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INVARIANT AND PARTIALLY INVARIANT SOLUTIONS

WITH RESPECT TO GALILEAN SHIFTS AND DILATATION

E.V. MAKAREVICH

Abstract. In the work we consider a three-dimensional subalgebra embedded in a four-
dimensional subalgebra in order to find the set of solutions and to adjoint them with the
solutions on subalgebras of higher dimension. Although the aim is not reached yet, we
obtain invariant solutions of the rank 1 and partially invariant solutions of the rank 1 and
defect 1. We obtain two submodels being invariant and partially invariant, seven solutions
depend on arbitrary function and nineteen exact solutions.
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1. Introduction

The equations of gas dynamics (EGD)

𝜌𝐷𝑢⃗ + ∇𝑝 = 0, 𝐷𝜌 + 𝜌∇ · 𝑢⃗ = 0, 𝐷𝑆 = 0, (1)

where 𝐷 = 𝜕𝑡 + 𝑢⃗ · ∇ is the total derivative w.r.t. the time, 𝑢⃗ is the speed vector, 𝑝 is the
pressure, 𝜌 is the density, 𝑐2 = 𝜕𝑝

𝜕𝜌
is the square of the sonic speed and the state equation with

the separated density

𝜌 = ℎ(𝑝)𝑆, 𝑆 is the entropy function, (2)

admit twelve-dimensional Lie algebra of operators 𝐿12 [1]. The optimal system of dissimilar
sublalgebras for EGD with state equation (2) is given in [2, Table 3]. By the example of a
five-dimensional self-normalized subalgebra, the hierarchy of EGD submodels was considered
and the graph of all embedded subalgebras was composed. The submodels were embedded one
into another in such a way that the solution of invariant submodel for overalgebra is a partial
one to an invariant submodel of overlagebra [3]. In work [4], we constructed and studied a
partially invariant solution on a four-dimensional subalgebra from graph Γ5 [3].

In the present paper we consider a three-dimensional subalgebra embedded into the four-
dimensional subalgebra from work [4]. Our aim is to find the set of solutions to adjoin them
with solutions on subalgebras of higher dimensions. Although this aim is not attained yet, we
however obtain an invariant submodel of rank 1 and all possible partially invariant solutions
of rank 1 and defect 1. We obtain 23 solutions depending on several constants denoted by the
letters 𝑣0, 𝑤0, 𝜌0, 𝐾0, 𝑃0, ℎ0, 𝑥0, 𝑛, 𝐶, 𝐶𝑖, 𝑖 = 0, 1, 2. All the solutions are written up to the
transformations admitted by EGD.
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There is a general fact on the existence of the hierarchy of embedded submodels being
invariant, partially-invariant, or differentially-invariant [5].

2. Invariant solutions

Consider a three-dimensional subalgebra 3.23 [2, Table 3] with the basis in the cartesian
coordinate system: {𝑡𝜕𝑦 +𝜕𝑣, 𝑡𝜕𝑧 +𝜕𝑤, 𝑏(𝑡𝜕𝑡 +𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 𝑧𝜕𝑧) + 𝑡𝜕𝑡−𝑢𝜕𝑢− 𝑣𝜕𝑣 −𝑤𝜕𝑤 + 2𝜌𝜕𝜌},
𝑏 ̸= 0, 𝑏 ̸= −1. The point invariants are calculated in work [3, Table 1]. The solution is
represented as

𝑢 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑢1(𝑥1)), 𝑣 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑣1(𝑥1) + 𝑦), 𝑤 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑤1(𝑥1) + 𝑧),

𝜌 = |𝑡|
2

𝑏+1𝜌1(𝑥1), 𝑆 = |𝑡|
2

𝑏+1𝑆1(𝑥1), 𝑝 = 𝑝(𝑥1), 𝑥1 = |𝑡|−
𝑏

𝑏+1𝑥.
(3)

Hereinafter we assume 𝜌1 ̸= 0, otherwise the solution has no physical meaning. State equation
(2) becomes

𝜌1 = ℎ(𝑝)𝑆1. (4)

We introduce the notation

𝑢̄1 = 𝑢1 − 𝑏(𝑏 + 1)−1𝑥1, (5)

then substituting (3), (5) into EGD (1) gives the invariant submodel

𝑝𝑥1 = 𝜌1
(︀
(1 − 𝑏)(1 + 𝑏)−1𝑢̄1 − 𝑢̄1𝑢̄1𝑥1 + 𝑏(𝑏 + 1)−2𝑥1

)︀
,

𝑢̄1𝑣1𝑥1 = −𝑏(𝑏 + 1)−1𝑣1,

𝑢̄1𝑤1𝑥1 = −𝑏(𝑏 + 1)−1𝑤1,

𝑢̄1𝜌1𝑥1
𝜌1

−1 + 𝑢̄1𝑥1 = −(3𝑏 + 4)(𝑏 + 1)−1,

𝑢̄1𝑆1𝑥1 = −2(𝑏 + 1)−1𝑆1.

