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COMMUTATIVITY CONDITIONS IN

PSEUDO-MICHAEL ALGEBRAS

A. NAZIRI-KORDKANDI

Abstract. We consider the commutativity conditions in unital pseudo-Michael algebras.
These kinds of algebras have interesting properties regarding the commutativity criteria.
We prove several results, which generalize known results in the case of unital Arens-Michael
algebras to the pseudo-convex cases. In this paper, we first derive some specific results for
the differentiable and entire functions in pseudo-Michael algebras. Then we show how such
results can be applied to obtain commutativity conditions for these algebras. In Section 3,
we give simple conditions implying commutativity in the unital pseudo-Michael algebras.
These conditions are equivalent to similar cases in unital locally 𝑚-convex algebras, in
particular, in Banach algebras. The most outstanding results in this direction are due to
Toma, who generalized the commutativity criteria of Banach algebras to locally 𝑚-convex
algebras. Our conditions ensure the commutativity of pseudo-Michael algebras. In the
proofs of some theorems, we apply the exponential functions and Liouville theorem for
bounded holomorphic functions. The use of them allows us to give a very striking short
proof. Finally as a consequence, we show that some commutativity results hold for 𝑘-Banach
algebras.
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1. Introduction

Non-normed topological algebras were initially introduced around the year 1950 for studying
certain classes of these algebras that appeared naturally in mathematics and physics. Some
results concerning such topological algebras had been obtained before 1950. In 1952, Arens and
Michael [3, 5] independently published the first systematic study on locally 𝑚-convex algebras,
which constitutes an important class of non-normed topological algebras. Here we mention
the predictions made by the famous Soviet mathematician M.A. Naimark, an expert in the
area of Banach algebras, in 1950 regarding the importance of non-normed algebras and the
development of their related theory. During his study concerning cosmology, G. Lassner [3]
realized that the theory of normed topological algebras was insufficient for his study purposes.
An important class of topological algebras namely pseudo-Michael algebras (complete Haus-

dorff locally 𝑚-pseudo-convex algebras) have interesting properties regarding the commuta-
tivity criterions. Hence, we can extent and prove some commutativity conditions of Banach
and Locally 𝑚-convex algebras to pseudo-Michael algebras (see [6, 8]). In this paper, we first
derive some specific results regarding the differentiable and entire functions in pseudo-Michael
algebras. Then the commutativitiy conditions are also investigated in these algebras.
Throughout this paper, all algebras are assumed to be unital and the units are denoted by 𝑒.
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2. Definitions and known results

In this section, we present a collection of definitions and known results, which are included
in the list of our references.

Definition 2.1. [1] Let 𝐴 be a Hausdorff topological linear space. Let 𝐺 ⊆ C be an open set.
A function 𝑓 : 𝐺→ 𝐴 is called differentiable if for each 𝜆 ∈ 𝐺,

lim
ℎ→0

𝑓(𝜆+ ℎ)− 𝑓(𝜆)

ℎ

exists in the topology of 𝐴. We denote this limit by 𝑓 ′(𝐴) and call 𝑓 ′ the derivative of 𝑓 .

Definition 2.2. Let 𝐴 be a Hausdorff topological linear space. A function 𝑓 : 𝐺→ 𝐴 is called
analytic on 𝐺 if around each point 𝜆0 ∈ 𝐺 ⊆ C, there is a neighborhood {𝜆 ∈ C : |𝜆−𝜆0| < 𝑟0}
in which 𝑓 has a power series representation

𝑓(𝜆) =
∞∑︁
𝑛=0

𝑥𝑛(𝜆− 𝜆0)
𝑛,

where 𝑥𝑛 ∈ 𝐴 and the series converges in the topology of 𝐴; for more information see [1].

Definition 2.3. Let 𝐴 be an algebra. The set of all invertible elements of 𝐴 is denoted by
Inv(𝐴).

Definition 2.4. For an algebra 𝐴, the spectrum sp𝐴(𝑥) of an element 𝑥 ∈ 𝐴 is the set of all
𝜆 ∈ C such that 𝜆𝑒 − 𝑥 is not invertible in 𝐴. The spectral radius 𝑟𝐴(𝑥) of an element 𝑥 ∈ 𝐴
is defined by 𝑟𝐴(𝑥) = sup{|𝜆| : 𝜆 ∈ sp𝐴(𝑥)}.

