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ON NONLINEAR HYPERBOLIC SYSTEMS

RELATED BY BÄCKLUND TRANSFORMS

M.N. KUZNETSOVA

Abstract. In this work we describe pairs of nonlinear hyperbolic system of equations
𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦), where 𝑢𝑖𝑥𝑦 = 𝑓 𝑖, 𝑖 = 1, 2, . . . 𝑛, the linearizations of which are related
by the first order Laplace transform. On the base of this Laplace transform we construct
Bäcklund transforms relating the solutions of nonlinear systems.

The classical Bäcklund transform is defined for a second-order nonlinear differential equa-
tion whose solution is a function of two independent variables. The Bäcklund transform for a
pair of nonlinear equations is a system of relations involving functions and their first deriva-
tives and it provides a transform of a solution of one equation into the solution of another
and vice versa. The Bäcklund transforms preserve integrability. The Bäcklund problem is
to list possible Bäcklund transforms and the equations admitting such transforms.

The Laplace cascade integration method is one of the classical methods for integrating
linear partial differential equations. The Laplace transform is a special case of the Bäcklund
transform for linear equations. The method used in this paper was previously applied to
nonlinear hyperbolic equations. In this paper, this method is employed to describe systems
associated with Bäcklund transforms.
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earization
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1. Introduction

In the present work we make a classification of nonlinear hyperbolic systems of equations of
form

𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦), (𝑢𝑖𝑥𝑦 = 𝑓 𝑖, 𝑖 = 1, 2, . . . 𝑛), (1.1)

𝑞𝑥𝑦 = 𝐹 (𝑞, 𝑞𝑥, 𝑞𝑦), (𝑞𝑖𝑥𝑦 = 𝐹 𝑖, 𝑖 = 1, 2, . . . , 𝑛) (1.2)

under the condition that their linearizations are related by the first order Laplace transform.
On the base of the Laplace transform relating the solutions of linearized system, we construct
a Bäcklund transform relating the solutions of nonlinear systems (1.1), (1.2).
The Laplace cascade integration method is a classical one for integrating linear equations of

form, see [1]–[4],
𝑣𝑥𝑦 + 𝑎(𝑥, 𝑦)𝑣𝑥 + 𝑏(𝑥, 𝑦)𝑣𝑦 + 𝑐(𝑥, 𝑦)𝑣 = 0.

The Laplace transform is a differential substitution (a change involving an unknown function
and its derivative) transforming an original equation into an equation of the same form. A pair
of differential substitutions gives a transform from one equation to the other and vice versa. A
detailed description of the method can be found in [5], [6].
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In works [7], [8], [9], [5], there were considered nonlinear hyperbolic equations. As a definition
of exactly integrable equation of Liouville type, there was chosen a property of two-sided break
of the Laplace invariants for a linearized equation. In survey [5] there was provided a procedure
of finding a general solution to nonlinear hyperbolic equations based on using the Laplace
invariants. In works [10], [11] there were described the properties of the Laplace invariants of
nonlinear equations possessing differential substitutions.
In work [12] a generalization of the Laplace cascade integration method was proposed for the

case of linear hyperbolic systems of equations. On this base, it was proved that the system of
equations with a vanishing product of Laplace invariants possesses a complete set of solutions
depending on arbitrary functions.
Let us clarify the notion of the Bäcklund transform by a particular example. The equations

𝑢𝑥𝑦 = sin𝑢, 𝑣𝑥𝑦 = 𝑣
√︁

1− 𝑣2𝑦 (1.3)

are related by the Bäcklund transform

𝑣 = 𝑢𝑥, 𝑣𝑦 = sin𝑢.

The latter relations ensure the following passage: if 𝑢 is a solution to first equation (1.3),
then 𝑣 is a solution to second equation (1.3) and vice versa. In other words, this is a pair
of differential substitutions relating solutions to non-linear equations. For the history of the
Bäcklund problem, see [13]. A special case of the Bäcklund transform is the Laplace transform
for linear equations. The Bäcklund transform preserving the original equation are used to
construct exact solutions. For instance, soliton-type solutions were found for the sine-Gordon
equation [14]. In papers [15], [16], Bäcklund transforms were employed to solve boundary value
problems and construct exact solutions to evolution equations.
A wide class of examples of differential substitutions relating pairs of non-linear second-order

hyperbolic equations can be found in [5], [10], [11], [17], [18]. In work [19], there were described
non-linear hyperbolic equations, the linearizations of which were related by Laplace transforms,
and there were constructed Bäcklund transforms relating solutions of non-linear equations.
This work consists of the following sections. In Section 2 we describe the systems 𝑢𝑥𝑦 = 𝑓(𝑢)

and (1.2), the linearizations of which are related by the first-order Laplace transform. We
construct a Bäcklund transform, which relates solutions of nonlinear systems. In Section 3 we
solve the same problem for a pair of systems (1.1), (1.2). In Section 4 we provide examples.

