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ELLIPTIC DIFFERENTIAL-DIFFERENCE PROBLEMS

IN HALF-SPACES: CASE OF SUMMABLE FUNCTIONS

A.B. MURAVNIK

Abstract. We study the Dirichlet problem in the half-space for elliptic equations involving,
apart of differential operators, the shift operators acting in tangential (spatial-like) variables,
that is, in independent variables varying in entire real line. The boundary function in the
problem is supposed to be summable, which in the classical case corresponds to the situation,
in which only solutions with finite energy are possible.

We consider two principally different cases: the case, in which the studied equation
involves superpositions of differential operators and the shift operators and the case, when
it involves their sums, that is, it is an equation with nonlocal potentials.

For both types of problems we construct an integral representation of the solution to this
problem in the sense of generalized functions and we prove that its infinitely smoothness
in an open half-space (i.e., outside the boundary hyperplane) and tends uniformly to zero
together with all its derivatives as a time-like variable tends to infinity; this time-like variable
is a single independent variable varying on the positive half-axis. The rate of this decay is
power-law; the degree is equal to the sum of the dimension of the space-like independent
variable and the order of the derivative of the solution.

The most general current results are presented: shifts of independent variables are al-
lowed in arbitrary (tangential) directions, and if there are several shifts, no conditions of
commensurability are imposed on their values.

Thus, just as in the classical case, problems with summable boundary functions fun-
damentally differ from the previously studied problems with essentially bounded boundary
functions: the latter, as previously established, admit solutions having no limit when a time-
like variable tends to infinity, and the presence or absence of such a limit is determined by
the Repnikov-Eidelman stabilization condition.

Keywords: elliptic differential-difference equations, problems in half-space, summable
boundary functions.
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1. Introduction

Traditionally, boundary value problems in the half-space are treated as natural for non-

stationary equations: the only independent variable varying over the half-line is naturally
treated as a time, while all other independent variables are considered as spatial. The data
imposed on the boundary of the domain, that is, on the hyperplane orthogonal to the mentioned
half-line, are treated respectively as initial data. However, for elliptic equations, well-posed
problems are well-known in the half-space. Moreover, in many cases the spatial variable chosen
in such way (that is, the equation remains the same and only its isotropy in the domain is

A.B. Muravnik, Elliptic differential-difference problems in half-spaces: case of summable

functions.

© Muravnik A.B. 2023.

The research is supported by the Ministry of Education and Science of Russian Federation (project no.
FSSF-2023-0016).

Submitted March 27, 2023.

97

https://doi.org/10.13108/2023-15-3-97


98 A.B. MURAVNIK

violated) gain time-like properties, in particular, the resolving operator possesses a semi-group
property and there is a stabilization of solution as the aforementioned time-like tends to infinity.
For a classical case of differential elliptic equations this phenomenon is known for at least six

decades, see, for instance, [1], [2]. Rather recently it was found to be a feature of differential-
difference equations, see [3], that is, for the case, when on an unknown function, apart of the
differential operators, the shift operators act as well.
An interest to such, and wider, to functional-difference partial differential equations, appear

nowadays in entire world starting from pioneering work [4]. This is due to numerous applications
not covered by classical models of mathematical physics as well as due to pure theoretical
reasons: a nonlocal nature of such equations produces principally new phenomena not arising
in the classical case of differential equations. Various methods of studying, which proved to
be effective in the theory of differential equations, turn out to be non-applicable; for instance,
this concerns all methods based on the maximum principle, since in contrast to differential
equations, the studied equation relates the values of the sought function at different points.
Hence, one needs to develop qualitatively new methods, see [5]–[8] and the references therein.
Both in the differential and differential-difference case, the problems in the half-space, the

problems in the half-space, both of elliptic and parabolic types, divide into two classes: problems
with bounded boundary functions and problems summable boundary functions. This natural
difference in the formulation of problem is principal: it generates solutions with principally
different sets of properties. In particular, constant solutions are possible only for the problem
of the first of these classes. On the other hand, only solutions with finite energy are possible
for problems of second class. In other words, the necessary and sufficient Repnikov-Eidelman
stabilization condition, according to which the solution can have a limit, which is, generally
speaking, non-zero, and it also can have no such solution, holds only for the problems in the
first class. The solutions of the problems in the second class always have a zero limit, and the
study is mostly concentrated on the decay rate of the solution.
At present, the study of problems of the second class is a little behind. The aim of the

present work is to systematically expose the results obtained by present days for the mentioned
problems, that is, for problems with summable boundary data. The paper is organized as
follows. The problems for equations containing the sums of differential operators and shift
operators and for the equations containing superpositions are studied separately. Such approach
is motivated by a nonlocal nature of the mentioned operators established in the previous studies
of differential-difference equations of all types. In each of these two sections we first solve in
details a model problem and then we expose the results for its maximal at present generalization.

