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ON RATE OF DECREASING OF EXTREMAL

FUNCTION IN CARLEMAN CLASS

R.A. GAISIN

Abstract. We study the issues related with Levinson-Sjöberg-Wolf type theorems in
the complex analysis and, in particular, we discuss a famous question posed in 70s by
E.M. Dyn’kin on an effective bound for majorant of the growth of an analytic function in
the vicinity of the set of singular points and another close problem on the rate of decaying
of an extremal function in a non-quasianalytic Carleman class in the vicinity of the point,
at which all the derivatives of the functions from this class vanish. Exact asymptotic esti-
mates for the best majorant for the growth in the vicinity of the singularities were found
by V. Matsaev and M. Sodin in 2002.

Some bounds, both from above and below, for an extremal function in the Carleman class
were obtained by A.M. Gaisin in 2018 but they turned out to be not very close to exact
values of this function. In the present paper we obtain sharp two-sided estimates for the
extremal function.

Keywords: non-quasianalytic Carleman class, Levinson-Sjöberg type theorem, extremal
function, regular sequence, associated weight.
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1. Introduction

In 1938 N. Levinson proved a theorem, see [1], which provided a deep generalization of the
maximum modulus principle, see [2]. This result played an important role in the theory of
quasianalytic functions, see [3]–[7].

Theorem 1.1 (N. Levinson). Let 𝑀(𝑦) be a positive monotonically decreasing in the semi-
interval (0, 𝑏] function, 𝑀(𝑦) ↑ ∞ as 𝑦 ↓ 0, 𝑀(𝑏) = 𝑒. Let 𝐹𝑀 be a family of functions analytic
in the rectangle

𝑃 = {𝑧 = 𝑥+ 𝑖𝑦 : |𝑥| < 𝑎, |𝑦| < 𝑏}
and obeying the estimate |𝐹 (𝑧)| ⩽𝑀(|𝑦|) in 𝑃 . If

𝑏∫︁
0

ln ln𝑀(𝑦)𝑑𝑦 <∞, (1.1)

then for each 𝛿 > 0 there exists a constant 𝐶 depending only on 𝛿 and 𝑀(𝑦) such that all
functions 𝑓 ∈ 𝐹𝑀 satisfy the estimate |𝐹 (𝑧)| ⩽ 𝐶 in the rectangle

𝑃𝛿 = {𝑧 = 𝑥+ 𝑖𝑦 : |𝑥| < 𝑎− 𝛿, |𝑦| < 𝑏}.

We note that independently of N. Levinson, and it seems to be simultaneously with him,
this theorem in a slightly different form was proved by N. Sjöberg, see [8]. However, the next
theorem was established by T. Carleman much earlier, see [9].
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Theorem 1.2 (T. Carleman). Let 𝑀(𝜙) be a positive on the interval (0, 2𝜋) function such
that ln𝑀(𝜙) > 1 and the integral

2𝜋∫︁
0

ln ln𝑀(𝜙)𝑑𝜙

converges. Then each entire function 𝑓(𝑧) satisfying the inequality

|𝑓(𝑧)| ⩽𝑀(𝜙), 𝜙 = arg 𝑧, 0 < 𝜙 < 2𝜋,

is constant: 𝑓(𝑧) ≡ const.

Exactly this result by T. Carleman was developed later by N. Levinson and N. Sjöberg, who
extended it to the most general case. We however mention that Carleman’s theorem is true with
no additional restrictions for the majorant 𝑀(𝜙). Later F. Wolf extended Levinson-Sjöberg
theorem to a wider class of functions, see [10]. In [2] another simpler proof of Theorem 1.1 was
given.
We provide one of the versions of this theorem, see [11], [12].

Theorem 1.3 (Y. Domar). Let 𝐷 = {𝑧 = 𝑥 + 𝑖𝑦 : −𝑎 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏} and 𝑀(𝑦) be
a Lebesgue measurable function and 𝑀(𝑦) ⩾ 𝑒 as 0 < 𝑦 < 𝑏. If integral (1.1) converges, then
there exists a decreasing function 𝑚(𝛿) depending only on 𝑀(𝑦) and finite for 𝛿 > 0 such that
if 𝑓(𝑧) is analytic in 𝐷 and

|𝑓(𝑧)| ⩽𝑀(Im 𝑧), (1.2)

then

|𝑓(𝑧)| ⩽ 𝑚(dist(𝑧, 𝜕𝐷)), 𝑧 ∈ 𝐷.

Corollary 1.1. Let 𝐽 = {𝑓} be a family of analytic in 𝐷 functions satisfying condition
(1.2). If integral (1.1) converges, then the family of the functions 𝐽 is normal, that is, relatively
compact.