2. Systems of equations 𝑢𝑥𝑦 = 𝑓(𝑢) and 𝑞𝑥𝑦 = 𝐹 (𝑞, 𝑞𝑥, 𝑞𝑦)

In this section we describe all nonlinear hyperbolic systems of equations of form

𝑢𝑥𝑦 = 𝑓(𝑢), (𝑢𝑖𝑥𝑦 = 𝑓 𝑖, 𝑖 = 1, 2, . . . 𝑛), (2.1)

𝑞𝑥𝑦 = 𝐹 (𝑞, 𝑞𝑥, 𝑞𝑦), (𝑞𝑖𝑥𝑦 = 𝐹 𝑖, 𝑖 = 1, 2, . . . , 𝑛) (2.2)

under the condition that their linearizations are related by the first order Laplace transforms.
First we introduce notation and formulate the assumptions that we will use below. In order to

do this, we consider a scalar equation of form (1.1). All identities involving the function 𝑢 must
be satisfied on any solution of equation (1.1). In other words, the letter 𝑢 everywhere denotes
an arbitrary solution of equation (1.1). The latter allows to express each mixed derivative of 𝑢

by means of system (1.1) in terms of the variables 𝑢, 𝑢𝑖 =
𝜕𝑖𝑢
𝜕𝑥𝑖 , �̄�𝑖 =

𝜕𝑖𝑢
𝜕𝑦𝑖

. Therefore, we assume
that all functions are infinitely differentiable and depend on a finite number of these variables.
It is easy to see that these variables cannot be related to each other using equation (1.1) and
this is why we treat them as independent.
By 𝐷 and �̄� we denote the operators of total differentiation with respect to the variables 𝑥

and 𝑦, respectively. The differentiations 𝐷 and �̄� are defined by the relations

𝐷(𝑢𝑖) = 𝑢𝑖+1, �̄�(�̄�𝑖) = �̄�𝑖+1, 𝑢0 = �̄�0 = 𝑢, 𝑖 = 0, 1, 2, . . . ,
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𝐷�̄�𝑢 = 𝑓(𝑢, 𝑢1, �̄�1), [𝐷, �̄�] = 0.

On functions depending on finitely many variablezs 𝑢, 𝑢𝑖, �̄�𝑖, the operators 𝐷 and �̄� acts as
follows:

𝐷 =
∞∑︁
𝑖=0

𝑢𝑖+1
𝜕

𝜕𝑢𝑖
+

∞∑︁
𝑖=1

�̄�𝑖−1(𝑓)
𝜕

𝜕�̄�𝑖
,

�̄� =
∞∑︁
𝑖=0

�̄�𝑖+1
𝜕

𝜕�̄�𝑖
+

∞∑︁
𝑖=1

𝐷𝑖−1(𝑓)
𝜕

𝜕𝑢𝑖
.

The action of 𝐷 and �̄� on the vectors and matrices is defined by applying this operator to each
their entry.
We consider a linear system of hyperbolic equations

𝑣𝑥𝑦 + 𝑎(𝑥, 𝑦)𝑣𝑥 + 𝑏(𝑥, 𝑦)𝑣𝑦 + 𝑐(𝑥, 𝑦)𝑣 = 0. (2.3)

Here 𝑣 is an 𝑛-dimensional vector, 𝑎, 𝑏 and 𝑐 are matrices of size 𝑛 × 𝑛. System (2.3) can be
rewritten as

𝑣𝑥𝑦 + 𝑎𝑣𝑥 + 𝑏𝑣𝑦 + 𝑐𝑣 = 𝑣𝑥𝑦 + 𝑎𝑣𝑥 + 𝑏𝑣𝑦 + (𝑏𝑦 + 𝑎𝑏− 𝑘)𝑣 =

(︂
𝜕

𝜕𝑦
+ 𝑎

)︂(︂
𝜕

𝜕𝑥
+ 𝑏

)︂
𝑣 − 𝑘𝑣 = 0.