2. Equations with superpositions of operators

In the half-space
{︀
(𝑥, 𝑦)|𝑥 ∈ R𝑛, 𝑦 > 0

}︀
we consider the Dirichlet problem for the following

model equation

𝑢𝑥1𝑥1(𝑥, 𝑦) + 𝑎𝑢𝑥1𝑥1(𝑥1 + ℎ, 𝑥2, . . . , 𝑥𝑛, 𝑦) +
𝑛∑︁

𝑗=2

𝑢𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) = 0, (2.1)

where |𝑎| < 1 and ℎ is an arbitrary real parameter.
Under the mentioned restriction, the following functions are well-defined in R𝑛:

𝜙(𝜉) := 𝜙(𝜉1, . . . , 𝜉𝑛) :=
√︁

|𝜉|4 + 2𝑎|𝜉|2𝜉21 cosℎ𝜉1 + 𝑎2𝜉41 , (2.2)

𝐺1(𝜉) :=

√︂
𝜙(𝜉) + |𝜉|2 + 𝑎𝜉21 cosℎ𝜉1

2
, (2.3)

𝐺2(𝜉) :=

√︂
𝜙(𝜉)− |𝜉|2 − 𝑎𝜉21 cosℎ𝜉1

2
. (2.4)
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The following statement holds true.

Lemma 2.1. If |𝑎| < 1, then the function

ℰ(𝑥, 𝑦) :=
∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 (2.5)

is well-defined in the half-space R𝑛× (0,+∞) and in the classical sense it solves equation (2.1).

Proof. In order to prove the first statement of the lemma, the radical expression in (2.3) is
estimated from below by (1− |𝑎|)|𝜉|2, while to prove its second statement functions (2.3) and
(2.4) are represented as 𝜌(𝜉) cos 𝜃(𝜉) and 𝜌(𝜉) sin 𝜃(𝜉), respectively, where

𝜌(𝜉) =
[︁(︀
|𝜉|2 + 𝑎𝜉21 cosℎ𝜉1

)︀2
+ 𝑎2𝜉41 sin

2 ℎ𝜉1

]︁ 1
4
, 𝜃(𝜉) =

1

2
arctan

𝑎𝜉21 sinℎ𝜉1
|𝜉|2 + 𝑎𝜉21 cosℎ𝜉1

. (2.6)

Taking into consideration the values of arc tangent, we conclude that |𝜃(𝜉)| ⩽ 𝜋

4
and hence,

cos 𝜃(𝜉) > 0, and cos 2𝜃(𝜉) ⩾ 0, this implies that

cos 𝜃(𝜉) =

⎯⎸⎸⎷1 + cos
(︁
arctan

𝑎𝜉21 sinℎ𝜉1
|𝜉|2+𝑎𝜉21 cosℎ𝜉1

)︁
2

.

Then, applying the formula, arctan𝑥 = arccos
1√

1 + 𝑥2
, we obtain that

cos 𝜃(𝜉) =
1√
2

⎡⎢⎢⎢⎢⎣1 + 1√︃
1 +

𝑎2𝜉41 sin
2 ℎ𝜉1

(|𝜉|2 + 𝑎𝜉21 cosℎ𝜉1)
2

⎤⎥⎥⎥⎥⎦
1
2

,

and sin 𝜃(𝜉) can be calculated similarly.
Now we can substitute function (2.5) into equation (2.1):

ℰ𝑥𝑗𝑥𝑗
(𝑥, 𝑦) =−

∫︁
R𝑛

𝜉2𝑗 𝑒
−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉, 𝑗 = 1, 𝑛,

ℰ𝑦𝑦(𝑥, 𝑦) =
∫︁
R𝑛

[︀
𝐺2

1(𝜉)−𝐺2
2(𝜉)

]︀
𝑒−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

− 2

∫︁
R𝑛

𝐺1(𝜉)𝐺2(𝜉)𝑒
−𝑦𝐺1(𝜉) sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉.

