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ON A CLASS OF HYPERBOLIC EQUATIONS

WITH THIRD-ORDER INTEGRALS

Yu.G. VORONOVA, A.V. ZHIBER

Abstract. We consider a Goursat problem on classification nonlinear second order hy-
perbolic equations integrable by the Darboux method. In the work we study a class of
hyperbolic equations with second order 𝑦-integral reduced by an differential substitution
to equations with first order 𝑦-integral. It should be noted that Laine equations are in
the considered class of equations. In the work we provide a second order 𝑦-integral for the
second Laine equation and we find a differential substitution relating this equation with one
of the Moutard equations.

We consider a class of nonlinear hyperbolic equations possessing first order 𝑦-integrals and
third order 𝑥-integrals. We obtain three conditions under which the equations in this class
possess first order and third order integrals. We find the form of such equations and obtain
the formulas for 𝑥- and 𝑦-integrals. In the paper we also provide differential substitutions
relating Laine equations.
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1. Introduction

For a complete classification of nonlinear hyperbolic equations

𝑢𝑥𝑦 = 𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)

one needs to classify equations in a special class, which were not studied in work [1], namely, the
following equations:

𝑢𝑥𝑦 =
𝑝− 𝜙𝑢

𝜙𝑢𝑦

𝑢𝑥 +
𝑞

𝜙𝑢𝑦

√
𝑢𝑥. (1.1)

Here 𝑝, 𝑞 are the functions of the variables 𝑥, 𝑦, 𝑢, while 𝜙 is a function of the variables 𝑥, 𝑦, 𝑢, 𝑢𝑦.
In 1926 Laine constructed two equations [2]–[4]

𝑢𝑥𝑦 =

(︂
𝑢𝑦

𝑢− 𝑥
+

𝑢𝑦
𝑢− 𝑦

)︂
𝑢𝑥 +

𝑢𝑦
𝑢− 𝑥

√
𝑢𝑥, (1.2)

𝑢𝑥𝑦 = 2

[︂
(𝑢+ 𝑌 )2 + 𝑢𝑦 + (𝑢+ 𝑌 )

√︁
(𝑢+ 𝑌 )2 + 𝑢𝑦

]︂
·

[︃√
𝑢𝑥 + 𝑢𝑥
𝑢− 𝑥

− 𝑢𝑥√︀
(𝑢+ 𝑌 )2 + 𝑢𝑦

]︃
, (1.3)

where 𝑌 = 𝑌 (𝑦), which possessed a second order 𝑦-integral �̄� = �̄�(𝑥, 𝑦, 𝑢, 𝑢𝑦, 𝑢𝑦𝑦) and a third order
𝑥-integral 𝑤 = 𝑤(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥) (𝐷�̄� = 0, �̄�𝑤 = 0). Here 𝐷 (respectively, �̄�) is an operator
of total differentiation in 𝑥 (respectively, in 𝑦).

We note that equations (1.2) and (1.3) are in the class of equations (1.1). Indeed, as

𝑞 =
1

𝑢− 𝑥
, 𝑝 =

1

𝑢− 𝑥
+

1

𝑢− 𝑦
, 𝜙 = ln𝑢𝑦
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equation (1.2) coincides with equation (1.1), while as

𝑝 = 𝑞 =
1

𝑢− 𝑥
, 𝜙 = ln

[︂
(𝑢+ 𝑌 ) +

√︁
𝑢𝑦 + (𝑢+ 𝑌 )2

]︂
equation (1.1) becomes (1.3).

In work [5] the following statement was proved.

Lemma 1.1. If equation (1.1) possesses a second order 𝑦-integral, then the function 𝜙 is indepen-

dent of the variable 𝑥.

Hence, the 𝑦-interal can be represented as

�̄� = �̄�𝑟 + 𝛽(𝑥, 𝑦, 𝑟)

and this is why the differential substitution

𝑟 = 𝜙(𝑦, 𝑢, 𝑢𝑦)− ℎ(𝑥, 𝑦, 𝑢), 𝑝 = ℎ𝑢, (1.4)

maps solutions of equation (1.1) into solutions of the equation

𝐷�̄�𝑟 +𝐷𝛽 = 0. (1.5)

Let us provide differential substitutions (1.4), equations (1.5) and integrals for Laine equations, see
[2]–[4]. The differential substitution

𝑟 = ln
𝑢𝑦

(𝑢− 𝑥)(𝑢− 𝑦)
(1.6)

relates equation (1.2) with the Moutard equation

𝑟𝑥𝑦 +
1

2
(𝑥− 𝑦)𝑟𝑥𝑒

𝑟 +
1

2
𝑒𝑟 = 0. (1.7)

The above equation possesses a third order 𝑥-integral

𝑤 =
𝑟𝑥𝑥𝑥 − 3𝑟𝑥 · 𝑟𝑥𝑥 + 𝑟3𝑥

𝑟𝑥𝑥 − 𝑟2𝑥
. (1.8)

Then equation (1.2) possesses an 𝑥-integral of form

𝑊 =
𝑧𝑥
𝑧

+ 𝑧, (1.9)

where

𝑧 =
𝑢𝑥𝑥

2(𝑢𝑥 +
√
𝑢𝑥)

−
𝑢𝑥 +

√
𝑢𝑥

𝑢− 𝑥
.

Equation (1.2) also possesses a second order 𝑦-integral:

�̄� =
𝑢𝑦𝑦
𝑢𝑦

− 𝑢𝑦
2

(︂
1

𝑢− 𝑥
+

3

𝑢− 𝑦

)︂
+

1

𝑢− 𝑦
.