As P. Koosis showed, condition (1.1) is necessary and sufficient for the Levinson’s theorem,
see [11]: if integral (1.1) diverges, then there exists a sequence of polynomials 𝑃𝑛(𝑧) such that
1) |𝑃𝑛(𝑧)| ⩽ 𝐾𝑀(|𝑦|), 𝐾 = const, 𝑛 ⩾ 1, for all 𝑧 in the rectangle

𝑃 = {𝑧 = 𝑥+ 𝑖𝑦 : |𝑥| < 𝑎, |𝑦| < 𝑏};
2) as 𝑛→ ∞,

𝑃𝑛(𝑧) → 𝐹 (𝑧) =

{︂
1, if 𝑧 ∈ 𝑃 ∩ C+,

−1, if 𝑧 ∈ 𝑃 ∩ C−.

Here C+ = {𝑧 = 𝑥+ 𝑖𝑦 : 𝑦 > 0}, C− = {𝑧 = 𝑥+ 𝑖𝑦 : 𝑦 < 0}.
We note that under some additional restrictions for the behavior of the function 𝑀(𝑦) a

similar statement was proved by N. Levinson in [1]. It was shown [12] that in Levinson’s
theorem the monotonicity condition for the function 𝑀(𝑦) can be replaced by the Lebesgue
measurability of this function.
In [7] a generalization of the Levinson’s theorem was obtained to the case, when the real

segment [−𝑎, 𝑎] is replaced by some rectifiable arc 𝛾, namely, an arc of a bounded slope.
Let 𝐸 be a compact set in R and𝑀 be the majorant from the Levinson’s theorem, for which

bilogarithmic condition (1.1) holds. In [4] there was introduced a set 𝐹 0
𝐸(𝑀) of functions 𝑓

defined and analytic outside 𝐸 such that

|𝑓(𝑧)| ⩽𝑀(| Im 𝑧|), 𝑧 ∈ C ∖ 𝐸.
In this estimate 𝑀 is an arbitrary decreasing on R+ = (0,+∞) function coinciding with the
majorant from Theorem 1.1 on (0, 𝑏]. In what follows we assume that 𝑀(𝑦) ↓ 0 as 𝑦 → +∞.
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According to Theorem 1.1, the set 𝐹 0
𝐸(𝑀) is normal, that is, for each 𝛿 > 0

𝑀*(𝛿) = sup
{︀
|𝑓(𝑧)| : 𝑓 ∈ 𝐹 0

𝐸(𝑀), 𝜌(𝑧, 𝐸) ⩾ 𝛿
}︀
<∞.

Here 𝜌(𝑧, 𝐸) = inf
𝜉∈𝐸

|𝑧 − 𝜉|, 𝑧 ∈ C. Thus, 𝑀* is a smallest function obeying

|𝑓(𝑧)| ⩽𝑀*(𝜌(𝑧, 𝐸)), 𝑧 ∈ C ∖ 𝐸,

for all 𝑓 ∈ 𝐹 0
𝐸(𝑀). For the sake of definiteness, we can suppose that 𝐸 is the segment 𝐼 = [0, 1].

In [4] there was posed a problem (Problem 1) on an “effective estimate for the majorant𝑀*”.
Suppose that the function𝑀 is logarithmically convex, that is, ln𝑀(𝑒−𝜎) is a convex function

of 𝜎. We let

𝑀𝑛 = sup
𝛿>0

𝑛!

𝑀(𝛿)𝛿𝑛+1
, 𝑛 ⩾ 0.

Then, as it is known, the Carleman class on the segment 𝐼,

𝐶𝐼(𝑀𝑛) =
{︀
𝑓 :

⃦⃦
𝑓 (𝑛)

⃦⃦
⩽ 𝑐𝐾𝑛

𝑓𝑀𝑛, 𝑛 ⩾ 0
}︀
, ‖𝑓‖ = max

𝐼
|𝑓(𝑥)|,

is quasianalytic if and only if integral (1.1) diverges, see [4]. In what follows by 𝐶𝑁
𝐼 (𝑀𝑛) we

denote a normalized class, 𝐶𝐼(𝑀𝑛) with constant 𝑐 = 1, 𝐾𝑓 = 1. Following work [4], we also
introduce the notation

𝑃 (𝛿) = sup
{︀
|𝑓(𝛿)| : 𝑓 ∈ 𝐶𝑁

𝐼 (𝑀𝑛), 𝑓 (𝑛)(0) = 𝑓 (𝑛)(1) = 0, 𝑛 ⩾ 0
}︀
, 0 < 𝛿 ⩽ 1.

