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BEHAVIOR OF ENTIRE DIRICHLET SERIES OF

CLASS 𝐷(Φ) ON CURVES OF BOUNDED 𝐾-SLOPE

N.N. AITKUZHINA, A.M. GAISIN, R.A. GAISIN

Abstract. We study an asymptotic behavior of the sum of an entire Dirichlet series 𝐹 (𝑠) =∑︀
𝑛
𝑎𝑛𝑒

𝜆𝑛𝑠, 0 < 𝜆𝑛 ↑ ∞, on curves of a bounded 𝐾-slope naturally going to infinity. For

entire transcendental functions of finite order having the form 𝑓(𝑧) =
∑︀
𝑛
𝑎𝑛𝑧

𝑝𝑛 , 𝑝𝑛 ∈ N,

Pólya showed that if the density of the sequence {𝑝𝑛} is zero, then for each curve 𝛾 going
to infinity there exists an unbounded sequence {𝜉𝑛} ⊂ 𝛾 such that, as 𝜉𝑛 → ∞, the relation
holds:

ln𝑀𝑓 (|𝜉𝑛|) ∼ ln |𝑓(𝜉𝑛)| ;
here 𝑀𝑓 (𝑟) is the maximum of the absolute value of the function 𝑓 . Later these results
were completely extended by I.D. Latypov to entire Dirichlet series of finite order and finite
lower order according in the Ritt sense. A further generalization was obtained in works by
N.N. Yusupova–Aitkuzhina to more general classes 𝐷(Φ) and 𝐷(Φ) defined by the convex
majorant Φ. In this paper we obtain necessary and sufficient conditions for the exponents
𝜆𝑛 ensuring that the logarithm of the absolute value of the sum of any Dirichlet series from
the class 𝐷(Φ) on the curve 𝛾 of a bounded 𝐾-slope is equivalent to the logarithm of the
maximum term as 𝜎 = Re 𝑠 → +∞ over some asymptotic set, the upper density of which is
one. We note that for entire Dirichlet series of an arbitrarily fast growth the corresponding
result for the case of 𝛾 = R+ was obtained by A.M. Gaisin in 1998.
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1. Introduction

We briefly dwell on the history of a question. Let

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑝𝑛 (1.1)

be an entire transcendental function, 𝑃 = {𝑝𝑛} be a sequence of natural numbers having a
density

Δ = lim
𝑛→∞

𝑛

𝑝𝑛
.

Pólya [1] showed that if Δ = 0, then in each angle {𝑧 : | arg(𝑧−𝛼)| ⩽ 𝛿}, 𝛿 > 0, the function
𝑓 possesses the same order as in the entire plane. A corresponding result for the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, 0 < 𝜆𝑛 ↑ ∞, (1.2)
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absolutely converging in the entire plane was proved in [2]: if a sequence Λ = {𝜆𝑛} satisfies
the conditions Δ = 0 and 𝜆𝑛+1 − 𝜆𝑛 ⩾ ℎ > 0, 𝑛 ⩾ 1, then the 𝑅-order of the function 𝐹 on a
positive ray R+ = [0,∞) is equal to the 𝑅-order 𝜌𝑅 of the function 𝐹 in the entire plane. A
more general result was proved in [3], where, in particular, it was shown that if Δ = 0 and the
condensation index 𝛿 of the sequence Λ is equal to zero, then 𝜌𝑅 = 𝜌𝛾, where

𝜌𝛾 = lim
𝑠∈𝛾, 𝑠→∞

ln ln |𝐹 (𝑠)|
𝜎

, 𝜎 = Re 𝑠,

is Ritt order on the curve 𝛾 going to infinity so that if 𝑠 ∈ 𝛾 and 𝑠 → ∞, then Re 𝑠 → +∞.
A more general result of a bit different nature was established in paper [4]. In order to

formulate it, we introduce appropriate notation and definitions.
Let Γ = {𝛾} be a family of all curves going to infinity so that if 𝑠 ∈ 𝛾 and 𝑠 → ∞, then

Re 𝑠 → +∞.
By 𝐷(Λ) we denote the class of entire functions 𝐹 represented by Dirichlet series (1.2) in the

entire plane, while by 𝐷(Λ, 𝑅) we denote a subclass 𝐷(Λ) consisting of functions 𝐹 possessing
a finite Ritt order 𝜌𝑅(𝐹 ):

𝜌𝑅(𝐹 ) = lim
𝜎→+∞

ln ln𝑀𝐹 (𝜎)

𝜎
, 𝑀𝐹 (𝜎) = sup

|𝑡|<∞
|𝐹 (𝜎 + 𝑖𝑡)|.