A differential substitution

𝑟 = ln

[︃
𝑢+ 𝑌 (𝑦) +

√︀
𝑢𝑦 + (𝑢+ 𝑌 (𝑦))2

𝑢− 𝑥

]︃
(1.10)

maps solutions of equation (1.3) into the solutions of the equation

𝑟𝑥𝑦 −
𝑑

𝑑𝑥
[𝑒𝑟(𝑥+ 𝑌 (𝑦))] = 0. (1.11)

Equation (1.11) possesses a third order 𝑥-integral (1.8), while equation (1.3) possesses integral (1.9),
that is, it coincides with the 𝑥-integral of equation (1.2).

It was also found an 𝑦-integral of equation (1.3) in the form

�̄� =
𝑢𝑦𝑦
2𝑢𝑦

(︃
1− 𝑢+ 𝑌√︀

𝑢𝑦 + (𝑢+ 𝑌 )2

)︃

−
𝑢𝑦 + (𝑢+ 𝑌 )2 + (𝑢+ 𝑌 )

√︀
𝑢𝑦 + (𝑢+ 𝑌 )2

𝑢− 𝑥
+ 𝑢+

(𝑢+ 𝑌 )2 + 2𝑢𝑦 + 𝑌 ′√︀
𝑢𝑦 + (𝑢+ 𝑌 )2

.
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The aim of the present work is the description of equations (1.5) possessing first order 𝑦-integral
and a third order 𝑥-integral.

2. 𝑥-integrals of equation (1.5)

Let us study equation (1.5) possessing third order 𝑥-integrals. We make the change 𝑟 → 𝑢, 𝛽 → −𝑝.
Then equation (1.5) is rewritten in the form

𝐷�̄�𝑢 = 𝐷𝑝, 𝑝 = 𝑝(𝑥, 𝑦, 𝑢). (2.1)

For the sake of convenience of the presentation we introduce the notations

𝑢1 = 𝑢𝑥, 𝑢2 = 𝑢𝑥𝑥, . . . , �̄�1 = 𝑢𝑦, �̄�2 = 𝑢𝑦𝑦, . . . .

We note that an 𝑦-integral of equation (2.1) is given by the formula

�̄� = �̄�1 − 𝑝.

Let 𝑊 = 𝑊 (𝑥, 𝑦, 𝑢, 𝑢1, 𝑢2, 𝑢3) be a 𝑥-integral of equation (2.1). In view of the expression

�̄�𝑊 = 𝑊𝑦 +𝑊𝑢 · �̄�1 +𝑊𝑢1 ·𝐷𝑝+𝑊𝑢2 ·𝐷2𝑝+𝑊𝑢3 ·𝐷3𝑝 = 0, (2.2)

it is clear that 𝑊𝑢 = 0. It is known that if there exists an integral of order 𝑛, 𝑛 ⩾ 2, we can suppose
that it is linear in the higher variable. We let

𝑊 = 𝐴(𝑥, 𝑦, 𝑢1, 𝑢2) · 𝑢3 +𝐵(𝑥, 𝑦, 𝑢1, 𝑢2).

Expression (2.2) is rewritten as

𝐴
(︀
𝑝𝑢 · 𝑢3 + 3𝑝𝑢𝑢 · 𝑢1𝑢2 + 3𝑢2 · 𝑝𝑢𝑥 + 𝑢31 · 𝑝𝑢𝑢𝑢 + 3𝑢21 · 𝑝𝑢𝑢𝑥 + 3𝑢1 · 𝑝𝑥𝑥𝑢 + 𝑝𝑥𝑥𝑥

)︀
+ �̄�𝐵 = 0

or

�̄�𝐴+ 𝑝𝑢𝐴 = 0, (2.3)

𝐴
(︀
3𝑝𝑢𝑢𝑢1𝑢2 + 3𝑢2𝑝𝑢𝑥 + 𝑢31𝑝𝑢𝑢𝑢 + 3𝑢21𝑝𝑢𝑢𝑥 + 3𝑢1𝑝𝑥𝑥𝑢 + 𝑝𝑥𝑥𝑥

)︀
+ �̄�𝐵 = 0. (2.4)

We consider equation (2.3) and the first case when 𝐴 = 𝐴(𝑥, 𝑦). Then by expression (2.3) we find that

𝑝 = −𝐴𝑦

𝐴
· 𝑢+ 𝐸(𝑥, 𝑦).

By means of the change 𝑢 = 𝑣 +𝑄(𝑥, 𝑦), where −𝐴𝑦

𝐴 𝑄+ 𝐸 −𝑄𝑦 = 0, we obtain the equation

𝐷�̄�𝑣 = 𝐷 (𝑎(𝑥, 𝑦) · 𝑣) , (2.5)

in which 𝑎(𝑥, 𝑦) = −𝐴𝑦

𝐴 .
Now we proceed to the case when 𝐴 = 𝐴(𝑥, 𝑦, 𝑢1), 𝐴𝑢1 ̸= 0. Differentiating expression (2.3) in 𝑢1,

we obtain
�̄�𝐴𝑢1 + 2𝐴𝑢1 · 𝑝𝑢 = 0

and taking into consideration that �̄�𝐴+ 𝑝𝑢𝐴 = 0, we have

𝑝𝑢 = −�̄�𝐴

𝐴
= −1

2

�̄�𝐴𝑢1

𝐴𝑢1

,

that is,

�̄� ln
𝐴𝑢1

𝐴2
= 0.

Since we consider a third order 𝑥-integral, then

𝐴𝑢1

𝐴2
= 𝑎(𝑥), 𝑎(𝑥) ̸= 0.

This yields

𝐴 =
�̃�(𝑥)

𝑢1 + 𝑏(𝑥, 𝑦)
.

We can suppose that �̃�(𝑥) = 1, and the change 𝑢 → 𝑢−
∫︀
𝑏(𝑥, 𝑦) 𝑑𝑥 allows us to represent 𝐴 as

𝐴 =
1

𝑢1
.
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By identity (2.3) we find 𝑝𝑥 = 0, that is, in this case we have

𝐴 =
1

𝑢1
, 𝐷�̄�𝑢 = 𝐷𝑝(𝑦, 𝑢).