As it was stated in work [6], see Remark to Theorem 3 in Sect. 2.4, the problem on effec-
tive estimate for the majorant “in form 𝑀* ≃ 𝑃−1 with unknown 𝑃 was established in [4]”.
Hereinafter the writing 𝑀* ≃ 𝑃−1 means that

𝐴𝑃−1(𝑎𝛿) ⩽𝑀*(𝛿) ⩽ 𝐵𝑃−1(𝑏𝛿), (1.3)

where 0 < 𝑎 < 𝑏, 0 < 𝐴 < 𝐵 are some constants. We stress that estimates (1.3) in [4] were
not written and only a lower bound was provided. The proof of the upper bound in the same
inequalities in [4] was not given. It was shown in [13] that estimates of kind (1.3) in fact hold
not for the function 𝑀*, but for a so-called associated weight.
As in work [4], here we consider only regular sequences {𝑀𝑛}, i.e. such that the numbers

𝑚𝑛 = 𝑀𝑛

𝑛!
satisfy the conditions:

1) 𝑚
1
𝑛
𝑛 → ∞, 𝑛→ ∞; 2) sup

𝑛⩾0

(︁
𝑚𝑛+1

𝑚𝑛

)︁ 1
𝑛
<∞;

3) 𝑚2
𝑛 ⩽ 𝑚𝑛−1𝑚𝑛+1, 𝑛 ⩾ 1.

The Carleman class 𝐶𝐼 ((𝑛!)
1+𝛼) (𝛼 > 0) is called the a Gevrey class. This class is regular

since the numbers 𝑀𝑛 = (𝑛!)1+𝛼 satisfy all Conditions 1)–3).
An associated weight is a function 𝐻*(𝑟) = [ℎ*(𝑟)]−1, see [4],

ℎ*(𝑟) = inf
𝑛⩾0

(𝑚𝑛𝑟
𝑛).

It is clear that ℎ*(𝑟) ↑ ∞ as 𝑟 → ∞, ℎ*(0+) = 0. By Property 2) in the definition of regular
sequences we see that ℎ*(𝑟) ⩽ 𝑟ℎ*(𝑞𝑟) for some 𝑞 > 1. We also have

1

ℎ*(𝑟)
= sup

𝑛⩾0

1

𝑚𝑛𝑟𝑛
= sup

𝑛⩾0

𝑛!

𝑀𝑛𝑟𝑛
𝑑𝑒𝑓
≡ 𝐻*(𝑟).

As it is known, see [4],

𝑀𝑛 = sup
𝑟>0

𝑛!

𝐻*(𝑟)𝑟𝑛
, 𝑛 ⩾ 0.
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The class 𝐶𝐼(𝑀𝑛) is quasianalytic if and only if one of the following equivalent conditions
hold [4]:

1)
∞∑︁
𝑛=0

𝑀𝑛

𝑀𝑛+1

= ∞; 2)

1∫︁
0

ln+ ln𝐻*(𝑡)𝑑𝑡 = ∞.

Using a duality, V. Matsaev showed that the Levinson-Sjöberg is equivalent to Denjoy-
Carleman theorem on the quasianalyticity of the class 𝐶𝐼(𝑀𝑛), see [3]. Later this fact was
rediscovered by E.M. Dynkin in [5], while in work [6] in terms of the quantity

𝐽𝑀(𝑠) = sup

{︂
|𝑔(𝑠)| : sup

𝐼
|𝑔(𝑛)(𝑡)| ⩽𝑀𝑛, 𝑔(𝑛)(0) = 0, 𝑛 ⩾ 0

}︂
another problem was formulated, dual to Problem 1, namely, a relation 𝑀* ≃ 𝐽𝑀 . In the
same work two-sided estimates for 𝑀* have been established, but they turned to be not only
non-sharp but also wrong, for more details see the survey and discussion in [14], [15]. Sharp
estimates for the majorant 𝑀* in another way were obtained in [14]. Let us formulate this
result providing an answer for Problem 1 from [4].
Let

𝑃𝜙(𝑠) = sup
𝑦>0

⎡⎣2𝑦

𝜋

∞∫︁
0

𝜙(𝑡)𝑑𝑡

𝑡2 + 𝑦2
− 𝑦𝑠

⎤⎦ , (1.4)

where the weight function (logarithmic weight) satisfies the conditions:
1) 𝜙(𝑡) ⩾ 0, 𝑡 ∈ R+;

2) 𝜙(𝑡) ↑ ∞ as 𝑡→ +∞, lim
𝑡→∞

𝜙(𝑡)
ln 𝑡

= ∞;

3)

∫︁
R

𝜙(𝑡)

𝑡2 + 1
𝑑𝑡 <∞;

4) 𝜙(𝑒𝑥) is convex in 𝑥 on R+.

Sometimes an additional condition is imposed on the function 𝜙:
5) the function 𝜙(𝑡) is concave on R+ and

lim
𝑡→∞

𝑡𝜙′(𝑡+ 0) = ∞.

For the logarithm of the majorant 𝑀 in Problem 1 (it obeys condition (1.1)) we consider a
lower Legendre transformation

𝜙(𝑟) = inf
𝑠>0

(ln𝑀(𝑠) + 𝑟𝑠) .