For 𝐹 ∈ 𝐷(Λ), 𝛾 ∈ Γ we let

𝑑(𝐹 ; 𝛾)
𝑑𝑒𝑓
= lim

𝑠∈𝛾, 𝑠→∞

ln |𝐹 (𝑠)|
ln𝑀𝐹 (Re 𝑠)

, 𝑑(𝐹 ) = inf
𝛾∈Γ

𝑑(𝐹 ; 𝛾).

By 𝐿 we denote the class of all continuous and unboundedly increasing on [0,∞) positive
functions.
A sequence {𝑏𝑛} (𝑏𝑛 ̸= 0 as 𝑛 ⩾ 𝑁) is called 𝑊 -normal1 if there exists a function 𝜃 ∈ 𝐿 such

that [4]

lim
𝑥→∞

1

ln𝑥

𝑥∫︁
1

𝜃(𝑡)

𝑡2
𝑑𝑡 = 0, − ln |𝑏𝑛| ⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 𝑁.

We consider a Weierstrass product

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧2

𝜆2
𝑛

)︂
, 0 < 𝜆𝑛 ↑ ∞.

It is known that 𝑄 is an entire function of exponential type if and only if the sequence Λ
possesses a finite upper density.
In [4] the following theorem was proved.

Theorem 1.1. Let the sequence Λ possesses a finite upper density. Assume that the sequence

{𝑄′(𝜆𝑛)} is 𝑊 -normal. Then for each function 𝐹 ∈ 𝐷(Λ, 𝑅) the identity 𝑑(𝐹 ) = 1 holds if and

only if

lim
𝑥→∞

1

ln𝑥

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛

= 0. (1.3)

Let an entire function 𝑓 of a finite order be of the form (1.1). If the sequence 𝑃 has the
density Δ = 0, then 𝑑(𝑓) = 1 (𝑑(𝑓) is an analogue of quantity 𝑑(𝐹 ), which is defined by all
curves arbitrarily going to infinity). This fact was first established by Pólya in [1]. We note
that the identity 𝑑(𝑓) = 1 follows from a more general Theorem 1.1. Indeed, since Δ = 0, then
obviously

lim
𝑥→∞

1

ln𝑥

∑︁
𝑝𝑛⩽𝑥

1

𝑝𝑛
= 0.

1In this paper we use the term “𝑊 (ln)-normal sequence”.
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Since Δ = 0 and 𝑝𝑛 ∈ N, then, as it is known, see, for instance [5],

𝛿 = lim
𝑛→∞

1

𝑝𝑛
ln

⃒⃒⃒⃒
1

𝑄′(𝑝𝑛)

⃒⃒⃒⃒
= 0.

This means that there exists a function 𝜃 ∈ 𝐿, 𝜃(𝑥) = 𝑜(𝑥) as 𝑥 → ∞, such that

− ln |𝑄′(𝑝𝑛)| ⩽ 𝜃(𝑝𝑛), 𝑛 ⩾ 1.

Hence, the sequence {𝑄′(𝑝𝑛)} is 𝑊 -normal (𝑊 (ln)-normal).
Finally, if 𝑓 is an entire function of finite order, then letting 𝑧 = 𝑒𝑠, we note that

𝐹 (𝑠) = 𝑓(𝑒𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝑝𝑛𝑠

is an entire function of a finite 𝑅-order. Therefore, 𝑑(𝑓) = 𝑑(𝐹 ) and all facts are implied by
Theorem 1.1.
However, the identity 𝑑(𝐹 ) = 1 generally does not imply the identity 𝜌𝑅(𝐹 ) = 𝜌𝛾 for the

Ritt orders of the function 𝐹 in the entire plane and on the curve 𝛾 ∈ Γ. It turns out that if,
in Theorem 1.1, we replace condition (1.3) by a stronger one

lim
𝑥→∞

1

ln𝑥

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛

= 0,

then 𝜌𝑅(𝐹 ) = 𝜌𝛾 for each function 𝐹 ∈ 𝐷(Λ, 𝑅), see [6].
As in work [6], here we consider a more general situation, namely, we study the class of

Dirichlet series (1.2) determined by some convex growth majorant. For the curves 𝛾 ∈ Γ
having a bounded slope, we prove a stronger asymptotic estimate than the identity 𝑑(𝐹 ) = 1
obtained in [6] for the functions in the same class.
By definition, the curve 𝛾 ∈ Γ defined by the equation 𝑦 = 𝑔(𝑥), 𝑥 ∈ R+ = [0,+∞), possesses

a bounded slope if

sup
𝑥1,𝑥2∈R
𝑥1 ̸=𝑥2

⃒⃒⃒⃒
𝑔(𝑥2)− 𝑔(𝑥1)

𝑥2 − 𝑥1

⃒⃒⃒⃒
= 𝐾 < ∞. (1.4)