Here
𝑘 = 𝑏𝑦 + 𝑎𝑏− 𝑐. (2.4)

Now it is easy to see that system (2.3) is equivalent to system(︂
𝜕

𝜕𝑥
+ 𝑏

)︂
𝑣 = 𝑣−1,

(︂
𝜕

𝜕𝑦
+ 𝑎

)︂
𝑣−1 = 𝑘𝑣. (2.5)

The first equation defines a so-called Laplace 𝑥-transform for system (2.3), which consists in
passing from the unknown 𝑣 to the unknown 𝑣−1. If det(𝑘) ̸= 0, then by second formula (2.4)
we find:

𝑣 = 𝑘−1

(︂
𝜕

𝜕𝑦
+ 𝑎

)︂
𝑣−1.

We substitute the latter function into original system (2.3)(︂
𝜕

𝜕𝑥
+ 𝑏

)︂
𝑘−1

(︂
𝜕

𝜕𝑦
+ 𝑎

)︂
𝑣−1 − 𝑣−1 = 0. (2.6)

Differentiating the identity 𝑘𝑘−1 = 𝐸 in the variable 𝑥, we obtain 𝑘𝑥𝑘
−1 + 𝑘(𝑘−1)𝑥 = 0, which

implies (𝑘−1)𝑥 = −𝑘−1𝑘𝑥𝑘
−1. By using the latter formula, we transform system (2.6) to

𝑘−1

(︃
(𝑣−1)𝑥𝑦 + 𝑎(𝑣−1)𝑥 +

(︀
𝑘𝑏𝑘−1 − 𝑘𝑥𝑘

−1
)︀
(𝑣−1)𝑦 +

(︁
𝑎𝑥 +

(︀
𝑘𝑏𝑘−1 − 𝑘𝑥𝑘

−1
)︀
𝑎− 𝑘

)︁
𝑣−1

)︃
= 0.

Thus, by applying Laplace 𝑥-transform to system (2.3), we obtain system of the same form as
the initial one:

(𝑣−1)𝑥𝑦 + 𝑎−1(𝑣−1)𝑥 + 𝑏−1(𝑣−1)𝑦 + 𝑐−1𝑣−1 = 0,

where
𝑎−1 = 𝑎, 𝑏−1 =

(︀
𝑘𝑏− 𝑘𝑥

)︀
𝑘−1, 𝑐 = 𝑎𝑥 + 𝑏−1𝑎−1 − 𝑘. (2.7)

Suppose that the solutions 𝑢(𝑥, 𝑦, 𝜏) and 𝑞(𝑥, 𝑦, 𝜏) of systems (2.1) and (2.2), respectively,
depend on some parameter 𝜏 and we define functions 𝑣 = 𝑢𝜏 and 𝑝 = 𝑞𝜏 . Then the functions 𝑣
and 𝑝 satisfy linearized systems

𝐷�̄�𝑣 = 𝐶𝑣, (2.8)(︀
𝐷�̄� − 𝐴−1𝐷 −𝐵−1�̄� − 𝐶−1

)︀
𝑝 = 0. (2.9)
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Here we have introduced the following notation:

𝐶 =

(︂
𝜕𝑓 𝑖(𝑢)

𝜕𝑢𝑗

)︂
, 𝑖, 𝑗 = 1, . . . , 𝑛, (2.10)

𝐴−1 =

(︂
𝜕𝐹 𝑖(𝑞, 𝑞𝑥, 𝑞𝑦)

𝜕𝑞𝑗𝑥

)︂
, 𝐵−1 =

(︂
𝜕𝐹 𝑖(𝑞, 𝑞𝑥, 𝑞𝑦)

𝜕𝑞𝑗𝑦

)︂
, 𝐶−1 =

(︂
𝜕𝐹 𝑖(𝑞, 𝑞𝑥, 𝑞𝑦)

𝜕𝑞𝑗

)︂
.