Suppose that
lim
𝑠→0

𝑠𝑛𝑀(𝑠) = ∞ (1.5)

for each 𝑛 > 0. Then the weight function 𝜙 immediately satisfies Conditions 1)–3) as well as 5),
see [14]. If the functions ln𝑀(𝑒−𝑠) and ln𝑀(𝑡) are convex, then the function 𝜙(𝑒𝑥) is convex
in 𝑥 ∈ R+, that is, Condition 4) holds, see [14].
In [14] the following theorem was proved.

Theorem 1.4. Let the majorant𝑀 from Theorem 1.1 satisfies Conditions (1.1), (1.5), while
the functions ln𝑀(𝑒−𝑠) and ln𝑀(𝑡) are convex. Then

ln𝑀*(𝑠) = (1 + 𝑜(1)) ln𝑃𝜙(𝑠),

as 𝑠 → 0, where 𝑃𝜙 is a function given by formula (1.4) and 𝜙 is a lower Legendre transform
of the function ln𝑀(𝑡)1.

1In [14] this theorem was proved for the case 𝐸 = {0}. But it is true also for the segment 𝐼.
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The aim of the present paper is to find sharp two-sided estimates for 𝐽𝑀(𝑠) on 𝐼.

2. Second Dyn’kin problem on estimate of function 𝐽𝑀(𝑠)

The history of the issue goes back to work by T. Bang [16].

Let {𝑀𝑛}∞𝑛=0 be an arbitrary positive sequence, 𝑀
1
𝑛
𝑛 → ∞ and it is not necessarily regular.

Then there exists a maximal logarithmically convex minorant {𝑀 𝑐
𝑛}∞𝑛=0, i.e., such that

𝑀 𝑐
𝑛 ⩽𝑀𝑛, 𝑛 ⩾ 0; 𝑀2

𝑛 ⩽𝑀𝑛−1𝑀𝑛+1, 𝑛 ⩾ 1.

The sequence {𝑀 𝑐
𝑛} is called a convex regularization of {𝑀𝑛} by means of logarithms, see [17].

Let 𝑃 = {𝑛𝑖} be a sequence of main indices, that is, 𝑀𝑛𝑖
= 𝑀 𝑐

𝑛𝑖
, 𝑖 ⩾ 1. In [16] for each

function 𝑓 ∈ 𝐶∞(𝐼) the quantity

𝐵𝑓 (𝑥) = inf
𝑝∈𝑃

[︂
max

(︂
𝑒−𝑝, max

0⩽𝑛⩽𝑝

|𝑓 (𝑛)(𝑥)|
𝑒𝑛𝑀 𝑐

𝑛

)︂]︂
(2.1)

is considered. It is continuous in 𝑥 on 𝐼.
The main statement in [16] is the following Bang’s theorem.

Theorem 2.1. If 𝑓 ∈ 𝐶∞(𝐼) and
⃦⃦
𝑓 (𝑛)

⃦⃦
⩽𝑀𝑛, 𝑛 ⩾ 0, then the estimate

𝐵𝑓 (𝑥) ⩾ 𝑒−𝑞

with some 𝑞 ∈ N implies that

𝐵𝑓 (𝑥+ ℎ) ⩽ 𝐵𝑓 (𝑥) exp

(︂
𝑒|ℎ|

𝑀 𝑐
𝑞

𝑀 𝑐
𝑞−1

)︂
. (2.2)

We note that in this theorem 𝑞 is not necessarily belongs to the set of main indices 𝑃 . The
parameter ℎ is chosen so that the shift 𝑥+ ℎ belongs to 𝐼.

Remark 2.1. Denoting 𝐿(𝑥) = ln𝐵𝑓 (𝑥), under the assumptions of Bang theorem the esti-
mates hold [16]:

1) for all 𝑥, 𝑥+ ℎ ∈ 𝐼,

|𝐿(𝑥+ ℎ)− 𝐿(𝑥)| ⩽ 𝑒
𝑀 𝑐

𝑞

𝑀 𝑐
𝑞−1

|ℎ|;

2) at points, where the derivative 𝐿′(𝑥) exists, the estimate

|𝐿′(𝑥)| ⩽ 𝑒
𝑀 𝑐

𝑞

𝑀 𝑐
𝑞−1

holds.
As 𝑞, we can take an index 𝑝 ∈ 𝑃 , at which the infimum in (2.1) is attained.

