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POINT SPECTRUM AND HYPERCYCLICITY PROBLEM

FOR A CLASS OF TRUNCATED TOEPLITZ OPERATORS

A.D. BARANOV, A.A. LISHANSKII

Abstract. Truncated Toeplitz operators are restrictions of usual Toeplitz operators onto
model subspaces 𝐾𝜃 = 𝐻2 ⊖ 𝜃𝐻2 of the Hardy space 𝐻2, where 𝜃 is an inner function. In
this note we study the structure of eigenvectors for a class of truncated Toeplitz operators
and discuss an open problem whether a truncated Toeplitz operator on a model space
can be hypercyclic, that is, whether there exists a vector with a dense orbit. For the
classical Toeplitz operators on 𝐻2 with antianalytic symbols a hypercyclicity criterion was
given by G. Godefroy and J. Shapiro, while for Toeplitz operators with polynomial or
rational antianalytic part some partial answers were obtained by the authors jointly with
E. Abakumov and S. Charpentier.

We find point spectrum and eigenfunctions for a class of truncated Toeplitz operators
with polynomial analytic and antianalytic parts. It is shown that the eigenvectors are
linear combinations of reproducing kernels at some points such that the values of the inner
function 𝜃 at these points have a polynomial dependence. Next we show that, for a class of
model spaces, truncated Toeplitz operators with symbols of the form Φ(𝑧) = 𝑎𝑧 + 𝑏 + 𝑐𝑧,
where |𝑎| ≠ |𝑐|, have complete sets of eigenvectors and, in particular, are not hypercyclic.
Our main tool here is the factorization of functions in an associated Hardy space in an
annulus. We also formulate several open problems.
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1. Introduction

A continuous linear operator 𝑇 on a separable Banach (or Frechét) space 𝑋 is said to be
hypercyclic if there exists 𝑥 ∈ 𝑋 such that the set {𝑇 𝑛𝑥 : 𝑛 ∈ N0} is dense in 𝑋 (here
N0 = {0, 1, 2, . . . }).

The first example of a hypercyclic operator in a Banach space setting was given by S. Rolewicz
[15] who showed that the operator 𝛼𝐵, where 𝐵 is the backward shift and 𝛼 is an arbitrary
complex number with |𝛼| > 1, is hypercyclic on ℓ𝑝(N), 1 ⩽ 𝑝 < ∞. It was shown that
many important classes of operators have this property. Among basic examples of hypercyclic
operators were Toeplitz operators with antianalytic symbols.
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1.1. Hypercyclic Toeplitz operators. As usual, D and T denote the unit disk and the
unit circle, respectively, and 𝐻2 stands for the Hardy space in D. Recall that for a function
𝜓 ∈ 𝐿∞(T) the Toeplitz operator 𝑇𝜓 : 𝐻2 → 𝐻2 with the symbol 𝜓 is defined as 𝑇𝜓𝑓 = 𝑃+(𝜓𝑓),
where 𝑃+ is the orthogonal projection from 𝐿2(T) onto 𝐻2. The following theorem, due to G.
Godefroy and J. Shapiro [10], describes all hypercyclic Toeplitz operators with antianalytic
symbols (i.e., 𝑇𝜙 where 𝜙 ∈ 𝐻∞).

Theorem. (G. Godefroy, J. Shapiro, 1991) The Toeplitz operator 𝑇𝜙, where 𝜙 ∈ 𝐻∞, 𝜙 ̸=
𝑐𝑜𝑛𝑠𝑡, is hypercyclic if and only if 𝜙(D) ∩ T ̸= ∅.

It is well known that every Cauchy kernel 𝑘𝜆(𝑧) = (1− �̄�𝑧)−1, |𝜆| < 1, is an eigenvector for

an antianalytic Toeplitz operator 𝑇𝜙 corresponding to the eigenvalue 𝜙(𝜆). Then sufficiency of
the condition 𝜙(D) ∩ T ̸= ∅ for hypercyclicity follows immediately from the Godefroy–Shapiro
Criterion (see [10], [4, Corollary 1.10] or [11, Theorem 3.1]).

Analytic Toeplitz operators 𝑇𝜙, 𝜙 ∈ 𝐻∞, are simply multiplication operators. It is clear that
they cannot be hypercyclic.

In [18] S. Shkarin posed the problem to describe hypercyclic Toeplitz operators in terms of
their symbols. This seems to be a difficult and, at the moment, widely open problem. Shkarin
gave a necessary and sufficient condition for hypercyclicity in the case when the symbol is of
the form Φ(𝑧) = 𝑎𝑧 + 𝑏 + 𝑐𝑧 (i.e., with tridiagonal matrix): 𝑇Φ is hypercyclic if and only if
|𝑎| > |𝑐| and

(C ∖ Φ(D)) ∩ D ̸= ∅, (C ∖ Φ(D)) ∩ ̂︀D ̸= ∅. (1.1)

Here ̂︀D = C ∖ D and Φ is extended to C as Φ(𝑧) = 𝑎
𝑧
+ 𝑏+ 𝑐𝑧.

Hypercyclicity of Toeplitz operators with the symbols of the form

Φ(𝑧) = 𝑅(𝑧) + 𝜙(𝑧),

where 𝑅 is a polynomial or a rational function with poles outside D and 𝜙 ∈ 𝐻∞, was studied
in [1, 3]. It turned out that the valence of the meromorphic continuation of the symbol Φ, that
is, Φ(𝑧) = 𝑅

(︀
1
𝑧

)︀
+ 𝜙(𝑧), is crucial for hypercyclicity. Also it was shown that the hypercyclicity

problem is closely related to cyclicity of certain families for some associated analytic Toeplitz
operator. A complete description of hypercyclic Toeplitz operators in this class is not known,
however, there is a number of conditions sufficient for hypercyclicity. For the operators with
symbols of the form Φ(𝑧) = 𝑎𝑧 + 𝜙(𝑧) known necessary and sufficient conditions almost meet.

Theorem. ([3]) Let Φ(𝑧) = 𝑎
𝑧
+ 𝜙(𝑧), where 𝜙 ∈ 𝐻∞, satisfy (1.1).

1. If 𝑇Φ is hypercyclic, then Φ is univalent in D;
2. If 𝜙 ∈ 𝐴(D) (disk-algebra) and Φ is injective in D, then 𝑇Φ is hypercyclic.

