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COMMUTING DIFFERENTIAL OPERATORS

OF ORDER 4 AND 6

F.KH. BAICHOROVA, Z.S. ELKANOVA

Abstract. We consider a model problem on a pair of commuting differential operators of
order 4 and 6. The results are employed to generalize a known commuting pair in a work
of J. Dixmier for the case of rational coefficients.
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Introduction

Reformulating a question from the work by Burchnall and Chaundy [1] 1932, we arrive at
the problem on a pair of polynomials 𝑎(𝐷) and 𝑏(𝐷) with constant coefficients satisfying the
functional equation [7]

𝑎(𝐷 + 𝛽)𝑏(𝐷) = 𝑎(𝐷)𝑏(𝐷 + 𝛼); 𝛼, 𝛽 ∈ C𝑁 . (1)

Here 𝐷 = (𝐷1, 𝐷2, . . . , 𝐷𝑁) is the formal variable and vectors 𝛼 and 𝛽 in C𝑁 are assumed to
be given. For a differential operator 𝐶(𝐷) with partial variables 𝐷𝑗 = 𝜕𝑗, the formula

𝐶(𝐷) ∘ 𝑒𝛾·𝑥 = 𝑒𝛾·𝑥𝐶(𝐷 + 𝛾), 𝛾 ∈ C𝑁 , 𝐶(𝐷) is a polynomial, (2)

holds true. It follows from this formula that functional equation (1) is equivalent to commuting
of a pair of partial differential operators semi-invariant w.r.t. the group of shifts,

𝐴 = 𝑒𝛼·𝑥 · 𝑎(𝐷), 𝐵 = 𝑒𝛽·𝑥 · 𝑏(𝐷). (3)

Indeed, by (2), the composition of these operators leads us to the formula

𝐴 ∘𝐵 = 𝑒(𝛼+𝛽)·𝑥𝑎(𝐷 + 𝛽)𝑏(𝐷),

and thus, the condition of commuting for such operators (3) is indeed reduced to (1).
In the theory of commutative rings of differential operators with one independent variables,

special operators like (3)1 can play the role of a model (cf. [6] and [8]). In the one-dimensional
case, polynomial equation (1) casts into the form

𝑎(𝑧 + 𝛽)𝑏(𝑧) = 𝑏(𝑧 + 𝛼)𝑎(𝑧), 𝛼, 𝛽 ∈ 𝐶, 𝛼𝛽 ̸= 0. (4)

By means of dilatation 𝑧 with a coefficient 𝛽𝑛, it can be rewritten as

𝑎(𝑧 + 𝑛)𝑏(𝑧) = 𝑎(𝑧)𝑏(𝑧 +𝑚), 𝑚 = deg𝑃 (𝑧), 𝑛 = deg𝑄(𝑧). (5)

Here there is no loss of generality. Indeed, let polynomials

𝑎(𝑧) = 𝑧𝑚 + 𝑎1𝑧
𝑚−1 + · · · + 𝑎𝑚, 𝑏(𝑧) = 𝑧𝑛 + 𝑏1𝑧

𝑛−1 + · · · + 𝑏𝑛 (6)

F.Kh. Baichorova, Z.S. Elkanova, Commuting differential operators of order 4 and 6.
c○ Baichorova F.Kh., Elkanova Z.S. 2013.

Submitted May 16, 2013.
1their eigenfunctions generalize Bessel functions

11

http://dx.doi.org/10.13108/2013-5-3-11


12 F.KH. BAICHOROVA, Z.S. ELKANOVA

satisfy functional equation (4). Equating the coefficients at 𝑧𝑛+𝑚−1 and 𝑧𝑛+𝑚−2 in the left hand
side and the right hand side of the equation, we obtain

𝛽

𝛼
=

𝑛

𝑚
, 𝑏1 =

𝑛

𝑚
𝑎1 +

𝑛

2
(𝛽 − 𝛼). (7)

After the dilatation 𝑧, the former of these relations allows us to let 𝛼 = 𝑚, 𝛽 = 𝑛, while the
other expresses 𝑏1 in terms of 𝑎1. Continuing this process of equating like terms in equation
(5), we can express all the coefficients 𝑏1, . . . , 𝑏𝑛 in terms of 𝑎1, . . . , 𝑎𝑚. Substituting these
formulas for the coefficients of polynomial 𝑏(𝑧) into equation (5), we obtain that the degree of
the polynomial

𝑐(𝑧) = 𝑎(𝑧 + 𝑛)𝑏(𝑧) − 𝑎(𝑧)𝑏(𝑧 +𝑚) (8)

satisfies the inequality
deg 𝑐(𝑧) 6 𝑚− 2.

The remaining coefficients at 𝑧𝑗, 𝑗 6 𝑚− 2 give in this way 𝑚− 1 equations for 𝑚 coefficients
𝑎1, . . . , 𝑎𝑚. By help of shift (2), we can let 𝑎𝑚 = 0 and equalize the number of equations and
unknowns.