It remains to consider the case 𝐴 = 𝐴(𝑥, 𝑦, 𝑢1, 𝑢2), 𝐴𝑢2 ̸= 0. Differentiating expression (2.3) in the
variable 𝑢2, we find that

�̄�𝐴𝑢2 + 2𝑝𝑢 ·𝐴𝑢2 = 0.

This implies

𝑝𝑢 = −�̄�𝐴

𝐴
= −1

2

�̄�𝐴𝑢2

𝐴𝑢2

.

Then

𝐴 =
1

𝑢2 + 𝑏(𝑥, 𝑦, 𝑢1)
. (2.6)

Substituting the found 𝐴 into (2.3), we obtain

𝑝𝑢𝑢 · 𝑢21 + 2𝑢1 · 𝑝𝑢𝑥 + 𝑝𝑥𝑥 + 𝑏𝑦 + 𝑏𝑢1 ·𝐷𝑝− 𝑝𝑢 · 𝑏 = 0. (2.7)

Differentiating this identity in the variable 𝑢1, we find

2𝑝𝑢𝑢 · 𝑢1 + 2𝑝𝑢𝑥 + �̄�𝑏𝑢1 = 0.

Then
�̄�𝑏𝑢1𝑢1𝑢1 + 2𝑝𝑢 · 𝑏𝑢1𝑢1𝑢1 = 0.

If 𝑏𝑢1𝑢1𝑢1 ̸= 0, then 𝑝𝑢 = −1
2�̄� ln 𝑏𝑢1𝑢1𝑢1 . And since 𝑝𝑢 = −�̄� ln𝐴, we get

�̄�

(︂
ln

1

𝑢2 + 𝑏
− 1

2
ln 𝑏𝑢1𝑢1𝑢1

)︂
= 0.

Hence, there exists a second order integral, which contradicts to the assumption that the order of the
𝑥-integral is three. Thus, 𝑏𝑢1𝑢1𝑢1 = 0 and

𝑏 =
𝛼

2
· 𝑢21 + 𝛾 · 𝑢1 + 𝛿, (2.8)

where 𝛼, 𝛾, 𝛿 are the functions of the variables 𝑥 and 𝑦. We substitute function (2.8) into equation
(2.7) and we obtain the identities

𝑝𝑢𝑢 +
𝛼𝑦

2
+

𝛼

2
· 𝑝𝑢 = 0, (2.9)

2𝑝𝑢𝑥 + 𝛾𝑦 + 𝛼 · 𝑝𝑥 = 0, (2.10)

𝑝𝑥𝑥 + 𝛿𝑦 + 𝛾 · 𝑝𝑥 − 𝛿 · 𝑝𝑢 = 0. (2.11)

A solution to equation (2.9) is given by the formula

𝑝 = − 2

𝛼
𝐶𝑒−

𝛼
2
𝑢 − 𝛼𝑦

𝛼
𝑢+ 𝜅(𝑦), (2.12)

as 𝛼 ̸= 0.
If 𝛼 = 0, then 𝑝𝑢𝑢 = 0, 𝑝𝑢 = 𝜇(𝑥, 𝑦) and

�̄�

(︂
ln𝐴+

∫︁
𝜇𝑑𝑦

)︂
= 0,

that is, there exists a second order 𝑥-integral. Thus, if 𝐴 = 𝐴(𝑥, 𝑦, 𝑢1, 𝑢2), then formulas (2.6), (2.8),
(2.9)–(2.12) hold true.

To simplify the function 𝑝 in (2.12), in equation (2.1) we make the change

𝑢 = 𝛽(𝑦) · 𝑣 + 𝜇(𝑥, 𝑦).

After simple transformations we obtain an equation (𝑣 → 𝑢)

𝐷�̄�𝑢 = 𝐷(𝑒𝑢 + 𝑑(𝑥, 𝑦)),

where 𝑝 = 𝑒𝑢 + 𝑑(𝑥, 𝑦). Then conditions (2.9)–(2.11) become

𝛼 = −2, 𝛿 = 0, 𝛾𝑥𝑦 = −𝛾 · 𝛾𝑦, 𝑑𝑥 =
1

2
𝛾𝑦.
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Thus, we have proved the following statement.

Lemma 2.1. Let equation (2.1) has a third order 𝑥-integral

𝑊 = 𝐴(𝑥, 𝑦, 𝑢1, 𝑢2) · 𝑢3 +𝐵(𝑥, 𝑦, 𝑢1, 𝑢2).

Then of the following conditions hold:

𝐴 = 𝐴(𝑥, 𝑦), 𝑝 = 𝑎(𝑥, 𝑦) · 𝑢, 𝑎 = −𝐴𝑦

𝐴
, (2.13)

𝐴 =
1

𝑢1
, 𝑝 = 𝑝(𝑦, 𝑢), (2.14)

𝐴 =
1

𝑢2 + 𝑏
, 𝑏 = −𝑢21 + 𝛾𝑢1, 𝑝 = 𝑒𝑢 + 𝑑(𝑥, 𝑦), (2.15)

𝛾𝑥𝑦 = −𝛾 · 𝛾𝑦, 𝑑𝑥 =
1

2
𝛾𝑦.

Under conditions (2.13)–(2.15), identity (2.3) is true and vice versa, condition (2.3) is reduced to one

of (2.13), (2.14), (2.15).