Thus, the difference is only in the injectivity on the boundary. Also it should be noted that

the second part of (1.1) (i.e. (C ∖ Φ(D)) ∩ ̂︀D ̸= ∅) is necessary for hypercyclicity of 𝑇Φ, while
for the first part only a weaker variant (C ∖ Φ(D)) ∩ T ̸= ∅ is known to be necessary.

1.2. Truncated Toeplitz operators. Let 𝑆*𝑓 = 𝑇𝑧𝑓 = 𝑓(𝑧)−𝑓(0)
𝑧

be the backward shift
in 𝐻2. By the classical theorem of Arne Beurling, any 𝑆*-invariant subspace is of the form
𝐾𝜃 = 𝐻2 ⊖ 𝜃𝐻2 for some inner function 𝜃 in D. Subspaces 𝐾𝜃 are often referred to as model
spaces due to their role in Nagy–Foiaş model for contractions.
Truncated Toeplitz operators (TTO) are restrictions of usual Toeplitz operators onto 𝐾𝜃.

Namely, given a space 𝐾𝜃 and 𝜓 ∈ 𝐿∞(T), define the operator 𝐴𝜓 : 𝐾𝜃 → 𝐾𝜃 by the formula

𝐴𝜓𝑓 = 𝑃𝜃(𝜓𝑓), 𝑓 ∈ 𝐾𝜃,
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where 𝑃𝜃 stands for the orthogonal projection from 𝐿2(T) onto 𝐾𝜃. Formally, 𝐴𝜓 depends also
on 𝜃, but we always assume 𝜃 to be fixed and do not include it into notations.

Even if some special cases of TTO-s were well studied for a long time (e.g., 𝐴𝑧 is a model
operator of Nagy–Foiaş theory and its functions 𝜙(𝐴𝑧) = 𝐴𝜙, 𝜙 ∈ 𝐻∞), a systematic study
of TTO-s was initiated by a seminal paper by D. Sarason [17]. Note that one can consider
operators with unbounded symbols (assuming there exists a bounded extension of an operator
defined on the dense subset of bounded functions in 𝐾𝜃) and it may happen that a bounded
TTO has no bounded symbol at all (see, e.g., [2]. In what follows we consider the case of
bounded symbols only.

During the last decade the theory of truncated Toeplitz operators became an active field
of research (see the surveys [7, 9] and the references therein). However, it seems that the
spectral properties of TTO-s are far from being well understood. For instance, to the best of
our knowledge, it is not known whether the point spectrum of a TTO can have a nonempty
interior. For some classes of TTO-s Fredholmness and invertibility criteria were found by
M.C. Câmara and J.R. Partington [6]. In particular, they gave a description of the point
spectrum of a TTO with a rational symbol in case of the Hardy space in the half-plane.

A problem which apparently did not attract much attention yet is to understand the dynamics
of TTO-s and in particular their hypercyclicity. In fact, it is not known whether hypercyclic
TTO-s do exist.

Problem. Do there exist hypercyclic truncated Toeplitz operators?

Note that, since 𝐾𝜃 is invariant with respect to antianalytic Toeplitz operators, one has
𝐴𝜙 = 𝑇𝜙 for 𝜙 ∈ 𝐻∞. Also, recall that the existence of an eigenvector for the adjoint operator
is a trivial obstacle for hypercyclicity. Combining this, one comes to the following simple
observation.

Proposition 1.1. If an inner function 𝜃 has a zero in D, then for any 𝜙 ∈ 𝐻∞ the truncated
Toeplitz operators 𝐴𝜙 and 𝐴𝜙 are not hypercyclic.

Proof. If 𝜃(𝜆) = 0, then 𝑘𝜆(𝑧) = (1− �̄�𝑧)−1 belongs to 𝐾𝜃, and 𝐴𝜙𝑘𝜆 = 𝜙(𝜆)𝑘𝜆 whence 𝐴𝜙 = 𝐴*
𝜙

is not hypercyclic. Also,

𝐴𝜙

(︁ 𝜃

𝑧 − 𝜆

)︁
= 𝑃𝜃

(︁ 𝜙𝜃

𝑧 − 𝜆

)︁
= 𝑃𝜃

(︁
𝜃
𝜙− 𝜙(𝜆)

𝑧 − 𝜆
+ 𝜙(𝜆)

𝜃

𝑧 − 𝜆

)︁
= 𝜙(𝜆)

𝜃

𝑧 − 𝜆
.

Hence, 𝐴𝜙 also has an eigenvector and so 𝐴𝜙 is not hypercyclic.

Thus, if we are interested in hypercyclicity of TTO-s with analytic or antianalytic symbols,
the only interesting case is the case of singular inner function 𝜃. In this case the point spectrum
is empty.

Problem. Let 𝜃 be a singular inner function. Do there exist hypercyclic truncated Toeplitz
operators with analytic or antianalytic symbols?

One can start with the case of a sufficiently regular symbol 𝜙, say in the disk-algebra 𝐴(D)
or even analytic in a neighborhood of D. In this case the spectrum of the operator 𝐴𝜙 is known
to be 𝜙(𝜎(𝜃)) [14, Lecture III], where 𝜎(𝜃) stands for the boundary spectrum of 𝜃 (the set of
those 𝜁 ∈ T for which lim inf𝑧→𝜁,𝑧∈D |𝜃(𝑧)| < 1). Thus, a necessary condition for hypercyclicity
is that 𝜙(𝜎(𝜃)) ∩ T ̸= ∅.

Problem. Let 𝜃(𝑧) = exp
(︀
𝑧+1
𝑧−1

)︀
be the simplest atomic singular inner function. Do there

exist hypercyclic truncated Toeplitz operators with a symbol 𝜙 in 𝐻∞ or in 𝐴(D)? This is
equivalent to the following approximation problem: does there exist a function 𝑓 ∈ 𝐾𝜃 such that

Clos {𝜙𝑛𝑓 + 𝜃𝑔 : 𝑔 ∈ 𝐻2, 𝑛 ∈ N0} = 𝐻2 ?
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D. Sarason [16] showed that the operator (𝐼 + 𝑉 )−1, where 𝑉 is the Volterra integration op-
erator in 𝐿2(0, 1), is unitarily equivalent to the operator 1

2
(𝐼+𝐴𝑧) in 𝐾𝜃 with 𝜃(𝑧) = exp

(︀
𝑧+1
𝑧−1

)︀
.