For coprime numbers (𝑚,𝑛), the problem on commuting differential operators of orders𝑚 and
𝑛 is studied rather well. In particular, in the considered case, for fixed (𝑚,𝑛) and gcd(𝑚,𝑛) = 1
the complete lists of the polynomials satisfying equation (5) are given in work [6] (cf. also [8]). A
feature of these polynomials is that their roots are integer as 𝑎𝑚 = 0. Besides this normalization
conditions, it is taken into account in the lists that passing to adjoint operators does not break
the commuting. At that, the formally adjoint operator for exp(𝛾 · 𝑥) ∘ 𝐶(𝐷) (see (2)) reads as
follows

𝐶(−𝐷) ∘ 𝑒𝛾·𝑥 = 𝑒𝛾·𝑥𝐶(𝛾 −𝐷). (9)

Latterly an interest to a more complicated case gcd(𝑚,𝑛) ̸= 1 considerably increases. Basi-
cally, one considers commuting differential operators with polynomial coefficients generalizing
the well-known Dixmier example [2] (the survey of appropriate references can be found in [4]).

In our model problem, equations (4) and (5) allow us to solve completely the issue on pairs
of commuting operators of orders 4 and 6. In particular, it is established that the operators

𝐴 = 𝑒4𝑡𝐷2(𝐷 + 2)2 = 𝐴2
2, 𝐵 = 𝑒6𝑡𝐷2(𝐷 + 2)2(𝐷 + 4)2 = 𝐴3

2, 𝐴2 = 𝑒2𝑡𝐷2

can serve as canonical forms. As one can see easily, their simultaneous eigenfunction 𝐴2𝜓 = 𝜓
is the Bessel function of zero order that, as 𝑛 = 0, satisfies the equation

𝑦′′ +
1

𝑥
𝑦′ =

𝑥2 + 𝑛2

𝑥2
𝑦, 𝐷𝑡 = −𝑥𝐷𝑥, 𝑥 = −𝑒−𝑡. (10)

For this model problem we succeeded to clarify an important role of additional 1 free parameter
appearing in the commuting pairs of differential operators as gcd(𝑚,𝑛) ̸= 1.

1. General properties of solutions to equation (5)

Let us show that the polynomials 𝑎(𝜆) and 𝑏(𝜆) associated with commuting operators 𝐴 =
𝑒𝑚𝑡𝑎(𝐷) and 𝐵 = 𝑒𝑛𝑡𝑏(𝐷) should have a simultaneous root 𝛼. For the sake of simplicity, we
shall assume that the roots of the polynomials are real (for the case of complex roots, the
arguments are same).

The existence of simultaneous roots of the polynomials satisfying (5) is implied by

Lemma 1 (on simultaneous root). Suppose polynomials 𝑎(𝜆) and 𝑏(𝜆) of degrees 𝑚 and 𝑛
satisfy equation (5). Then these polynomials have a simultaneous root.

1not related with the spectral curve
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Proof. It was mentioned above that the shift does not break the commuting. By help of such
shift we can assume that the roots of polynomial 𝑎(𝜆) are non-positive and 𝑎(0) = 0,

𝑎(𝜆) = 𝜆

𝑚−1∏︁
1

(𝜆+ 𝜆𝑗), 𝜆𝑚−1 6 𝜆𝑚−2 · · · 6 𝜆2 6 𝜆1 6 0. (11)

We shall show now that if polynomial 𝑏(𝜆) satisfies (5), then 𝑏(0) = 0 and

𝑏(𝜆) = 𝜆
𝑛−1∏︁
1

(𝜆+ 𝜇𝑗), 𝜇𝑛−1 6 𝜇𝑛−2 · · · 6 𝜇2 6 𝜇1 6 0, (𝜇𝑛−1 − 𝜆𝑚−1) = 𝑛−𝑚. (12)

We first assume that 𝑏(0) ̸= 0. Then letting 𝜆 = 0, in (5) we get

𝑎(𝑛)𝑏(0) = 𝑎(0)𝑏(𝑚),

𝑎(𝑛)𝑏(0) = 0 ⇒ 𝑎(𝑛) = 0.

But 𝑛 > 0 that contradicts the absence of positive roots for polynomial 𝑎(𝜆).
In the same way, assuming that polynomial 𝑏(𝜆) has a positive root 𝜆0, by equation (5) we

find

𝑎(𝜆0 + 𝑛)𝑏(𝜆0) = 𝑎(𝜆0)𝑏(𝜆0 +𝑚) = 0,

𝑎(𝜆0)𝑏(𝜆0 +𝑚) = 0.

But since 𝜆0 > 0 and by assumption 𝑎(𝜆) has no positive roots, we have 𝑏(𝜆0 + 𝑚) = 0.
Repeating these arguments, we obtain an infinite series of zeroes 𝑏(𝜆) which is impossible.