We then consider equation (2.4) in case (2.13):

𝐴 · (3𝑢2 · 𝑎𝑥 + 3𝑢1 · 𝑎𝑥𝑥 + 𝑎𝑥𝑥𝑥 · 𝑢) + �̄�𝐵 = 0. (2.16)

Differentiating (2.16) by the variable 𝑢2, we obtain

3𝑎𝑥 ·𝐴+ �̄�𝐵𝑢2 + 𝑎 ·𝐵𝑢2 = 0,

�̄�𝐵𝑢2𝑢2 + 2𝑎 ·𝐵𝑢2𝑢2 = 0.

We note that 𝑎𝑥 ̸= 0. If 𝑎𝑥 = 0, then 𝐵 = 𝐵(𝑥) and there exists a first order 𝑥-integral 𝑊 = 𝐴 · 𝑢1.
We also have 𝐵𝑢2 ̸= 0, otherwise 𝑎𝑥 = 0.

If 𝐵𝑢2𝑢2 = 0, then

𝐵 = 𝛼(𝑥, 𝑦, 𝑢1) · 𝑢2 + 𝛽(𝑥, 𝑦, 𝑢1). (2.17)

By substituting (2.17) into expression (2.16) we obtain the relation

3𝐴 · 𝑎𝑥 + 𝛼 · 𝑎+ 𝛼𝑦 + 𝛼𝑢1(𝑎𝑥 · 𝑢+ 𝑎 · 𝑢1) = 0, (2.18)

𝐴 · 𝑎𝑥𝑥𝑥 + 𝛼 · 𝑎𝑥𝑥 + 𝑎𝑥 · 𝛽𝑢1 = 0, (2.19)

3𝐴 · 𝑎𝑥𝑥 · 𝑢1 + 2𝛼 · 𝑎𝑥 · 𝑢1 + 𝛽𝑦 + 𝛽𝑢1 · 𝑎 · 𝑢1 = 0. (2.20)

Since 𝑎𝑥 ̸= 0, then 𝛼𝑢1 = 0, that is, 𝛼 = 𝛼(𝑥, 𝑦) and expression (2.18) is rewritten as

3𝐴 · 𝑎𝑥 + 𝛼 · 𝑎+ 𝛼𝑦 = 0. (2.21)

By (2.19) we find

𝛽 = − 1

𝑎𝑥
(𝐴 · 𝑎𝑥𝑥𝑥 + 𝛼 · 𝑎𝑥𝑥) · 𝑢1 + 𝛾(𝑥, 𝑦). (2.22)

Then expression (2.20) becomes

3𝐴 · 𝑎𝑥𝑥 + 2𝛼 · 𝑎𝑥 −
𝜕

𝜕𝑦

[︂
1

𝑎𝑥
(𝐴𝑎𝑥𝑥𝑥 + 𝛼𝑎𝑥𝑥)

]︂
− 𝑎

[︂
1

𝑎𝑥
(𝐴𝑎𝑥𝑥𝑥 + 𝛼𝑎𝑥𝑥)

]︂
= 0 (2.23)

and 𝛾𝑦 = 0. Since 𝑊 = 𝐴𝑢3 + 𝛼𝑢2 + 𝛽, we can suppose that 𝛾 ≡ 0.
By equation (2.23) we find 𝛼 in the form

𝛼 = −

(︂
6𝑎𝑥𝑥 −

(︁
𝑎𝑥𝑥𝑥
𝑎𝑥

)︁′
𝑦

)︂
·𝐴

2𝑎𝑥 −
(︁
𝑎𝑥𝑥
𝑎𝑥

)︁′
𝑦

, (2.24)

the denominator satisfies 2𝑎𝑥 −
(︁
𝑎𝑥𝑥
𝑎𝑥

)︁′
𝑦
̸= 0 since otherwise there exists a second order 𝑥-integral

𝑊 = 𝐴
(︁
𝑢2 − 𝑎𝑥𝑥

𝑎𝑥
𝑢1

)︁
.
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Thus, it follows from (2.21), (2.22) and (2.24) that in the case 𝐵𝑢2𝑢2 = 0 a third order 𝑥-integral
can be represented as

𝑊 = 𝑒−𝑏 ·
(︂
𝑢3 −

𝐸

𝐹𝑎𝑥
(𝑎𝑥𝑢2 − 𝑎𝑥𝑥𝑢1)−

𝑎𝑥𝑥𝑥
𝑎𝑥

𝑢1

)︂
,

where 𝑏𝑦 = 𝑎, 𝐸 = 6𝑎𝑥𝑥 −
(︁
𝑎𝑥𝑥𝑥
𝑎𝑥

)︁′
𝑦
, 𝐹 = 2𝑎𝑥 −

(︁
𝑎𝑥𝑥
𝑎𝑥

)︁′
𝑦
and the condition

𝐸

𝐹
− 3𝑏𝑥 + 𝜅(𝑥) = 0 (2.25)

holds true, where 𝜅(𝑥) is an arbitrary function.
Now let 𝐵𝑢2𝑢2 ̸= 0. Then

�̄� ln𝐵𝑢2𝑢2 = −2𝑎 = 2
𝐴𝑦

𝐴
or

𝐵𝑢2𝑢2 = 𝛾(𝑥) ·𝐴2,

or

𝐵 =
𝛾(𝑥)

2
𝐴2𝑢22 + 𝜀(𝑥, 𝑦, 𝑢, 𝑢1)𝑢2 + 𝜇(𝑥, 𝑦, 𝑢, 𝑢1),

𝛾 ̸= 0. Then

𝑊 = 𝐴𝑢3 +
𝛾

2
𝐴2𝑢22 + 𝜀𝑢2 + 𝜇

and using the change 𝛾 ·𝐴 → 𝐴, we can rewrite the integral as

𝑊 = 𝐴𝑢3 +
1

2
𝐴2𝑢22 + 𝜀𝑢2 + 𝜇,

where 𝜀, 𝜇 are the functions of the variables 𝑥, 𝑦, 𝑢, 𝑢1. Thus,

𝐵 =
𝐴2

2
𝑢22 + 𝜀𝑢2 + 𝜇. (2.26)