(2.7)

In view of the non-negativity of cos 2𝜃(𝜉), by the identity

2𝐺1(𝜉)𝐺2(𝜉) = 𝜌2(𝜉) sin 2𝜃(𝜉)

we get that

2𝐺1(𝜉)𝐺2(𝜉) =
𝜌2(𝜉) tan 2𝜃(𝜉)√︀
1 + tan2 2𝜃(𝜉)

=
𝑎𝜌2(𝜉)𝜉21 sinℎ𝜉1√︁

(|𝜉|2 + 𝑎𝜉21 cosℎ𝜉1)
2
+ 𝜉41 (𝑎 sinℎ𝜉1)

2
= 𝑎𝜉21 sinℎ𝜉1,
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and

𝐺2
1(𝜉)−𝐺2

2(𝜉) =𝜌2(𝜉) cos 2𝜃(𝜉) = 𝜌2(𝜉)

√︃
1− tan2 2𝜃(𝜉)

1 + tan2 2𝜃(𝜉)

=𝜌2(𝜉)
1√︀

1 + tan2 2𝜃(𝜉)
= |𝜉|2 + 𝑎𝜉21 cosℎ𝜉1.

This implies that

𝑛∑︁
𝑗=1

ℰ𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + ℰ𝑦𝑦(𝑥, 𝑦) + 𝑎ℰ𝑥1𝑥1(𝑥1 + ℎ𝑘, 𝑥2, . . . , 𝑥𝑛, 𝑦)

=

∫︁
R𝑛

[︃
−

𝑛∑︁
𝑗=1

𝜉2𝑗 + |𝜉|2 + 𝑎𝜉21 cosℎ𝜉1

]︃
𝑒−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

− 𝑎

∫︁
R𝑛

𝜉21 sinℎ𝜉1𝑒
−𝑦𝐺1(𝜉) sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 − 𝑎

∫︁
R𝑛

𝜉21𝑒
−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉) + ℎ𝜉1] 𝑑𝜉

= 𝑎

∫︁
R𝑛

𝜉21 cosℎ𝜉1𝑒
−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 − 𝑎

∫︁
R𝑛

𝜉21 sinℎ𝜉1𝑒
−𝑦𝐺1(𝜉) sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

− 𝑎

∫︁
R𝑛

𝜉21 cosℎ𝜉1𝑒
−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 + 𝑎

∫︁
R𝑛

𝜉21 sinℎ𝜉1𝑒
−𝑦𝐺1(𝜉) sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 = 0.

The proof is complete.

Now let 𝑢0 ∈ 𝐿1(R
𝑛). Then the following statement holds.

Theorem 2.1. If 𝑢0 ∈ 𝐿1(R
𝑛) and |𝑎| < 1, then the function

𝑢(𝑥, 𝑦) =

∫︁
R𝑛

ℰ(𝑥− 𝜉, 𝑦)𝑢0(𝜉)𝑑𝜉 (2.8)

is infinitely differentiable in R𝑛 × (0,+∞) and satisfies equation (2.1) in this half-space.

Proof. We take into consideration Lemma 2.1 and we majorate the function ℰ(𝑥, 𝑦) and its
derivatives of arbitrary order:∫︁
R𝑛

|𝜉|𝑚𝑒−𝑦|𝜉|
√

1−|𝑎|𝑑𝜉 =
1

(1− |𝑎|)𝑚+𝑛
2 𝑦𝑚+𝑛

∫︁
R𝑛

|𝜂|𝑚𝑒−|𝜂|𝑑𝜂 =
𝑐𝑜𝑛𝑠𝑡

𝑦𝑚+𝑛

∞∫︁
0

𝜌𝑚+𝑛−1𝑒−𝜌𝑑𝜌 =
𝑐𝑜𝑛𝑠𝑡

𝑦𝑚+𝑛
.

The proof is complete.

The found majorant gives also an asymptotic estimate for solution and all its derivatives.