The latter of formulas (12) can be proven by passing to adjoint differential operators

𝐴* =𝐷(𝐷 − 𝜆1)(𝐷 − 𝜆2) . . . (𝐷 − 𝜆𝑚−1)𝑒
𝑚𝑡

=𝑒𝑚𝑡(𝐷 +𝑚)(𝐷 − 𝜆1 +𝑚)(𝐷 − 𝜆2 +𝑚) . . . (𝐷 − 𝜆𝑚−1 +𝑚),
(13)

𝐵* =𝐷(𝐷 − 𝜇1)(𝐷 − 𝜇2) . . . (𝐷 − 𝜇𝑛−1)𝑒
𝑛𝑡

=𝑒𝑛𝑡(𝐷 + 𝑛)(𝐷 − 𝜇1 + 𝑛)(𝐷 − 𝜇2 + 𝑛) . . . (𝐷 − 𝜇𝑛−1 + 𝑛).
(14)

We recall that if differential operators 𝐴 and 𝐵 commute, their adjoint operators 𝐴* and
𝐵* commute as well. Therefore, by the first part of the statement, their maximal roots should
coincide. The maximal roots for adjoint operators 𝐴* and 𝐵* are respectively (𝜆𝑚−1 −𝑚) and
(𝜇𝑛−1 − 𝑛). It implies the desired formula

𝜆𝑚−1 −𝑚 = 𝜇𝑛−1 − 𝑛⇒ (𝜇𝑛−1 − 𝜆𝑚−1) = 𝑛−𝑚.

Generally speaking, the roots can be multiple, as the following example shows.
One can make sure that operators 𝐴 and 𝐵 of orders 4 and 6,

𝐴 = 𝑒4𝑡𝐷(𝐷 + 2)(𝐷 + 𝛼)(𝐷 + 𝛼 + 2),

𝐵 = 𝑒6𝑡𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 𝛼)(𝐷 + 𝛼 + 2)(𝐷 + 𝛼 + 4),

commute for each 𝛼 and as 𝛼 = 2, have multiple roots.
In the case 𝑚 and 𝑛 are coprime, in known to us cases there are multiple roots.

Lemma 2. Solutions of the polynomial equation

𝑃 (𝑧 + 𝑛1)𝑄(𝑧) = 𝑃 (𝑧)𝑄(𝑧 + 𝑛2)

can be multiplied.
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Proof. Let (𝑝1, 𝑞1) and (𝑝2, 𝑞2) be two solutions of considered polynomial equation. Then (𝑝 =
𝑝1𝑝2, 𝑞 = 𝑞1𝑞2) is also a solution,

𝑝1(𝜉 + 𝑛1)𝑞1(𝜉) = 𝑝1(𝜉)𝑞1(𝜉 + 𝑛2), 𝑝2(𝜉 + 𝑛1)𝑞2(𝜉) = 𝑝2(𝜉)𝑞2(𝜉 + 𝑛2),

since

𝑝1(𝜉 + 𝑛1)𝑝2(𝜉 + 𝑛1)𝑞1(𝜉)𝑞(𝜉) = 𝑝1(𝜉)𝑝2(𝜉)𝑞1(𝜉 + 𝑛2)𝑞2(𝜉 + 𝑛2).

We observe that a dilatation of the independent variable in equation (5) gives

𝑃𝑘(𝑧) = 𝑘𝑚𝑃 (
𝑧

𝑘
), 𝑄𝑘(𝑧) = 𝑘𝑛𝑄(

𝑧

𝑘
) therefore, 𝑃𝑘(𝑧 + 𝑛𝑘)𝑄𝑘(𝑧) = 𝑃𝑘(𝑧)𝑄𝑘(𝑧 +𝑚𝑘). (15)

The coefficients 𝑎𝑗(𝑘) of polynomials 𝑃𝑘(𝑧) (𝑄𝑘(𝑧)) are related with original ones by the formulas
𝑎𝑗(𝑘) = 𝑘𝑗𝑎𝑗.

Example 1. In the case of operators of second and third order, polynomials 𝑃 (𝑧) and 𝑄(𝑧)
read as follows,

𝑃 (𝑧) = 𝑧2 + 𝑎1𝑧 + 𝑎2, 𝑄(𝑧) = 𝑧3 + 𝑏1𝑧
2 + 𝑏2𝑧 + 𝑏3.

Employing Lemma 1, we represent these polynomials as

𝑃 (𝑧) = 𝑧(𝑧 + 𝑎), 𝑄(𝑧) = 𝑧(𝑧 + 𝑏)(𝑧 + 𝑎+ 1), 0 6 𝑏 6 𝑎+ 1, 0 6 𝑎.

Equation (5) is as follows,

(𝑧 + 3)[𝑧2 + (𝑎+ 𝑏+ 1)𝑧 + 𝑏+ 𝑎𝑏] = (𝑧 + 2)[𝑧2 + (𝑎+ 𝑏+ 2)𝑧 + 2𝑎+ 𝑎𝑏], therefore, 𝑎 = 1, 3.

Thus, we obtain two pairs of commuting differential operators of second and third order,

𝑃 (𝑧) = 𝑧2 + 𝑧 = 𝑧(𝑧 + 1), 𝑄(𝑧) = 𝑧3 + 3𝑧2 + 2𝑧 = 𝑧(𝑧 + 1)(𝑧 + 2)

and

𝑃 (𝑧) = 𝑧2 + 3𝑧 = 𝑧(𝑧 + 3), 𝑄(𝑧) = 𝑧3 + 6𝑧2 + 8𝑧 = 𝑧(𝑧 + 2)(𝑧 + 4).