Lemma 2.1. [2, Sect. 1.5.32] If 𝐴 is an algebra, then

Rad(𝐴) = {𝑥 ∈ 𝐴 : 𝑟𝐴(𝑥𝑦) = 0 for any 𝑦 ∈ 𝐴},
where Rad(𝐴) is the Jacobson radical of 𝐴.

Definition 2.5. By a topological algebra we mean an algebra over C endowed with a topology
that makes the multiplication separately continuous.

Definition 2.6. [1] A topological linear space 𝐴 is said to be ample if 𝐴* (topological dual
of 𝐴) separates points of 𝐴. A topological algebra is called ample if it is ample as a topological
linear space.

Definition 2.7. Let 𝐴 be a Hausdorff topological algebra. The exponential function in 𝐴 is
defined by

exp(𝑎) =
∞∑︁
𝑛=0

𝑥𝑛

𝑛!
, (𝑥0 = 𝑒, 0! = 1)

whenever the series on the right converges.

Definition 2.8. A topological algebra 𝐴 is said to be a 𝑄-algebra if and only if Inv(𝐴) is
open.

Corollary 2.1. [4, Sect. 4.2] If 𝐴 is a 𝑄-algebra, then sp𝐴(𝑥) is compact for each 𝑥 ∈ 𝐴.

Definition 2.9. [1] A 𝑘-seminorm on 𝐴, with 𝑘 ∈ (0, 1], is a function

𝑝 : 𝐴→ R+ ∪ {0}
such that, for each 𝑥, 𝑦 ∈ 𝐴,

𝑝(𝑥+ 𝑦) ⩽ 𝑝(𝑥) + 𝑝(𝑦), for each 𝜆 ∈ C, 𝑝(𝜆𝑥) ⩽ |𝜆|𝑘𝑝(𝑥)
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If, in addition, the function satisfies

𝑝(𝑥𝑦) ⩽ 𝑝(𝑥)𝑝(𝑦),

then the 𝑘-seminorm is called submultiplicative.
A 𝑘-seminorm 𝑝 is also called a pseudo-seminorm and 𝑘 is called the homogenity index of

𝑝. Occasionally, we shall employ the symbol 𝑘𝑝, to indicate the index corresponding to 𝑝. A
pseudo-seminorm 𝑝 is a pseudo-norm if 𝑝(𝑥) = 0 implies 𝑥 = 0.
If 𝑝 is a 𝑘-seminorm (𝑘-norm) on a linear space 𝐴, then the resulting topological linear space

𝐴 = (𝐴, 𝑝) is called a 𝑘-seminormed (𝑘-normed) linear space. A topological algebra whose
topology is induced by a 𝑘-seminorm (𝑘-norm) 𝑝 is called a 𝑘-seminormed (𝑘-normed) algebra.
A complete 𝑘-normed algebra is called a 𝑘-Banach algebra. A pseudo-Banach algebra is just

a 𝑘-Banach algebra for some 𝑘, 0 < 𝑘 ⩽ 1.

Definition 2.10. [1] A locally pseudo-convex space 𝐴 is a topological linear space equipped
with a family 𝒫 = (𝑝𝛼)𝛼∈𝐼 of pseudo-seminorms on 𝐴 which define its topology. If each 𝑝𝛼 ∈ 𝒫
is a 𝑘-seminorm, then 𝐴 is called a locally 𝑘-convex space.
A locally pseudo-convex algebra 𝐴 is a topological algebra such that its underlying topological

linear space is locally pseudo-convex. If its underlying topological linear space is locally 𝑘-convex,
then 𝐴 is called a locally 𝑘-convex algebra. 𝐴 is called a locally 𝑚-pseudo-convex algebra (or
locally 𝑚-(𝑘-convex) algebra) if 𝑝𝛼 is submultiplicative for each 𝛼 ∈ 𝐼.
If 𝑝1, 𝑝2, . . . , 𝑝𝑛 are 𝑘𝑝𝑗 -seminorms on 𝐴 and 𝑘 = min