(6)

In studying the submodel, several cases appear. If 𝑢̄1 = 0, then 𝜌1 = 0 and the solution has
physical meaning. Let 𝑢̄1 ̸= 0. We introduce a new variable 𝑠 (up to an additive constant) by
the formula

𝑑𝑠 = 𝑢̄−1
1 𝑑𝑥1. (7)

Integrating system (4), (6), (7), we obtain the set of integrals depending on five constants 𝑣0,
𝑤0, 𝜌0, 𝑆0, ℎ0,

𝑣1 = 𝑣0𝑒
− 𝑏

𝑏+1
𝑠, 𝑤1 = 𝑤0𝑒

− 𝑏
𝑏+1

𝑠, 𝜌1𝑥1𝑠 = 𝜌0𝑒
− 3𝑏+4

𝑏+1
𝑠,

𝑆1 = 𝑆0𝑒
− 2

𝑏+1
𝑠, ℎ(𝑝)𝑥1𝑠 = ℎ0𝑒

− 3𝑏+2
𝑏+1

𝑠.
(8)

If in the latter identity ℎ(𝑝) ̸= const, then the system is reduced to a second order ordinary
nonlinear differential equation

3𝑏 + 2

𝑏 + 1
+

𝑥1𝑠𝑠

𝑥1𝑠

= 𝜌0𝑒
− 3𝑏+4

𝑏+1
𝑠

(︂
𝑏− 1

𝑏 + 1
𝑥1𝑠 + 𝑥1𝑠𝑠 −

𝑏

(𝑏 + 1)2
𝑥1

)︂
𝜙

(︂
ℎ0

𝑥1𝑠

𝑒−
3𝑏+2
𝑏+1

𝑠

)︂
, (9)

where we introduce the superposition of functions 𝜙 = (ℎ′ℎ−1) ∘ ℎ(−1), and 𝜌0 is an essential
constant which can be made equal to 1 by a dilatation in 𝑥1.

If ℎ(𝑝) = const, then 𝑥1𝑠 = 𝑥0𝑒
− 3𝑏+2

𝑏+1
𝑠 and three cases are possible.
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1) 𝑏 ̸= −2

3
, 𝑏 ̸= −4

3
. Then by means of a shift in 𝑠 we make 𝑥0 = 1. The solution to system

(6) is determined by the formulae

𝑢1 = −2𝑥1 +
3𝑏 + 2

𝑏 + 1
𝐶, 𝑣1 = 𝑣0|𝑥1 − 𝐶|

𝑏
3𝑏+2 , 𝑤1 = 𝑤0|𝑥1 − 𝐶|

𝑏
3𝑏+2 ,

𝜌1 = 𝜌0|𝑥1 − 𝐶|
2

3𝑏+2 , 𝑝 =
3𝑏 + 2

𝑏 + 1
𝜌0|𝑥1 − 𝐶|

3𝑏+4
3𝑏+2

(︂
(𝑏 + 2)(3𝑏 + 2)

(𝑏 + 1)(3𝑏 + 4)
𝐶 − 𝑥1

)︂
.

(10)

2) 𝑏 = −4

3
. By means of a shift in 𝑠 we obtain 𝑥0 = 1. The solution is determined by the

formulae

𝑢1 = −2𝑥1 + 6𝐶, 𝑣1 = 𝑣0(𝑥1 − 𝐶)
2
3 , 𝑤1 = 𝑤0(𝑥1 − 𝐶)

2
3 ,

𝜌1 = 𝜌0(𝑥1 − 𝐶)−1, 𝑝 = −6𝜌0𝑥1 − 12𝜌0𝐶 ln |𝑥1 − 𝐶|.
(11)

3) 𝑏 = −2

3
. Then 𝑥1𝑠 = 𝐶, ℎ = ℎ0𝐶

−1. The solution is given by the formulae

𝑢1 = −2𝑥1 + 𝐶, 𝑣1 = 𝑣0𝑒
2
𝐶
𝑥1 , 𝑤1 = 𝑤0𝑒

2
𝐶
𝑥1 ,

𝜌1 = 𝜌0𝑒
− 6

𝐶
𝑥1 , 𝑝 = 𝜌0𝐶𝑒−

6
𝐶
𝑥1(𝑥1 −

2

3
𝐶).

(12)

Solutions to EGD in terms of physical variables are provided by formulae (3), in which we
substitute (8) with some solution to equation of submodel (9) or (10),(11),(12). In what follows
we write only the formulae for 𝑢1, 𝑣1, 𝑤1, 𝜌1, 𝑝.

3. Regular partially invariant solutions of rank 1 and defect 1 depending
on all spatial variables

On subalgebra 3.23 we construct a partially invariant solution of rank 1 and defect 1. By the
expressions for the invariants we find the speed and density, at that, the pressure is assumed
to be a general function. The representation for the solution reads as

𝑢 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑢1(𝑥1)), 𝑣 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑣1(𝑥1) + 𝑦), 𝑤 = 𝑡−1(|𝑡|
𝑏

𝑏+1𝑤1(𝑥1) + 𝑧),

𝜌 = |𝑡|
2

𝑏+1𝜌1(𝑥1), 𝑝 = 𝑝(𝑥, 𝑦, 𝑧, 𝑡), 𝑥1 = |𝑡|−
𝑏

𝑏+1𝑥.
(13)

State equation (2) determines the entropy

|𝑡|
2

𝑏+1𝜌1(𝑥1) = ℎ(𝑝)𝑆. (14)

Substituting representations (13) and (14) into EGD (1), we determine all the derivatives for
the pressure that yields

𝑝 = |𝑡|−
𝑏

𝑏+1 (𝐶1𝑦 + 𝐶2𝑧) + 𝑃 (𝑥1) + 𝐾(𝑡). (15)