2. Polynomial equation (5) as 𝑚 = 4, 𝑛 = 6

Taking into consideration Lemma 2, let us consider in greater details the polynomial equation

𝑃 (𝑧 + 3)𝑄(𝑧) = 𝑃 (𝑧)𝑄(𝑧 + 2), (16)

not fixing in advance the degrees of polynomials 𝑃 (𝑧) and 𝑄(𝑧). The technique developed in
[6] allows one to study the commuting pairs of the operators whose orders are not coprime.
The only difference is appearance of free parameters in the coefficients of polynomials 𝐴(𝐷)
and 𝐵(𝐷) satisfying equation (16).

We return to operators of order 2-3 (cf. Example 1). In order to find polynomials 𝑃 (𝑧) and
𝑄(𝑧) of second and third order,

𝑃 (𝑧) = 𝑧2 + 𝑎1𝑧 + 𝑎2, 𝑄(𝑧) = 𝑧3 + 𝑏1𝑧
2 + 𝑏2𝑧 + 𝑏3,

satisfying equation (16), we equate coefficients at the like powers of 𝑧 in the left hand side and
right hand side of these equation. Letting 𝑎2 = 0, we find,

𝑏1 =
3

2
𝑎1 +

3

2
, 𝑏2 =

3

8
𝑎21 +

3

2
𝑎1 +

1

8
, 𝑏3 = − 1

16
𝑎31 +

3

16
𝑎21 +

1

16
𝑎1 −

3

16
= 0

and obtain 𝑎1 = 1, −1, 3 solving equation 𝑏3 = 0. As 𝑎1 = 1, we find 𝑏1 = 3, 𝑏2 = 2, 𝑏3 = 0.
And the pair of commuting polynomials read as

𝑃 (𝑧) = 𝑧2 + 𝑧 = 𝑧(𝑧 + 1), 𝑄(𝑧) = 𝑧3 + 3𝑧2 + 2𝑧 = 𝑧(𝑧 + 1)(𝑧 + 2).
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As 𝑎1 = 3, we have 𝑏1 = 6, 𝑏2 = 8, 𝑏3 = 0, and the pair of commuting polynomials is

𝑃 (𝑧) = 𝑧2 + 3𝑧 = 𝑧(𝑧 + 3), 𝑄(𝑧) = 𝑧3 + 6𝑧2 + 8𝑧 = 𝑧(𝑧 + 2)(𝑧 + 4).

As 𝑎1 = −1, we have 𝑏1 = 0, 𝑏2 = −1, 𝑏3 = 0, and the pair of commuting polynomials reads as

𝑃 (𝑧) = 𝑧2 − 𝑧 = 𝑧(𝑧 − 1), 𝑄(𝑧) = 𝑧3 − 𝑧 = 𝑧(𝑧 − 1)(𝑧 + 1).

In the case of operators of forth and sixth order, the commuting polynomials are{︃
𝑃 (𝑧) = 𝑧4 + 𝑎1𝑧

3 + 𝑎2𝑧
2 + 𝑎3𝑧 + 𝑎4, 𝑃 (𝑧 + 3) = 𝑧4 + 𝑝1𝑧

3 + 𝑝2𝑧
2 + 𝑝3𝑧 + 𝑝4

𝑄(𝑧) = 𝑧6 + 𝑏1𝑧
5 + 𝑏2𝑧

4 + 𝑏3𝑧
3 + 𝑏4𝑧

2 + 𝑏5𝑧 + 𝑏6, 𝑄(𝑧 + 2) = 𝑧6 +
∑︀6

𝑗=1 𝑞𝑗𝑧
6−𝑗.

(17)

Taylor formula yields

𝑝1 =
1

6
𝑃 ′′′(3) = 𝑎1 + 12, 𝑝2 = 𝑎2 + 9𝑎1 + 54, 𝑝3 = 𝑎3 + 6𝑎2 + 27𝑎1 + 12 · 9, 𝑝4 = 𝑃 (3)

𝑞1 = 𝑏1 + 12, 𝑞2 = 𝑏2 + 10𝑏1 + 60, 𝑞3 = 𝑏3 + 8𝑏2 + 40𝑏1 + 160,

𝑞4 = 𝑏4 + 6𝑏3 + 24𝑏2 + 80𝑏1 + 15 · 16, 𝑞5 = 𝑏5 + 4𝑏4 + 12𝑏3 + 32𝑏2 + 80𝑏1 + 192, 𝑞6 = 𝑄(2).

The criterion for commuting of associated operators is reduced to polynomial equation (16) by
dilatation of (15) with 𝑘 = 2.