Theorem 2.1 was employed by T. Bang for proving a criterion of a quasianalyticity of the class
𝐶𝐼(𝑀𝑛). We are interesting only in its sufficient part since its proof implies a simple estimate
for each function 𝑓 in the class 𝐶0

𝐼 (𝑀𝑛) = {𝑓 : 𝑓 ∈ 𝐶𝑁
𝐼 (𝑀𝑛), 𝑓

(𝑛)(0) = 𝑓 (𝑛)(1) = 0, 𝑛 ⩾ 0} in
the vicinity of the point 𝑥 = 0, which in a series is incorrectly extended also for the extremal
function 𝐽𝑀(𝑀𝑛), see [6], [14].
Let us provide a short proof of Bang’s statement: if the class 𝐶𝐼(𝑀𝑛) is non-quasianalytic,

then
∞∑︁
𝑛=0

𝑀 𝑐
𝑛

𝑀 𝑐
𝑛+1

<∞.

By assumption, there exist a function 𝑓 in the class 𝐶0
𝐼 (𝑀𝑛), 𝑓(𝑥) ̸≡ 0. Hence, 𝐵𝑓 (𝑥) ̸≡ 0.

Therefore, there exist 𝑝1 ∈ 𝑃 and 𝑥1 ∈ 𝐼 such that 𝐵𝑓 (𝑥1) = 𝑒−𝑝1 . Then by induction we
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construct a sequence {𝑥𝑛}∞𝑛=1: 𝑥𝑛 ↓ 0, 𝐵𝑓 (𝑥𝑗) = 𝑒−𝑝𝑗 , 𝑝1 < 𝑝2 < . . . < 𝑝𝑛 < . . ., 𝑝𝑗 ∈ 𝑃 . If we
let 𝑥 = 𝑥𝑗, 𝑥+ ℎ = 𝑥𝑗−1, then ℎ > 0. By Theorem 2.1, in accordance with (2.2),

𝐵𝑓 (𝑥𝑗−1) ⩽ 𝐵𝑓 (𝑥𝑗) exp

[︃
𝑒|𝑥𝑗 − 𝑥𝑗−1|

𝑀 𝑐
𝑝𝑗

𝑀 𝑐
𝑝𝑗−1

]︃
.

This yields

𝑝𝑗 − 𝑝𝑗−1 ⩽ 𝑒|𝑥𝑗 − 𝑥𝑗−1|
𝑀 𝑐

𝑝𝑗

𝑀 𝑐
𝑝𝑗−1

,

or

(𝑝𝑗 − 𝑝𝑗−1)
𝑀 𝑐

𝑝𝑗−1

𝑀 𝑐
𝑝𝑗

⩽ 𝑒|𝑥𝑗 − 𝑥𝑗−1|. (2.3)

But the left hand side of the latter estimate is equal to the sum

𝑝𝑗−1∑︁
𝑛=𝑝𝑗−1

𝑀 𝑐
𝑛

𝑀 𝑐
𝑛+1

,

all terms of which are mutually equal and their total number is 𝑝𝑗−𝑝𝑗−1. This can be easily seen
by a geometric meaning of the regularization of the sequence {𝑀𝑛} by means of the logarithms,
see [17]. Since

∞∑︁
𝑗=2

|𝑥𝑗 − 𝑥𝑗−1| ⩽ 𝑥1,

by (2.3) we obtain that
∞∑︁

𝑛=𝑝1

𝑀 𝑐
𝑛

𝑀 𝑐
𝑛+1

⩽ 𝑒𝑥1 <∞. (2.4)

The statement was proved but we are interesting in inequality (2.4), since by this inequality
T. Bang obtained an important estimate for the function 𝑓 , namely, of 𝑥 ∈ 𝐼 and

𝑥 <
1

𝑒

∞∑︁
𝑛=𝑝1

𝑀 𝑐
𝑛

𝑀 𝑐
𝑛+1

,

then

|𝑓(𝑥)| < 𝑀 𝑐
0𝑒

−𝑝1 . (2.5)

It should be noted that the number 𝑝1 depends on a particular function 𝑓 : less is ‖𝑓‖, bigger
is the number 𝑝1 = 𝑝1(𝑓).

3. Main result

Let

𝐶0
𝐼 (𝑀𝑛) =

{︀
𝑓 : 𝑓 ∈ 𝐶𝑁

𝐼 (𝑀𝑛), 𝑓
(𝑛)(0) = 𝑓 (𝑛)(1) = 0, 𝑛 ⩾ 0

}︀
.

Using the Taylor formula, for each function 𝑓 ∈ 𝐶0
𝐼 (𝑀𝑛) T. Bang obtained a simpler inequal-

ity [16], which implies the estimate

𝐽𝑀(𝑥) ⩽ inf
𝑛⩾0

𝑀𝑛𝑥
𝑛

𝑛!
, 𝑥 ∈ 𝐼. (3.1)

In order to understand how sharp this estimate is, let us consider an example.
We take a sequence of numbers 𝑀𝑛:

𝑀𝑛 = 𝑛![ln(𝑛+ 𝑒)](1+𝛽)𝑛, 𝛽 > 0, 𝑛 ⩾ 0.
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Let 𝑓 be an arbitrary functions from the class 𝐶0
𝐼 (𝑀𝑛), which is obviously non-analytic, and