After that, EGD casts into the form of an equations system with one independent variable 𝑥1

𝜌1 ((𝑏 + 1)−1𝑢1 + (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1)𝑢1𝑥1
) = 𝑃𝑥1 , (16)

𝜌1 (−𝑏(𝑏 + 1)−1𝑣1 + (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1) 𝑣1𝑥1
) = 𝐶1, (17)

𝜌1 (−𝑏(𝑏 + 1)−1𝑤1 + (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1)𝑤1𝑥1
) = 𝐶2, (18)

𝜌1𝑥1
𝜌1

−1 (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1) − 2(𝑏 + 1)−1 = 𝑢1𝑥1
+ 2, (19)

and the functionally overdetermined identity

ℎ′ℎ−1((𝑏 + 1)−1|𝑡|−
𝑏

𝑏+1 (𝐶1𝑦 + 𝐶2𝑧) −
(︀
𝑏(𝑏 + 1)−1𝑥1 − 𝑢1

)︀
𝑃𝑥1 + 𝑡𝐾𝑡+

+𝐶1𝑣1 + 𝐶2𝑤1) = 2(𝑏 + 1)−1 − 𝜌1𝑥1
𝜌1

−1
(︀
𝑏(𝑏 + 1)−1𝑥1 − 𝑢1

)︀
.

(20)
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where 𝑃 is an arbitrary function of 𝑥1, 𝐾 is an arbitrary function of 𝑡. Consider the case when
the solution depends on all spatial variables: 𝐶1

2 + 𝐶2
2 ̸= 0. Then by means of identity (20)

we exclude the expression

|𝑡|−
𝑏

𝑏+1 (𝐶1𝑦 + 𝐶2𝑧) = 𝑝− 𝑃 (𝑥1) −𝐾(𝑡)

valid due to (15). We obtain the identity w.r.t. the independent variables 𝑡, 𝑥1, 𝑝. We differen-
tiate w.r.t. 𝑡 to obtain the identity

ℎ′ (︀−(𝑏 + 1)−1𝐾 + 𝑡𝐾𝑡

)︀
𝑡

= 0. (21)

Suppose the first multiplier in (21) is non-zero, ℎ′ ̸= 0. In this case, by (21), we determine

the function 𝐾 = 𝐾0|𝑡|
1

𝑏+1 − 𝐶0(𝑏 + 1), 𝐾0, 𝐶0 are constants. The pressure is written as

𝑝 = |𝑡|−
𝑏

𝑏+1 (𝐶1𝑦 + 𝐶2𝑧) + 𝑃 (𝑥1) + 𝐾0|𝑡|
1

𝑏+1 − 𝐶0(𝑏 + 1). Equation (20) becomes

(𝑏 + 1)−1(𝑝− 𝑃 ) + 𝐶0 −
(︀
𝑏(𝑏 + 1)−1𝑥1 − 𝑢1

)︀
𝑃𝑥1 + 𝐶1𝑣1 + 𝐶2𝑤1 =

= ℎℎ′−1 (︀
2(𝑏 + 1)−1 − 𝜌1𝑥1

𝜌1
−1

(︀
𝑏(𝑏 + 1)−1𝑥1 − 𝑢1

)︀)︀
.

(22)

Here 2(𝑏 + 1)−1 − 𝜌1𝑥1
𝜌1

−1 (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1) ̸= 0 since otherwise we get a contradiction in
identity (22). We differentiate (22) w.r.t. 𝑝,(︁

ℎℎ′−1
)︁′

= (𝑏 + 1)−1
(︀
2(𝑏 + 1)−1 − 𝜌1𝑥1

𝜌1
−1

(︀
𝑏(𝑏 + 1)−1𝑥1 − 𝑢1

)︀)︀−1
.

In this identity, the variables 𝑥1, 𝑝 separate and thus, both sides of the identity are constant.

By the latter identity we find ℎ = ℎ0(𝑝 + 𝑃0)
1
𝛾 , 𝛾 ̸= 0. If we replace 𝑝 + 𝑃0 by 𝑝 and ℎ0𝑆 by 𝑆,

then ℎ = 𝑝
1
𝛾 , the state equation becoms 𝜌 = 𝑝

1
𝛾𝑆. In EGD (1), instead of entropy equation, we

can write the equation for the pressure, 𝐷𝑝 + 𝛾𝑝∇ · 𝑢⃗ = 0. We substitute function ℎ into (22)
and collect the coefficients at the powers of 𝑝. It leads us to overdetermined equations system
(16), (17), (18), as well as

(𝑏(𝑏 + 1)−1𝑥1 − 𝑢1)𝑃𝑥1 + (𝑏 + 1)−1𝑃 = 𝐶1𝑣1 + 𝐶2𝑤1 + 𝐶0, (23)

𝜌1𝑥1
𝜌1

−1 (𝑏(𝑏 + 1)−1𝑥1 − 𝑢1) = (2 − 𝛾−1)(𝑏 + 1)−1, (24)

𝑢1𝑥1
= −(2𝑏 + 2 + 𝛾−1)(𝑏 + 1)−1. (25)

By (25) we find 𝑢1 = −(2𝑏+ 2 + 𝛾−1)(𝑏+ 1)−1𝑥1 +𝐶(𝑏+ 1)−1, 𝐶 is a constant. Then equation
(24) can be rewritten as