Lemma 3. Multiplication of the solutions to equation (5) for operators of second and third
order leads one, up to adjoint (i.e., Darboux transformation of zero order [8]), to the following
list of commuting pairs of operators of order 4 and 6,

𝑒4𝑡𝐷(𝐷 + 2)(𝐷 + 𝛼)(𝐷 + 𝛼 + 2), 𝑒6𝑡𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 𝛼)(𝐷 + 𝛼 + 2)(𝐷 + 𝛼 + 4)(A1)

𝑒4𝑡𝐷(𝐷 + 2)(𝐷 + 𝛼)(𝐷 + 𝛼 + 6), 𝑒6𝑡𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 𝛼)(𝐷 + 𝛼 + 4)(𝐷 + 𝛼 + 8)(A2)

𝑒4𝑡𝐷(𝐷 + 6)(𝐷 + 𝛼)(𝐷 + 𝛼 + 6), 𝑒6𝑡𝐷(𝐷 + 4)(𝐷 + 8)(𝐷 + 𝛼)(𝐷 + 𝛼 + 4)(𝐷 + 𝛼 + 8)(A3)

This list can be supplemented by the trivial pair of commuting differential operators

𝑒4𝑡𝐷(𝐷 + 1)(𝐷 + 2)(𝐷 + 3), 𝑒6𝑡𝐷(𝐷 + 1)(𝐷 + 2)(𝐷 + 3)(𝐷 + 4)(𝐷 + 5)

Proof. Choosing 𝑘 = 2 in equation (15), by known commuting operators of second and third
order we obtain commuting operators of order 4 and 6,

𝐴1 = 𝑒2𝑡𝐷(𝐷 + 1), 𝐵1 = 𝑒3𝑡𝐷(𝐷 + 1)(𝐷 + 2),

𝐴2 = 𝑒2𝑡𝐷(𝐷 + 3), 𝐵2 = 𝑒3𝑡𝐷(𝐷 + 2)(𝐷 + 4).

According to Example 1, this list reads as follows,

𝑃1(𝜉) = 𝜉(𝜉 + 1), 𝑄1(𝜉) = 𝜉(𝜉 + 1)(𝜉 + 2), 𝑃2(𝜉) = 𝜉(𝜉 + 3), 𝑄2(𝜉) = 𝜉(𝜉 + 2)(𝜉 + 4).

We can write

𝑃 = 𝑃 2
1 = 𝑧2(𝑧 + 2)2, 𝑄 = 𝑄2

1 = 𝑧2(𝑧 + 2)2(𝑧 + 4)2

𝑃 = 𝑃 2
2 = 𝑧2(𝑧 + 6)2, 𝑄 = 𝑄2

2 = 𝑧2(𝑧 + 4)2(𝑧 + 8)2

𝑃 = 𝑃1𝑃2 = 𝑧2(𝑧 + 2)(𝑧 + 6), 𝑄 = 𝑄1𝑄2 = 𝑧2(𝑧 + 2)(𝑧 + 4)2(𝑧 + 8).

Taking into consideration that the shift of the root does not break the commuting of the
operators, up to adjoint, we obtain the desired list of the operators of order 4 and 6.
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It can be shown that odd 𝛼 (and even 𝛼) lead us respectively to half-integer and integer 𝑛
in Bessel equation (10).

Remark. Solutions (17) of polynomial equation (16) normalized by the conditions 𝑎4 =
𝑏6 = 0 depend on the additional parameter 𝑡 = 𝑎1. At that, deg𝑃2 = 2, deg𝑄3 = 3 and
polynomial equation

𝑃2(𝑧 + 3)𝑄3(𝑧) = 𝑃2(𝑧)𝑄3(𝑧 + 2) (18)

holds true.
Equating coefficients at like powers of 𝑧, we express first all the coefficients 𝑏𝑖 in terms of

𝑎1, 𝑎2, 𝑎3 (by help of shift, we vanish coefficient 𝑎4),

𝑏6𝑝4 = 0, 𝑏6𝑝3 + 𝑏5𝑝4 = 𝑎3𝑞6, 𝑏6𝑝2 + 𝑏5𝑝3 + 𝑏4𝑝4 = 𝑎2𝑞6 + 𝑎3𝑞5,

𝑝2 + 𝑏1𝑝1 + 𝑏2 = 𝑞2 + 𝑞1𝑎1 + 𝑎2, 𝑝3 + 𝑏1𝑝2 + 𝑏2𝑝1 = 𝑞3 + 𝑞2𝑎1 + 𝑞1𝑎2 + 𝑎3.

At 𝑧10 and 𝑧9, the identity holds immediately. Then we find

2𝑏1 = 3𝑎1 + 6, 4𝑏2 = 6𝑎2 + 10 + 15𝑎1 +
3

2
𝑎21,

16𝑏3 = 48𝑎2 + 40𝑎1 + 12𝑎21 + 24𝑎3 + 12𝑎2𝑎1 − 𝑎31,

32𝑏4 =
3

4
𝑎41 − 4 + 24𝑎3𝑎1 − 3𝑎31 + 72𝑎2 + 72𝑎3 + 3𝑎21 + 36𝑎2𝑎1 − 6𝑎2𝑎

2
1 + 12𝑎22,

32𝑏5 = 24𝑎2 − 6𝑎21𝑎3 + 3𝑎2𝑎
3
1 − 6𝑎1𝑎

2
2 + 24𝑎3𝑎2 +

7

2
𝑎31 −

3

8
𝑎51 − 2𝑎1 + 12

+ 96𝑎3 − 9𝑎21 − 12𝑎2𝑎1 + 24𝑎1𝑎3 − 6𝑎2𝑎
2
1 +

3

4
𝑎41 + 12𝑎22,

64𝑏6 =
7

16
𝑎61 − 36 − 6𝑎21𝑎3 + 3𝑎2𝑎

3
1 − 6𝑎1𝑎

2
2 + 24𝑎3𝑎2 +

9

2
𝑎31 −−15

4
𝑎41𝑎2 −

3

8
𝑎51

+ 6𝑎1 − 76𝑎2 + 72𝑎3 − 24𝑎3𝑎2𝑎1 + 28𝑎21 + 9𝑎22𝑎
2
1 − 24𝑎2𝑎1 + 24𝑎23

+ 6𝑎3𝑎
3
1 − 4𝑎32 −−28𝑎1𝑎3 + 37𝑎2𝑎

2
1 −

13

2
𝑎41 − 44𝑎22.