Now we write condition (2.16) for the above function 𝐵. We obtain the relations

𝜀𝑢 = 0, 𝜇𝑢 = 0,

𝐴2𝑎𝑥𝑥 + 𝜀𝑢1𝑎𝑥 = 0, (2.27)

3𝐴𝑎𝑥 + 2𝐴2𝑎𝑥𝑢1 + 𝜀𝑦 + 𝜀𝑢1𝑎𝑢1 + 𝜀𝑎 = 0, (2.28)

𝐴𝑎𝑥𝑥𝑥 + 𝜀𝑎𝑥𝑥 + 𝜇𝑢1𝑎𝑥 = 0, (2.29)

3𝐴𝑎𝑥𝑥𝑢1 + 2𝜀𝑎𝑥𝑢1 + 𝜇𝑦 + 𝜇𝑢1𝑎𝑢1 = 0. (2.30)

We note that 𝑎𝑥 ̸= 0. By (2.27) we find

𝜀 = −𝐴2 · 𝑎𝑥𝑥
𝑎𝑥

· 𝑢1 + 𝛿(𝑥, 𝑦), (2.31)

while by (2.29) we get

𝜇 =

(︂
𝑎𝑥𝑥
𝑎𝑥

)︂2 𝐴2

2
𝑢21 −

(︂
𝐴
𝑎𝑥𝑥𝑥
𝑎𝑥

+
𝑎𝑥𝑥
𝑎𝑥

𝛿

)︂
𝑢1 + 𝛾(𝑥, 𝑦). (2.32)

In view of (2.31), (2.32) relations (2.28), (2.30) are rewritten as

3𝐴𝑎𝑥 + 𝛿𝑦 + 𝑎𝛿 = 0, (2.33)

2𝐴2𝑎𝑥 −
(︂
𝐴2𝑎𝑥𝑥

𝑎𝑥

)︂′

𝑦

− 2𝑎𝐴2𝑎𝑥𝑥
𝑎𝑥

= 0, (2.34)

3𝐴𝑎𝑥𝑥 + 2𝑎𝑥𝛿 −
(︂
𝐴
𝑎𝑥𝑥𝑥
𝑎𝑥

+
𝑎𝑥𝑥
𝑎𝑥

𝛿

)︂′

𝑦

− 𝑎

(︂
𝐴
𝑎𝑥𝑥𝑥
𝑎𝑥

+
𝑎𝑥𝑥
𝑎𝑥

𝛿

)︂
= 0, (2.35)

−2𝐴2𝑎𝑥𝑥 +
1

2

[︃(︂
𝑎𝑥𝑥
𝑎𝑥

𝐴

)︂2
]︃′
𝑦

+ 𝑎

(︂
𝑎𝑥𝑥
𝑎𝑥

𝐴

)︂2

= 0, (2.36)



26 Yu.G. VORONOVA, A.V. ZHIBER

𝛾𝑦 = 0. We can suppose that 𝛾(𝑥) ≡ 0. After simple transformations, relations (2.33)–(2.36) can be
represented as

3𝐴𝑎𝑥 + 𝛿𝑦 + 𝑎𝛿 = 0,

2𝑎𝑥 −
(︂
𝑎𝑥𝑥
𝑎𝑥

)︂′

𝑦

= 0,

6𝑎𝑥𝑥 −
(︂
𝑎𝑥𝑥𝑥
𝑎𝑥

)︂′

𝑦

= 0.

But if

2𝑎𝑥 −
(︂
𝑎𝑥𝑥
𝑎𝑥

)︂′

𝑦

= 0,

original equation (2.1) possesses a second order 𝑥-integral

𝑊 = 𝐴

(︂
𝑢2 −

𝑎𝑥𝑥
𝑎𝑥

𝑢1

)︂
, 𝑎 = −𝐴𝑦

𝐴
.

Since we seek a third order 𝑥-integral, such scenario can not be realized.
We proceed to the case (2.14). Equation (2.4) is written as

3𝑝𝑢𝑢𝑢2 + 𝑢21𝑝𝑢𝑢𝑢 +𝐵𝑦 +𝐵𝑢1(𝑝𝑢𝑢1) +𝐵𝑢2(𝑝𝑢𝑢2 + 𝑝𝑢𝑢𝑢
2
1) = 0. (2.37)

By differentiating in the variable 𝑢2, we obtain

3𝑝𝑢𝑢 + �̄�𝐵𝑢2 + 𝑝𝑢 ·𝐵𝑢2 = 0. (2.38)

If 𝐵𝑢2 = 0, then 𝑝𝑢𝑢 = 0, that is, 𝑝 = 𝛼(𝑦)𝑢 + 𝛽(𝑦). In this case there exists a first order 𝑥-integral
𝑊 = 𝛾(𝑦) · 𝑢1, where 𝛾′ + 𝛾 · 𝛼 = 0.

Now let 𝐵𝑢2 ̸= 0, 𝐵𝑢2𝑢2 = 0, that is,

𝐵 = 𝛼(𝑥, 𝑦, 𝑢1) · 𝑢2 + 𝛽(𝑥, 𝑦, 𝑢1).

Expression (2.37) becomes

3𝑝𝑢𝑢 + 𝛼𝑦 + 𝛼𝑢1𝑝𝑢𝑢1 + 𝛼𝑝𝑢 = 0, (2.39)

𝑢21𝑝𝑢𝑢𝑢 + 𝛼𝑝𝑢𝑢𝑢
2
1 + �̄�𝛽 = 0. (2.40)

Differentiating (2.39) in the variable 𝑢1, we obtain:

�̄�𝛼𝑢1 + 2𝑝𝑢 · 𝛼𝑢1 = 0.