Suppose that system (2.9) is obtained from system (2.8) by applying the Laplace 𝑥-transform.
The problem is to describe corresponding nonlinear systems (2.2) and (2.1). By formulas (2.7)
the following relations hold:

𝐴−1 = 0, 𝐵−1 = 𝐷(𝑘)𝑘−1, 𝐶−1 = 𝑘, (2.11)

where, in accordance with formula (2.4),

𝑘 = 𝐶. (2.12)

According to formulas (2.5), solutions to system (2.8), (2.9) are related by the identities

𝐷𝑣 = 𝑝, �̄�𝑝 = 𝑘𝑣. (2.13)

Theorem 2.1. Let linearized system (2.9) be a result of applying the Laplace 𝑥-transform to
system (2.8). Then systems (2.1) and (2.2) are of the form:

𝑢𝑥𝑦 = 𝑓(𝑢), 𝑞𝑥𝑦 = 𝐶
(︀
𝑓−1(𝑞𝑦)

)︀
𝑞, (2.14)

where the matrix 𝐶(𝑢) is defined by formula (2.10) and det𝐶 ̸= 0.

Proof. We consider relations (2.13). We observe that if

𝑢𝑥 = 𝑞, (2.15)

then first formula (2.13) is true. We apply the differentiation �̄� to the both sides of relation
(2.15):

𝑓(𝑢) = 𝑞𝑦. (2.16)

We note that differentiation of identity (2.16) in the parameter 𝜏 leads us to second formula
(2.13). Applying then the operator 𝐷 to both sides of relation (2.16), we obtain

𝑞𝑖𝑥𝑦 = 𝑓 𝑖
𝑢1𝑢1𝑥 + 𝑓 𝑖

𝑢2𝑢2𝑥 + · · ·+ 𝑓 𝑖
𝑢𝑛𝑢𝑛𝑥, 𝑖 = 1, 2, . . . , 𝑛.

Here the vector 𝑢1, 𝑢2, . . . , 𝑢𝑛 should be treated as a solution of algebraic systems (2.16). Taking
into consideration notation (2.10), we obtain that 𝑞 satisfies second equation (2.14). The proof
is complete.

Remark 2.1. In the proof of the theorem we have found the Bäcklund transform

𝑞 = 𝑢𝑥, 𝑞𝑦 = 𝑓(𝑢),

relating the solutions of system (2.14).

3. System of equations of form 𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦)

We suppose that solutions 𝑢(𝑥, 𝑦, 𝜏) and 𝑞(𝑥, 𝑦, 𝜏) to systems (1.1) and (1.2), respectively,
depend on some parameter 𝜏 and we define the functions 𝑣 = 𝑢𝜏 and 𝑝 = 𝑞𝜏 . Then the functions
𝑣 and 𝑝 satisfy the linearized systems(︀

𝐷�̄� − 𝐴𝐷 −𝐵�̄� − 𝐶
)︀
𝑣 = 0, (3.1)(︀

𝐷�̄� − 𝐴𝐷 − �̃��̄� − 𝐶
)︀
𝑝 = 0. (3.2)

Here 𝐴, 𝐵, 𝐶, 𝐴, �̃�, 𝐶 are square matrices of 𝑛th order:

𝐴 =

(︂
𝜕𝑓 𝑖

𝜕𝑢𝑗1

)︂
, 𝐵 =

(︂
𝜕𝑓 𝑖

𝜕�̄�𝑗1

)︂
, 𝐶 =

(︂
𝜕𝑓 𝑖

𝜕𝑢𝑗

)︂
,
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𝐴 =

(︂
𝜕𝐹 𝑖

𝜕𝑞𝑗1

)︂
, �̃� =

(︂
𝜕𝐹 𝑖

𝜕𝑞𝑗1

)︂
, 𝐶 =

(︂
𝜕𝐹 𝑖

𝜕𝑞𝑗

)︂
, 𝑖, 𝑗 = 1, . . . , 𝑛.

Suppose that system (3.2) is obtained from system (3.1) as a result of applying the Laplace
𝑥-transform. The problem is to describe corresponding nonlinear systems (1.2) and (1.1). Then
the following relations (︀

𝐷 −𝐵
)︀
𝑣 = 𝑝,

(︀
�̄� − 𝐴

)︀
𝑝 = 𝐻𝑣 (3.3)

hold. Here 𝐻 = −�̄�(𝐵) + 𝐴𝐵 + 𝐶, det𝐻 ̸= 0. By formulas (2.7) the coefficients of system
(3.1), (3.2) should satisfy the following relations:

𝐴 = 𝐴, �̃� =
(︀
𝐻𝐵 +𝐷(𝐻)