Theorem 2.2. If 𝑢0 ∈ 𝐿1(R
𝑛), then solution (2.8) and each its derivative are infinitely

differentiable in R𝑛 × (0,+∞) and each of these functions tend to zero as 𝑦 → +∞ uniformly

in 𝑥 ∈ R𝑛.

A maximal generalization of equation (2.1) achieved by present days, to the best of author’s
knowledge, is as follows, see [9]:

𝑛∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) +

𝑛∑︁
𝑗=1

𝑎𝑗𝑢𝑥𝑗𝑥𝑗
(𝑥+ ℎ𝑗, 𝑦) = 0, (2.9)
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where ℎ𝑗 := (ℎ𝑗1, . . . , ℎ𝑗𝑛), 𝑗 = 1, 𝑛, are arbitrary vectors in R𝑛. In this case, we impose the
following condition on the coefficients of the equation

𝑎0 := max
𝑗=1,𝑛

|𝑎𝑗| < 1, (2.10)

while the functions 𝐺1 and 𝐺2 are defined as

𝐺1(𝜉) = 𝜌(𝜉) cos 𝜃(𝜉), 𝐺2(𝜉) = 𝜌(𝜉) sin 𝜃(𝜉), (2.11)

where

𝜌(𝜉) =

⎡⎣(︃|𝜉|2 + 𝑛∑︁
𝑗=1

𝑎𝑗𝜉
2
𝑗 cosℎ𝑗 · 𝜉

)︃2

+

(︃
𝑛∑︁

𝑗=1

𝑎𝑗𝜉
2
𝑗 sinℎ𝑗 · 𝜉

)︃2
⎤⎦ 1

4

,

𝜃(𝜉) =
1

2
arctan

𝑛∑︀
𝑗=1

𝑎𝑗𝜉
2
𝑗 sinℎ𝑗 · 𝜉

|𝜉|2 +
𝑛∑︀

𝑗=1

𝑎𝑗𝜉2𝑗 cosℎ𝑗 · 𝜉
.

(2.12)

In this case the statements of Theorems 2.1-2.2 hold also for equation (2.9).

3. Equations with sums of operators

In the half-plane
{︁
(𝑥, 𝑦)

⃒⃒⃒
𝑥 ∈ R𝑛, 𝑦 > 0

}︁
we consider a model equation

𝑢𝑥1𝑥1(𝑥, 𝑦)− 𝑎𝑢(𝑥1 + ℎ, 𝑥2, . . . , 𝑥𝑛, 𝑦) +
𝑛∑︁

𝑗=2

𝑢𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) = 0 (3.1)

under the condition that

0 < 𝑎 ⩽
2

ℎ2
, (3.2)

where ℎ is an arbitrary real parameter.
In this case we introduce

𝜌(𝜉) =
(︀
|𝜉|4 + 2𝑎|𝜉|2 cosℎ𝜉1 + 𝑎2

)︀ 1
4, 𝜃(𝜉) =

1

2
arctan

𝑎 sinℎ𝜉1
|𝜉|2 + 𝑎 cosℎ𝜉1

, (3.3)

while the functions 𝐺{ 1
2}(𝜉) and, respectively, ℰ(𝑥, 𝑦) are still defined by formulas (2.11) and

(2.5), respectively.
In order to estimate the function 𝐺1(𝜉) from below, we take into consideration that the values

of the arc tangent are located in the interval
(︁
−𝜋

2
,
𝜋

2

)︁
. Hence, |𝜃(𝜉)| < 𝜋

4
, that is, cos 𝜃(𝜉) > 0

and cos 2𝜃(𝜉) > 0. Therefore, cos 𝜃(𝜉) can be represented in the form

√︂
1 + cos 2𝜃(𝜉)

2
, while

cos 2𝜃(𝜉) is represented as
1√︀

1 + tan2 2𝜃(𝜉)
. Since

2𝜃(𝜉) = arctan
𝑎 sinℎ𝜉1

|𝜉|2 + 𝑎 cosℎ𝜉1
,

the identity

tan 2𝜃(𝜉) =
𝑎 sinℎ𝜉1

|𝜉|2 + 𝑎 cosℎ𝜉1
(3.4)

holds true. The positivity of the latter denominator is ensured by condition (3.2). Indeed,
it is bounded from below by a function of one variable 𝑓(𝜉1) := 𝜉21 + 𝑎 cosℎ𝜉1. Its derivative