1⩽𝑗⩽𝑛
{𝑘𝑝𝑗}, then the function 𝑞 = 𝑝1 ∨ 𝑝2 ∨

. . . ∨ 𝑝𝑘 defined as

𝑞(𝑥) = max
1⩽𝑗⩽𝑛

{︂
𝑝

𝑘
𝑘𝑝1
1 (𝑥), 𝑝

𝑘
𝑘𝑝2
2 (𝑥), . . . , 𝑝

𝑘
𝑘𝑝𝑛
𝑛 (𝑥)

}︂
is also a pseudo-seminorm on 𝐴 (with homogenity index 𝑘). We say that the family of
pseudo-seminorm 𝒫 = (𝑝𝛼)𝛼∈𝐼 is saturated if 𝑝𝛼1 ∨ 𝑝𝛼2 ∨ · · · ∨ 𝑝𝛼𝑛 ∈ 𝒫 for each finite fam-
ily {𝑝𝛼1 , 𝑝𝛼2 , . . . , 𝑝𝛼𝑛} ⊂ 𝒫.

Proposition 2.1. [1, Sect. 4.3.11] Let (𝐴,𝒫) and (𝐵,𝒬) be two locally 𝑚-pseudo-convex
spaces where 𝒫 = (𝑝𝛼)𝛼∈𝐼 is a saturated family of 𝑘𝛼-seminorms on 𝐴 defining its topology, and
𝒬 = (𝑞𝛽)𝛽∈Γ is a family of 𝑘𝛽-seminorms on 𝐵 defining its topology. Then a linear transfor-
mation 𝑇 : 𝐴 → 𝐵 is continuous if and only if for each 𝑞𝛽 ∈ 𝒬, there exists a 𝑝𝛼 ∈ 𝒫 and a
constant 𝐶 = 𝐶𝛼,𝛽 > 0 such that

𝑞𝛽(𝑇 (𝑥)) ⩽ 𝐶 · 𝑝𝛼(𝑥)
𝑘𝛽
𝑘𝛼 for each 𝑥 ∈ 𝐴. (2.1)

Here, 𝑘𝛽 and 𝑘𝛼 are the homogenity indexes of 𝑞𝛽 and 𝑝𝛼, respectively.

In the case where 𝐴 = (𝐴, 𝑝) is a 𝑘𝑝-seminormed space and 𝐵 = (𝐵, 𝑞) is a 𝑘𝑞-seminormed
space, relation (2.1) takes the form (see [3])

𝑞(𝑇 (𝑥)) ⩽ 𝐶𝑝(𝑥)
𝑘𝑞
𝑘𝑝 for each 𝑥 ∈ 𝐴.

Definition 2.11. [1] We call a complete Hausdorff locally 𝑚-pseudo-convex algebra 𝐴 as a
pseudo-Michael algebra.

Corollary 2.2. [1, 6.4.9] Every pseudo-Michael algebra 𝐴 is spectral, i.e. sp𝐴(𝑥) ̸= ∅, for
each 𝑥 ∈ 𝐴.

Definition 2.12. Let 𝐴 be a pseudo-Michael algebra. 𝐴 is said to be commutative if and
only if 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝐴, and 𝐴 is said to be semicommutative if and only if 𝑥𝑦𝑧 = 𝑧𝑥𝑦
for any 𝑥, 𝑦, 𝑧 ∈ 𝐴; for more information see [8].
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Proposition 2.2. [1, Sect. 5.2.2] If 𝐴 is a pseudo-Michael algebra, in particular, a 𝑘-Banach
algebra, then 𝐷exp = 𝐴, where 𝐷exp is the domain of exp. Moreover, the series in Definiton
2.7, converges absolutely for all 𝑥 ∈ 𝐴 .

3. Main results

In this section, we first present some results regarding the differentiable and entire functions in
pseudo-Michael algebras. Then we show how they can be applied for obtaining commutativity
conditions for these algebras.

Proposition 3.1. Let 𝐴 be an ample Hausdorff topological linear space and 𝑓 ′ ≡ 0 on 𝐺,
where 𝐺 ⊆ C is an open set. Then 𝑓 is constant.

Proof. Define 𝑔 : 𝐺→ C by

𝑔(𝜆) = 𝜙 ∘ 𝑓(𝜆), where 𝜙 ∈ 𝐴*.