In [13] it was shown that 𝐼 + 𝑉 (and, thus, (𝐼 + 𝑉 )−1) is not supercyclic. We conclude that
the truncated Toeplitz operator 1

2
(𝐼 + 𝐴𝑧) is not supercyclic in 𝐾𝜃.

2. Point spectrum of TTO-s with polynomial symbols

In this section we consider truncated Toeplitz operators with symbols of the form

Φ(𝑧) =
𝑁∑︁
𝑘=1

𝑎𝑘𝑧
−𝑘 +

𝑀∑︁
𝑙=0

𝑐𝑙𝑧
𝑙, 𝑀,𝑁 ∈ N, 𝑎𝑁 , 𝑐𝑀 ̸= 0, (2.1)

and describe their point spectrum under some mild restrictions. It turns out that the set of
eigenvectors 𝜆 has a rather curious structure involving some polynomial dependence between
the values of 𝜃 at the roots of Φ − 𝜆. The next theorem is very close to [6, Thm. 5.4] where
the invertibility criterion for a TTO with a rational symbol is given in the case of the Hardy
space in the half-plane. The proof in [6] is based on the Riemann–Hilbert problem methods,
while our approach is completely elementary.

Recall that the mapping 𝑓 → 𝑓 = 𝑧𝑓𝜃 in 𝐿2(T) is an involution on the space 𝐾𝜃 (considered
as a subspace of 𝐿2(T)). Reproducing kernel of 𝐾𝜃 at the point 𝜆 ∈ D is given by

𝑘𝜃𝜆(𝑧) = 𝑃𝜃

(︁ 1

1− �̄�𝑧

)︁
=

1− 𝜃(𝜆)𝜃(𝑧)

1− �̄�𝑧
.

Note that the conjugate kernel 𝑘𝜃𝜆 =
̃︂(𝑘𝜃𝜆) is of the form

𝑘𝜃𝜆(𝑧) =
𝜃(𝑧)− 𝜃(𝜆)

𝑧 − 𝜆
.

Theorem 2.1. Let Φ be given by (2.1) and let 𝑧𝑗, 𝑗 = 1, . . .𝑀 +𝑁 , be the zeros of Φ− 𝜆.
Assume that all 𝑧𝑗 are distinct and |𝑧𝑗| ≠ 1 for any 𝑗. Then 𝜆 is an eigenvalue of 𝐴Φ if and
only if there exist nonzero polynomials 𝑃1, 𝑃2 of degrees at most 𝑀 − 1 and 𝑁 − 1 respectively
such that the following conditions hold:

𝑧𝑁𝑗 𝑃1(𝑧𝑗)𝜃(𝑧𝑗) + 𝑃2(𝑧𝑗) = 0, |𝑧𝑗| < 1, (2.2)

and

𝑧𝑁𝑗 𝑃1(𝑧𝑗) + 𝑃2(𝑧𝑗)𝜃(1/𝑧𝑗) = 0, |𝑧𝑗| > 1. (2.3)

In this case the corresponding eigenfunction is given by

𝑓 =
∑︁
|𝑧𝑗 |<1

𝛽𝑗𝑧
𝑁
𝑗 𝑃1(𝑧𝑗)𝑘

𝜃
𝑧𝑗
+

∑︁
|𝑧𝑗 |>1

𝛽𝑗𝑃2(𝑧𝑗)𝑘
𝜃
1/𝑧𝑗

for some complex coefficients 𝛽𝑗.

Proof. We are looking for solutions of the equation 𝐴Φ𝑓 = 𝜆𝑓 , 𝑓 ∈ 𝐾𝜃. Denote by 𝜙 the
analytic part of Φ, 𝜙(𝑧) =

∑︀𝑀
𝑙=0 𝑐𝑙𝑧

𝑙. Note that 𝐴Φ𝑓 = 𝑃𝜃(𝑇Φ𝑓), and

𝑇Φ𝑓 = 𝜙𝑓 +
𝑁∑︁
𝑘=1

𝑎𝑘
𝑓 −

∑︀𝑘−1
𝑗=0

𝑓 (𝑗)(0)
𝑗!

𝑧𝑗

𝑧𝑘
.

Thus, 𝐴Φ𝑓 = 𝜆𝑓 is equivalent to the equation

𝜙𝑓 +
𝑁∑︁
𝑘=1

𝑎𝑘
𝑓 −

∑︀𝑘−1
𝑗=0

𝑓 (𝑗)(0)
𝑗!

𝑧𝑗

𝑧𝑘
= 𝜆𝑓 + 𝜃ℎ,
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where ℎ ∈ 𝐻2 or, equivalently,

(Φ− 𝜆)𝑓 = 𝜃ℎ+
𝑁∑︁
𝑘=1

𝑎𝑘

𝑘−1∑︁
𝑗=0

𝑓 (𝑗)(0)

𝑗!
𝑧𝑗−𝑘.

Multiplying by 𝑧𝑁 , we get

𝑄𝑓 = 𝑧𝑁𝜃ℎ+𝑅, (2.4)

where 𝑄 = 𝑧𝑁(Φ− 𝜆) is a polynomial of degree 𝑀 +𝑁 with the zeros 𝑧𝑗 and

𝑅(𝑧) =
𝑁∑︁
𝑘=1

𝑎𝑘

𝑘−1∑︁
𝑗=0

𝑓 (𝑗)(0)

𝑗!
𝑧𝑁−𝑘+𝑗

is a polynomial of degree at most 𝑁 − 1. Since 𝑧𝑗 are distinct we can write

1

𝑄(𝑧)
=

𝑀+𝑁∑︁
𝑗=1

𝛽𝑗
𝑧 − 𝑧𝑗

(2.5)

for some coefficients 𝛽𝑗.
Assume that 𝜆 is an eigenvector and so there exists a nontrivial 𝑓 ∈ 𝐾𝜃 satisfying (2.4). If

|𝑧𝑗| < 1, then the right-hand side of (2.4) must vanish at 𝑧𝑗 and we get

𝑧𝑁𝑗 𝜃(𝑧𝑗)ℎ(𝑧𝑗) +𝑅(𝑧𝑗) = 0.