𝑓 ′(𝜉1) is equal to 2𝜉1 − 𝑎ℎ sinℎ𝜉1 = 𝜉1

(︂
2− 𝑎ℎ2 sinℎ𝜉1

ℎ𝜉1

)︂
, and hence, it is non-negative on
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[0,+∞). Therefore, 𝑓(𝜉1) is a non-decreasing on the positive semi-axis function. This is why it
is bounded from below by the quantity 𝑓(0) = 𝑎 > 0 on this semi-axis. Finally, since 𝑓(𝜉1) is
an even function, the latter estimate remains true on the entire axis.
By this positivity we conclude that

cos 2𝜃(𝜉) =

(︂
1 +

𝑎2 sin2 ℎ𝜉1
[|𝜉|2 + 𝑎 cosℎ𝜉1]2

)︂− 1
2

=

√︃
[|𝜉|2 + 𝑎 cosℎ𝜉1]

2

[|𝜉|2 + 𝑎 cosℎ𝜉1]
2 + 𝑎2 sin2 ℎ𝜉1

=
|𝜉|2 + 𝑎 cosℎ𝜉1√︀

|𝜉|4 + 2𝑎|𝜉|2 cosℎ𝜉1 + 𝑎2
=

|𝜉|2 + 𝑎 cosℎ𝜉1
𝜌2(𝜉)

.

(3.5)

Then cos 𝜃(𝜉) =
1√
2

[︂
1 +

|𝜉|2 + 𝑎 cosℎ𝜉1
𝜌2(𝜉)

]︂ 1
2

and, therefore,

𝐺1(𝜉) = 𝜌(𝜉)
1√
2

[︂
1 +

|𝜉|2 + 𝑎 cosℎ𝜉1
𝜌2(𝜉)

]︂ 1
2

=

√︂
𝜌2(𝜉) + |𝜉|2 + 𝑎 cosℎ𝜉1

2
. (3.6)

Since

𝜌4(𝜉) = |𝜉|4 + 2𝑎|𝜉|2 cosℎ𝜉1 + 𝑎2 ⩾ |𝜉|4 − 2𝑎|𝜉|2 + 𝑎2 = (|𝜉|2 − 𝑎)2,

the inequality 𝜌2(𝜉) ⩾ |𝜉|2 − 𝑎 holds under the condition that |𝜉| ⩾
√
𝑎. Thus, as |𝜉| ⩾

√
𝑎, the

radical expression in (3.6) is bounded from below by the function
|𝜉|2 − 𝑎+ |𝜉|2 − 𝑎

2
= |𝜉|2−𝑎.

Using the found estimate for the radical expression in (3.6), we conclude that for each positive

𝑦 the absolute value of the integrand in (2.5) is majorated by an integrable function 𝑒−𝑦
√

|𝜉|2−𝑎

in the exterior of the ball of radius
√
𝑎 centered at the origin; inside this ball it is majorized by

the unity. Thus, the function ℰ(𝑥, 𝑦) is well-defined in R𝑛 × (0,+∞). Differentiating formally
the function ℰ(𝑥, 𝑦) arbitrary many times in each variable under the integral, we obtain just
additional integrand factors of at most polynomial growth in 𝜉, which have no singularities. The
absolute convergence of the obtained integrals is justified in the same way as in the case of the

function ℰ(𝑥, 𝑦), just the majorants are to be replaced by 𝑎
𝑚
2 and |𝜉|𝑚2 𝑒−𝑦

√
|𝜉|2−𝑎, respectively,

here𝑚 is the order of the derivative. Therefore, the aforementioned formal differentiation under
the integral is possible and all derivatives of the function ℰ(𝑥, 𝑦) are also well-defined in the
half-space R𝑛 × (0,+∞).
In view of identities (3.4)-(3.5), we obtain the relations

𝐺2
1(𝜉)−𝐺2

2(𝜉) = 𝜌2(𝜉)
[︀
cos2 𝜃(𝜉)− sin2 𝜃(𝜉)