Then we have

𝑔′(𝜆) = 𝜙(𝑓 ′(𝜆)) = 0.

Since 𝐴 is ample, we infer that 𝑓 is constant.

Lemma 3.1. Let 𝐴 be a pseudo-Michael algebra. If 𝑓 : C→ 𝐴 is defined by

𝑓(𝜆) = exp(𝜆𝑎), 𝑎 ∈ 𝐴,

then 𝑓 ′(𝜆) = 𝑎𝑓(𝜆).

Proof. By [1, Sect. 5.1.8], 𝑓 is differentiable on C. Then the result follows as in the classical
case of mathematical analysis (for instance, see [7, Sect. 8.6]).

Lemma 3.2. Let 𝐴 be pseudo-Michael algebra. Then the function 𝑓 : C→ 𝐴 defined by

𝑓 : 𝜆 ↦−→ 𝑓(𝜆) = exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)

is entire for all 𝑥, 𝑦 ∈ 𝐴 and 𝜆 ∈ C.

Proof. We have

𝑓(𝜆) =

(︂
𝑒+ 𝜆𝑥+

(𝜆𝑥)2

2!
+ · · ·

)︂
𝑦

(︂
𝑒− 𝜆𝑥+

(𝜆𝑥)2

2!
+ · · ·

)︂
.

By continuity of multiplication in 𝐴. We get

𝑓(𝜆) =

(︂
𝑒+ 𝜆𝑥+

(𝜆𝑥)2

2!
+ · · ·

)︂(︂
𝑦 − 𝜆𝑦𝑥+ 𝑦

(𝜆𝑥)2

2!
+ · · ·

)︂
.

By [1, Sect. 5.2.2], the first series is absolutely convergent. The second series is also absolutely
convergent by the ratio test. Now, we multiply the two series and get:

𝑓(𝜆) = 𝑦 + 𝜆(𝑥𝑦 − 𝑦𝑥) + 𝜆2
(︂
𝑥2𝑦

2
− 𝑥𝑦𝑥+

𝑦𝑥2

2

)︂
+ · · · .

Since this series converges absolutely for all 𝜆 ∈ C, the function 𝑓(𝜆) is entire.

Theorem 3.1. Let 𝐴 be a pseudo-Michael 𝑄-algebra. Assume that 𝑎, 𝑏, 𝑐 ∈ 𝐴 satisfy the
following conditions:

𝑎𝑏− 𝑏𝑎 = 𝑐, 𝑎𝑐 = 𝑐𝑎 and 𝑏𝑐 = 𝑐𝑏.

Then 𝑟𝐴(𝑐) = 0.



COMMUTATIVITY CONDITIONS IN PSEUDO-MICHAEL ALGEBRAS 99

Proof. Let the function 𝑓 be as defined in Lemma 3.2. Then we have

𝑓 ′(𝜆) = 𝑎 exp(𝜆𝑎)𝑏 exp(−𝜆𝑎)− exp(𝜆𝑎)𝑏𝑎 exp(−𝜆𝑎)
= exp(𝜆𝑎)(𝑎𝑏− 𝑏𝑎) exp(−𝜆𝑎)
= exp(𝜆𝑎)𝑐 exp(−𝜆𝑎) = 𝑐

for all 𝜆 ∈ C. Also, 𝑓(0) = 𝑏. This implies that

𝑓(𝜆) = exp(𝜆𝑎)𝑏 exp(−𝜆𝑎) = 𝑏+ 𝜆𝑐 for all 𝜆 ∈ C.
Since 𝑟𝐴(𝑥𝑦) = 𝑟𝐴(𝑦𝑥) by [1, Sect. 1.8.12], we have

𝑟𝐴(𝑏) = 𝑟𝐴(𝑏+ 𝜆𝑐), for all 𝜆 ∈ C.
As 𝑏 and 𝑐 commute, by [1, Sect. 7.2.23], we obtain

|𝜆|𝑟𝐴(𝑐) = 𝑟𝐴(𝜆𝑐) = 𝑟𝐴(𝜆𝑐+ 𝑏− 𝑏)

⩽ 𝑟𝐴(𝜆𝑐+ 𝑏) + 𝑟𝐴(𝑏)

= 𝑟𝐴(𝑏) + 𝑟𝐴(𝑏) = 2𝑟𝐴(𝑏).

