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ON SOME NONLINEAR INTEGRAL AND

INTEGRO-DIFFERENTIAL EQUATIONS

WITH NONCOMPACT OPERATORS

ON POSITIVE HALF-LINE

M.F. BROYAN, KH.A. KHACHATRYAN

Abstract. The paper is devoted to the studying certain classes of nonlinear integral and
integro-differential with non-compact Hammerstein type operators. These equations have
important applications in the kinetic theory of gases and in the wealth distribution theory
of a one product economics.
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1. Introduction

The work is devoted to the solvability in certain functional spaces of the following classes of
nonlinear integral and integro-differential equations with a non-compact Hammerstein-Wiener-
Hopf type operator,

𝑓(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝑓(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓(𝑡))𝑑𝑡, 𝑥 > 0, (1)

⎧⎪⎪⎨⎪⎪⎩
𝑑𝜙

𝑑𝑥
+ 𝜆𝜙(𝑥) =

∞∫︁
0

𝑇 (𝑥− 𝑡)𝐻(𝑡, 𝜙(𝑡))𝑑𝑡+

∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1(𝑡, 𝜙(𝑡))𝑑𝑡, 𝑥 > 0, (2)

𝜙(0) = 0 (3),

w.r.t. the functions 𝑓(𝑥) and 𝜙(𝑥), respectively.
Apart from a mathematical interest, these classes of equations have direct applications in

the kinetic theory of gases (equation (1)) and in the econometric theory (problem (2)-(3)) (see
[1]-[4]).

For equation (1) we suppose

𝐾0(𝑥) ≥ 0, 𝑥 ∈ R, 𝐾0 ∈ 𝐿1(R) ∩ 𝐿∞(R),

+∞∫︁
−∞

𝐾0(𝑥)𝑑𝑥 = 1, (4)

𝐾1(𝑥) ≥ 0, 𝐾1 ̸≡ 0,

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 6

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏, 𝑥 ∈ R+ ≡ (0,+∞). (5)
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In problem (2)-(3), 𝜆 is a positive scalar parameter of equation (2), and kernels 𝑇 and 𝑇1
satisfy the following conditions,

𝑇1(𝑥) ≥ 0, 𝑇1 ̸≡ 0, 𝑥 ∈ R+, 𝑇1 ∈ 𝐿1(R+), (6)

𝑇 (𝑥) ≥ 0, 𝑥 ∈ R, 𝑇 ∈ 𝐿1(R),

+∞∫︁
−∞

𝑇 (𝑥)𝑑𝑥 = 𝜆, (7)

∞∫︁
𝑥

𝑇1(𝑧)𝑑𝑧 6

∞∫︁
𝑥

𝑇 (𝑧)𝑑𝑧, 𝑥 ∈ R+, (8)

𝜈(𝑇 ) ≡
+∞∫︁

−∞

𝜏𝑇 (𝜏)𝑑𝜏 < −1,

+∞∫︁
−∞

|𝜏 |𝑗𝑇 (𝜏)𝑑𝜏 < +∞, 𝑗 = 1, 2. (9)

𝑁0, 𝑁1, 𝐻, and 𝐻1 are real functions defined on the set R+×R and satisfying certain conditions
(see Theorems 1-3).

In the linear case, as 𝑁0(𝑡, 𝑧) ≡ 𝑁1(𝑡, 𝑧) ≡ 𝑧, numerous papers were devoted to studying
equation (1) (see [5]–[8] and the references therein).

In the case 𝐾0(𝑥) = 𝐾1(𝑥) =
1√
𝜋
𝑒−𝑥2

and 𝑁0(𝑡, 𝑧) = 𝑁1(𝑡, 𝑧) = 𝑧𝑝, 𝑝 ∈ (0, 1), due to an

important application in the 𝑝-adic string theory, equation (1) was studied in works [9]-[12].
In the case 𝑁0(𝑡, 𝑧) ≡ 𝐺(𝑧), 𝑁1(𝑡, 𝑧) ≡ 𝐺1(𝑧), ∀𝑡 ∈ R+, where 𝐺,𝐺1 ∈ 𝐶[0, 𝜂], 𝐺(𝑧) ≥ 𝑧,

𝐺1(𝑧) ≥ 0, 𝑧 ∈ [0, 𝜂], 𝐺,𝐺1 ↑ on [0, 𝜂] and 𝐺(𝜂) = 𝐺1(𝜂) = 𝜂 for some 𝜂 > 0, equation (1)
was studied in work [13] and the existence of a positive and bounded solution tending to 𝜂 at
infinity was proven.