𝑓(𝑥) ̸≡ 0. Then by the Taylor series we obtain

|𝑓(𝑥)| ⩽ 1

sup
𝑛⩾0

𝑛!
𝑀𝑛𝑥𝑛

=
1

𝐻1(𝑥)
, (3.2)

where

𝐻1(𝑥) ≍ exp exp

[︃
𝑐1

(︂
1

𝑥

)︂ 1
1+𝛽

]︃
, 0 < 𝑥 ⩽ 1,

𝑐1 is a positive constant independent of 𝑓 ; we shall write 𝐻1 ≍ 𝐻2 if there exist 𝑎1 > 0, 𝑎2 > 0
such that 𝑎1𝐻1(𝑥) ⩽ 𝐻2(𝑥) ⩽ 𝑎2𝐻1(𝑥).
Taking into consideration a rapid growth of the function 𝐻1(𝑥) as 𝑥→ 0, we rewrite estimate

(3.2) as

ln ln
1

|𝑓(𝑥)|
⩾ 𝑐2

(︂
1

𝑥

)︂ 1
1+𝛽

, (3.3)

where 0 < 𝑐2 < 𝑐1 and 𝑐2 is also independent of 𝑓 ; in fact, 𝑐2 depends only on the sequence
{𝑀𝑛}.
The non-quasianalyticity of the class 𝐶𝑁

𝐼 (𝑀𝑛) is easily implied by the condition

∞∑︁
𝑛=0

𝑀𝑛

𝑀𝑛+1

<∞,

and also by
1∫︁

0

ln+ ln𝐻1(𝑥)𝑑𝑥 <∞. (3.4)

But for 𝛽 = 0 integral (3.4), as well as the series, converges and the class 𝐶𝑁
𝐼 (𝑀𝑛) becomes

non-quasianalytic, what has to be expected. This hints that estimate (3.1) is rather sharp.
However, once we employ estimate (2.5) by T. Bang, we can obtain even sharper estimate

but for a fixed function 𝑓 , see [16]: there exists 𝑥0 = 𝑥0(𝑓) such that for all 𝑥, 0 < 𝑥 < 𝑥0(𝑓)
and some 𝑐 = 𝑐(𝑓) > 0

ln ln
1

|𝑓(𝑥)|
⩾ 𝑐

(︂
1

𝑥

)︂ 1
𝛽

. (3.5)

There arises a natural question: which of estimates (3.3) and (3.5) indeed reflects the behavior
of the extremal function 𝐽𝑀(𝑥)? In [6] there was made an unsuccessful attempt to answer this
question, see [13].
Let {𝑀𝑛} be a regular sequence and 𝐻0 be a corrected associated weight, that is,

𝐻0(𝑦) = sup
𝑛⩾0

𝑛!

𝑀𝑛𝑦𝑛+1
.

Then, as it is known,

𝑀𝑛 = sup
𝑦>0

𝑛!

𝐻0(𝑦)𝑦𝑛+1
.

We also introduce a function

𝐻(𝑦) =
∞∑︁
𝑛=0

𝑛!

𝑀𝑛𝑦𝑛+1
. (3.6)
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Then a criterion of the quasianalyticity of the class 𝐶𝑁
𝐼 (𝑀𝑛) can be written as

𝑑∫︁
0

lnℎ(𝑡)𝑑𝑡 <∞, (3.7)

where ℎ(𝑡) = ln𝐻(𝑡) and 𝑑 > 0 is such that ℎ(𝑑) = 1. This criterion is equivalent to the
convergence of the Lebesgue-Stieltjes integral, see [13]:

−
𝑑∫︁

0

𝑡𝜓′(𝑡)𝑑𝑡, 𝜓(𝑡) = lnℎ(𝑡).

As in work [13], by 𝜃 = 𝜃(𝑦) we denote the inverse function for

𝑦 = −
𝜃∫︁

0

𝑡𝜓′(𝑡) 𝑑𝑡.

In [6] the following result was obtained.

Theorem 3.1. Let 𝑡|𝜓′(𝑡)| → ∞ as 𝑡→ 0. Then the following statements hold:
1) if integral (3.7) diverges, then 𝐽𝑀(𝑥) ≡ 0.
2) if integral (3.7) converges, then there exists a function 𝑓 ∈ 𝐶0

𝐼 (𝑀𝑛), for which

𝐻0 (𝑞1𝜃(𝑥)) ⩽ 𝑓(𝑥) ⩽ 𝐻0 (𝑞2𝜃(𝑥)) ,

where 0 < 𝑞1 < 𝑞2 <∞.