Since 𝐴 is a 𝑄-algebra, sp𝐴(𝑏) is comact [4, 4.2]. By Corollary 2.2, it is non-empty and hence
0 < 𝑟𝐴(𝑏) <∞. Thus 𝑟𝐴(𝑐) = 0, as 𝜆→ ∞.

Remark 3.1. Let 𝐴 be a pseudo-Michael algebra. Since every complete 𝑚-convex algebra is
a pseudo-Michael algebra [1], the example discussed in [8] shows that the semicommutativity of
𝐴 doesn’t imply the commutativity of 𝐴 in general.

Theorem 3.2. [1, Sect. 7.4.8] Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be a pseudo-Michael algebra with projective

limit decomposition 𝐴 = lim
←
𝐴𝛼, where each 𝐴𝛼 is a pseudo-Banach algebra. Then for 𝑥 ∈ 𝐴,

𝑥 = (𝑥𝛼), (𝑥𝛼 ∈ 𝐴𝛼), we have

𝑟𝐴(𝑥) = sup
𝛼
𝑣𝛼(𝑥)

1
𝑘𝛼 , where 𝑣𝛼(𝑥) = lim

𝑛→∞
𝑝𝛼(𝑥

𝑛)
1
𝑛 .

Theorem 3.3. Let (𝐴, (𝑝𝛼)𝛼∈𝐼)) be a pseudo-Michael algebra with projective limit decompo-

sition 𝐴 = lim
←
𝐴𝛼. If 𝐴 is semisimple and semicommutative, then it is commutative.

Proof. From semicommutativity of 𝐴, we have

(𝑥𝑦)2 = (𝑥𝑦)(𝑥𝑦) = ((𝑥𝑦)𝑥)𝑦 = 𝑥(𝑦𝑥)𝑦 = 𝑥𝑦2𝑥 = 𝑥2𝑦2

for all 𝑥, 𝑦 ∈ 𝐴. By induction we get

(𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛 for any 𝑛 ∈ N and 𝑥, 𝑦 ∈ 𝐴.

Let 𝑥, 𝑦 ∈ 𝐴 and 𝑛 ∈ N. Then

𝑝𝛼((𝑥𝑦)
𝑛)

1
𝑛𝑘𝛼 = 𝑝𝛼(𝑥

𝑛𝑦𝑛)
1

𝑛𝑘𝛼 ⩽ 𝑝𝛼(𝑥
𝑛)

1
𝑛𝑘𝛼 𝑝𝛼(𝑦

𝑛)
1

𝑛𝑘𝛼 .

It follows from Theorem 3.2 that

𝑟𝐴(𝑥𝑦) ⩽ 𝑟𝐴(𝑥)𝑟𝐴(𝑦).

Since 𝐴 is semicommutative, we obtain (𝑥𝑦 − 𝑦𝑥)2 = 0 , for all 𝑥, 𝑦 ∈ 𝐴. This implies that

𝑟𝐴(𝑥𝑦 − 𝑦𝑥) = sup
𝛼∈𝐼

lim
𝑛→∞

𝑝𝛼((𝑥𝑦 − 𝑦𝑥)𝑛)
1

𝑛𝑘𝛼 = 0 for all 𝑥, 𝑦 ∈ 𝐴.

On the other hand,

𝑟𝐴((𝑥𝑦 − 𝑦𝑥)𝑧) ⩽ 𝑟𝐴(𝑥𝑦 − 𝑦𝑥)𝑟𝐴(𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐴.

By Lemma 2.1, 𝑥𝑦 − 𝑦𝑥 ∈ Rad(𝐴). Since 𝐴 is semisimple, then 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝐴.
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Theorem 3.4. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be an ample pseudo-Michael algebra, where (𝑝𝛼)𝛼∈𝐼 is satu-
rated. If for any 𝛼 ∈ 𝐼 there exists, 𝑀𝛼 > 0 such that

𝑝𝛼(𝑥𝑦) ⩽𝑀𝛼𝑝𝛼(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝐴,

then 𝐴 is commutative.