Condition (1.4) means that the absolute values of the tangents of all chords of the curve 𝛾 does
not exceed 𝐾. In this case 𝛾 is called a curve of a bounded 𝐾-slope.
In a series of papers, there was found a close relation between the regularity of the growth

of the sum of the Dirichlet series (1.2) on 𝛾 ∈ Γ with the incompletness of the system of
exponentials

{︀
𝑒𝜆𝑛𝑧

}︀
on the arcs 𝛾′ ⊂ 𝛾 and especially with a strong incompletness of this

exponential system in a vertical strip, see [7]–[9]. It should be noted that the results of works
[8], [9] on the incompletness of the system

{︀
𝑒𝜆𝑛𝑧

}︀
on the arcs can be applied to studying

the uniqueness theorems and asymptotic properties of entire Dirichlet series (1.2) with no
restrictions for the growth 𝑀𝐹 (𝜎), that is, in the most general case.
The aim of the present paper is to show, under the same assumptions for Λ as in [6], that if

lim
𝜎→+∞

ln𝑀𝐹 (𝜎)

Φ(𝜎)
< ∞

(Φ is some convex on R+ function), then for each curve 𝛾 ∈ Γ of a bounded 𝐾-slope, as 𝑠 ∈ 𝛾,
𝜎 = Re 𝑠 → +∞ over some asymptotic set 𝐴 ⊂ R+ with the upper density 𝐷𝐴 = 1, a Pólya
asymptotic identity

ln |𝐹 (𝑠)| ∼ ln𝑀𝐹 (𝜎), 𝑠 ∈ 𝛾,

holds. It is clear that this relation is essentially better than the identity 𝑑(𝐹 ) = 1.
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2. Auxiliary statements. Main results

Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence having a finite upper density 𝐷. Then 𝑄(𝑧) is an
entire function of exponential type at most 𝜋𝐷*, where 𝐷* is an averaged upper density of the
sequence Λ:

𝐷* = lim
𝑡→∞

𝑁(𝑡)

𝑡
, 𝑁(𝑡) =

𝑡∫︁
0

𝑛(𝑥)

𝑥
𝑑𝑥, 𝑛(𝑡) =

∑︁
𝜆𝑗⩽𝑡

1.

It always holds 𝐷* ⩽ 𝐷 ⩽ 𝑒𝐷*, see, for instance, [5], [10].
Let 𝐿 be the class of all continuous and unboundedly increasing on R+ positive function, Φ

be a convex function in 𝐿,

𝐷𝑚(Φ) =
{︀
𝐹 ∈ 𝐷(Λ) : ln𝑀𝐹 (𝜎) ⩽ Φ(𝑚𝜎)

}︀
, 𝑚 ⩾ 1,

where 𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|. We let

𝐷(Φ) =
∞⋃︁

𝑚=1

𝐷𝑚(Φ).

We suppose that the above introduced function Φ is such that

lim
𝑥→∞

𝜙(𝑥2)

𝜙(𝑥)
< ∞, (2.1)

where 𝜙 is a function inverse to Φ. For our purporses we shall need the following class of
monotone functions:

𝑊 (𝜙) =

⎧⎨⎩𝑤 ∈ 𝐿 :
√
𝑥 ⩽ 𝑤(𝑥), lim

𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0

⎫⎬⎭ .

We note that the condition
√
𝑥 ⩽ 𝑤(𝑥) in this definition does not restrict the generality; it is

introduced just for a convenience. Let Γ = {𝛾} be the family of curves 𝛾 introduced above and
let for 𝐹 ∈ 𝐷(Λ)

𝑑(𝐹 ; 𝛾)
𝑑𝑒𝑓
= lim

𝑠∈𝛾, 𝑠→∞

ln |𝐹 (𝑠)|
ln𝑀𝐹 (Re 𝑠)

, 𝑑(𝐹 ) = inf
𝛾∈Γ

𝑑(𝐹 ; 𝛾). (2.2)

By 𝜇(𝜎) we denote a maximal term in series (1.2).
In work [11], there was proved a criterion of validity of the identity 𝑑(𝐹 ) = 1 for each function

𝐹 in the class 𝐷(Φ), while in [6] the same was done for the class 𝐷(Φ), where

𝐷(Φ) =
∞⋃︁

𝑚=1

𝐷𝑚(Φ),

𝐷𝑚(Φ) = {𝐹 ∈ 𝐷(Λ) : ∃{𝜎𝑛} : 0 < {𝜎𝑛} ↑ ∞, ln𝑀𝐹 (𝜎𝑛) ⩽ Φ(𝑚𝜎𝑛)}, 𝑚 ⩾ 1.

We shall say that the sequence
{︀
𝑄

′
(𝜆𝑛)

}︀
is 𝑊 (𝜙)-normal if there exists 𝜃 ∈ 𝐿 such that

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝜃(𝑡)

𝑡2
𝑑𝑡 = 0, − ln

⃒⃒
𝑄′(𝜆𝑛)

⃒⃒
⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 1. (2.3)

The following theorem was proved in [6].