Due to Lemma 1, we can let 𝑏6
def
= 𝜌(𝑎1, 𝑎2, 𝑎3) = 0. At that,

𝑅(𝑧) = 𝑃 (𝑧 + 3)𝑄(𝑧) − 𝑃 (𝑧)𝑄(𝑧 + 2) ⇒ 𝑅(0) = 0, 𝑅(𝑧) = 𝑧𝑟(𝑎1, 𝑎2, 𝑎3),

and equation (16) is reduced to two polynomial equations 𝐹 = 𝐺 = 0 for three unknowns
𝑎1 = 2𝑡, 𝑎2 = 𝑥, 𝑎3 = 𝑦. We employed WMaple to check that

6𝑦2 − 𝑥3 + 6𝑦𝑥(1 − 2𝑡) + 𝑥2
(︀
9𝑡2 − 3𝑡− 11

)︀
+ 𝑥

(︀
37𝑡2 − 19 − 12𝑡− 15𝑡4 + 6𝑡3

)︀
+ 18𝑦 − 14𝑦𝑡

+ 12𝑡3𝑦 − 6𝑦𝑡2 + 28𝑡2 − 26𝑡4 + 3𝑡+ 7𝑡6 − 3𝑡5 − 9 + 9𝑡3 = 0,

𝑎1 = 2𝑡, 𝑎2 = 𝑥, 𝑎3 = 𝑦,

2𝑦2𝑡2 − 8𝑦2𝑥+ 126𝑥𝑦𝑡2 + 15𝑡4𝑥2 − 7𝑡6𝑥+ 90𝑥𝑦𝑡− 14𝑡3𝑥𝑦 − 105𝑡3𝑥2 + 𝑥4 + 210𝑥2𝑡

− 75𝑡3𝑦 + 180𝑥+ 21𝑥3𝑡− 525𝑡3𝑥− 441𝑦 + 13𝑦𝑥2𝑡− 105𝑡4𝑦 − 21𝑦𝑥2 − 9𝑥3𝑡2 + 125𝑡4𝑥

+ 441𝑥𝑡+ 118𝑥2 − 270𝑡2 + 315𝑦𝑡2 − 210𝑥𝑦 − 100𝑥2𝑡2 − 42𝑦2𝑡− 60𝑦2 + 𝑡5𝑦 + 20𝑥3 + 17𝑦𝑡

+ 81 − 441𝑡3 + 315𝑡5 + 180𝑡4 − 45𝑡6 − 63𝑡7 + 147𝑡5𝑥− 289𝑥𝑡2 = 0.

We seek the solutions as polynomials w.r.t. 𝑡 of degree 2 and 3, respectively,

𝑥 = 𝛼𝑡2 + 𝛼1𝑡+ 𝛼2, 𝑦 = 𝛽𝑡3 + 𝛽1𝑡
2 + 𝛽2𝑡+ 𝛽3 ⇒ 𝛼 = 1.

If one seek a solution to the system (see Appendix) as polynomials w.r.t. 𝑡 of degree 1 and
2 for some values of 𝑡, one succeeds to find an additional list of commuting operators of order
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4 and 6. For some specific values of 𝑡, the solutions are reduced to Bessel function of integer
order.

Finally, we let 𝑎1 = 2𝑡, 𝑎2 = 𝑐1𝑡+ 𝑐2, 𝑎3 = 𝑐3𝑡
2 + 𝑐4𝑡+ 𝑐5. As a result, we find

𝑐1 = −10, 𝑐2 = −21, 𝑐3 = 0, 𝑐4 = 8, 𝑐5 = 20.

Solving the system, we find the following values of 𝑡, 𝑎𝑖, 𝑏𝑗 and associated polynomials 𝑃 (𝑧)
and 𝑄(𝑧),

No. 𝑡 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

1 -2 -4 -1 4 -3 -8 12 16 0

2 -3 -6 9 -4 -6 7 6 -8 0

3 -4 -8 19 -12 -9 25 -15 -26 24

4 -1 -2 -11 12 0 -20 0 64 0

5 -5 -10 29 -20 -12 46 -48 -47 60

6 -6 -12 39 -28 -15 70 -90 -71 105

No. 𝑃 (𝑧) 𝑄(𝑧)

1 𝑧(𝑧 − 1)(𝑧 − 4)(𝑧 + 1) 𝑧2(𝑧 − 2)(𝑧 − 4)(𝑧 + 2)(𝑧 + 1)