)︀
𝐻−1, 𝐶 = 𝐷(𝐴)− �̃�𝐴+𝐻. (3.4)

Theorem 3.1. Let linearized system (3.2) be a result of applying the Laplace 𝑥-transform to
system (3.1). Then systems (1.1) and (1.2) read as follows:

𝑢𝑥𝑦 = 𝜙(𝑢, 𝑢1) + 𝜆′(𝑢)�̄�1,

𝑞𝑥𝑦 =
𝜕𝜙
(︀
𝑈, 𝑞 + 𝜆(𝑈)

)︀
𝜕𝑢1

𝑞1 +
(︀
𝑞 + 𝜆(𝑈)

)︀(︃𝜕𝜙(︀𝑈, 𝑞 + 𝜆(𝑈)
)︀

𝜕𝑢
+
𝜕𝜙
(︀
𝑈, 𝑞 + 𝜆(𝑈)

)︀
𝜕𝑢1

𝜆′(𝑈)

)︃
.

Here 𝜙 = (𝜙1, . . . , 𝜙𝑛)𝑇 , 𝜆 = (𝜆1, . . . , 𝜆𝑛)𝑇 , 𝜕𝜙
𝜕𝑢

=
(︁

𝜕𝜙𝑖

𝜕𝑢𝑗

)︁
, 𝜕𝜙

𝜕𝑢1
=
(︁

𝜕𝜙𝑖

𝜕𝑢𝑗
1

)︁
, 𝜆′(𝑈) =

(︁
𝜕𝜆𝑖(𝑈)
𝜕𝑢𝑗

)︁
. At

the same time, the vector-function 𝑈(𝑞, 𝑞1) =
(︀
𝑈1(𝑞, 𝑞1), . . . , 𝑈

𝑛(𝑞, 𝑞1)
)︀𝑇

is determined by the
system

𝜙
(︀
𝑈, 𝑞 + 𝜆(𝑈)

)︀
= 𝑞1.

Remark 3.1. We have constructed the Bäcklund transform

𝑞 = 𝑢1 − 𝜆(𝑢), 𝑞1 = 𝜙(𝑢, 𝑢1),

relating the solutions to the given systems.

Proof. We apply the differentiation in the parameter 𝜏 to first relation (3.4):

𝐹 𝑖
𝑞𝑗1𝑞

𝑘𝑝
𝑘 + 𝐹 𝑖

𝑞𝑗1𝑞
𝑘
1
𝑝𝑘1 + 𝐹 𝑖

𝑞𝑗1𝑞
𝑘
1
𝑝𝑘1 = 𝑓 𝑖

𝑢𝑗
1𝑢

𝑘𝑣
𝑘 + 𝑓 𝑖

𝑢𝑗
1𝑢

𝑘
1
𝑣𝑘1 + 𝑓 𝑖

𝑢𝑗
1�̄�

𝑘
1
𝑣𝑘1 .

Hereinafter 𝑖, 𝑗 = 1, . . . , 𝑛, we make a summation over repeating indices from 1 to 𝑛. We rewrite
the latter relations by using identities (3.3)

𝐹 𝑖
𝑞𝑗1𝑞

𝑘

(︀
𝑣𝑘1 − 𝑓𝑘

�̄�𝑠
1
𝑣𝑠
)︀
+ 𝐹 𝑖

𝑞𝑗1𝑞
𝑘
1

(︁
𝑣𝑘2 −𝐷(𝑓𝑘

�̄�𝑠
1
)𝑣𝑠 − 𝑓𝑘

�̄�𝑠
1
𝑣𝑠1

)︁
+ 𝐹 𝑖

𝑞𝑗1
𝑞𝑘1

(︁
ℎ𝑘𝑠𝑣

𝑠 + 𝑓𝑘
𝑢𝑠
1

(︀
𝑣𝑠1 − 𝑓 𝑠

�̄�𝑟
1
𝑣𝑟
)︀)︁

= 𝑓 𝑖
𝑢𝑗
1𝑢

𝑘𝑣
𝑘 + 𝑓 𝑖

𝑢𝑗
1𝑢

𝑘
1
𝑣𝑘1 + 𝑓 𝑖

𝑢𝑗
1�̄�

𝑘
1
𝑣𝑘1 .