Theorem 2.1. Let the sequence Λ possesses a finite upper density. Suppose that the sequence

{𝑄′(𝜆𝑛)} is 𝑊 (𝜙)-normal.
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The identity 𝑑(𝐹 ) = 1 holds for each function 𝐹 ∈ 𝐷(Φ) if and only if the condition

lim
𝑥→∞

1

𝜙(𝑥)

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛

= 0 (2.4)

is satisfied.

We note that in the definition of the class 𝐷(Φ) we can consider, for example, the function

Φ(𝜎) = exp exp . . . exp⏟  ⏞  
𝑘

(𝜎), 𝑘 ⩾ 1.

Therefore, Theorem 2.1 implies a corresponding result in [4] proven for the case 𝑘 = 1.
Now we are in position to formulate our main result.
Let Φ be the above introduction function and 𝜙 be its inverse. The following theorem is true.

Theorem 2.2. Let the upper density of the sequence Λ be finite and the sequence {𝑄′(𝜆𝑛)}
be 𝑊 (𝜙)-normal. If condition (2.4) is satisfied, then for each function 𝐹 ∈ 𝐷(Φ), for each

curve 𝛾 ∈ Γ of a bounded 𝐾-slope, as 𝑠 ∈ 𝛾, 𝜎 = Re𝑠 → +∞ over some asymptotic set 𝐴 ⊂ R+

with the upper density 𝐷𝐴 = 1, the asymptotic identity

ln |𝐹 (𝑠)| = (1 + 𝑜(1)) ln𝑀𝐹 (𝜎), 𝑠 ∈ 𝛾, (2.5)

holds true.

Now we formulate lemmas, which will be employed for the proof of Theorem 2.2.

Lemma 2.1. Let Φ ∈ 𝐿 and its inverse function 𝜙 satisfies condition (2.1). Let 𝑢(𝜎) be

a non-decreasing positive continuous on [0,∞) function and lim
𝜎→∞

𝑢(𝜎) = ∞, and for some

sequence {𝜏𝑛} and 𝑚 ∈ N the estimate holds:1

𝑢(𝜏𝑛) ⩽ lnΦ(𝑚𝜏𝑛).

Suppose that the function 𝑤 belongs to the class 𝑊 (𝜙). If 𝑣 = 𝑣(𝜎) is a solution of the

equation

𝑤(𝑣) = 𝑒𝑢(𝜎),

then as 𝜎 → ∞ outside some set 𝐸 ⊂ [0,∞),

mes(𝐸 ∩ [0, 𝜏𝑛]) = 𝑜(𝜙(𝑣(𝜏𝑛))), 𝜏𝑛 → ∞,

the estimate holds:

𝑢

(︂
𝜎 +

𝑤(𝑣(𝜎))

𝑣(𝜎)

)︂
< 𝑢(𝜎) + 𝑜(1).

This lemma was proved in [12].

Lemma 2.2. Let a function 𝑔(𝑧) be analytic and bounded in the circle

𝐷(0, 𝑅) = {𝑧 : |𝑧| < 𝑅}, |𝑔(0)| ⩾ 1.

If 0 < 𝑟 < 1−𝑁−1, 𝑁 > 1, then there exist at most countably many circles

𝑉𝑛 = {𝑧 : |𝑧 − 𝑧𝑛| ⩽ 𝜌𝑛} ,
∑︁
𝑛

𝜌𝑛 ⩽ 𝑅𝑟𝑁(1− 𝑟) (2.6)

such that for all 𝑧 in the circle {𝑧 : |𝑧| ⩽ 𝑟𝑅} but outside
⋃︀
𝑛

𝑉𝑛 the estimate

ln |𝑔(𝑧)| ⩾ 𝑅− |𝑧|
𝑅 + |𝑧|

ln |𝑔(0)| − 5𝑁𝐿 (2.7)

1In [12] Lemma 2.1 was proved under the estimate 𝑢(𝜏𝑛) ⩽ 𝐶Φ(𝜏𝑛). It is obviously true as 𝑢(𝜏𝑛) ⩽ Φ(𝑚𝜏𝑛).
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holds, where

𝐿 =
1

2𝜋

2𝜋∫︁
0

ln+
⃒⃒
𝑔(𝑅𝑒𝑖𝜃)

⃒⃒
𝑑𝜃 − ln |𝑔(0)|.

This lemma was proved in [13].

3. Proof of Theorem 2.2

The sequence {𝑄′(𝜆𝑛)} is 𝑊 (𝜙)-normal and Λ = {𝜆𝑛} possesses a finite upper density.
Therefore,

lim
𝑥→∞

𝑁(𝑥)

𝑥
< ∞, − ln |𝑄′(𝜆𝑛)| ⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 1, 𝜃 ∈ 𝑊 (𝜙).