If 𝛼𝑢1 = 0, then 𝛼 = 𝛼(𝑥, 𝑦) and

3𝑝𝑢𝑢 + 𝛼𝑦 + 𝛼 · 𝑝𝑢 = 0. (2.41)

A solution to equation (2.41) is given by the formula

𝑝 = −𝛼𝑦

𝛼
· 𝑢− 3

𝜅(𝑥, 𝑦)

𝛼
· 𝑒−

1
3
𝛼𝑢 + 𝜇(𝑥, 𝑦).

Since 𝑝𝑥 = 0, we have either

𝜅 = 0,
𝛼𝑦

𝛼
= 𝛿(𝑦), 𝜇 = 𝜇(𝑦),

𝑝 = −𝛿(𝑦) · 𝑢+ 𝜇(𝑦), (2.42)

or

𝜅 = 𝜅(𝑦) ̸= 0,
𝛼𝑦

𝛼
= 𝛿(𝑦), 𝛼 = 𝛼(𝑦), 𝜇 = 𝜇(𝑦),

𝑝 = −𝛿(𝑦) · 𝑢− 3
𝜅(𝑦)

𝛼(𝑦)
· 𝑒−

1
3
𝛼𝑢 + 𝜇(𝑦). (2.43)

In case (2.39), (2.40), (2.42) there exists a first order 𝑥-integral 𝑊 = 𝛾(𝑦) · 𝑢1. And in case (2.39),

(2.40), (2.43) there exists a second order 𝑥-integral 𝑊 = 𝑢2
𝑢1

+ 𝛼(𝑦)
3 · 𝑢1. Thus, both these situations

are not realized.
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If 𝛼𝑢1 ̸= 0, then

�̄� ln𝛼𝑢1 + 2𝑝𝑢 = 0

or

�̄� ln𝛼𝑢1 + 2�̄� ln𝑢1 = 0.

This implies

𝛼 = −𝜀(𝑥)

𝑢1
+ 𝛾(𝑥, 𝑦). (2.44)

In view of the above identity relation (2.44) becomes

3𝑝𝑢𝑢 + 𝛾𝑦 + 𝛾𝑝𝑢 = 0. (2.45)

Since 𝑝𝑥 = 0, then 𝛾 = 𝛾(𝑦). Equation (2.45) coincides with (2.41) (𝛼 → 𝛾). Hence, this case also is
not realized.

We finally consider the case 𝐵𝑢2𝑢2 ̸= 0. Differentiating equation (2.38) in the variable 𝑢2, we find

�̄�𝐵𝑢2𝑢2 + 2𝑝𝑢 ·𝐵𝑢2𝑢2 = 0

or

�̄� ln𝐵𝑢2𝑢2 + 2�̄� ln𝑢1 = 0.

This yields

𝐵 = 𝛼(𝑥) ·
(︂
𝑢2
𝑢1

)︂2

+ 𝛽(𝑥, 𝑦, 𝑢1) · 𝑢2 + 𝛾(𝑥, 𝑦, 𝑢1). (2.46)

Substituting (2.46) into (2.37), we obtain

(3 + 2𝛼) · 𝑝𝑢𝑢 + (𝛽 + 𝑢1𝛽𝑢1) · 𝑝𝑢 + 𝛽𝑦 = 0, (2.47)

𝑢21 · 𝑝𝑢𝑢𝑢 + 𝛾𝑦 + 𝑝𝑢 · 𝑢1 · 𝛾𝑢1 + 𝑝𝑢𝑢 · 𝑢21 · 𝛽 = 0. (2.48)

Then 𝜕
𝜕𝑢1

(𝛽 + 𝑢1𝛽𝑢1) = 0, otherwise 𝑝𝑢𝑢 = 0 and 𝐵𝑢2 = 0. We find

𝛽 = 𝜀(𝑥, 𝑦) +
𝛿(𝑥, 𝑦)

𝑢1

and substitute the expression for 𝛽 into (2.47). This gives 𝛿𝑦 = 0 and

(3 + 2𝛼(𝑥)) · 𝑝𝑢𝑢 + 𝜀(𝑥, 𝑦) · 𝑝𝑢 + 𝜀𝑦 = 0.

If 3 + 2𝛼 = 0, then 𝜀 = 0 and 𝛽 = 𝛿(𝑥)
𝑢1

. Now we consider (2.48):

𝑢21 · 𝑝𝑢𝑢𝑢 + 𝛾𝑦 + 𝛾𝑢1 · 𝑢1 · 𝑝𝑢 + 𝑝𝑢𝑢 · 𝑢1 · 𝛿 = 0.

For 𝛿(𝑥) ̸= 0 we have

𝑝𝑢𝑢 = 𝑐1𝑝𝑢 + 𝑐2, 𝑝𝑢𝑢𝑢 = 𝑎1𝑝𝑢 + 𝑎2, 𝑐𝑖 = 𝑐𝑖(𝑦), 𝑎𝑖 = 𝑎𝑖(𝑦), 𝑖 = 1, 2.

Since 𝑝𝑢 ̸= 0, then 𝑐21 = 𝑎1, 𝑐1𝑐2 = 𝑎2 and

𝑝𝑢𝑢 = 𝑐1𝑝𝑢 + 𝑐2, 𝑝𝑢𝑢𝑢 = 𝑐21𝑝𝑢 + 𝑐1𝑐2. (2.49)

Substituting (2.49) into identity (2.48), we obtain the following relations

𝛾𝑢1 = −𝑐21𝑢1 − 𝑐1𝛿, 𝛾𝑦 = −𝑐1𝑐2𝑢
2
1 − 𝑐2𝛿𝑢1.