Hence, we have

𝑓(𝑧) =
∑︁
|𝑧𝑗 |<1

𝛽𝑗
𝑧𝑁𝜃(𝑧)ℎ(𝑧)− 𝑧𝑁𝑗 𝜃(𝑧𝑗)ℎ(𝑧𝑗)

𝑧 − 𝑧𝑗
+

∑︁
|𝑧𝑗 |<1

𝛽𝑗
𝑅(𝑧)−𝑅(𝑧𝑗)

𝑧 − 𝑧𝑗

+
∑︁
|𝑧𝑗 |>1

𝛽𝑗
𝑧𝑁𝜃(𝑧)ℎ(𝑧)

𝑧 − 𝑧𝑗
+

∑︁
|𝑧𝑗 |>1

𝛽𝑗
𝑅(𝑧)

𝑧 − 𝑧𝑗
.

(2.6)

For |𝑧𝑗| < 1 we further have

𝑧𝑁𝜃(𝑧)ℎ(𝑧)− 𝑧𝑁𝑗 𝜃(𝑧𝑗)ℎ(𝑧𝑗)

𝑧 − 𝑧𝑗
= 𝜃(𝑧)

𝑧𝑁ℎ(𝑧)− 𝑧𝑁𝑗 ℎ(𝑧𝑗)

𝑧 − 𝑧𝑗
+ 𝑧𝑁𝑗 ℎ(𝑧𝑗)

𝜃(𝑧)− 𝜃(𝑧𝑗)

𝑧 − 𝑧𝑗
.

Note that the first term is in 𝜃𝐻2, while the second belongs to 𝐾𝜃.
Since the degree of 𝑅 is at most 𝑁 − 1, we have the Lagrange interpolation formula

𝑅(𝑧)

𝑄(𝑧)
=

𝑀+𝑁∑︁
𝑗=1

𝛽𝑗
𝑅(𝑧)

𝑧 − 𝑧𝑗
=

𝑀+𝑁∑︁
𝑗=1

𝛽𝑗
𝑅(𝑧𝑗)

𝑧 − 𝑧𝑗
. (2.7)

Finally, note that for |𝑧𝑗| > 1 we have

1

𝑧 − 𝑧𝑗
=
𝜃(𝑧)𝜃(1/𝑧𝑗)

𝑧 − 𝑧𝑗
+

1− 𝜃(𝑧)𝜃(1/𝑧𝑗)

𝑧 − 𝑧𝑗
,

where, again, the first term is in 𝜃𝐻2, while the second is in 𝐾𝜃. Combining all these observa-
tions we conclude that 𝑓 = 𝑓1 + 𝜃𝑓2 where 𝑓1 ∈ 𝐾𝜃 and 𝑓2 ∈ 𝐻2 are given by

𝑓1(𝑧) =
∑︁
|𝑧𝑗 |<1

𝛽𝑗𝑧
𝑁
𝑗 ℎ(𝑧𝑗)

𝜃(𝑧)− 𝜃(𝑧𝑗)

𝑧 − 𝑧𝑗
+

∑︁
|𝑧𝑗 |>1

𝛽𝑗𝑅(𝑧𝑗)
1− 𝜃(𝑧)𝜃(1/𝑧𝑗)

𝑧 − 𝑧𝑗
,

𝑓2(𝑧) =
∑︁
|𝑧𝑗 |<1

𝛽𝑗
𝑧𝑁ℎ(𝑧)− 𝑧𝑁𝑗 ℎ(𝑧𝑗)

𝑧 − 𝑧𝑗
+

∑︁
|𝑧𝑗 |>1

𝛽𝑗
𝑅(𝑧𝑗)𝜃(1/𝑧𝑗)

𝑧 − 𝑧𝑗
.

(2.8)



POINT SPECTRUM AND HYPERCYCLICITY PROBLEM. . . 111

However, by our assumption, 𝑓 ∈ 𝐾𝜃, whence 𝑓2 = 0. In view of (2.5) this is equivalent to

𝑧𝑁ℎ(𝑧)

𝑄(𝑧)
=

∑︁
|𝑧𝑗 |<1

𝛽𝑗
𝑧𝑁𝑗 ℎ(𝑧𝑗)

𝑧 − 𝑧𝑗
−

∑︁
|𝑧𝑗 |>1

𝛽𝑗
𝑅(𝑧𝑗)𝜃(1/𝑧𝑗)

𝑧 − 𝑧𝑗
. (2.9)

Hence 𝑧𝑁ℎ is a polynomial of degree at most𝑀+𝑁−1 and since ℎ is analytic at 0 we conclude
that ℎ is a polynomial of degree at most𝑀−1. If we put 𝑃1 = ℎ and 𝑃2 = 𝑅, then the condition

𝑧𝑁𝑗 𝜃(𝑧𝑗)ℎ(𝑧𝑗) +𝑅(𝑧𝑗) = 0 for |𝑧𝑗| < 1

is equivalent to (2.2). Comparing the residues at 𝑧𝑗 with |𝑧𝑗| > 1 in (2.9) we conclude that

𝑧𝑁𝑗 ℎ(𝑧𝑗) = −𝑅(𝑧𝑗)𝜃(1/𝑧𝑗) which is equivalent to (2.3).

To prove that conditions (2.2) and (2.3) are sufficient for 𝜆 to be an eigenvalue for 𝐴Φ, we
reverse the arguments. Assume that there exists 𝑃1 and 𝑃2 as in (2.2) and (2.3) and let ℎ = 𝑃1,
𝑅 = 𝑃2. Then the interpolation formula (2.9) holds and so the function 𝑓2 in (2.8) is zero.
Define 𝑓1 by (2.8). Combining the formula for 𝑓1 with (2.7) we see that 𝑓 = 𝑓1 = 𝑓1 + 𝜃𝑓2
satisfies the equality (2.6). Using the fact that

𝑧𝑁𝑗 𝜃(𝑧𝑗)ℎ(𝑧𝑗) +𝑅(𝑧𝑗) = 0 for |𝑧𝑗| < 1,

we finally conclude that 𝑄𝑓 = 𝑧𝑁ℎ𝜃 + 𝑅. Dividing by 𝑧𝑁 and comparing the coefficients at
negative powers it is easy to see that 𝑅 must coincide with

𝑁∑︁
𝑘=1

𝑎𝑘

𝑘−1∑︁
𝑗=0

𝑓 (𝑗)(0)

𝑗!
𝑧𝑁−𝑘+𝑗,

where 𝑎𝑘 are the coefficients at 𝑧−1 in (2.1).