Since, see [6],

sup
𝑥>0

⃒⃒⃒⃒
⃒⃒∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛

−
𝑥∫︁

0

𝑁(𝑡)

𝑡2

⃒⃒⃒⃒
⃒⃒ = 𝑎 < ∞,

then in view of (2.3), (2.4) we obtain

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
0

𝑁(𝑡)

𝑡2
𝑑𝑡 = 0.

We let 𝑤(𝑡) = max(
√
𝑡, 𝑁(𝑒𝑡) + 𝜃(𝑡)), where 𝜃 is the function from condition (2.3). It is clear

that 𝑤 ∈ 𝑊 (𝜙). Then it is obviously exists a function 𝑤* ∈ 𝑊 (𝜙) such that 𝑤*(𝑥) = 𝛽(𝑥)𝑤(𝑥),
𝛽 ∈ 𝐿.
Let 𝑣 = 𝑣(𝜎) be a solution of equation

𝑤*(𝑣) = 3 ln𝜇(𝜎). (3.1)

We let

ℎ =
𝑤(𝑣(𝜎))

𝑣(𝜎)
, ℎ(1) =

𝑤1(𝑣)

𝑣
, ℎ* =

𝑤*(𝑣(𝜎))

𝑣(𝜎)
,

where 𝑤*(𝑣) =
√︀

𝛽(𝑥)𝑤(𝑥). Let

𝑅𝑣 =
∑︁
𝜆𝑗>𝑣

|𝑎𝑗| 𝑒𝜆𝑗𝜎, 𝑣 = 𝑣(𝜎).

Since the sequence Λ possesses a finite upper density, then 𝐶 =
∞∑︀
𝑛=1

𝜆−2
𝑛 < ∞. Therefore, the

estimate holds, see, for instance, [7]:

𝑅𝑣 ⩽ 𝐶𝜇(𝜎 + ℎ*) exp [−(1 + 𝑜(1))𝑤*(𝑣)] . (3.2)

We consider a function 𝑢(𝜎) = ln 3+ln ln𝜇(𝜎). Since 𝐹 ∈ 𝐷(Φ), then there exists a sequence
{𝜏𝑗}, 0 < 𝜏𝑗 ↑ ∞, such that

𝑢(𝜎) ⩽ lnΦ(𝑚𝜎), 𝜎 = 𝜏𝑗, 𝑚 ⩾ 1.

Therefore, in view of (3.1), as 𝜎 = 𝜏𝑗, 𝑗 ⩾ 1, we have:

ln𝑤*(𝑣(𝜎)) = 𝑢(𝜎) ⩽ lnΦ(𝑚𝜎), 𝑚 ⩾ 1.

Hence,
1

𝜎
⩽

𝑚

𝜙(𝑤*(𝑣(𝜎)))
, 𝜎 = 𝜏𝑗, 𝑚 ⩾ 1. (3.3)

Taking into consideration condition (2.1) and the fact that
√
𝑥 ⩽ 𝑤*(𝑥), we get:

𝜙(𝑥) ⩽ 𝐶1𝜙(𝑤
*(𝑥)), 𝑥 ⩾ 𝑥0, 0 < 𝐶1 < ∞. (3.4)
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Thus, by (3.3) and (3.4) we obtain the estimates:

1

𝜎
⩽

𝐶2

𝜙(𝑣(𝜎))
, 𝜎 = 𝜏𝑗, 𝑗 ⩾ 1, 0 < 𝐶2 < ∞. (3.5)

Since 𝑤* ∈ 𝑊 (𝜙) and the function 𝜙 is concave, then

lim
𝑥→∞

𝑤*(𝑥)

𝑥𝜙(𝑥)
= 0, (3.6)

which is implies by the identity

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤*(𝑡)

𝑡2
𝑑𝑡 = 0. (3.7)

Applying Lemma 2.1 for the functions 𝑢 and 𝑤* and taking into consideration (3.5), as 𝜎 → ∞
outside some set 𝐸1 ⊂ [0,∞),

mes(𝐸1 ∩ [0, 𝜏𝑗]) ⩽ 𝑜(𝜙(𝑣(𝜏𝑗))) = 𝑜(𝜏𝑗), 𝜏𝑗 → ∞, (3.8)

we obtain that
𝜇(𝜎 + 3ℎ*(𝜎)) = 𝜇(𝜎)1+𝑜(1). (3.9)

Therefore, by (3.2), (3.9) we obtain that as 𝜎 → ∞ outside the set 𝐸1 with the lower density
𝑑𝐸1 = 0,

𝑅𝑣 ⩽ 𝐶𝜇(𝜎)1+𝑜(1) exp [−𝑤*(𝑣)(1 + 𝑜(1))] = 𝜇(𝜎)−2(1+𝑜(1)). (3.10)