Here ℎ𝑘𝑠 are the entries of the matrix 𝐻. We collect the coefficients at the variables 𝑣𝑘2 and 𝑣𝑘1 :

𝐹 𝑖
𝑞𝑗1𝑞

𝑘
1
= 0, 𝑓 𝑖

𝑢𝑗
1𝑢

𝑘
1

= 0.

By this we specify the functions 𝑓 𝑖 and 𝐹 𝑖:

𝐹 𝑖(𝑞, 𝑞1, 𝑞1) = 𝛼𝑖
𝑘(𝑞, 𝑞)𝑞

𝑘
1 + 𝛽𝑖(𝑞, 𝑞1), (3.5)

𝑓 𝑖(𝑢, 𝑢1, �̄�1) = 𝜙𝑖(𝑢, 𝑢1) + 𝜓𝑖(𝑢, �̄�1). (3.6)

We substitute functions (3.5), (3.6) into third relation (3.4) and we obtain that

𝛽𝑖
𝑞𝑗 + (𝛼𝑖

𝑘)𝑞𝑗𝑞
𝑘
1 = 𝐷

(︀
𝜙𝑖
𝑢𝑗
1

)︀
−
(︀
(𝛼𝑖

𝑘)𝑞𝑠1𝑞
𝑘
1 + (𝛽𝑖)𝑞𝑠1

)︀
𝛼𝑠
𝑗 + ℎ𝑖𝑗. (3.7)

The entries of the matrix 𝐻 are given by the following formulas:

ℎ𝑖𝑗 = −𝜓𝑖
�̄�𝑗
1𝑢

𝑟 �̄�
𝑟
1 − 𝜓𝑖

�̄�𝑗
1�̄�

𝑟
1
�̄�𝑟2 + 𝜙𝑖

𝑢𝑟
1
𝜓𝑟
�̄�𝑗
1
+ 𝜙𝑖

𝑢𝑗 + 𝜓𝑖
𝑢𝑗 .
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Then we substitute ℎ𝑖𝑗 into (3.7), differentiate the left and right sides of the obtained relation
in the parameter and we collect the coefficients at independent variables 𝑣𝑟2:

𝜓𝑖
�̄�𝑗
1�̄�

𝑟
1
≡ 0, 𝑖, 𝑗, 𝑟 = 1, . . . , 𝑛.

Then
𝜓𝑖(𝑢, �̄�1) = 𝑔𝑖𝑘(𝑢)�̄�

𝑘
1 + 𝑟𝑖(𝑢).

The functions 𝑓 𝑖 defined by formulas (3.6) become

𝑓 𝑖(𝑢, 𝑢1, 𝑢1) = 𝜙𝑖(𝑢, 𝑢1) + 𝑔𝑖𝑘(𝑢)�̄�
𝑘
1 + 𝑟𝑖(𝑢).

Denoting 𝜙𝑖 + 𝑟𝑖 by 𝜙𝑖, we reduce the latter function to the form:

𝑓 𝑖(𝑢, 𝑢1, 𝑢1) = 𝜙𝑖(𝑢, 𝑢1) + 𝑔𝑖𝑘(𝑢)�̄�
𝑘
1. (3.8)

We then observe that if
𝑞𝑖 = 𝑢𝑖1 − 𝜆𝑖(𝑢), (3.9)

where 𝜆𝑖
𝑢𝑘(𝑢) = 𝑔𝑖𝑘(𝑢), then the first of formulas (3.3) holds true. Then, by formula (3.8), first

sought system (1.1) becomes

𝑢𝑖𝑥𝑦 = 𝑓 𝑖 = 𝜙𝑖(𝑢, 𝑢1) + 𝜆𝑖𝑢𝑘(𝑢)�̄�
𝑘
1 (3.10)

or, in the matrix form,

𝑢𝑥𝑦 = 𝜙(𝑢, 𝑢1) +
𝜕𝜆(𝑢)

𝜕𝑢
�̄�1.

We apply the operator �̄� to the left and right sides of relation (3.9):

𝑞𝑖1 = 𝜙𝑖(𝑢, 𝑢1).