Remark. Note that for some configurations of zeros with respect to the unit circle, the
conditions (2.2) and (2.3) may be never satisfied. In particular, as is shown below, for a three-
term TTO 𝜆 is never an eigenvalue if 𝑧1 and 𝑧2 lie in different components of C ∖ T.

Remark. The above results remain true if there exist zeros of Φ − 𝜆 with |𝑧𝑗| = 1, but
𝑧𝑗 /∈ 𝜎(𝜃) and so 𝜃 is analytic in a neighborhood of 𝑧𝑗. Such 𝑧𝑗 can be included in any of the

conditions (2.2) or (2.3) since in this case 𝜃(𝑧𝑗) = 1/𝜃(1/𝑧𝑗). The same is true if 𝑧𝑗 ∈ 𝜎(𝜃)
but |𝜃(𝑧𝑗)| = 1 and 𝜃 has a finite angular derivative at 𝑧𝑗 (𝑧𝑗 is a Julia–Carathéodory point for
𝜃) and so the space 𝐾𝜃 contains the reproducing kernel at 𝑧𝑗. It is not, however, clear to us
whether 𝜆 can be an eigenvalue if one of 𝑧𝑗 lies on T and is not a Julia–Carathéodory point for
𝜃.

3. Three-term truncated Toeplitz operators

In this section we consider the case when

Φ(𝑧) = 𝑎𝑧 + 𝑏+ 𝑐𝑧, 𝑧 ∈ T.
In this case the formulation of Theorem 2.1 will be substantially simplified.

Corollary 3.1. Let

Φ(𝑧) =
𝑎

𝑧
+ 𝑏+ 𝑐𝑧, 𝑎, 𝑐 ̸= 0,

and assume that the zeros 𝑧1, 𝑧2 of the function Φ−𝜆 are distinct and satisfy |𝑧𝑗| ≠ 1, 𝑗 = 1, 2.
Then 𝜆 is an eigenvalue for 𝐴Φ if and only if either

1. |𝑧1|, |𝑧2| < 1 and 𝑧1𝜃(𝑧1) = 𝑧2𝜃(𝑧2),
or
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2. |𝑧1|, |𝑧2| > 1 and 1
𝑧1
𝜃
(︁

1
𝑧1

)︁
= 1

𝑧2
𝜃
(︁

1
𝑧2

)︁
.

In Case 1 the eigenfunction of 𝐴Φ corresponding to 𝜆 is given by

𝑓𝜆 = 𝑧1𝑘
𝜃
𝑧1
− 𝑧2𝑘

𝜃
𝑧2
, (3.1)

while in Case 2

𝑓𝜆 =
1

𝑧1
𝑘𝜃1/𝑧1 −

1

𝑧2
𝑘𝜃1/𝑧2 .

Proof. Since in this case 𝑀 = 𝑁 = 1, the polynomials 𝑃1 and 𝑃2 in (2.2) and (2.3) are just
constants. If both 𝑧1, 𝑧2 ∈ D, we have

𝑃1𝑧1𝜃(𝑧1) + 𝑃2 = 𝑃1𝑧2𝜃(𝑧2) + 𝑃2 = 0

which implies 𝑧1𝜃(𝑧1) = 𝑧2𝜃(𝑧2). Analogously, if 𝑧1, 𝑧2 ∈ ̂︀D, then
𝑃1𝑧1 + 𝑃2𝜃(1/𝑧1) = 𝑃1𝑧2 + 𝑃2𝜃(1/𝑧2) = 0,

whence 𝑧−1
1 𝜃(1/𝑧1) = 𝑧−1

2 𝜃(1/𝑧2).
Finally, consider the case |𝑧1| < 1, |𝑧2| > 1. Then

𝑃1𝑧1𝜃(𝑧1) + 𝑃2 = 0 = 𝑃1𝑧2 + 𝑃2𝜃(1/𝑧2),

whence

𝑧1𝜃(𝑧1)𝜃(1/𝑧2) = 𝑧2,

an impossible equality since its left-hand side in D and |𝑧2| > 1.
Conversely, equalities 𝑧1𝜃(𝑧1) = 𝑧2𝜃(𝑧2) and, respectively,

1

𝑧1
𝜃
(︁ 1

𝑧1

)︁
=

1

𝑧2
𝜃
(︁ 1

𝑧2

)︁
imply the existence of the polynomials 𝑃1 and 𝑃2 of degree zero (nonzero constants) such that
(2.2) and (2.3) are satisfied and so 𝜆 is an eigenvector by Theorem 2.1.

The form of the eigenfunctions follows easily from the calculations of Theorem 2.1.

We excluded the case of multiple zeros of Φ− 𝜆 to avoid uninteresting technicalities. In this
case our polynomial dependencies (2.2) and (2.3) will involve also the values of the derivatives
of 𝜃 at the multiple zeros. However, in the case of symbols of the form Φ(𝑧) = 𝑎

𝑧
+ 𝑏 + 𝑐𝑧 the

answer is easy.

Corollary 3.2. Let

Φ(𝑧) =
𝑎

𝑧
+ 𝑏+ 𝑐𝑧, 𝑎, 𝑐 ̸= 0,

and assume that Φ− 𝜆 has a zero 𝑧0 in D of multiplicity 2. Then 𝜆 is an eigenvalue for 𝐴Φ if
and only if 𝑧0𝜃

′(𝑧0) + 𝜃(𝑧0) = 0.

Note that if 𝑧1, 𝑧2 are zeros of 𝑧(Φ(𝑧)−𝜆) = 𝑐𝑧2+(𝑏−𝜆)𝑧+𝑎, then 𝑧1𝑧2 = 𝑎/𝑐. Put 𝛽 = 𝑎/𝑐.
If |𝛽| < 1 then 𝜆 can be an eigenvalue only when |𝑧1|, |𝑧2| < 1; if |𝛽| > 1, then a necessary
condition is that |𝑧1|, |𝑧2| > 1. Finally, in the case when |𝛽| = 1, 𝜆 is not an eigenvalue unless
|𝑧1| = |𝑧2| = 1.