This implies that 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎) as 𝜎 ⩾ 𝜎1, 𝜎 /∈ 𝐸1, where 𝜆𝜈(𝜎) is the central indicator (𝜈(𝜎) is
the central index) of series (1.2).
In the same way as (3.10) we show that as 𝜎 → ∞, outside the same set 𝐸1, see [7],∑︁

𝜆𝑗>𝑣(𝜎)

|𝑎𝑗|𝑒𝜆𝑗(𝜎+ℎ(1)) ⩽ 𝜇−2(1+𝑜(1))(𝜎). (3.11)

Borel-Nevanlinna relation (3.9) allows us to do this since ℎ(1)(𝜎) = 𝑜(ℎ*(𝜎)) as 𝜎 → ∞; prop-
erties (3.6), (3.7) are needed for the proof of Lemma 2.1.
Let

𝐹𝑎(𝑠) =
∑︁
𝜆𝑛⩽𝑎

𝑎𝑛𝑒
𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡.

Then for 𝜆𝑛 ⩽ 𝑎 we have, see [5]:

𝑎𝑛 = 𝑒−𝛼𝜆𝑛
1

2𝜋𝑖

∫︁
𝐶

𝜙𝑛(𝑡)𝐹𝑎(𝑡+ 𝛼)𝑑𝑡, (3.12)

where 𝛼 is an arbitrary parameter,

𝜙𝑛(𝑡) =
1

𝑄′
𝑎(𝜆𝑛)

∞∫︁
0

𝑄𝑎(𝜆)

𝜆− 𝜆𝑛

𝑒−𝜆𝑡𝑑𝜆, 𝑄𝑎(𝜆) =
∏︁
𝜆𝑛⩽𝑎

(︂
1− 𝜆2

𝜆2
𝑛

)︂
, (3.13)

and 𝐶 is an arbitrary closed contour enveloping 𝐷, which the conjugate diagram 𝑄𝑎(𝜆). But
𝑄𝑎(𝜆) is a polynomial and therefore, 𝐷 = {0}.
We let 𝑎 = 𝑣(𝜎), 𝛼 = 𝜎 + 𝑖𝑡, where 𝑡 is such that 𝛼 ∈ 𝛾. As 𝐶 we take the contour

{𝑡 : |𝑡| = ℎ(1)}, where ℎ(1) = ℎ(1)(𝜎) = ℎ*(𝜎)√
𝛽(𝑣(𝜎))

. Then by assumption

− ln |𝑄′(𝜆𝑛)| ⩽ 𝜃(𝜆𝑛) ⩽ 𝑤(𝜆𝑛), 𝑛 ⩾ 1.

Therefore, in view of identity (3.1) we obtain that for each 𝜆𝑛 ⩽ 𝑣(𝜎) as 𝜎 → ∞ we get:

1

|𝑄′
𝑣(𝜆𝑛)|

⩽
1

|𝑄′(𝜆𝑛)|
⩽ 𝑒𝜃(𝜆𝑛) ⩽ 𝑒𝑤(𝑣) = 𝑒𝑜(𝑤

*(𝑣)) = 𝜇(𝜎)𝑜(1).
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But then by (3.12), (3.13) we get that for all 𝜆𝑛 ⩽ 𝑣(𝜎) as 𝜎 → ∞ outside the set 𝐸1

|𝑎𝑛|𝑒𝜆𝑛𝜎 ⩽ 𝜇(𝜎)𝑜(1)ℎ(1)

⎡⎣ max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)|+
∑︁
𝜆𝑗>𝑣

|𝑎𝑗| 𝑒𝜆𝑗(𝜎+ℎ(1))

⎤⎦ ∞∫︁
0

⃒⃒⃒⃒
𝑄𝑣(𝜆)

𝜆− 𝜆𝑛

⃒⃒⃒⃒
|𝑒−𝜆𝑡||𝑑𝜆|, (3.14)

where 𝛼 = 𝜎 + 𝑖𝑡 ∈ 𝛾.
It is easy to show that [14]

max
|𝜆|=𝑟

⃒⃒⃒⃒
𝑄𝑣(𝜆)

𝜆− 𝜆𝑛

⃒⃒⃒⃒
⩽ 𝑀(1)𝑀𝑣(𝑟), (3.15)

where 𝑀(1) = max
|𝑧|=1

|𝑄(𝑧)|, 𝑀𝑣(𝑟) = max
|𝑧|=𝑟

|𝑄𝑣(𝑧)|.