In the latter formula we replace 𝑢1 according to (3.9):

𝑞𝑖1 = 𝜙𝑖
(︀
𝑢, 𝑞 + 𝜆(𝑢)

)︀
. (3.11)

We observe that the differentiation of identity (3.11) in the parameter 𝜏 leads us to the formula
coinciding with the second of formulas (3.3). And finally, applying the operator 𝐷 to the left
and right hand sides of relation (3.11) and expressing 𝑢𝑘1 by (3.9), we get:

𝑞𝑖𝑥𝑦 = 𝐹 𝑖 = 𝜙𝑖
𝑢𝑘

(︀
𝑢, 𝑞 + 𝜆(𝑢)

)︀(︀
𝑞𝑘 + 𝜆𝑘(𝑢)

)︀
+ 𝜙𝑖

𝑢𝑘
1

(︀
𝑢, 𝑞 + 𝜆(𝑢)

)︀(︀
𝑞𝑘1 + 𝜆𝑘𝑢𝑠(𝑢)

(︀
𝑞𝑠 + 𝜆𝑠(𝑢)

)︀)︀
. (3.12)

Here the vector function 𝑢(𝑞, 𝑞1) =
(︀
𝑢1(𝑞, 𝑞1), . . . , 𝑢

𝑛(𝑞, 𝑞1)
)︀𝑇

should be treated as a solution to
system (3.11). In the vector form system (3.12) can be written as

𝑞𝑥𝑦 =
𝜕𝜙
(︀
𝑈, 𝑞 + 𝜆(𝑈)

)︀
𝜕𝑢1

𝑞1 +
(︀
𝑞 + 𝜆(𝑈)

)︀(︃𝜕𝜙(︀𝑈, 𝑞 + 𝜆(𝑈)
)︀

𝜕𝑢
+
𝜕𝜙
(︀
𝑈, 𝑞 + 𝜆(𝑈)

)︀
𝜕𝑢1

𝜆′(𝑈)

)︃
.

Here 𝑈(𝑞, 𝑞1) =
(︀
𝑈1(𝑞, 𝑞1), . . . , 𝑈

𝑛(𝑞, 𝑞1)
)︀𝑇

is expressed from system 𝑞1 = 𝜙(𝑈, 𝑞 + 𝜆(𝑈)). The
proof is complete.

4. Examples of nonlinear systems and

Bäcklund transform relating their solutions

In the present section we provide examples of nonlinear systems, the linearizations of which
are related by the first order Laplace transforms, as well as the Bäcklund transform for each
such nonlinear pair.
Example 4.1. A Toda chain of series 𝐴2

𝑢𝑥𝑦 = −2𝑒𝑢 + 𝑒𝑣, 𝑣𝑥𝑦 = 𝑒𝑢 − 2𝑒𝑣

and a system

𝑞𝑥𝑦 =
2

3
(𝑝𝑦 + 2𝑞𝑦)𝑞 −

1

3
(𝑞𝑦 + 2𝑝𝑦)𝑝, 𝑝𝑥𝑦 = −1

3
(𝑝𝑦 + 2𝑞𝑦)𝑞 +

2

3
(𝑞𝑦 + 2𝑝𝑦)𝑝
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are related by the Bäcklund transform

𝑞 = 𝑢𝑥, 𝑝 = 𝑣𝑥,

𝑞𝑦 = −2𝑒𝑢 + 𝑒𝑣, 𝑝𝑦 = 𝑒𝑢 − 2𝑒𝑣.

Example 4.2. We consider a system

𝑢1𝑥𝑦 = 𝑒𝑢
1−𝑢2

, 𝑢2𝑥𝑦 = 𝑒−2𝑢1+2𝑢2

, 𝑢3𝑥𝑦 = 3𝑢3𝑒𝑢
1−𝑢2

(4.1)

and a system

𝑞1𝑥𝑦 = 𝑞1𝑦(𝑞
1 − 𝑞2), 𝑞2𝑥𝑦 = 𝑞2𝑦(−2𝑞1 + 2𝑞2), 𝑞3𝑥𝑦 = 3𝑞3𝑞1𝑦 + 𝑞3𝑦(𝑞

1 − 𝑞2).

System (4.1) possesses a soliton solution [20]. The Bäcklund transform is defined by formulas:

𝑞1 = 𝑢1𝑥, 𝑞2 = 𝑢2𝑥, 𝑞3 = 𝑢3𝑥,

𝑞1𝑦 = 𝑒𝑢
1−𝑢2

, 𝑞2𝑦 = 𝑒−2𝑢1+2𝑢2

, 𝑞3𝑦 = 3𝑢3𝑒𝑢
1−𝑢2

.