Proof. Let the function 𝑓 be as defined in Lemma 3.2. For all 𝛼 ∈ 𝐼 and 𝜆 ∈ C, we have
𝑝𝛼(𝑓(𝜆)) = 𝑝𝛼(exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)) ⩽𝑀𝛼𝑝𝛼(𝑦).

By Lemma 3.2, the function 𝑓 is entire. Also it is bounded on C. Let 𝜙 ∈ 𝐴*. Then 𝜙 ∘ 𝑓(𝜆) =
𝜙(𝑓(𝜆)) is a scalar entire function. This function is also bounded. Indeed, by [1, 4.3.11], there
exists a 𝑝𝛼 ∈ 𝒫 and a constant 𝐶 = 𝐶𝛼 > 0 such that

|𝜙 ∘ 𝑓(𝜆)| = |𝜙(𝑓(𝜆))| ⩽ 𝐶𝑝𝛼(𝑓(𝜆))
1
𝑘𝛼 ⩽ 𝐶(𝑀𝛼𝑝𝛼(𝑦))

1
𝑘𝛼 .

Then by the Liouville theorem 𝜙 ∘ 𝑓 is constant and hence,

𝜙(𝑓(𝜆)) = 𝜙(𝑓(0)) = 𝜙(𝑦).

Since 𝐴 is ample, 𝑓(𝜆) = 𝑦 for all 𝜆 ∈ C. This implies the identity 𝑓 ′(𝜆) = 0 for each 𝜆 ∈ C
and therefore,

𝑥 exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)− exp(𝜆𝑥)𝑦𝑥 exp(−𝜆𝑥) = 0 for each 𝜆 ∈ C.
For 𝜆 = 0 we get 𝑥𝑦 = 𝑦𝑥.

Theorem 3.5. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be an ample pseudo-Michael 𝑄-algebra, where (𝑝𝛼)𝛼∈𝐼 is
saturated. Suppose that for each 𝛼 ∈ 𝐼 there exists 𝑀𝛼 > 0 such that

𝑝𝛼(𝑥) ⩽𝑀𝛼𝑟𝐴(𝑥) for any 𝑥 ∈ 𝐴.

Then 𝐴 is commutative.

Proof. Let the function 𝑓 be as defined in Lemma 3.2. For all 𝛼 ∈ 𝐼 and 𝜆 ∈ C we have

𝑝𝛼(𝑓(𝜆)) = 𝑝𝛼(exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)) ⩽𝑀𝛼𝑟𝐴(exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)) =𝑀𝛼𝑟𝐴(𝑦).

Since the spectral radius satisfies the identity 𝑟𝐴(𝑥𝑦) = 𝑟𝐴(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝐴, (see [1, 1.8.12]),
the function 𝑓 is entire and bounded on C. Let 𝜙 ∈ 𝐴*. Then 𝜙 ∘ 𝑓(𝜆) = 𝜙(𝑓(𝜆)) is a scalar
entire function, which is bounded. Now the rest of the proof is the same as that for Theorem
3.4.

Theorem 3.6. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be an ample pseudo-Michael algebra with projective limit

decomposition 𝐴 = lim
←
𝐴𝛼, where (𝑝𝛼)𝛼∈𝐼 is saturated. Suppose that for any 𝛼 ∈ 𝐼 there exists

𝑀𝛼 > 0 such that

𝑝2𝛼(𝑥) ⩽𝑀𝛼𝑝𝛼(𝑥
2), for any 𝑥 ∈ 𝐴.

Then 𝐴 is commutative.

Proof. Let 𝛼 ∈ 𝐼 and 𝑥 ∈ 𝐴. By induction we get

𝑝𝛼(𝑥) ⩽𝑀
1− 1

2𝑛
𝛼

(︀
𝑝𝛼(𝑥

2𝑛)
)︀ 1

2𝑛 .

Since 𝑣𝛼(𝑥) = lim
𝑛→∞

𝑝𝛼(𝑥
2𝑛)

1
2𝑛 , letting 𝑛→ ∞, we have

𝑝𝛼(𝑥) ⩽𝑀𝛼𝑣𝛼(𝑥).