In the case 𝑁0(𝑡, 𝑧) ≡ 𝑧 − 𝜔(𝑧), 𝑁1(𝑡, 𝑧) ≡ 0, and 𝐾0(−𝑥) = 𝐾0(𝑥), 𝑥 > 0,
+∞∫︀
−∞

|𝑥|𝑗𝐾0(𝑥)𝑑𝑥<

+∞, 𝑗 = 1, 2, where 0 6 𝜔 ↓ w.r.t. 𝑧 on [𝐴,+∞), 𝐴 > 0, 𝜔 ∈ 𝐶[𝐴,+∞) ∩ 𝐿1(0,+∞), in
work [14], the existence of a one-parametric family of positive solutions with the asymptotic
behavior 𝑂(𝑥) as 𝑥→ +∞ was proven. Later, in works [15, 16], this result was generalized first

for the case 𝜈(𝐾0) 6 0, 𝑁0(𝑡, 𝑧) ≡ 𝜇(𝑡)(𝑧 − ∘
𝜔(𝑡, 𝑧)), 𝑁1(𝑡, 𝑧) ≡ 𝑧, where 0 < 𝜇(𝑡) 6 1, 𝑡 ∈ R+,

1 − 𝜇 ∈ 𝐿1(R+),
∘
𝜔(𝑡, 𝑧) ≥ 0,

∘
𝜔(𝑡, 𝑧) 6 𝜔(𝑧), (𝑡, 𝑧) ∈ R+ × [𝐴,+∞),

∘
𝜔 ↓ w.r.t. 𝑧 on [𝐴,+∞),

and after that, in [17, 18], for the cases 𝑁0(𝑡, 𝑧) ≡ 𝜇(𝑡)(𝐺(𝑧) − ∘
𝜔(𝑡, 𝑧)), 𝑁1(𝑡, 𝑧) ≡ 𝐺1(𝑧).

Recently, in [19], problem (2)-(3) was studied in the case 𝐻(𝑡, 𝑧) = 𝐺(𝑧), 𝐻1 ≡ 0. In [19],
a nonnegative and monotonically growing nonzero solution in the Sobolev space 𝑊 1

∞(R+) was
constructed.

In the present work we construct nonzero and nonnegative solutions to equations (1) and
(2) for completely different conditions for 𝑁0, 𝑁1, 𝐻, and 𝐻1. We note also that for various
values of 𝜈(𝐾0), a solution to equation (1) is constructed in the spaces 𝐿1(R+) ∩ 𝐿0

∞(R+) and
𝐿0
∞(R+) ≡ {𝜙(𝑥) : 𝜙 ∈ 𝐿∞(R+), lim

𝑥→∞
𝜙(𝑥) = 0}, and under conditions (6)-(9), a solution to

problem (2)-(3) is constructed in the Sobolev space 𝑊 1
1 (R+).
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2. Solvability of equation (1) in case of negativity of first moment for
kernel𝐾0

Suppose for the functions 𝑁0(𝑡, 𝑧) and 𝑁1(𝑡, 𝑧) there exist numbers 𝜂 > 0 and 𝜂0 ∈ (0, 𝜂)
such that

1) 𝑁0(𝑡, 𝑧), 𝑁1(𝑡, 𝑧) ↑ w.r.t. 𝑧 on [Φ𝜂0(𝑡), 𝜂], for each fixed 𝑡 ∈ R+, where

Φ𝜂0(𝑡) ≡ 𝜂0

∞∫︁
𝑡

𝐾1(𝜏)𝑑𝜏, 𝑡 ∈ R+. (10)

2) 𝑁0 and 𝑁1 satisfy Caratheodory condition on the set R+× [0, 𝜂] w.r.t. 𝑧. In what follows,
we write briefly this condition as

𝑁0, 𝑁1 ∈ 𝐶𝑎𝑟𝑎𝑡𝑧(R+ × [0, 𝜂]), (11)

3) 𝑁0(𝑡, 0) ≡ 0, 𝑁1(𝑡, 0) ≡ 0, 𝑡 ∈ R+ (12)

4) 0 6 𝑁0(𝑡, 𝑧) 6 𝑧, (𝑡, 𝑧) ∈ R+ × [Φ𝜂0(𝑡), 𝜂] (13)

5) 𝑁1(𝑡,Φ𝜂0(𝑡)) ≥ 𝜂0, 𝑁1(𝑡, 𝜂) 6 𝜂. (14)

The following theorem holds true.