We now address the question about existence of 𝜆, 𝑧1 and 𝑧2 satisfying the conditions of
Corollary 3.1. We will show that under some (apparently, rather mild) restriction on the
function 𝜃 we do not only have infinitely many solutions, but, moreover, the eigenvectors of a
tridiagoanal TTO are complete in 𝐾𝜃. To formulate our results we will need some notions from
the theory of Smirnov classes 𝐸𝑝(𝐺) in general domains.
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3.1. Smirnov classes in multiconnected domains. Let 𝐺 be a simply-connected domain
in C. Denote by 𝐻∞(𝐺) the class of all bounded analytic functions in 𝐺. The Smirnov class
𝐸𝑝(𝐺), 0 < 𝑝 <∞, consists of those functions 𝑓 analytic in 𝐺 for which 𝑓(𝜙(𝑧))(𝜙′(𝑧))1/𝑝 ∈ 𝐻𝑝,
where 𝐻𝑝 is the usual Hardy space in D and 𝜙 is some (any) conformal map of D onto 𝐺. An
equivalent definition describes 𝐸𝑝(𝐺) as the set of those functions 𝑓 for which there exists
a sequence of rectifiable Jordan curves Γ𝑛 tending to the boundary (i.e., Γ𝑛 surrounds each
compact subset of 𝐺 for sufficently large 𝑛) with the property

sup
𝑛

∫︁
Γ𝑛

|𝑓(𝑧)|𝑝|𝑑𝑧| <∞.

For the theory of Smirnov classes see, e.g., [8, Ch. 10].
A simply-connected domain 𝐺 with rectifiable boundary is said to be a Smirnov domain if 𝜙′

is an outer function (as above, 𝜙 is some conformal map of D onto 𝐺). In this case we say that
a function 𝑓 ∈ 𝐸𝑝(𝐺) is outer if 𝑓(𝜙(𝑧))(𝜙′(𝑧))1/𝑝 is an outer function in 𝐻𝑝 and we say that
𝑓 has no singular inner factor if 𝑓(𝜙(𝑧))(𝜙′(𝑧))1/𝑝 = 𝐵(𝑧)𝐹 (𝑧), where 𝐵 is a Blaschke product
and 𝐹 is an outer function in D.

We will need to define similar objects for the case of an annulus. For general multiconnected
domains 𝐺 factorization theory in 𝐸𝑝(𝐺) was developed by D. Khavinson in [12] (see, also, [5]).
We will however use the following simple equivalent description of these classes. For 𝛽 ∈ D,
𝛽 ̸= 0, consider the annulus

𝑅𝛽 = {|𝛽| < |𝑧| < 1}.
For 𝛼 ∈ T let 𝑅𝛼

𝛽 = 𝑅𝛽 ∖{𝑟𝛼 : |𝛽| < 𝑟 < 1} be the annulus with a cut. Then 𝑓 ∈ 𝐸𝑝(𝑅𝛽) if and

only if for any 𝛼 ∈ T and a conformal mapping 𝜙 : D → 𝑅𝛼
𝛽 the function 𝑓(𝜙(𝑧))(𝜙′(𝑧))1/𝑝 is in

𝐻𝑝. Analogously, we say that 𝑓 ∈ 𝐸𝑝(𝑅𝛽) has no singular inner factor in 𝑅𝛽 if 𝑓(𝜙(𝑧))(𝜙
′(𝑧))1/𝑝

has no singular inner factor in D for any 𝛼 and 𝜙. Obviously, it is sufficient to take only two
different values of 𝛼.

3.2. Completeness of eigenvectors of a tridiagonal TTO. Let Φ(𝑧) = 𝑎
𝑧
+ 𝑏 + 𝑐𝑧,

𝑎, 𝑐 ̸= 0, and let 𝛽 = 𝑎/𝑐. If |𝛽| < 1 we put

Ψ(𝑧) = 𝑧𝜃(𝑧)− 𝛽

𝑧
𝜃
(︁𝛽
𝑧

)︁
, (3.2)

while for |𝛽| > 1 put

Ψ(𝑧) = 𝑧𝜃(𝑧)− 1

𝛽𝑧
𝜃
(︁ 1

𝛽𝑧

)︁
. (3.3)

As before, let 𝑅𝛽 = {𝑧 : |𝛽| < |𝑧| < 1} for |𝛽| < 1 and put 𝑅𝛽 = {𝑧 : |𝛽|−1 < |𝑧| < 1}
for |𝛽| > 1. Then the function Ψ is analytic in the respective choice of the annulus 𝑅𝛽 and,
moreover, Ψ ∈ 𝐻∞(𝑅𝛽).

Theorem 3.1. Let Φ(𝑧) = 𝑎
𝑧
+𝑏+𝑐𝑧, 𝑎, 𝑐 ̸= 0, and |𝛽| = |𝑐/𝑎| ≠ 1. Assume that the function

Ψ defined by (3.2) or (3.3) has no singular inner factor in 𝑅𝛽. Then the set of eigenvectors of
𝐴Φ is complete in 𝐾𝜃.

Proof. We consider the case |𝛽| < 1, the case |𝛽| > 1 is analogous. Assume that 𝑓 ∈ 𝐾𝜃 is

orthogonal to all eigenfunctions 𝑓𝜆 given by (3.1). Note that (𝑓, 𝑔) = (𝑔, 𝑓) for 𝑓, 𝑔 ∈ 𝐾𝜃. Then
we have

0 = (𝑓𝜆, 𝑓) = 𝑧1(𝑘
𝜃
𝑧1
, 𝑓)− 𝑧2(𝑘

𝜃
𝑧2
, 𝑓) = 𝑧1(𝑓, 𝑘

𝜃
𝑧1
)− 𝑧2(𝑓, 𝑘

𝜃
𝑧2
) = 𝑧1𝑓(𝑧1)− 𝑧2𝑓(𝑧2).

Recall that 𝑧1𝑧2 = 𝛽 and 𝑧1𝜃(𝑧1) = 𝑧2𝜃(𝑧2). Consider the function

𝐹 (𝑧) = 𝑧𝑓(𝑧)− 𝛽

𝑧
𝑓
(︁𝛽
𝑧

)︁
.
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Then we conclude that 𝐹 (𝑧) = 0 whenever 𝑧 ∈ 𝑅𝛽 and Ψ(𝑧) = 0, whence 𝐹/Ψ is analytic in
𝑅𝛽. This is true even if Ψ has a multiple zero, since in this case it is not difficult to show that
𝐹 will have the zero of at least the same multiplicity.