This implies 𝑐′1 = 𝑐2. Then

𝑝𝑢𝑢 = 𝑐1𝑝𝑢 + 𝑐′1, 𝑝𝑢𝑢𝑢 = 𝑐21𝑝𝑢 + 𝑐1𝑐
′
1.

In this case equation (2.1) possesses a second order 𝑥-integral 𝑊 = 𝑢2
𝑢1

− 𝑐1(𝑦) · 𝑢1 and this case can
not be realized.

Let 𝛿(𝑥) = 0, then 𝛽 = 0 and relation (2.48) becomes

𝑝𝑢𝑢𝑢 +
𝛾𝑦
𝑢21

+
𝛾𝑢1

𝑢1
· 𝑝𝑢 = 0.



28 Yu.G. VORONOVA, A.V. ZHIBER

Then
𝛾𝑢1

𝑢1
= 𝜇(𝑥, 𝑦),

𝛾𝑦
𝑢21

= 𝜅(𝑥, 𝑦), (2.50)

𝑝𝑢𝑢𝑢 + 𝜅(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) · 𝑝𝑢 = 0.

Since 𝑝𝑥 = 0, then 𝜇𝑥 = 0 and 𝜅𝑥 = 0. It follows from (2.50) that 𝜇′ = 2𝜅, 𝛾 = 𝜇(𝑦)
2 𝑢21 and

𝑝𝑢𝑢𝑢 + 𝜇(𝑦) · 𝑝𝑢 +
1

2
𝜇′(𝑦) = 0.

In this case we represent a third order 𝑥-integral in the form

𝑊 =
𝑢3
𝑢1

− 3

2
·
(︂
𝑢2
𝑢1

)︂2

+
𝜇(𝑦)

2
· 𝑢21.

Let 3 + 2𝛼 ̸= 0. Then by equation (2.47) we obtain

𝛽 + 𝑢1𝛽𝑢1

3 + 2𝛼(𝑥)
= 𝜇(𝑦),

𝛽𝑦
3 + 2𝛼(𝑥)

= 𝜅(𝑦), (2.51)

𝑝𝑢𝑢 + 𝜇(𝑦) · 𝑝𝑢 + 𝜅(𝑦) = 0.

By relations (2.51) we find 𝜇′(𝑦) = 𝜅(𝑦). This case is not realized since equation (2.1) possesses a
𝑥-integral

𝑊 =
𝑢2
𝑢1

− 𝜇(𝑦) · 𝑢1.

We finally consider case (2.15). We make the change 𝐵 = 𝐴 ·𝐶, and then by (2.3), �̄�𝐵 = 𝐴 · (�̄�𝐶−
𝑒𝑢 · 𝐶) and equation (2.4) becomes

3𝑒𝑢 · 𝑢1𝑢2 + 𝑢31 · 𝑒𝑢 + 𝑑𝑥𝑥𝑥 + �̄�𝐶 − 𝑒𝑢 · 𝐶 = 0. (2.52)

This yields

�̄�𝐶𝑢2𝑢2 + 𝑒𝑢 · 𝐶𝑢2𝑢2 = 0. (2.53)

If 𝐶𝑢2𝑢2 = 0, that is, 𝐶 = 𝛼(𝑥, 𝑦, 𝑢1) · 𝑢2 + 𝛽(𝑥, 𝑦, 𝑢1), by relation (2.52) we obtain the identity

3𝑢1 + 𝑢1 · 𝛼𝑢1 = 0, (2.54)

𝑢31 + 𝛼 · 𝑢21 + 𝑢1 · 𝛽𝑢1 − 𝛽 = 0, (2.55)

𝛼𝑦 + 𝛼𝑢1 · 𝑑𝑥 = 0, (2.56)

𝑑𝑥𝑥𝑥 + 𝛼 · 𝑑𝑥𝑥 + 𝛽𝑦 + 𝛽𝑢1 · 𝑑𝑥 = 0. (2.57)

By (2.54), (2.56) we find 𝛼 in the form

𝛼 = −3𝑢1 + 3 ·
∫︁

𝑑𝑥(𝑥, 𝑦) 𝑑𝑦.

By equation (2.55), (2.57) we easily get

𝛽 = 𝑢31 − 𝜀 · 𝑢21 + 𝜇(𝑥, 𝑦) · 𝑢1,

where

𝜇 = −𝑑𝑥𝑥𝑥
𝑑𝑥

+ 3
𝑑𝑥𝑥
𝑑𝑥

·
∫︁

𝑑𝑥(𝑥, 𝑦) 𝑑𝑦,

and also the relation (︂
𝑑𝑥𝑥
𝑑𝑥

)︂′

𝑦

+ 2𝑑𝑥 = 0

holds. Then a third order 𝑥-integral becomes

𝑊 =
1

𝑢2 − 𝑢21 −
𝑑𝑥𝑥
𝑑𝑥

𝑢1

(︂
𝑢3 − 3𝑢1𝑢2 + 𝑢31 −

𝑑𝑥𝑥𝑥
𝑑𝑥

𝑢1

)︂
+ 3

∫︁
𝑑𝑥(𝑥, 𝑦) 𝑑𝑦

and at the same time,

𝑑𝑥𝑦 + 2𝑑 · 𝑑𝑥 = 𝜀(𝑦) · 𝑑𝑥.
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It remains to treat the case 𝐶𝑢2𝑢2 ̸= 0. By identity (2.53) we find

𝐶𝑢2𝑢2 =
𝜙(𝑥)

𝑢2 + 𝑏
, 𝜙(𝑥) ̸= 0.

Then
𝐶 = 𝜙(𝑥) · ((𝑢2 + 𝑏) · ln(𝑢2 + 𝑏)− 𝑢2) + 𝛼(𝑥, 𝑦, 𝑢1)𝑢2 + 𝛽(𝑥, 𝑦, 𝑢1).