Since 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎) outside 𝐸1 as 𝜎 ⩾ 𝜎′, taking into consideration (3.11), (3.15), by (3.14)
as 𝜎 → ∞ outside 𝐸1 we obtain:

𝜇(𝜎)1+𝑜(1) ⩽ ℎ(1)

[︂
max

|𝜉−𝛼|⩽ℎ(1)
|𝐹 (𝜉)|+ 𝜇(𝜎)−2(1+𝑜(1))

]︂ ∞∫︁
0

𝑀𝑣(𝑟)𝑒
−𝑟ℎ(1)

𝑑𝑟. (3.16)

Then, taking into consideration the definition of the quantities 𝑣 = 𝑣(𝜎), ℎ(1) = ℎ(1)(𝜎), as well
as the inequalities 𝑛(𝑥) ⩽ 𝑁(𝑒𝑥), ln(1 + 𝑥2) < 𝑥, 𝑥 > 0, we have:

ln𝑀(𝑟) = 𝑛(𝑣) ln

(︂
1 +

𝑟2

𝑣2

)︂
+ 2𝑟2

𝑣∫︁
0

𝑛(𝑡)

𝑡(𝑡2 + 𝑟2)
𝑑𝑡 ⩽

𝑛(𝑣)

𝑣
𝑟 + 2𝑁(𝑣) = 𝑜(1)ℎ(1)𝑟 + 𝑜(1) ln𝜇(𝜎).

Therefore, by (3.16) we obtain that as 𝜎 → ∞ outside 𝐸1

𝜇(𝜎)1+𝑜(1) ⩽ max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)| = |𝐹 (𝜉*)|, (3.17)

where |𝜉* − 𝛼| = ℎ(1), 𝛼 = 𝜎+ 𝑖𝑡 ∈ 𝛾. In view of estimate (3.15), as 𝜎 → ∞ outside 𝐸1 we also
have

𝜇(𝜎) ⩽ 𝑀𝐹 (𝜎) ⩽ 𝑀𝐹 (𝜎 + 2ℎ*) ⩽
∞∑︁
𝑛=1

|𝑎𝑛|𝑒𝜆𝑛(𝜎+2ℎ*)

⩽ 𝜇(𝜎 + 3ℎ*)

⎡⎣𝑛(𝑣) + ∑︁
𝜆𝑗>𝑣(𝜎)

𝑒−ℎ*𝜆𝑗

⎤⎦ < 𝜇(𝜎)1+𝑜(1).

(3.18)

Let 𝐵 = R+ ∖ 𝐸1, ℎ = 𝑤(𝑣(𝜎))
𝑣(𝜎)

. Then there exists a sequence {𝜎𝑗}, 𝜎𝑗 ∈ 𝐵, 𝜎𝑗 ↑ 0, 𝜎𝑗 + ℎ𝑗 ⩽
𝜎𝑗+1, 𝑗 ⩾ 1, such that, see [13],

𝐵 ⊂
∞⋃︁
𝑗=1

[𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗],

where ℎ𝑗 =
𝑤(𝑣𝑗)

𝑣𝑗
, 𝑣𝑗 = 𝑣(𝜎𝑗),, 𝑗 ⩾ 1.

We let 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*). By (3.17) we see that |𝑔(0)| ⩾ 1 as 𝜎 ⩾ 𝜎′′ > 𝜎′ outside 𝐸1. We

apply Lemma 2.1 to the function 𝑔(𝑧), letting 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗, ℎ
(1) = ℎ

(1)
𝑗 =

𝑤(𝑣𝑗)

𝑣𝑗

√︀
𝛽(𝑣𝑗) in (3.17)

and 𝑁 = 4, 𝑟 = 1√
𝛽(𝑣𝑗)

, 𝑅 = ℎ*
𝑗 in estimates (2.6), (2.7), where ℎ*

𝑗 =
𝑤*(𝑣𝑗)

𝑣𝑗
, 𝑗 ⩾ 𝑗1. Then in the

circle {𝑧 : |𝑧| ⩽ ℎ
(1)
𝑗 } but outside exceptional circles 𝑉𝑛𝑗 with the total sum of the radii∑︁

𝑛

𝜌𝑛 ⩽
ℎ𝑗

𝛽𝑗

, 𝛽𝑗 = 𝛽(𝑣(𝜎𝑗)), 𝑗 ⩾ 𝑗1, (3.19)

estimate (2.7) holds true.
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Let 𝛾𝑗 be a part of 𝛾 connecting vertical straight lines passing through the end-points of the
segment Δ𝑗 = [𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗]. Since the curve 𝛾 possesses a 𝐾-slope, then 𝛾𝑗 is located in
some rectangle 𝑃𝑗 = Δ𝑗 × [𝑐𝑗, 𝑑𝑗], 𝑑𝑗 − 𝑐𝑗 ⩽ 2𝐾ℎ𝑗, with the center at the point 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗
and connects its vertical sides.
Since the rectangle 𝑃𝑗 is located in the circle {𝑧 : |𝑧| ⩽ ℎ