Example 4.3. It is known that the following system a soliton solution [20]:

𝑢1𝑥𝑦 = 𝑒𝑢
1−𝑢2

, 𝑢2𝑥𝑦 = 𝑒𝑢
2−𝑢1

,

𝑢3𝑥𝑦 = (3𝑢3 − 𝑢4)𝑒𝑢
1−𝑢2

, 𝑢4𝑥𝑦 = (3𝑢4 − 𝑢3)𝑒𝑢
2−𝑢1

.

This system is related with a system

𝑞1𝑥𝑦 = 𝑞1𝑦(𝑞
1 − 𝑞2), 𝑞2𝑥𝑦 = 𝑞2𝑦(𝑞

2 − 𝑞1),

𝑞3𝑥𝑦 = (3𝑞3 − 𝑞4)𝑞1𝑦 + (𝑞1 − 𝑞2)𝑞3𝑦, 𝑞4𝑥𝑦 = (3𝑞4 − 𝑞3)𝑞2𝑦 + (𝑞2 − 𝑞1)𝑞4𝑦

by the Bäcklund transform

𝑞1 = 𝑢1𝑥, 𝑞2 = 𝑢2𝑥, 𝑞3 = 𝑢3𝑥, 𝑞4 = 𝑢4𝑥,

𝑞1𝑦 = 𝑒𝑢
1−𝑢2

, 𝑞2𝑦 = 𝑒𝑢
2−𝑢1

,

𝑞3𝑦 = (3𝑢3 − 𝑢4)𝑒𝑢
1−𝑢2

, 𝑞4𝑦 = (3𝑢4 − 𝑢3)𝑒𝑢
2−𝑢1

.

Example 4.4. As an example we also provide a system

𝑢𝑖𝑥𝑦 = 𝑢𝑖𝑥

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑢
𝑗.

This system is related with

𝑞𝑖𝑥𝑦 = exp
(︀ 𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑞
𝑗
)︀

by the Bäcklund transform ⎛⎝𝑞1...
𝑞𝑛

⎞⎠ = 𝐴−1

⎛⎝ln𝑢1𝑥
...

ln𝑢𝑛𝑥

⎞⎠ ,

𝑞𝑖𝑦 = 𝑢𝑖, 𝑖 = 1, . . . , 𝑛.

Here 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1, 2, . . . , 𝑛, is a matrix.
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integrable par la méthode de Darboux // J. Math. Pure Appl. 18, 1–61 (1939).
5. A.V. Zhiber, V.V. Sokolov. Exactly integrable hyperbolic equations of Liouville type // Uspekhi

Matem. Nauk. 56:1, 63–106 (2001). [Russ. Math. Surv. 56:1, 61–101 (2001).]
6. O.V. Kaptsov. Methods of integrations of partial differential equations. Fizmatlit, Moscow (2009).

(in Russian).
7. I.M. Anderson , N. Kamran. The variational bicomplex for second order scalar partial differential

equations in the plane // Preprint. Montreal: Centre de Recherches Mathematiques, Universite de
Montreal, (1994).

8. I.M. Anderson, N. Kamran. The variational bicomplex for hiperbolic second-order scalar partial

differential equations in the plane // Duke Math. J. 87:2, 265–319 (1997).
9. A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev. Darboux integrable nonlinear hyperbolic equations //

Dokl. RAN. 343:6, 746–748 (1995). [Dokl. Math. 52:1, 128–130 (1995).]
10. S.Ya. Startsev. Laplace invariants of hyperbolic equations linearizable by a differential substitution

// Teor. Matem. Fiz. 120:2, 237–247 (1999). [Theor. Math. Phys. 120:2, 1009–1018 (1999).]
11. S.Ya. Startsev. Hyperbolic equations admitting differential substitutions // Teor. Matem. Fiz. 127:1,

63–74 (2001). [Theor. Math. Phys. 127:1, 460–470 (2001).]
12. S.Ya. Startsev. Cascade method of Laplace integration for linear hyperbolic systems of equations //

Matem. Zamet. 83:1, 107–118 (2008). [Math. Notes. 83:1, 97–106 (2008).]
13. N.Kh. Ibragimov. Transformation groups applied to mathematical physics. Nauka, Moscow (1983).

[D. Reidel Publ. Co., Dordrecht (1985).]
14. G.L. Lamb. Elements of soliton theory. John Wiley & Sons, New York (1980).
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