Theorem 1. Suppose kernels 𝐾0 and 𝐾1 satisfy conditions (4)-(5) and 𝜈(𝐾0) ≡
+∞∫︀
−∞

𝜏𝐾0(𝜏)𝑑𝜏 < 0,
+∞∫︀
−∞

|𝜏 |𝑗𝐾0(𝜏)𝑑𝜏 < +∞, 𝑗 = 1, 2. Then equation (1) has a positive solu-

tion in the space 𝐿1(R+) ∩ 𝐿0
∞(R+).

Proof. We first consider the Wiener-Hopf integral equation,

𝑆(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑆(𝑡)𝑑𝑡, 𝑥 > 0, (15)

for a real measurable function 𝑆(𝑥), with a kernel 𝐾0 obeying the assumptions of the theorem.
As it is known (see [20]), equation (15) has a positive bounded solution with the following

properties,
𝑆(𝑥) ≥ 𝜂(1 − 𝛾+), 𝑆(𝑥) ↑ w.r.t. 𝑥 on R+ (16)

lim
𝑥→∞

𝑆(𝑥) = 𝜂, (17)

𝛾+ ≡
∞∫︁
0

v+(𝑥)𝑑𝑥 ∈ (0, 1). (18)

Here the functions v±(𝑥) ≥ 0, v±(𝑥) ∈ 𝐿1(R+) are determined by Engibaryan’s nonlinear
factorization equations,

v±(𝑥) = 𝐾0(±𝑥) +

∞∫︁
0

v∓(𝑡)v±(𝑥+ 𝑡)𝑑𝑡, 𝑥 > 0, (19)

and

𝛾− ≡
∞∫︁
0

v−(𝑥)𝑑𝑥 = 1, 𝛾+ ∈ (0, 1). (20)

In the recent work of one of the authors [21], as an auxiliary statement, the following addi-
tional properties of the function 𝑆(𝑥)

𝜂 − 𝑆(𝑥) ∈ 𝐿1(R+) ∩ 𝐿0
∞(R+), (21)
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𝜂 − 𝑆(𝑥) ≥ 𝜂

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏, 𝑥 ∈ R+ (22)

were proven. In what follows, we shall make use of inclusion (21) and inequality (22). We
introduce the following successive approximations,

𝑓0(𝑥) = 𝜂 − 𝑆(𝑥), (23)

𝑓𝑛+1 =
∞∫︀
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝑓𝑛(𝑡))𝑑𝑡+
∞∫︀
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓𝑛(𝑡))𝑑𝑡,

𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.
(24)

By induction on 𝑛, let us prove the following properties of the sequence {𝑓𝑛(𝑥)}∞𝑛=0,

𝑎) 𝑓𝑛(𝑥) ↓ w.r.t. 𝑛, 𝑏) 𝑓𝑛(𝑥) ≥ Φ𝜂0(𝑥), 𝑛 = 0, 1, 2, . . . . (25)

We note that it follows immediately from (22) and 𝜂0 ∈ (0, 𝜂) that

𝜂 ≥ 𝑓0(𝑥) ≥ 𝜂

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏 ≥ 𝜂0

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 = Φ𝜂0(𝑥). (26)

By (26) and the properties of the functions 𝑁0 and 𝑁1, in (24) we get

𝑓1(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝜂 − 𝑆(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂 − 𝑆(𝑡))𝑑𝑡 6

6

∞∫︁
0

𝐾0(𝑥− 𝑡)(𝜂 − 𝑆(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂)𝑑𝑡 6

6 𝜂

𝑥∫︁
−∞

𝐾0(𝜏)𝑑𝜏 −
∞∫︁
0

𝐾0(𝑥− 𝑡)𝑆(𝑡)𝑑𝑡+ 𝜂

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 6 𝜂 − 𝑆(𝑥) = 𝑓0(𝑥),

𝑓1(𝑥) ≥
∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓0(𝑡))𝑑𝑡 ≥
∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡,Φ𝜂0(𝑡))𝑑𝑡 ≥

≥ 𝜂0

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 = Φ𝜂0(𝑥).

Suppose now that Φ𝜂0(𝑥) 6 𝑓𝑛(𝑥) 6 𝑓𝑛−1(𝑥) for some 𝑛 ∈ N, 𝑥 ∈ R+. Then by (24), (14),
and the monotonicity of 𝑁0 and 𝑁1 we have

𝑓𝑛+1(𝑥) 6

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝑓𝑛−1(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓𝑛−1(𝑡))𝑑𝑡 = 𝑓𝑛(𝑥),

𝑓𝑛+1(𝑥) ≥
∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡,Φ𝜂0(𝑡))𝑑𝑡 ≥ Φ𝜂0(𝑥).