It is clear that 𝐹 ∈ 𝐸2(𝑅𝛽). Let us show, using the assumption that Ψ has no singular inner
factor in 𝑅𝛽, that 𝐹/Ψ ∈ 𝐸2(𝑅𝛽). First of all note that for almost all 𝑧 ∈ T

|Ψ(𝑧)| ⩾ |𝜃(𝑧)| − |𝛽| = 1− |𝛽|,
a similar estimate holds for |𝑧| = |𝛽|.
Fix some 𝛼 ∈ T such that |𝜃(𝑟𝛼)| → 1 as 𝑟 → 1− and

⃒⃒
𝜃
(︀
𝛽
𝑟𝛼

)︀⃒⃒
→ 1 as 𝑟 → |𝛽|+, and consider

the annulus with a cut 𝑅𝛼
𝛽 . For a conformal map 𝜙 of D onto 𝑅𝛼

𝛽 we have (𝐹 ∘𝜙) · (𝜙′)1/2 ∈ 𝐻2

and so (𝐹 ∘ 𝜙) · (𝜙′)1/2 = 𝐼𝐹𝑜 where 𝐼 is an inner function and 𝐹𝑜 is an outer function. Also,
Ψ ∘ 𝜙 = 𝐵Ψ𝑜 for a Blaschke product 𝐵 and an outer function Ψ𝑜. Since 𝐹/Ψ is analytic in 𝑅𝛼

𝛽

we conclude that 𝐵 divides 𝐼. Thus,

(𝐹 ∘ 𝜙)
Ψ ∘ 𝜙

· (𝜙′)1/2 = 𝐽𝐻

for some inner function 𝐽 and an outer function 𝐻. Now it is sufficient to show that 𝐻 ∈ 𝐿2(T).
We have 1/Ψ ∈ 𝐿∞(𝜕𝑅𝛽). By our choice of 𝛼 there exists 𝜀, 𝛿 > 0 such that |Ψ(𝑟𝛼)| ⩾ 𝜀 when
𝑟 ∈ (|𝛽|, |𝛽|+ 𝛿) ∪ (1− 𝛿, 1). Since (𝐹 ∘ 𝜙) · (𝜙′)1/2 ∈ 𝐿2(𝜕𝑅𝛼

𝛽) we have

𝐻 ∈ 𝐿2
(︀
𝜙−1(𝜕𝑅𝛽 ∪ {𝑟𝛼 : 𝑟 ∈ (|𝛽|, |𝛽|+ 𝛿) ∪ (1− 𝛿, 1)})

)︀
.

The functions (𝐹/Ψ) ∘ 𝜙 and 𝜙′ are obviously bounded on 𝜙−1
(︀
{𝑟𝛼 : 𝑟 ∈ (|𝛽| + 𝛿, 1 − 𝛿)}

)︀
.

Thus, 𝐻 ∈ 𝐻2 and we conclude that 𝐹/Ψ ∈ 𝐸2(𝑅𝛼
𝛽) for almost all 𝛼, and so 𝐹/Ψ ∈ 𝐸2(𝑅𝛽).

Recall that any function 𝑓 ∈ 𝐾𝜃 has a meromorhic pseudocontinuation to ̂︀D = {|𝑧| > 1} such

that its nontangential boundary values on T taken from ̂︀D coincide with its boundary values

in D and also 𝑓/𝜃 belongs to the Hardy space 𝐻2(̂︀D) (which is the same as 𝐸2(̂︀D)). We claim

that 𝐹/Ψ ∈ 𝐻2(̂︀D). Indeed,
𝐹 (𝑧)

Ψ(𝑧)
=

𝑓(𝑧)
𝜃(𝑧)

− 𝛽
𝑧2𝜃(𝑧)

𝑓
(︁
𝛽
𝑧

)︁
1− 𝛽

𝑧2𝜃(𝑧)
𝜃
(︁
𝛽
𝑧

)︁ ,

and the function in the denominator is bounded away from zero. Analogously, one shows that
𝐹/Ψ ∈ 𝐻2({|𝑧| < |𝛽|}). Note also that 𝐹 (𝑧)/Ψ(𝑧) → 0 as |𝑧| → ∞ or |𝑧| → 0. Here we use

the fact that 𝑓/𝜃 ∈ 𝐻2(̂︀D) and, therefore, 𝑓(𝑧)/𝜃(𝑧) → 0 as |𝑧| → ∞.
The nontangential boundary values of 𝐹/Ψ taken from inside of 𝑅𝛽 coincide with the bound-

ary values taken from the outer domains {|𝑧| < |𝛽|} and {|𝑧| > 1} almost everywhere. Applying
the Cauchy formula over the contours approaching the boundary from the opposite sides and
passing to the limit (which is possible for functions in the classes 𝐸2) we see that 𝐹/Ψ has an
analytic extension across the circles {|𝑧| = |𝛽|} and {|𝑧| = 1}. Thus, 𝐹/Ψ is an entire function
tending to zero at infinity. We conclude that 𝐹/Ψ ≡ 0, whence

𝑧𝑓(𝑧) =
𝛽

𝑧
𝑓
(︁𝛽
𝑧

)︁
, |𝛽| < |𝑧| < 1.

Since the right-hand side is analytic in |𝑧| > |𝛽|, it follows that 𝑓 has an analytic continuation

to C with |𝑓(𝑧)| = 𝑂(|𝑧|−1), |𝑧| → ∞, and so 𝑓 ≡ 0.

We see that in the conditions of Theorem 3.1 the operator 𝐴Φ has many eigenvectors whence
𝐴Φ̄ is not hypercyclic.

Now let us consider in more detail the case when the boundary spectrum of 𝜃 is one point,
e.g., 𝜎(𝜃) = {1}. In this case 𝜃 is meromorphic in C ∖ {1}, while the function Ψ will be
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meromorphic in C ∖ {1, 𝛽} (here we again consider the case |𝛽| < 1). Let 𝑅𝛼
𝛽 be the annulus

with a cut which does not touch 1 and 𝛽, and let 𝜙 be the corresponding conformal map. Then
the function Ψ ∘𝜙 in D can have no singular inner factors except the atomic singular functions
exp

(︀
𝑎𝑗

𝑧+𝜁𝑗
𝑧−𝜁𝑗

)︀
, 𝑗 = 1, 2, where 𝑎𝑗 > 0 and 𝜁𝑗 ∈ T are such that 𝜙(𝜁1) = 1 and 𝜙(𝜁2) = 𝛽. Indeed,

if 𝑧 ∈ T, 𝑧 ̸= 𝜁1, 𝜁2, and 𝑧 belongs to the support of the singular measure from the inner factor
of Ψ ∘ 𝜙, then there exists a sequence 𝑧𝑛 → 𝑧, 𝑧𝑛 ∈ D, such that Ψ(𝜙(𝑧𝑛)) = 𝑜((𝑧𝑛 − 𝑧)𝑚) for
any 𝑚 ∈ N, which contradicts the fact that Ψ is analytic at 𝜙(𝑧) (note that the conformal map
𝜙 is itself analytic in a neighborhood of 1 and 𝛽).