𝜌1𝑥1
𝜌1

−1
(︀
(3𝑏 + 2 + 𝛾−1)𝑥1 − 𝐶

)︀
= 2 − 𝛾−1. (26)

Suppose now that 3𝑏 + 2 + 𝛾−1 = 0 in (26). If 𝛾−1 = 2, then 𝑏 = −4

3
and (26) reduces to

𝜌1𝑥1
𝐶 = 0. The case 𝐶 ̸= 0 leads one to a non-physical solution 𝜌 = 0. As 𝐶 = 0, the solution

is determined by the formulae

𝑢1 = 4𝑥1, 𝑣1 = −1

4
𝐶1𝜌1

−1, 𝑤1 = −1

4
𝐶2𝜌1

−1, 𝜌1
2 =

𝐶1
2 + 𝐶2

2

144(−𝑥1
2 + 𝑥0

2)
,

𝑝 = 𝑡−4(𝐶1𝑦 + 𝐶2𝑧) +
1

12
(𝐶1

2 + 𝐶2
2)𝜌1

−1 + 𝐾0|𝑡|−3, 𝑥1 = 𝑡−4𝑥.

(27)

If 𝛾−1 ̸= 2, by integrating we arrive at the contradiction 𝐶1 = 𝐶2 = 0.
Let 3𝑏+ 2 +𝛾−1 ̸= 0. As 𝛾−1 = 2, we obtain four solutions with different values of parameter

𝑏.
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1) 𝑏 = −2. The solution is determined by the formulae

𝑢1 = −2𝐶, 𝑣1 = 𝑣0(𝑥1 + 𝐶) − 1

2
𝐶1𝜌0

−1, 𝑤1 = 𝑤0(𝑥1 + 𝐶) − 1

2
𝐶2𝜌0

−1,

𝜌1 = 𝜌0, 𝑝 = 𝑡−2(𝐶1𝑦 + 𝐶2𝑧) + 2𝜌0𝐶(𝑥1 + 𝐶) + 𝐾0𝑡
−1 +

1

2
𝜌0

−1(𝐶1
2 + 𝐶2

2),

(28)

where 𝑥1 = 𝑡−2𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 = 2𝜌0𝐶.

2) 𝑏 = −8

5
. The solution is given by the formulae

𝑢1 =
4

3
𝑥1, 𝑣1 = 𝑣0𝑥1

2 − 3

8
𝐶1𝜌0

−1, 𝑤1 = 𝑤0𝑥1
2 − 3

8
𝐶2𝜌0

−1,

𝜌1 = 𝜌0, 𝑝 = |𝑡|−
8
3 (𝐶1𝑦 + 𝐶2𝑧) − 2

9
𝜌0𝑥1

2 + 𝐾0|𝑡|−
5
3 +

9

40
𝜌0

−1(𝐶1
2 + 𝐶2

2).

(29)

where 𝑥1 = |𝑡|− 8
3𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 +

2

9
𝜌0 = 0.

3) 𝑏 = −3

2
. The solution is determined by the formulae

𝑢1 = 2𝑥1, 𝑣1 = 𝑣0𝑥1
3 − 1

3
𝐶1𝜌0

−1, 𝑤1 = 𝑤0𝑥1
3 − 1

3
𝐶2𝜌0

−1,

𝜌1 = 𝜌0, 𝑝 = |𝑡|−3(𝐶1𝑦 + 𝐶2𝑧) − 𝜌0𝑥1
2 + 𝐾0|𝑡|−2 +

1

6
𝜌0

−1(𝐶1
2 + 𝐶2

2).

(30)

where 𝑥1 = |𝑡|−3𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 = 0.

4) 𝑏 = −5

3
. The solution is given by the formulae

𝑢1 = 𝑥1 −
3

2
𝐶, 𝑣1 = 𝑣0(𝑥1 + 𝐶)

5
3 − 2

5
𝐶1𝜌0

−1, 𝑤1 = 𝑤0(𝑥1 + 𝐶)
5
3 − 2

5
𝐶2𝜌0

−1,

𝜌1 = 𝜌0, 𝑝 = |𝑡|−
5
2 (𝐶1𝑦 + 𝐶2𝑧) +

15

4
𝜌0𝐶(𝑥1 + 𝐶) + 𝐾0|𝑡|−

3
2 +

4

15
𝜌0

−1(𝐶1
2 + 𝐶2

2).

(31)

where 𝑥1 = |𝑡|− 5
2𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 = 0.

As 𝛾−1 ̸= 2, the system is solvable only for the following values of parameters 𝑏 and 𝛾−1:

5) 𝑏 = −3

2
, 𝛾−1 =

3

2
. The solution is determined by the formulae

𝑢1 = 𝑥1 − 2𝐶, 𝑣1 = 𝑣0|𝑥1 + 𝐶|
3
2 − 1

2
𝐶1𝜌0

−1|𝑥1 + 𝐶|
1
2 ,

𝑤1 = 𝑤0|𝑥1 + 𝐶|
3
2 − 1

2
𝐶2𝜌0

−1|𝑥1 + 𝐶|
1
2 , 𝜌1 = 𝜌0|𝑥1 + 𝐶|−

1
2 ,

𝑝 = |𝑡|−3(𝐶1𝑦 + 𝐶2𝑧) + 12𝜌0𝐶|𝑥1 + 𝐶|
1
2 + 𝐾0|𝑡|−2,

(32)

where 𝑥1 = |𝑡|−3𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 = 0, 𝐶1
2 + 𝐶2

2 = 24𝜌0
2𝐶.