It is easy to see that the sequence 𝑀𝑛 = 𝑛![ln(𝑛+ 𝑒)](1+𝛽)𝑛, 𝛽 > 0, 𝑛 ⩾ 0, satisfies

ℎ(𝑦) ≍ 𝑦−
1

1+𝛽 , 𝜃(𝑦) ≍ 𝑦
1+𝛽
𝛽 .

Hence, by Theorem 3.1, there exists a function 𝑓 ∈ 𝐶0
𝐼 (𝑀𝑛) such that

𝑐𝑓𝑥
− 1

𝛽 ⩽ ln ln
1

|𝑓(𝑥)|
⩽ 𝐶𝑓𝑥

− 1
𝛽 , 0 < 𝑥 ⩽ 1.

In [6] an appropriate estimate is given, where instead of 1
|𝑓(𝑥)| the quantity 𝛿{𝑀𝑛}(𝑠) =

sup{|𝑔(𝑠)|, 𝑔 ∈ 𝐶0
𝐼 (𝑀𝑛)} is involved and this is wrong, see [13].

Thus, asymptotic estimate (3.5) by T. Bang for each fixed function 𝑓 is better than estimate
(3.3). However, as it was shown in [13], it does not reflect a real behavior of the quantity 𝐽𝑀(𝑥).
In [13] the following theorem was proved.

Theorem 3.2. Let {𝑀𝑛} be a regular sequence. If the function 𝐻 defined by formula (3.6)
satisfies bilogarithmic condition (3.7), then the extremal function 𝐽𝑀(𝑥) satisfies the estimates

1

𝑞1𝐻
(︀
𝑥
2

)︀ ⩽ 𝐽𝑀(𝑥) ⩽
1

𝐻 (2𝑞2𝑥)
, 0 < 𝑥 ⩽ 1, (3.8)

where 𝑞1 is some positive constant depending only on the functions 𝐻, that is, on the numbers
𝑀𝑛, while

𝑞2 = sup
𝑛⩾1

𝑛

√︂
𝑚𝑛

𝑚𝑛−1

<∞, 𝑚𝑛 =
𝑀𝑛

𝑛!
.

Now we are in position to formulate the main result, which essentially specifies estimates
(3.2).
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Theorem 3.3. Let {𝑀𝑛} be a regular sequence, 𝐻0 be an associated weight treated in the
following sense:

𝐻0(𝑡) = sup
𝑛⩾0

𝑛!

𝑀𝑛𝑡𝑛+1
, 𝑡 > 0.

If for this weight the bilogarithmic integral converges, which is equivalent to condition (3.7),
then the extremal function 𝐽𝑀(𝑥) satisfies the estimates

1

𝐾𝐻0(𝑥)
⩽ 𝐽𝑀(𝑥) ⩽

1

𝑥𝐻0(𝑥)
,

where 𝐾 = (1 + 𝐿)𝐶 and 𝐶, 0 < 𝐶 <∞, is a constant independent of 𝑥1 and

𝐿 = sup
𝑛⩾1

𝑛𝑀𝑛−1

𝑀𝑛

.

Thus, as 𝑥→ 0,

ln 𝐽𝑀(𝑥) = − ln𝐻0(𝑥) +𝑂

(︂
ln

1

𝑥

)︂
= −(1 +𝑂(1)) ln𝐻0(𝑥).

4. Proof of Theorem 3.3

Let {𝑀𝑛} be a regular sequence and 𝐻0 be an associated weight introduced above.
If integral (3.7) converges, the integral

𝑑0∫︁
0

ln ln𝐻0(𝑡)𝑑𝑡 <∞, 𝐻0(𝑑0) = 𝑒, (4.1)

converges as well. Hence, there exists a function 𝑓 ∈ 𝐶0
𝐼 (𝑀𝑛), 𝑓(𝑥) ̸≡ 0. Then by the Taylor

formula we obtain

|𝑓(𝑥)| ⩽ inf
𝑛⩾0

𝑀𝑛𝑥
𝑛

𝑛!
=

1

sup
𝑛⩾0

𝑛!
𝑀𝑛𝑥𝑛

=
1

𝑥𝐻0(𝑥)
, 𝑥 ∈ 𝐼.

This yields

𝐽𝑀(𝑥) ⩽
1

𝑥𝐻0(𝑥)
, 𝑥 ∈ 𝐼,

and we obtain an upper bound for 𝐽𝑀(𝑥).
In order to estimate 𝐽𝑀(𝑥) from below, we consider a normed space 𝐹𝐼(𝐻0) of the functions

analytic outside the segment 𝐼 = [0, 1] and satisfying the estimate

|𝑓(𝑧)| ⩽ 𝐶𝑓𝐻0(dist(𝑧, 𝐼)), 𝑧 ∈ C ∖ 𝐼,
with the norm

‖𝑓‖0 = sup
Im 𝑧 ̸=0

|𝑓(𝑧)|
𝐻0(| Im 𝑧|)

.