2 𝑧(𝑧 − 4)(𝑧 − 1)2 𝑧2(𝑧 − 1)(𝑧 − 2)(𝑧 − 4)(𝑧 + 1)

3 𝑧(𝑧 − 1)(𝑧 − 3)(𝑧 − 4) 𝑧(𝑧 − 1)(𝑧 − 2)(𝑧 − 3)(𝑧 − 4)(𝑧 + 1)

4 𝑧(𝑧 − 1)(𝑧 + 3)(𝑧 − 4) 𝑧2(𝑧 + 4)(𝑧 − 2)(𝑧 + 2)(𝑧 − 4)

5 𝑧(𝑧 − 5)(𝑧 − 1)(𝑧 − 4) 𝑧(𝑧 − 1)(𝑧 − 3)(𝑧 − 4)(𝑧 − 5)(𝑧 + 1)

6 𝑧(𝑧 − 1)(𝑧 − 7)(𝑧 − 4) 𝑧(𝑧 − 5)(𝑧 − 1)(𝑧 − 7)(𝑧 − 3)(𝑧 + 1)

Passing to operators (operators obtained by shift of root are regarded as equivalent), we
obtain the following list,

𝑒4𝑡𝐷(𝐷 + 6)(𝐷 + 8)(𝐷 + 14), 𝑒6𝑡𝐷(𝐷 + 4)(𝐷 + 8)2(𝐷 + 12)(𝐷 + 16), (B1)

𝑒4𝑡𝐷(𝐷 + 6)(𝐷 + 8)(𝐷 + 10), 𝑒6𝑡𝐷(𝐷 + 4)(𝐷 + 8)2(𝐷 + 10)(𝐷 + 12), (B2)

𝑒4𝑡𝐷(𝐷 + 6)2(𝐷 + 8), 𝑒6𝑡𝐷(𝐷 + 4)(𝐷 + 6)(𝐷 + 8)2(𝐷 + 10), (B3)

𝑒4𝑡𝐷(𝐷 + 2)(𝐷 + 6)(𝐷 + 8), 𝑒6𝑡𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 6)(𝐷 + 8)(𝐷 + 10), (B4)

𝑒4𝑡𝐷(𝐷 + 2)(𝐷 + 8)(𝐷 + 10), 𝑒6𝑡𝐷(𝐷 + 2)(𝐷 + 4)(𝐷 + 8)(𝐷 + 10)(𝐷 + 12), (B5)

𝑒4𝑡𝐷(𝐷 + 6)(𝐷 + 12)(𝐷 + 14), 𝑒6𝑡𝐷(𝐷 + 4)(𝐷 + 8)(𝐷 + 12)(𝐷 + 14)(𝐷 + 16). (B6)

3. Dixmier operator pair

In addition to interesting generalizations of Dixmier example [2] constructed in works [5],
[4], we consider briefly the issue on a role of the free parameter involved in all these examples.
Bearing in mind the general formula

[𝐴𝑛, 𝐵] = 𝐴𝑛−1𝐶 + 𝐴𝑛−2𝐶𝐴+ 𝐴𝑛−3𝐶𝐴2 + · · · + 𝐶𝐴𝑛−1, 𝐶
def
= [𝐴,𝐵],

in the case of operators of orders 4 and 6 we let

𝐴 = 𝐴2
0 + 𝑎(𝑥), 𝐵 = 𝐴3

0 + 𝑏(𝑥) ∘ 𝐴0 + 𝐴0 ∘ 𝑏(𝑥), 𝐴0 = 𝐷2 + 𝑢(𝑥),

𝐴𝜆 = 𝐴+ 2𝜆𝐴0 + 𝜆2, 𝐵𝜆 = 𝐵 + 3𝜆2𝐴0 + 𝜆(3𝐴2
0 + 2𝑏) + 𝜆3.

Then

[𝐵𝜆, 𝐴𝜆] = [𝐵,𝐴] + 𝜆2 (3[𝐴0, 𝐴] + 4[𝑏, 𝐴0]) + 2𝜆[𝐵,𝐴0] + 𝜆[3𝐴2
0 + 2𝑏, 𝐴] = 0.



18 F.KH. BAICHOROVA, Z.S. ELKANOVA

Hence, if 4𝑏 = 3𝑎, it follows from equation [𝐵,𝐴] = 0 that [𝐵𝜆, 𝐴𝜆] = 0.
Under the condition 4𝑏 = 3𝑎, the operator equation [𝐵,𝐴] = 0 allows us to determine the

functions 𝑢(𝑥) and 𝑎(𝑥). Indeed,

4[𝐵,𝐴] = 𝐴2
0𝐴1 + 𝐴1𝐴

2
0 − 2𝐴0𝐴1𝐴0 + 3(𝑎 ∘ 𝐴1 + 𝐴1 ∘ 𝑎), 𝐴1 = [𝐴0, 𝑎] = 2𝑎′𝐷 + 𝑎′′.