6) 𝑏 = −13

9
, 𝛾−1 =

5

3
. The solution is given by the formulae

𝑢1 =
7

4
𝑥1 −

3

2
𝐶, 𝑣1 = 𝑣0|𝑥1 + 𝐶|

13
6 − 2

5
𝐶1𝜌0

−1|𝑥1 + 𝐶|
1
2 ,

𝑤1 = 𝑤0|𝑥1 + 𝐶|
13
6 − 2

5
𝐶2𝜌0

−1|𝑥1 + 𝐶|
1
2 , 𝜌1 = 𝜌0|𝑥1 + 𝐶|−

1
2 ,

𝑝 = |𝑡|−
13
4 (𝐶1𝑦 + 𝐶2𝑧) +

1

8
𝜌0|𝑥1 + 𝐶|

1
2 (110𝐶 − 7𝑥1) + 𝐾0|𝑡|−

9
4 ,

(33)

where 𝑥1 = |𝑡|− 13
4 𝑥, 𝐶1𝑣0 + 𝐶2𝑤0 = 0, 𝐶2

1 + 𝐶2
2 =

1755

32
𝜌20𝐶.
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7) 𝑏 = −8

5
, 𝛾−1 =

6

5
. The solution is determined by the formulae

𝑢1 = −8

3
𝐶, 𝑣1 = 𝑣0(𝑥1 + 𝐶) − 3

4
𝐶1𝜌0

−1|𝑥1 + 𝐶|
1
2 ,

𝑤1 = 𝑤0(𝑥1 + 𝐶) − 3

4
𝐶2𝜌0

−1|𝑥1 + 𝐶|
1
2 , 𝜌1 = 𝜌0|𝑥1 + 𝐶|−

1
2 ,

𝑝 = |𝑡|−
8
3 (𝐶1𝑦 + 𝐶2𝑧) +

80

9
𝜌0𝐶|𝑥1 + 𝐶|

1
2 + 𝐾0|𝑡|−

5
3 ,

(34)

where 𝑥1 = |𝑡|− 8
3𝑥,𝐶1𝑣0 + 𝐶2𝑤0 = 0, 𝐶1

2 + 𝐶2
2 =

320

81
𝜌0

2𝐶.

Let ℎ(𝑝) = ℎ0 be constant, then (21) is identically satisfied. In this case we obtain system
(16), (17), (18), and 𝑢1 = −2𝑥1 + 𝐶,

𝜌1𝑥1
𝜌1

−1
(︀
(3𝑏 + 2)(𝑏 + 1)−1𝑥1 − 𝐶

)︀
= 2(𝑏 + 1)−1.

There appear extra four cases with different values of parameter 𝑏.

8) If 𝑏 = −2

3
, the latter equation implies 𝐶 ̸= 0. The solution is given by the formulae

𝑢1 = −2𝑥1 + 𝐶, 𝑣1 = 𝑣0𝑒
2
𝐶
𝑥1 − 1

4
𝐶1𝜌0

−1𝑒
6
𝐶
𝑥1 , 𝑤1 = 𝑤0𝑒

2
𝐶
𝑥1 − 1

4
𝐶2𝜌0

−1𝑒
6
𝐶
𝑥1 ,

𝜌1 = 𝜌0𝑒
− 6

𝐶
𝑥1 , 𝑝 = 𝑡2(𝐶1𝑦 + 𝐶2𝑧) + 𝜌0𝐶𝑒−

6
𝐶
𝑥1(𝑥1 −

2

3
𝐶) + 𝐾(𝑡).

(35)

where 𝑥1 = 𝑡2𝑥, 𝐾(𝑡) is an arbitrary function.

9) If 𝑏 = −4

3
, we replace 𝐶 by 6𝐶. The solution is determined by the formulae

𝑢1 = −2𝑥1 + 6𝐶, 𝑣1 = |𝑥1 − 𝐶|
2
3 (𝑣0 +

1

2
𝐶1𝜌0

−1|𝑥1 − 𝐶|
1
3 ),

𝑤1 = |𝑥1 − 𝐶|
2
3 (𝑤0 +

1

2
𝐶2𝜌0

−1|𝑥1 − 𝐶|
1
3 ), 𝜌1 = 𝜌0(𝑥1 − 𝐶)−1,

𝑝 = 𝑡−4(𝐶1𝑦 + 𝐶2𝑧) − 6𝜌0𝑥1 − 12𝜌0𝐶 ln |𝑥1 − 𝐶| + 𝐾(𝑡).

(36)

where 𝑥1 = 𝑡−4𝑥.
10) 𝑏 = −2. Replace 𝐶 by 4𝐶. The solution is given by the formulae

𝑢1 = −2𝑥1 + 4𝐶, 𝑣1 = |𝑥1 − 𝐶|
1
2 (𝑣0 +

1

4
𝐶1𝜌0

−1 ln |𝑥1 − 𝐶|),

𝑤1 = |𝑥1 − 𝐶|
1
2 (𝑤0 +

1

4
𝐶2𝜌0

−1 ln |𝑥1 − 𝐶|), 𝜌1 = 𝜌0|𝑥1 − 𝐶|−
1
2 ,

𝑝 = 𝑡−2(𝐶1𝑦 + 𝐶2𝑧) − 4𝜌0|𝑥1 − 𝐶|
1
2𝑥1 + 𝐾(𝑡),

(37)

where 𝑥1 = 𝑡−2𝑥.