]︀
= 𝜌2(𝜉) cos 2𝜃(𝜉) = |𝜉|2 + 𝑎 cosℎ𝜉1

and

2𝐺1(𝜉)𝐺2(𝜉) = 2𝜌2(𝜉) cos2 𝜃(𝜉) sin2 𝜃(𝜉) = 𝜌2(𝜉) sin 2𝜃(𝜉)𝜌2(𝜉) tan 2𝜃(𝜉) cos 2𝜃(𝜉) = 𝑎 sinℎ𝜉1.
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Applying now identities (2.7), we find the Laplacian of function (2.5):

𝑛∑︁
𝑗=1

ℰ𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + ℰ𝑦𝑦(𝑥, 𝑦) =

∫︁
R𝑛

(︃
−

𝑛∑︁
𝑗=1

𝜉2𝑗 + |𝜉|2 + 𝑎 cosℎ𝜉1

)︃
𝑒−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

− 𝑎

∫︁
R𝑛

sinℎ𝜉1𝑒
−𝑦𝐺1(𝜉) sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

=𝑎

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉)
(︁
cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] cosℎ𝜉1 − sin [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] sinℎ𝜉1

)︁
𝑑𝜉

=𝑎

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉) cos [(𝑥 · 𝜉 + ℎ𝜉1)− 𝑦𝐺2(𝜉)] 𝑑𝜉

=𝑎

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉) cos [(𝑥1 + ℎ, 𝑥2, . . . , 𝑥𝑛) · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉 = 𝑎ℰ(𝑥1 + ℎ, 𝑥′, 𝑦),

where 𝑥′ = (𝑥2, . . . , 𝑥𝑛) ∈ R𝑛−1, and hence, under condition (3.2) the function (2.5) satisfies
equation (3.1).
Now we employ the above found majorants of the integrand in (2.5) and of its derivatives in

order to estimate function (2.5) and its derivatives:⃒⃒⃒⃒ ∫︁
R𝑛

|𝜉|𝑚𝑒−𝑦𝐺1(𝜉) cos [𝑥 · 𝜉 − 𝑦𝐺2(𝜉)] 𝑑𝜉

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁

𝐵(2
√
𝑎)

|𝜉|𝑚𝑒−𝑦𝐺1(𝜉)𝑑𝜉 +

∫︁
R𝑛∖𝐵(2

√
𝑎)

|𝜉|𝑚𝑒−𝑦𝐺1(𝜉) 𝑑𝜉

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒ ∫︁
𝐵(2

√
𝑎)

|𝜉|𝑚 𝑑𝜉

⃒⃒⃒⃒
+

⃒⃒⃒⃒ ∫︁
R𝑛∖𝐵(2

√
𝑎)

|𝜉|𝑚𝑒−𝑦
√

|𝜉|2−𝑎 𝑑𝜉

⃒⃒⃒⃒

=:𝐶(𝑎) + 𝐶(𝑎, 𝑦),

where 𝐵(𝑟) is a ball of radius 𝑟 centered at the origin. Thus, under condition (3.2), the
statements of Theorems (2.1)–(2.2), in which 𝜌(𝜉) and 𝜃(𝜉) are given by formulas (3.3) hold
also for equation (3.1).
To the best of the author’s knowledge, a maximal generalization of equation (3.1) achieved

by present days is as follows [10]:

𝑛∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
(𝑥, 𝑦)− 𝑎𝑢(𝑥+ ℎ, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) = 0, (3.7)

where ℎ is an arbitrary vector in R𝑛 obeying the inequality

0 < 𝑎|ℎ|2 ⩽ 𝜋2

4
. (3.8)

For such equation the functions 𝐺1 and 𝐺2 and, respectively, the kernel ℰ are still defined by
relations (2.11), while the functions 𝜌(𝜉) and 𝜃(𝜉) are introduced as

𝜌(𝜉) =
(︀
|𝜉|4 + 2𝑎|𝜉|2 cosℎ · 𝜉 + 𝑎2

)︀ 1
4, 𝜃(𝜉) =

1

2
arctan

𝑎 sinℎ · 𝜉
|𝜉|2 + 𝑎 cosℎ · 𝜉

. (3.9)

If condition (3.8) is satisfied, then the statements of Theorems 2.1–2.2 are also true for equation
(3.7).
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4. Construction of Poisson kernel