We substitute the latter expression for 𝐶 into equation (2.54) and we get 𝜙(𝑥) = 0, which is a
contradiction. Thus, this case is not realized. As a result, we have proved the following theorem.

Theorem 2.1. If equation (2.1) possesses a third order 𝑥-integral and a first order 𝑦-integral �̄� =
�̄�1 − 𝑝, then one of the following three cases is realized:

1) 𝑝 = 𝑎(𝑥, 𝑦) · 𝑢, 𝑊 = 𝑒−𝑏 ·
(︂
𝑢3 −

𝐸

𝐹𝑎𝑥
(𝑎𝑥𝑢2 − 𝑎𝑥𝑥𝑢1)−

𝑎𝑥𝑥𝑥
𝑎𝑥

𝑢1

)︂
,

where 𝑏𝑦 = 𝑎, 𝐸 = 6𝑎𝑥𝑥 −
(︂
𝑎𝑥𝑥𝑥
𝑎𝑥

)︂′

𝑦

, 𝐹 = 2𝑎𝑥 −
(︂
𝑎𝑥𝑥
𝑎𝑥

)︂′

𝑦

and condition (2.25) holds;

2) 𝑝𝑢𝑢𝑢 + 𝜇(𝑦) · 𝑝𝑢 +
1

2
𝜇′(𝑦) = 0, 𝑊 =

𝑢3
𝑢1

− 3

2
·
(︂
𝑢2
𝑢1

)︂2

+
𝜇(𝑦)

2
· 𝑢21;

3) 𝑝 = 𝑒𝑢 + 𝑑(𝑥, 𝑦), 𝑑𝑥𝑦 + 2𝑑 · 𝑑𝑥 = 𝜀(𝑦) · 𝑑𝑥,

𝑊 =
1

𝑢2 − 𝑢21 −
𝑑𝑥𝑥
𝑑𝑥

𝑢1

(︂
𝑢3 − 3𝑢1𝑢2 + 𝑢31 −

𝑑𝑥𝑥𝑥
𝑑𝑥

𝑢1

)︂
+ 3

∫︁
𝑑𝑥(𝑥, 𝑦) 𝑑𝑦,

where 𝜇(𝑦), 𝜀(𝑦) are arbitrary functions.

3. Differential substitutions of Laine equations (1.2), (1.3)

In this section we consider differential substitutions relating equations (1.2), (1.3). In order to do
this, in equation (1.2) we change the variable 𝑦 by 𝑧:

𝑢𝑥𝑧 =

(︂
𝑢𝑧

𝑢− 𝑥
+

𝑢𝑧
𝑢− 𝑧

)︂
𝑢𝑥 +

𝑢𝑧
𝑢− 𝑥

√
𝑢𝑥. (3.1)

By the differential substitution

𝑟 = ln
𝑢𝑧

(𝑢− 𝑥)(𝑢− 𝑧)
(3.2)

this equation is reduced to the Moutard equation

𝐷�̄�𝑟 =
1

2
𝐷 [𝑒𝑟(𝑧 − 𝑥)] . (3.3)

The second Laine equation

𝑣𝑥𝑦 = 2

[︂
(𝑣 + 𝑌 )2 + 𝑣𝑦 + (𝑣 + 𝑌 )

√︁
(𝑣 + 𝑌 )2 + 𝑣𝑦

]︂
×

[︃√
𝑣𝑥 + 𝑣𝑥
𝑣 − 𝑥

− 𝑣𝑥√︀
(𝑣 + 𝑌 )2 + 𝑣𝑦

]︃
(3.4)

is reduced by the differential substitution

𝑠 = ln

[︃
𝑣 + 𝑌 (𝑦) +

√︀
𝑣𝑦 + (𝑣 + 𝑌 (𝑦))2

𝑣 − 𝑥

]︃
(3.5)

to the equation
𝐷�̄�𝑠 = 𝐷 [𝑒𝑠(𝑥+ 𝑌 (𝑦))] . (3.6)

Let us show that equations (3.6) and (3.3) are mutually related. We let 𝑧 = −𝑌 (𝑦), then

𝑠(𝑥, 𝑦) = 𝑞(𝑥, 𝑧).

We rewrite equation (3.6) as

𝑞𝑥𝑧 = 𝐷
[︁
(𝑧 − 𝑥)𝑒𝑞−ln𝑌 ′(𝑦)

]︁
.

We let ln𝑌 ′(𝑦) = 𝑎(𝑧),
𝑟 = 𝑞 − 𝑎(𝑧) + ln 2. (3.7)
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Then we obtain equation (3.3)

𝑟𝑥𝑧 =
1

2
𝐷 [𝑒𝑟(𝑧 − 𝑥)] .

We substitute (3.2) into expression (3.7)

ln
𝑢𝑧

(𝑢− 𝑥)(𝑢− 𝑧)
= 𝑞 − ln𝑌 ′ + ln 2,

make the change 𝑧 = −𝑌 (𝑦) and we get

𝑠 =
𝑢𝑦

2(𝑥− 𝑢)(𝑢+ 𝑌 )
.

In view of (3.5) we obtain

𝑢𝑦
2(𝑥− 𝑢)(𝑢+ 𝑌 (𝑦))

=
𝑣 + 𝑌 (𝑦) +

√︀
𝑣𝑦 + (𝑣 + 𝑌 (𝑦))2

𝑣 − 𝑥
. (3.8)

We differentiate expression (3.8) in 𝑥 and replace 𝑢𝑥𝑧 and 𝑣𝑥𝑦 by equations (3.1) and (3.4). We obtain
the relation √

𝑢𝑥 + 1

𝑢− 𝑥
=

√
𝑣𝑥 + 1

𝑣 − 𝑥
. (3.9)

Thus, we have obtained that equations (3.1) and (3.4) are related by differential expression (3.8),
(3.9).
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