11) 𝑏 ̸= −2

3
, 𝑏 ̸= −4

3
, 𝑏 ̸= −2. Replace 𝐶 by

3𝑏 + 2

𝑏 + 1
𝐶. The solution is determined by the

formulae

𝑢1 = −2𝑥1 +
3𝑏 + 2

𝑏 + 1
𝐶, 𝑣1 = 𝑣0|𝑥1 − 𝐶|

𝑏
3𝑏+2 − 𝑏 + 1

𝑏 + 2
𝐶1𝜌0

−1|𝑥1 − 𝐶|−
2

3𝑏+2 ,

𝑤1 = 𝑤0|𝑥1 − 𝐶|
𝑏

3𝑏+2 − 𝑏 + 1

𝑏 + 2
𝐶2𝜌0

−1|𝑥1 − 𝐶|−
2

3𝑏+2 , 𝜌1 = 𝜌0|𝑥1 − 𝐶|
2

3𝑏+2 ,

𝑝 = |𝑡|−
𝑏

𝑏+1 (𝐶1𝑦 + 𝐶2𝑧) +
3𝑏 + 2

𝑏 + 1
𝜌0|𝑥1 − 𝐶|

3𝑏+4
3𝑏+2

(︂
(𝑏 + 2)(3𝑏 + 2)

(𝑏 + 1)(3𝑏 + 4)
𝐶 − 𝑥1

)︂
+ 𝐾(𝑡).

(38)
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4. Regular partially invariant solutions depending on one spatial variable

Let 𝐶1 = 𝐶2 = 0, 𝑝 = 𝑃 (𝑥1) + 𝐾(𝑡). If 𝐾(𝑡) = const, we obtain the invariant submodel
considered in Section 2 and this is why we let 𝐾(𝑡) ̸= const. We introduce the notation by
formula (5), then EGD yield the differential equations

𝑃𝑥1 = 𝜌1 ((1 − 𝑏)(𝑏 + 1)−1𝑢̄1 − 𝑢̄1𝑢̄1𝑥1 + 𝑏(𝑏 + 1)−2𝑥1) , (39)

𝑢̄1𝑣1𝑥1
= −𝑏(𝑏 + 1)−1𝑣1, (40)

𝑢̄1𝑤1𝑥1
= −𝑏(𝑏 + 1)−1𝑤1, (41)

𝑢̄1𝜌1𝑥1
𝜌1

−1 + 𝑢̄1𝑥1 = −(3𝑏 + 4)(𝑏 + 1)−1, (42)

and also the overdetermined identity

ℎ′ℎ−1(𝑢̄1𝑃𝑥1 + 𝑡𝐾𝑡) = 𝑢̄1𝜌1𝑥1
𝜌1

−1 + 2(𝑏 + 1)−1. (43)

If 𝑃 = 𝑃0 is constant, then in (43) the variables 𝑡, 𝑥1 separate and are determined 𝐾(𝑡) :

ℎ(𝐾(𝑡) +𝑃0) = ℎ0|𝑡|
𝐶

𝑏+1 . By (42),(39) it follows 𝑢̄1 = −𝑏(𝑏+ 1)−1𝑥1 or 𝑢̄1 = (𝑏+ 1)−1𝑥1. In the
former case, solution to (39)–(43) read as

𝑢1 = 0, 𝑣1 = 𝑣0𝑥1, 𝑤1 = 𝑤0𝑥1, 𝜌1 = 𝜌0|𝑥1|
2𝑏+4

𝑏 , 𝑝 = 𝐾(𝑡) + 𝑃0. (44)

In the latter we get

𝑢1 = 𝑥1, 𝑣1 = 𝑣0|𝑥1|−𝑏, 𝑤1 = 𝑤0|𝑥1|−𝑏, 𝜌1 = 𝜌0|𝑥1|−3𝑏−5, 𝑝 = 𝐾(𝑡) + 𝑃0. (45)

In what follows, we assume 𝑃 ̸= const. We have 𝑢̄1𝑃𝑥1 + 𝑡𝐾𝑡 ̸= 0 in equation (43), overwise
we arrive at the contradiction 𝐾(𝑡) = const. If at the same time ℎ(𝑝) = ℎ0 is constant, then
this case coincides with the similar one in Section 3 as 𝐶1 = 𝐶2 = 0. If ℎ′ ̸= 0, it follows from
(43) that 𝑢̄1𝜌1𝑥1

𝜌1
−1 + 2(𝑏 + 1)−1 ̸= 0. We differentiate (43) w.r.t. 𝑡 and 𝑥1,(︂

ℎ′

ℎ

)︂′

(𝑢̄1𝑃𝑥1 + 𝑡𝐾𝑡) +
ℎ′

ℎ

(︂
1 + 𝑡

𝐾𝑡𝑡

𝐾𝑡

)︂
= 0, (46)(︂

ℎ′

ℎ

)︂′

(𝑢̄1𝑃𝑥1 + 𝑡𝐾𝑡)𝑃𝑥1 +
ℎ′

ℎ
(𝑢̄1𝑃𝑥1)𝑥1

=

(︂
𝑢̄1

𝜌1𝑥1

𝜌1

)︂
𝑥1

. (47)