On the other hand, 𝑣𝛼(𝑥𝑦) = 𝑣𝛼(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝐴 [1, Sect. 3.3.7]. By this identity and
submultiplicativity of 𝑝𝛼 we find:

𝑝𝛼(𝑥𝑦) ⩽𝑀𝛼𝑣𝛼(𝑥𝑦) =𝑀𝛼𝑣𝛼(𝑦𝑥) ⩽𝑀𝛼𝑝𝛼(𝑦𝑥),
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for any 𝑥, 𝑦 ∈ 𝐴. Using Theorem 3.4, we obtain that 𝐴 is commutative.

Definition 3.1. Let 𝐴 be a pseudo-Michael 𝑄-algebra. We say that a linear continuous
functional 𝜓 : 𝐴→ C is a spectral state on 𝐴 if it is satifies the following properties

𝜓(𝑒) = 1 and |𝜓(𝑥)| ⩽ 𝑟𝐴(𝑥) for each 𝑥 ∈ 𝐴.

Theorem 3.7. Let 𝐴 be a pseudo-Michael 𝑄-algebra. If 𝜓 is an injective spectral state on
𝐴, then 𝐴 is commutative.

Proof. Let the function 𝑓 be as defined in Lemma 3.2. Now, we have

𝜓 ∘ 𝑓(𝜆) = 𝜓(𝑓(𝜆)) = 𝜓(exp(𝜆𝑥)𝑦 exp(−𝜆𝑥)).
Since 𝜓 is a spectral state, we get

|𝜓 ∘ 𝑓(𝜆)| = |𝜓(exp(𝜆𝑥)𝑦 exp(−𝜆𝑥))| ⩽ 𝑟𝐴(𝑦)

because 𝑟𝐴(𝑥𝑦) = 𝑟𝐴(𝑦𝑥), for any 𝑥, 𝑦 ∈ 𝐴. So 𝜓 ∘ 𝑓 : C→ C is bounded. On the other hand,
𝜓 ∘ 𝑓 is an entire function. Now the rest of the proof is the same as that for Theorem 3.4.

Theorem 3.8. Let 𝐴 and 𝐵 be two pseudo-Michael 𝑄-algebras. Suppose that 𝑇 : 𝐴→ 𝐵 is
a unital injective continuous linear map satisfying

𝑟𝐵(𝑇𝑥) ⩽ 𝑟𝐴(𝑥), for any 𝑥 ∈ 𝐴.

If 𝑓 is an injective spectral state on 𝐵, then 𝐴 is commutative.

Proof. Let 𝜓 = 𝑓 ∘ 𝑇 . Then 𝜓(𝑒) = 1 and we have

|𝜓(𝑥)| = |𝑓(𝑇𝑥)| ⩽ 𝑟𝐵(𝑇𝑥) ⩽ 𝑟𝐴(𝑥) for each 𝑥 ∈ 𝐴.

Thus, 𝜓 is an injective spectral state on 𝐴. The result follows from Theorem 3.7.

Remark 3.2. In Theorem 3.8, if 𝑇 is an injective continuous homomorphism, then the
inequality

𝑟𝐵(𝑇𝑥) ⩽ 𝑟𝐴(𝑥), for any 𝑥 ∈ 𝐴,

can be omitted since in this case we have sp𝐵(𝑇𝑥) ⊆ sp𝐴(𝑥) and hence 𝑟𝐵(𝑇𝑥) ⩽ 𝑟𝐴(𝑥), see [1,
Sect. 1.7.19].

Remark 3.3. [6, 3.10] Let 𝐻 be the quaternion field. Then the subset{︀
𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥 : 𝑥 ∈ 𝐻, 𝛽 ∈ R

}︀
can not be bounded in 𝐻.

Theorem 3.9. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be a pseudo-Michael algebra. If the set{︀
𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥 : 𝑥 ∈ 𝐴, 𝛽 ∈ R

}︀
is bounded, then 𝐴 is commutative.

Proof. By the assumptions, there exists 𝑀𝛼 > 0 such that

𝑝𝛼(𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥) ⩽𝑀𝛼 for each 𝛽 ∈ R.
Then

𝑝𝛼(𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥) ⩽
𝑀𝛼

𝑛𝑘𝛼
for all 𝑥 ∈ 𝐴, 𝑛 ∈ N.