Therefore, it is easy to see that Ψ has no singular inner factor in 𝑅𝛽 if and only if

lim sup
𝑟→1−

(1− 𝑟) log |Ψ(𝑟)| = 0. (3.4)

Problem. Is it true that the function Ψ(𝑧) = 𝑧𝜃(𝑧) − 𝛽
𝑧
𝜃
(︁
𝛽
𝑧

)︁
has no singular inner factor

in 𝑅𝛽 for any inner function 𝜃?

We believe that the answer to this question is positive, at least, for a wide class of inner
functions.

In the case when 𝜎(𝜃) = {1} one can make several observations. They show that the case of
a (possible) singular inner factor in the factorization of Ψ is exceptional and can happen only
rarely. Also, the assumption that Ψ has a singular inner factor implies important restrictions
on the zeros of 𝜃 and prohibits them to approach to 1 nontangentially.

Corollary 3.3. Let 𝜃 be an inner function such that 𝜎(𝜃) = {1}. Then

1. For any 𝑎 ∈ C, 𝑎 ̸= 0, there exist at most one value of 𝑐 ∈ C, 𝑐 ̸= 0, |𝑐| ≠ |𝑎|, such that
the function Ψ given by (3.2) or (3.3) has a singular inner factor.

Thus, for all values of 𝑐 ∈ C, 𝑐 ̸= 0, |𝑐| ̸= |𝑎|, except at most one, the set of eigenvectors of
the operator 𝐴Φ is complete, and for all values of 𝑐 ∈ C, 𝑐 ̸= 0, |𝑐| ≠ |𝑎|, except at most one,
the operator 𝐴Φ is not hypercyclic.

2. If 𝜃 has an atomic singular factor exp
(︀
𝑎 𝑧+1
𝑧−1

)︀
, 𝑎 > 0, then Ψ given by (3.2) or (3.3) has

no singular inner factor for any 𝛽 ̸= 0 with |𝛽| ≠ 1.

3. If for some 𝛽 the function Ψ has a singular inner factor, then there exist 𝑎 > 0, 𝑚 ∈ N
and 𝑐 > 0 such that all zeros of 𝜃, maybe except of a finite number, lie in the domain{︁

𝑧 ∈ D :
⃒⃒⃒
exp

(︁
𝑎
1 + 𝑧

1− 𝑧

)︁⃒⃒⃒
⩾ 𝑐|𝑧 − 1|𝑚

}︁
. (3.5)

Proof. 1. Assume that there exist 𝛽1, 𝛽2 ̸= 0, |𝛽1|, |𝛽2| < 1 and 𝛽1 ̸= 𝛽2 such that

Ψ𝛽1(𝑧) = 𝑧𝜃(𝑧)− 𝛽1
𝑧
𝜃
(︁𝛽1
𝑧

)︁
and

Ψ𝛽2(𝑧) = 𝑧𝜃(𝑧)− 𝛽2
𝑧
𝜃
(︁𝛽2
𝑧

)︁
have singular inner factors. Then, by (3.4),

|Ψ𝛽𝑗(𝑟)| ⩽ exp
(︁
− 𝑎

1− 𝑟

)︁
as 𝑟 → 1−,

for some 𝑎 > 0, 𝑗 = 1, 2. Then the function

𝛽1
𝑧
𝜃
(︁𝛽1
𝑧

)︁
− 𝛽2

𝑧
𝜃
(︁𝛽2
𝑧

)︁
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tends to zero faster than any power as 𝑧 = 𝑟 → 1−. Since this function is analytic at 𝑧 = 1,
it is identically zero, which easily leads to a contradiction. The cases when |𝛽1|, |𝛽2| > 1 or
|𝛽1| < 1, |𝛽2| > 1 are analogous.

Now, if 𝑎 is fixed, then there exists at most one 𝑐 as above such that Ψ𝛽 has a singular inner
factor for 𝛽 = 𝑐/𝑎. Thus, for all values of 𝑐 ∈ C, 𝑐 ̸= 0, |𝑐| ≠ |𝑎|, except at most one, the set of
eigenvectors of 𝐴Φ is complete. Also, 𝐴Φ̄ has a complete set of eigenvectors (and so 𝐴Φ is not
hypercyclic) for all values of 𝑐 except at most one.

Statement 2 follows by the same argument as Statement 1. To prove Statement 3, assume
that Ψ has a singular inner factor and fix a conformal mapping 𝜙 of the annulus 𝑅𝛼

𝛽 with a cut
at 𝛼 ̸= 1 such that 𝜙(1) = 1. By (3.4), for some 𝑎, �̃� > 0, we have

|Ψ(𝑧)| ⩽
⃒⃒⃒
exp

(︁
𝑎
𝜙−1(𝑧) + 1

𝜙−1(𝑧)− 1

)︁⃒⃒⃒
⩽

⃒⃒⃒
exp

(︁
�̃�
𝑧 + 1

𝑧 − 1

)︁⃒⃒⃒
as 𝑧 → 1 inside some Stolz angle at 1; we use here that 𝜙 is analytic in a neighborghood of
1 and preserves the angles. On the other hand, Ψ(𝑧) = 𝛽

𝑧
𝜃
(︀
𝛽
𝑧

)︀
at the points where 𝜃(𝑧) = 0.

However, 𝛽
𝑧
𝜃
(︀
𝛽
𝑧

)︀
∼ 𝐶(𝑧 − 1)𝑚, 𝑧 → 1, for some 𝐶 ̸= 0 and 𝑚 ∈ N0 due to analyticity at 𝑧 = 1.

Since the zeros of 𝜃 tend to 1, all of them, maybe except of a finite number, lie in a domain of
the form (3.5).

It follows from Corollary 3.3 that in the case when 𝜎(𝜃) = {1} and 𝜃 has an atomic singular
factor or infinitely many zeros approaching the point 1 nontangentially all tridiagonal operators
𝐴Φ with |𝑎| ≠ |𝑐| have complete sets of eigenvectors.
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