We substitute (43), (46) into (47), divide by 𝑃𝑥1 and differentiate w.r.t. 𝑥1,(︂
(𝑢̄1𝑃𝑥1)𝑥1

𝑃𝑥1

)︂
𝑥1

=

(︂
𝑢̄1(𝑢̄1(ln 𝜌1)𝑥1)𝑥1

𝑢̄1(ln 𝜌1)𝑥1 + 2(𝑏 + 1)−1

)︂
𝑥1

+

(︂
(𝑢̄1(ln 𝜌1)𝑥1)𝑥1

𝑃𝑥1(𝑢̄1(ln 𝜌1)𝑥1 + 2(𝑏 + 1)−1)

)︂
𝑥1

𝑡𝐾𝑡. (48)

The variables in (48) separate.
Suppose the coefficient at 𝑡𝐾𝑡 is non-zero, then 𝐾(𝑡) = ln |𝑡| and the variables in (43)

separate. By change (7) (as 𝑢̄1 ̸= 0) we obtain integrals and a submodel from one second order
nonlinear ordinary differential equation

𝑣1 = 𝑣0𝑒
− 𝑏

𝑏+1
𝑠, 𝑤1 = 𝑤0𝑒

− 𝑏
𝑏+1

𝑠, 𝜌1𝑥1𝑠 = 𝜌0𝑒
− 3𝑏+4

𝑏+1
𝑠,

ℎ = ℎ0𝑒
𝑛𝑝, 𝑝 = ln |𝑡| − 𝑛−1 ln |𝑥1𝑠| −

(︀
(3𝑏 + 2)𝑛−1(𝑏 + 1)−1 + 1

)︀
𝑠,

(49)

𝑛−1

(︂
3𝑏 + 2

𝑏 + 1
+

𝑥1𝑠𝑠

𝑥1𝑠

)︂
+ 1 = 𝜌0𝑒

− 3𝑏+4
𝑏+1

𝑠

(︂
𝑏− 1

𝑏 + 1
𝑥1𝑠 + 𝑥1𝑠𝑠 −

𝑏

(𝑏 + 1)2
𝑥1

)︂
. (50)

If the coefficient at 𝑡𝐾𝑡 in (48) vanishes, then (ln 𝜌1)𝑠𝑠 = 𝐶1𝑃𝑠((ln 𝜌1)𝑠 + 2(𝑏+ 1)−1). System
(39)–(43) is solvable if and only if 𝐶1 = 0, otherwise by complicated arguments we would arrive
at the contradiction. If 𝑢̄1 ̸= 0, we introduce variable 𝑠 by formula (7), and then by (40)–(42)

we find 𝜌1 = 𝜌0𝑒
𝐶−2
𝑏+1

𝑠, 𝑢̄1 = 𝑢0𝑒
− 3𝑏+2+𝐶

𝑏+1
𝑠, and 𝑣1, 𝑤1 are found by the formulae in (49).
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If 3𝑏 + 2 + 𝐶 ̸= 0, then 𝑥1 = −(𝑏 + 1)(3𝑏 + 2 + 𝐶)−1𝑒−
3𝑏+2+𝐶

𝑏+1
𝑠 + 𝑥0 and thus

𝑢̄1 = −(3𝑏 + 2 + 𝐶)(𝑏 + 1)−1(𝑥1 − 𝑥0), 𝑣1 = 𝑣0|𝑥1 − 𝑥0|
𝑏

3𝑏+2+𝐶 ,

𝑤1 = 𝑤0|𝑥1 − 𝑥0|
𝑏

3𝑏+2+𝐶 , 𝜌1 = 𝜌0|𝑥1 − 𝑥0|−
𝐶−2

3𝑏+2+𝐶

(51)

with new constants 𝑣0, 𝑤0, 𝜌0. Due to (46), (47) we get the identity
(𝑢̄1𝑃𝑥1)𝑥1

𝑃𝑥1

= 1+ 𝑡
𝐾𝑡𝑡

𝐾𝑡

= 𝐶0,

𝐶0 is a constant. If 𝐶0 ̸= 0, then 𝑝 = 𝐶1|𝑥1 − 𝑥0|−
𝐶0(𝑏+1)
3𝑏+2+𝐶 + 𝐶2|𝑡|𝐶0 + 𝑃0, and by (43) we find

ℎ(𝑝) = ℎ0|𝑝−𝑃0|
𝐶

𝐶0(𝑏+1) . We substitute the found solution into (39) and study the compatibility
to obtain three solutions/.