(1)
𝑗 }, then for all 𝑧 ∈ 𝑃𝑗 but outside

the circles 𝑉𝑛𝑗 with the total sum of radii obeying estimate (3.19), as 𝑗 → ∞ we obtain that

ln |𝑔(𝑧)| ⩾
[︂
1 + 𝑜(1)− 20𝐿

ln |𝑔(0)|

]︂
ln |𝑔(0)|. (3.20)

Taking into consideration (3.17), (3.18), as well as that |𝑔(0)| ⩾ 1, we confirm that as 𝑗 → ∞
the asymptotic identity

𝐿

ln |𝑔(0)|
= 𝑜(1)

holds, where

𝐿 =
1

2𝜋

2𝜋∫︁
0

ln+ |𝑔(𝑅𝑒𝑖𝜃)|𝑑𝜃 − ln |𝑔(0)|,

𝑔(0) = 𝐹 (𝜉*), |Re 𝜉* − 𝜎𝑗| ⩽ ℎ(1), 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 ∈ 𝛾.

Therefore, by (3.20), for all 𝑧 in the rectangle 𝑃𝑗 but outside the circles 𝑉𝑛𝑗 as 𝑗 → ∞ we have

ln |𝑔(𝑧)| ⩾ (1 + 𝑜(1)) ln |𝑔(0)|. (3.21)

But then, taking into consideration that 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*) and using estimates (3.17)–(3.21),
we obtain that for all 𝑧 in 𝑃𝑗 with the center at the point 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 but outside exceptional

circles 𝑉𝑛𝑗 with the total sum of radii not exceeding
ℎ𝑗

𝛽𝑗
we have

ln |𝐹 (𝑧)| > (1 + 𝑜(1)) ln𝜇(𝜎𝑗), 𝑗 → ∞. (3.22)

Let 𝐸2 be the projection of all exceptional circles of the set
⋃︀
𝑗

𝑃𝑗 on 𝐵, where 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗

is the center of 𝑃𝑗, 𝐵 ⊂
∞⋃︀
𝑗=1

[𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗], 𝜎𝑗 ∈ 𝐵, 𝜎𝑗 + ℎ𝑗 ⩽ 𝜎𝑗+1, 𝑗 ⩾ 1. Let us show that

𝐷𝐸2 = 0. Indeed, let 𝜎𝑗 ⩽ 𝜎 < 𝜎𝑗+1. According to (3.6),

ℎ𝑗 ⩽ ℎ
(1)
𝑗 < ℎ*

𝑗 = 𝑜(𝜎𝑗), 𝑗 → ∞.

And since 𝛽𝑗 ↑ ∞ as 𝑗 → ∞, then it is obvious that

lim
𝜎→∞

mes(𝐸2 ∩ [0, 𝜎])

𝜎
= 0.

Thus, 𝐷𝐸2 = 0, and therefore, 𝑑𝐸 = 0, where 𝐸 = 𝐸1 ∪ 𝐸2.
Estimate (3.22) holds in each 𝑃𝑗 with the center 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 ∈ 𝛾 but outside exceptional

circles 𝑉𝑛𝑗, the total sum of radii of which obeys estimate (3.19).
The projection 𝑝𝑗 of the arc 𝛾𝑗 on R+ is a segment [𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗]. We let 𝐴 = 𝑃 ∖ 𝐸,

where 𝑃 =
∞⋃︀
𝑗=1

𝑝𝑗. On this set asymptotic estimates (3.18), (3.22); 𝐴 is called asymptotic set.

This implies that as 𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 → ∞ over the set 𝐴

ln |𝐹 (𝑠)| = (1 + 𝑜(1)) ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝑀𝐹 (𝜎).

It remains to estimate𝐷𝐴. Taking into consideration that 𝐵 ⊂ 𝑃 andmes(𝐸∩[0, 𝜏𝑗]) = 𝑜(𝜏𝑗),
𝜏 → ∞, we get:

𝐷𝐴 = lim
𝜎→∞

mes(𝐴 ∩ [0, 𝜎])

𝜎
⩾ lim

𝜏𝑗→∞

mes(𝑃 ∩ [0, 𝜏𝑗])

𝜏𝑗
− lim

𝜏𝑗→∞

mes(𝐸 ∩ [0, 𝜏𝑗])

𝜏𝑗
= 1.
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Here {𝜏𝑗} is the above introduced sequence. Hence, 𝐷𝐴 = 1. The proof of Theorem 2.2 is
complete.
As it was shown in [6], the assumptions of Theorem 2.2 are also necessary in order each

function 𝐹 ∈ 𝐷(Φ) on some set 𝐴 ⊂ R+ having a positive upper density 𝐷𝐴 asymptotic
identity (2.5) to hold. Therefore, the statement of Theorem 2.2 is also sufficient.
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