Here we evaluate the coefficients at various powers of 𝐷. The coefficients at 𝐷5 and 𝐷4 cancel
out thanks to the condition 4𝑏 = 3𝑎, and the restriction for the coefficient at 𝐷3 to vanish
implies the equation 𝑎′′′ = 0. At that, the coefficient at 𝐷2 vanishes, and the coefficient at 𝐷
and the free term yield

3(𝑎 ∘ 𝐴1 + 𝐴1 ∘ 𝑎) = 4(3𝑎′′𝑢′ + 𝑎′𝑢′′)𝐷 + 2(4𝑎′′𝑢′′ + 𝑎′𝑢′′′) or

3𝑎′′𝑢′ + 𝑎′𝑢′′ = 3𝑎𝑎′, 𝑎(𝑥) =

{︃
𝛼𝑥2 + 𝛾,

𝛽𝑥
.

The solutions to the equation 3𝑎′′𝑢′ + 𝑎′𝑢′′ = 3𝑎𝑎′ are (cf. [5])

𝑢(𝑥) =
1

2

{︃
1
4
𝛼𝑥4 + 3

4
𝛾𝑥2 − 𝐶1

𝑥2 + 𝐶2,

𝛽𝑥3 + 𝐶1𝑥+ 𝐶2

.

Appendix

The system of algebraic equations for the coefficients 𝑎𝑖 of the polynomial 𝑃 (𝑧) in (17) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2688𝑎1𝑎
2
3 − 1344𝑎1𝑎

3
2 − 588𝑎2𝑎

5
1 + 840𝑎3𝑎

4
1 + 1680𝑎31𝑎

2
2 + 2688𝑎3𝑎

2
2

+ 56448𝑎3 − 28224𝑎1𝑎2 + +26880𝑎3𝑎2 + 63𝑎71 − 10080𝑎3𝑎
2
1 + 8400𝑎2𝑎

3
1

− 13440𝑎1𝑎
2
2 − 1260𝑎51 − 4032𝑎3𝑎

2
1𝑎2 + 7056𝑎31 = 0,

− 31104 + 8064𝑎1𝑎
2
3 − 4032𝑎1𝑎

3
2 − 1764𝑎2𝑎

5
1 + 2520𝑎3𝑎

4
1 + 5040𝑎31𝑎

2
2 + 8064𝑎3𝑎

2
2

+ 42𝑎2𝑎
6
1 + 3072𝑎2𝑎

2
3 + 270𝑎61 + 25920𝑎21 − 2496𝑎3𝑎1𝑎

2
2 − 3264𝑎3𝑎1 + 23040𝑎23

− 69120𝑎2 + 169344𝑎3 − 360𝑎22𝑎
4
1 + +864𝑎21𝑎

3
2 − 84672𝑎1𝑎2 + 80640𝑎3𝑎2 − 4320𝑎41

+ 189𝑎71 − 30240𝑎3𝑎
2
1 + 25200𝑎2𝑎

3
1 − 40320𝑎1𝑎

2
2 − 3780𝑎51 −−7680𝑎32 + 27744𝑎2𝑎

2
1

− 3000𝑎2𝑎
4
1 + 3600𝑎3𝑎

3
1 + 9600𝑎21𝑎

2
2 − 17280𝑎3𝑎1𝑎2 − 12096𝑎3𝑎

2
1𝑎2 − 45312𝑎22

+ 672𝑎2𝑎3𝑎
3
1 − 192𝑎23𝑎

2
1 − 12𝑎3𝑎

5
1 − 384𝑎42 + 21168𝑎31 = 0,

− 46656 + 9024𝑎1𝑎
2
3 − 2592𝑎1𝑎

3
2 − 1674𝑎2𝑎

5
1 + 2280𝑎3𝑎

4
1 + 4320𝑎31𝑎

2
2 + 81344𝑎3𝑎

2
2

+ 63𝑎2𝑎
6
1 + 4608𝑎2𝑎

2
3 + +405𝑎61 + 38880𝑎21 − 3744𝑎3𝑎1𝑎

2
2 − 4896𝑎3𝑎1 + 34560𝑎23

− 7776𝑎1 − 103680𝑎2 + 91584𝑎3 + 288𝑎23𝑎
3
1 + +21𝑎3𝑎

6
1 − 192𝑎3𝑎

3
2 − 540𝑎22𝑎

4
1

+ 1296𝑎21𝑎
3
2 − 63072𝑎1𝑎2 + 37824𝑎3𝑎2 − 6480𝑎41 + 189𝑎71 + 432𝑎3𝑎

2
1𝑎

2
2 − 1152𝑎23𝑎1𝑎2

− 18528𝑎3𝑎
2
1 + 20520𝑎2𝑎

3
1 − 30240𝑎1𝑎

2
2 − 3294𝑎51 − 11520𝑎32 + 41616𝑎2𝑎

2
1 − 4500𝑎2𝑎

4
1

+ 5400𝑎3𝑎
3
1 + 14400𝑎21𝑎

2
2 + 1152𝑎33 − 25920𝑎3𝑎1𝑎2 − 9456𝑎3𝑎

2
1𝑎2 − 180𝑎3𝑎2𝑎

4
1

− 67968𝑎22 + 1008𝑎2𝑎3𝑎
3
1 − 288𝑎23𝑎

2
1 − 18𝑎3𝑎

5
1 − 576𝑎42 + 17928𝑎31 = 0.

..
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