We are going to show how to find the Poisson kernel ℰ such that the constructed in this work
solutions are convolutions with this kernel. As an example, we shall do this for model equation
(2.1).
Together with this equation we consider the boundary condition

𝑢⃒⃒
𝑦=0

= 𝑢0(𝑥), 𝑥 ∈ R𝑛. (4.1)

We formally apply the Fourier transform in the 𝑛-dimensional variable 𝑥 to problem (2.1), (4.1)
and we obtain the following initial problem for an ordinary differential equation:

𝑑2̂︀𝑢
𝑑𝑦2

=
(︀
|𝜉|2 + 𝑎𝜉21𝑒

−𝑖ℎ𝜉1
)︀ ̂︀𝑢, 𝑦 ∈ (0,+∞), (4.2)

̂︀𝑢(0; 𝜉) = ̂︀𝑢0(𝜉). (4.3)

This is not a Cauchy problem: the equation is of second order but there is just a single initial
condition.
The characteristic equation of the obtained linear second order ordinary differential equation

depending on an 𝑛-dimensional parameter 𝜉 possesses two roots:

±
√︁

|𝜉|2 + 𝑎𝜉21𝑒
−𝑖ℎ𝜉1 = ±

√︁
|𝜉|2 + 𝑎𝜉21 cosℎ𝜉1 − 𝑎𝑖𝜉21 sinℎ𝜉1 = ±𝜌(cos 𝜃 + 𝑖 sin 𝜃),

where 𝜌(𝜉) and 𝜃(𝜉) are determined by relations (2.6).
We solve problem (4.2)-(4.3) choosing appropriately a “free” arbitrary constant, which arises

since the number of initial condition is less than the order of the equation. Then we formally
apply the inverse Fourier transform to the obtained solution and this gives a convolution of the
boundary function with the function

𝑒−𝑦𝜌(𝜉) cos 𝜃(𝜉) cos[𝑥 · 𝜉 − 𝑦𝜌(𝜉) sin 𝜃(𝜉)],

that is, exactly, with the integrand in integral (2.5).

5. Fulfillment of boundary condition

In order to show that function (2.8) has the boundary value 𝑢0(𝑥) on the hyperplane {𝑦 = 0}
in the sense of generalized function, we employ the same scheme as in [11, Rem. 2]. Namely,
the boundary condition is treated in the Gelfand-Shilov sense, see [12, Sect. 10], a solution is
sought in the class of generalized functions of an 𝑛-dimensional variable 𝑥 depending on the real
parameter 𝑦, twice differentiable in this parameter on the positive semi-axis and continuous in
it at the origin, see, for instance, [13, Sect. 9, Item 5]. Thus, outside the boundary hyperplane
the constructed solution is smooth (classical) and at the same time boundary condition (4.1)
is treated as a limiting relation 𝑢(·, 𝑦) → 𝑢0 in the topology of generalized functions of the
variable 𝑥 as a real parameter 𝑦 tends to zero from the right.
Thus, the following statements hold.

Theorem 5.1. If 𝑢0 ∈ 𝐿1(R
𝑛) and Condition (2.10) is satisfied, then function (2.8), where

the functions 𝐺1(𝜉) and 𝐺2(𝜉) are defined by identities (2.11), while the functions 𝜌(𝜉) and

𝜃(𝜉) are defined by identities (2.12), satisfies problem (2.9), (4.1) in the sense of generalized

functions in the Gelfand-Shilov sense, is infinitely differentiable in the half-space R𝑛× (0,+∞)
and together with each its derivative it tends to zero as 𝑦 → +∞ uniformly in 𝑥 ∈ R𝑛.

Theorem 5.2. If 𝑢0 ∈ 𝐿1(R
𝑛) and Condition (3.8), is satisfied, then function (2.8), where

the functions 𝐺1(𝜉) and 𝐺2(𝜉) are defined by identities (2.11), while the functions 𝜌(𝜉) and

𝜃(𝜉) are defined by identities (3.9), satisfies problem (3.7),(4.1) in the sense of generalized

functions in the Gelfand-Shilov sense, is infinitely differentiable in the half-space R𝑛× (0,+∞)
and together with each its derivative it tends to zero as 𝑦 → +∞ uniformly in 𝑥 ∈ R𝑛.
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