑥), 𝛼 ∈ R+. Hence the operator 𝐿𝐾 is the

restriction of ̂︀𝐿 to the domain

𝐷(𝐿𝐾) =
{︁
𝑢 ∈ 𝐷(̂︀𝐿) : (︁𝑢− 𝜙

1 + ‖𝜙‖2

∫︁
Ω

𝑢(𝑦)𝜙(𝑦)𝑑𝑦
)︁⃒⃒⃒

𝜕Ω
= 0

}︁
.

The inverse of 𝐿−1
𝐾 has the form

𝑢 = 𝐿−1
𝐾 𝑓 = 𝐿−1𝑓 + 𝜙

∫︁
Ω

𝑓(𝑦)(𝐿−1𝜙)(𝑦)𝑑𝑦. (4.3)

We find the adjoint operator 𝐿*
𝐾 . From (4.3) we have

𝑣 = (𝐿−1
𝐾 )*𝑔 = 𝐿−1𝑔 + 𝐿−1𝜙

∫︁
Ω

𝑔(𝑦)𝜙(𝑦)𝑑𝑦, for all 𝑔 ∈ 𝐿2(Ω).

Then

𝐿*
𝐾𝑣 = −∆𝑣 +

𝜙

1 + ‖𝜙‖2

∫︁
Ω

(∆𝑣)(𝑦)𝜙(𝑦)𝑑𝑦 = 𝑔,

𝐷(𝐿*
𝐾) = 𝐷(𝐿) =

{︀
𝑣 ∈ 𝑊 2

2 (Ω) : 𝑣
⃒⃒
𝜕Ω

= 0
}︀
.

By virtue of Corollary 1.4, the spectrum of the operator 𝐿*
𝐾 consists only of real positive

eigenvalues and the corresponding eigenfunctions forms a Riesz basis in 𝐿2(Ω). Note that

(𝐿*
𝐾𝑣)(𝑥) = −(∆𝑣)(𝑥) +

𝜙(𝑥)

1 + ‖𝜙‖2
𝐹 (𝑢) = 𝑔(𝑥),

where 𝐹 ∈ 𝑊−2
2 (Ω), since

𝐹 (𝑢) =

∫︁
Ω

(∆𝑣)(𝑦)𝜙(𝑦)𝑑𝑦.

This is understood in the sense of the definition of the space 𝐻−𝑠(Ω), 𝑠 > 0 as in Theorem 12.1
(see [10]).

Thus, we have provided the examples of a non self-adjoint singularly perturbed operator with
a real spectrum. Moreover, the corresponding eigenvectors forms a Riesz basis in 𝐿2(Ω).
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