By 𝐹 0
𝐼 (𝐻0) we denote the unit ball in 𝐹𝐼(𝐻0).

Instead of 𝐼 we can consider an arbitrary closed set 𝐸 ⊂ R, see [4]. This is why, letting
𝐸 = {0}, in the space 𝐹{0}(𝐻0) we consider a linear functional ⟨𝐺, 𝑓⟩ = 𝑓(𝛿), 𝛿 ∈ (0, 1].
Then we obviously have: | ⟨𝐺, 𝑓⟩ | ⩽ 𝐶𝑓𝐻0(𝛿). Since integral (4.1) converges, by N. Levinson
theorem, the set of functions 𝐹 0

{0} is normal. This means that if 𝐶0
𝑓 = inf 𝐶𝑓 , then sup

𝑓∈𝐹 0
{0}(𝐻0)

𝐶0
𝑓 =

𝐶 < ∞. Therefore, ‖𝐺‖ ⩽ 𝐶𝐻0(𝛿), where a positive constant 𝐶 is independent of 𝛿. Since
𝐹{0}(𝐻0) ⊂ 𝐹𝐼(𝐻0), by the Hahn-Banach theorem, the functional 𝐺 admits a continuation on

1𝐶 is the extremal (best possible) constant uniquely determined by the family of the functions 𝐹 0
{0}(𝐻0), see

the proof of Theorem 3.3.
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the entire space 𝐹𝐼(𝐻0) with the preservation of the norm. Keeping the same notation for this
continuation, we consider a function

𝜂(𝑡) =

⟨
𝐺,

1

𝑧 − 𝑡

⟩
, 𝑡 ∈ 𝐼.

Then 𝜂 ∈ 𝐶∞(𝐼) and⃒⃒
𝜂(𝑛)(𝑡)

⃒⃒
=

⃒⃒⃒⃒⟨
𝐺,

𝑛!

(𝑧 − 𝑡)𝑛+1

⟩⃒⃒⃒⃒
⩽ 𝐶𝐻0(𝛿)

⃦⃦
𝑛!(𝑧 − 𝑡)−𝑛−1

⃦⃦
= 𝐶𝐻0(𝛿)𝑀𝑛, 𝑛 ⩾ 0,

where

𝑀𝑛 = sup
𝑦>0

𝑛!

𝐻0(𝑦)𝑦𝑛+1
.

We also observe that

𝜂(𝑛)(0) =

⟨
𝐺,

𝑛!

𝑧𝑛+1

⟩
=

𝑛!

𝛿𝑛+1
, 𝑛 ⩾ 0.

Now we choose the function 𝑔 letting 𝑔(𝑡) = 1 + 𝜂(𝑡)(𝑡− 𝛿). Since

𝑔(𝑛)(𝑡) = 𝜂(𝑛)(𝑡)(𝑡− 𝛿) + 𝑛𝜂𝑛−1(𝑡), 𝑛 ⩾ 1,

we obtain

𝑔(𝑛)(0) = 0, 𝑛 ⩾ 0,
⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒
⩽ 𝐶𝐻0(𝛿) (𝑀𝑛 + 𝑛𝑀𝑛−1) , 𝑛 ⩾ 1.

But the sequence {𝑀𝑛} is logarithmically convex, that is, 𝑀2
𝑛 ⩽𝑀𝑛−1𝑀𝑛+1, 𝑛 ⩾ 1. Hence, the

sequence
{︁

𝑀𝑛−1

𝑀𝑛

}︁
is non-increasing. Then it follows from the convergence of the series

∞∑︁
𝑛=1

𝑀𝑛−1

𝑀𝑛

that 𝑛𝑀𝑛−1 = 𝑜(𝑀𝑛) as 𝑛→ ∞. Hence,

sup
𝑛⩾1

𝑛𝑀𝑛−1

𝑀𝑛

= 𝐿 <∞,

and therefore

sup
𝐼

⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒
⩽ 𝐶(1 + 𝐿)𝑀𝑛𝐻0(𝛿), 𝛿 ∈ (0, 1], 𝑛 ⩾ 0.

Thus, we finally obtain that

1) 𝑔(𝑛)(0) = 0, 𝑛 ⩾ 0;

2)
⃦⃦
𝑔(𝑛)

⃦⃦
⩽ 𝐾𝐻0(𝛿)𝑀𝑛, 𝑛 ⩾ 0, 𝐾 = (1 + 𝐿)𝐶;

3) 𝑔(𝛿) = 1.

Therefore, the function

𝜓(𝑡) =
𝑔(𝑡)

𝐾𝐻0(𝛿)

belongs to the class 𝐶0
𝐼 (𝑀𝑛). It remains to observe that

𝐽𝑀(𝛿) ⩾
1

𝐾𝐻0(𝛿)
, 𝛿 ∈ (0, 1], 𝐾 = (1 + 𝐿)𝐶.
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