1) 𝐶0 = −6𝑏 + 6 + 𝐶

𝑏 + 1
. The solution is determined by the formulae

𝑢1 = −(2𝑏 + 2 + 𝐶)(𝑏 + 1)−1𝑥1, 𝑣1 = 𝑣0|𝑥1|
𝑏

3𝑏+2+𝐶 , 𝑤1 = 𝑤0|𝑥1|
𝑏

3𝑏+2+𝐶 ,

𝜌1 = 𝜌0|𝑥1|−
𝐶−2

3𝑏+2+𝐶 , 𝑝 = 𝐶1|𝑥1|
6𝑏+6+𝐶
3𝑏+2+𝐶 + 𝐶2|𝑡|−

6𝑏+6+𝐶
𝑏+1 + 𝑃0,

(52)

where 𝐶1 is given by the identity 𝐶1(6𝑏+6+𝐶)(𝑏+1)2 = 𝜌0(2𝑏+2+𝐶)(3𝑏+3+𝐶)(3𝑏+2+𝐶).
2) 𝐶 = −2(𝑏 + 1). The solution is determined by the formulae

𝑢1 = 𝑏(𝑏 + 1)−1𝑥0, 𝑣1 = 𝑣0(𝑥1 − 𝑥0), 𝑤1 = 𝑤0(𝑥1 − 𝑥0),

𝜌1 = 𝜌0|𝑥1 − 𝑥0|
2𝑏+4

𝑏 , 𝑝 = 𝐶1|𝑥1 − 𝑥0|−
𝐶0(𝑏+1)

𝑏 + 𝐶2|𝑡|𝐶0 + 𝑃0,
(53)

where 𝐶1 is given by the identity 𝐶1𝐶0(𝑏 + 1)3 = 𝑏𝜌0𝑥0(3𝑏 + 2 + 𝐶).
3) 𝐶 = −3(𝑏 + 1). The solution is determined by the formulae

𝑢1 = 𝑥1 − (𝑏 + 1)−1𝑥0, 𝑣1 = 𝑣0|𝑥1 − 𝑥0|−𝑏, 𝑤1 = 𝑤0|𝑥1 − 𝑥0|−𝑏,

𝜌1 = 𝜌0|𝑥1 − 𝑥0|−3𝑏−5, 𝑝 = 𝐶1|𝑥1 − 𝑥0|𝐶0(𝑏+1) + 𝐶2|𝑡|𝐶0 + 𝑃0,
(54)

where 𝐶1 is given by the identity 𝐶1𝐶0(𝑏 + 1)3 = 𝑏𝜌0𝑥0(3𝑏 + 2 + 𝐶).
If 𝐶0 = 0, then 𝑝 = −𝐶1(𝑏 + 1)(3𝑏 + 2 + 𝐶)−1 ln |𝑥1 − 𝑥0| + 𝐶2 ln |𝑡| + 𝑃0. By (43) we find

ℎ(𝑝) = ℎ0𝑒
𝐶

(𝑏+1)(𝐶1+𝐶2) . We substitute the found functions into (39) and consider the solvability
to get extra three solutions.

4) 𝐶 = −6(𝑏 + 1). The solution is determined by the formulae

𝑢1 = 4𝑥1 −
3𝑏 + 4

𝑏 + 1
𝑥0, 𝑣1 = 𝑣0|𝑥1 − 𝑥0|−

𝑏
3𝑏+4 , 𝑤1 = 𝑤0|𝑥1 − 𝑥0|−

𝑏
3𝑏+4 ,

𝜌1 = 𝜌0|𝑥1 − 𝑥0|−2, 𝑝 =
𝐶1(𝑏 + 1)

3𝑏 + 4
ln |𝑥1 − 𝑥0| + 𝐶2 ln |𝑡| + 𝑃0,

(55)

where 𝐶1(𝑏 + 1) = 12𝜌0(3𝑏 + 4).

5) 𝑏 = −4

3
, 𝐶 = −4

3
. The solution is determined by the formulae

𝑢1 = 4𝑥0, 𝑣1 = 𝑣0(𝑥1 − 𝑥0), 𝑤1 = 𝑤0(𝑥1 − 𝑥0), 𝜌1 = 𝜌0(𝑥1 − 𝑥0)
−1,

𝑝 = −1

4
𝐶1 ln |𝑥1 − 𝑥0| + 𝐶2 ln |𝑡| + 𝑃0,

(56)

6) 𝑏 = −4

3
, 𝐶 = −1. The solution is determined by the formulae

𝑢1 = 𝑥1 + 3𝑥0, 𝑣1 = 𝑣0|𝑥1 − 𝑥0|
4
3 , 𝑤1 = 𝑤0|𝑥1 − 𝑥0|

4
3 , 𝜌1 = 𝜌0|𝑥1 − 𝑥0|−1,

𝑝 = −1

3
𝐶1 ln |𝑥1 − 𝑥0| + 𝐶2 ln |𝑡| + 𝑃0.

(57)
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If 3𝑏 + 2 + 𝐶 = 0, then 𝑥1 = const, the contradiction.

If 𝑢̄1 = 0, then 𝑏 = −4

3
. We obtain the solution

𝑢1 = 4𝑥1, 𝑣1 = 0, 𝑤1 = 0, 𝑝 = ln |𝑡| + 𝑃 (𝑥1), 𝜌1 = − 1

12
𝑥−1
1 𝑃𝑥1 , (58)

where 𝑃𝑥1 is an arbitrary function.

5. Conclusion

On subalgebra 3.23, by the optimal system in work [2], we obtain two submodels: (9) is an
invariant one of rank 1 and (50) is partially invariant submodel of rank 1 and defect 1. We
also obtain seven solutions (35), (36), (37), (38), (44), (45), (58), depending on one arbitrary
functions and exact solutions (10)–(12), (27)–(34), (44), (45), (52)–(57) depending on several
constants. The minimal amount of the constants is four, the maximal one is eight.
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