This yields

𝑝𝛼(𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥) = 0 as 𝑛→ ∞.
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Since 𝐴 is Hausdorff,

𝑥(exp 𝛽𝑦)− (exp 𝛽𝑦)𝑥 = 0 for each 𝛽 ∈ R.

Differentiating this identity, we get

𝑥𝑦 = 𝑦𝑥.

Theorem 3.10. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be a pseudo-Michael 𝑄-algebra. If for each 𝑥 in Inv(A) the
subset

{𝑥𝑦 − 𝑦𝑥 : 𝑦 ∈ 𝐴}

is bounded, then 𝐴 is commutative.

Proof. We take an arbitrary 𝑥 in Inv(𝐴). By the assumptions there exists 𝑀𝛼 > 0 such that

𝑝𝛼(𝑥𝑦 − 𝑦𝑥) ⩽𝑀𝛼 for each 𝑦 ∈ 𝐴.

Then we have

𝑝𝛼(𝑥𝑦 − 𝑦𝑥) ⩽
𝑀𝛼

𝑛𝑘𝛼
for each𝑦 ∈ 𝐴 and 𝑛 ∈ N.

Hence,

𝑝𝛼(𝑥𝑦 − 𝑦𝑥) = 0 as 𝑛→ ∞.

Since 𝐴 is Hausdorff, we get

𝑥𝑦 = 𝑦𝑥 for each 𝑦 ∈ 𝐴.

Assume that 𝑥 /∈ Inv(𝐴). Since Inv(𝐴) is open, then 𝑒− Inv(𝐴) is a neighborhood of zero. So
there exists 𝜆 > 0 such that 𝜆𝑥 ∈ 𝑒 − Inv(𝐴) or 𝑒 − 𝜆𝑥 ∈ Inv(𝐴). Therefore, as in the first
part, we have

(𝑒− 𝜆𝑥)𝑦 = 𝑦(𝑒− 𝜆𝑥),

and hence

𝑥𝑦 = 𝑦𝑥.

Thus, 𝐴 is commutative.

Theorem 3.11. Let (𝐴, (𝑝𝛼)𝛼∈𝐼) be an ample pseudo-Michael algebra, where (𝑝𝛼)𝛼∈𝐼 is sat-
urated. If

{𝑥𝑦 − 𝑦𝑥 : 𝑥 ∈ 𝐴, 𝑦 ∈ Inv(𝐴)}

is bounded. Then 𝐴 is commutative.

Proof. By the assumptions, the subset

{𝑥 exp(𝜆𝑦)− exp(𝜆𝑦)𝑥 : 𝜆 ∈ C}

is bounded in 𝐴. Then the function 𝑔 : C→ 𝐴 defined by

𝑔(𝜆) = 𝑥 exp(𝜆𝑦)− exp(𝜆𝑦)𝑥

is entire and bounded. Hence, there exists 𝑀𝛼 > 0 such that 𝑝𝛼(𝑔(𝜆)) ⩽𝑀𝛼.
Let 𝜙 ∈ 𝐴*. Then there exists a 𝑝𝛼 ∈ 𝒫 and a constant 𝐶 = 𝐶𝛼 > 0 such that

|𝜙 ∘ 𝑔(𝜆)| = |𝜙(𝑔(𝜆)| ⩽ 𝐶𝑝𝛼(𝑔(𝜆))
1
𝑘𝛼 ⩽ 𝐶𝑀

1
𝑘𝛼
𝛼 .
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Hence, 𝜙 ∘ 𝑔 is a bounded entire function. By the Liouville theorem, the function 𝜙 ∘ 𝑔 is
constant and hence,

𝜙(𝑔(𝜆)) = 𝜙(𝑔(0)) = 0.

Since 𝐴 is ample, 𝑔(𝜆) = 0 for any 𝜆 ∈ C. This implies that

𝑥 exp(𝜆𝑦)− exp(𝜆𝑦)𝑥 = 0, for any 𝜆 ∈ C.
Differentiating this identity, we get

𝑥𝑦 = 𝑦𝑥.

Remark 3.4. Every 𝑘-Banach algebra is a pseudo-Michael algebra [1]. Thus, all the above
theorems and results which are true for pseudo-Michael algebras, also hold for 𝑘-Banach alge-
bras.
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