Therefore, the sequence of the functions {𝑓𝑛(𝑥)}∞𝑛=0 has a pointwise limit as 𝑛 → ∞,
lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥).

By condition (11) and the Lebesgue’s dominated convergence theorem (see [22]) it follows
that 𝑓(𝑥) satisfies equation (1). Moreover, properties (25) imply the following inequalities for
the limiting function 𝑓(𝑥),

Φ𝜂0(𝑥) 6 𝑓(𝑥) 6 𝜂 − 𝑆(𝑥). (27)
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Since 𝜂 − 𝑆(𝑥) ∈ 𝐿1(R+) ∩ 𝐿0
∞(R+), by (27) we obtain that 𝑓(𝑥) > 0, 𝑓 ∈ 𝐿1(R+) ∩ 𝐿0

∞(R+).
The proof is complete.

3. Solvability of equation (1) for even kernel 𝐾0

We proceed to solving equation (1) under other assumptions for the functions 𝑁0 and 𝑁1 in
the case

𝐾0(−𝑥) = 𝐾0(𝑥), 𝑥 ∈ R+. (28)

The following theorem holds true.

Theorem 2. Given a measurable function 𝑄 : R → R, let 𝜁 and 𝜂 be the lowest positive
roots of the equations 𝑄(𝑥) = 2𝑥 and 𝑄(𝑥) = 𝑥, respectively, and 2𝜁 < 𝜂, 𝑄 ∈ 𝐶[0, 𝜂], 𝑄(𝑥) ↑
w.r.t. 𝑥 on [0, 𝜂]. Suppose that

a) 0 6 𝑁0(𝑡, 𝑧) 6 𝜂 −𝑄(𝜂 − 𝑧) as (𝑡, 𝑧) ∈ R+ × [0, 𝜂],
b) 𝑁0, 𝑁1 ∈ 𝐶𝑎𝑟𝑎𝑡𝑧(R+ × [0, 𝜂]),
c) 𝑁0, 𝑁1 ↑ w.r.t. 𝑧 on the segment [0, 𝜂] for each fixed 𝑡 ∈ R+,
d) there exists 𝜂0 ∈ (0, 𝜂) such that

𝑁1(𝑡,Φ𝜂0(𝑡)) ≥ 𝜂0, 𝑁1(𝑡, 𝜂) ≥ 𝜂.

Then under conditions (4), (5), (28), equation (1) has a positive solution in the space 𝐿0
∞(R+).

Proof. We consider first the following auxiliary nonlinear Hammerstein type integral equation

𝜓(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑄(𝜓(𝑡))𝑑𝑡, 𝑥 ∈ R+ (29)

w.r.t. the function 𝜓(𝑥). We define the iterations,

𝜓𝑛+1(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑄(𝜓𝑛(𝑡))𝑑𝑡, 𝜓0(𝑥) ≡ 𝜂, 𝑛 = 0, 1, 2, . . . (30)

Due to the properties of the functions 𝑄 and 𝐾0, by the induction on 𝑛, one can easily make
sure that

𝜓𝑛(𝑥) ↓ w.r.t. 𝑛, 𝜓𝑛(𝑥) ≥ 𝜁, 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

Therefore, the sequence of the functions {𝜓𝑛(𝑥)}∞𝑛=0 has a pointwise limit lim
𝑛→∞

𝜓𝑛(𝑥) = 𝜓(𝑥)

and by the Levi’s theorem the limiting function satisfies equation (29) and the relation

𝜁 6 𝜓(𝑥) 6 𝜂, 𝑥 ∈ R+. (31)

By the induction it is also possible to prove that

𝜓𝑛(𝑥) ↑ w.r.t. 𝑥 on R+, 𝑛 = 0, 1, 2, . . . (32)

if one write iterations (30) as follows,

𝜓𝑛+1(𝑥) =

𝑥∫︁
−∞

𝐾0(𝜏)𝑄(𝜓𝑛(𝑥− 𝜏))𝑑𝜏, 𝜓0(𝑥) ≡ 𝜂, 𝑛 = 0, 1, 2, . . . . (33)

Hence, in view of (32), we obtain that

𝜓(𝑥) ↑ w.r.t. 𝑥 on R+. (34)

Thus, due to (31) and (34) we can say that there exists

lim
𝑥→∞

𝜓(𝑥) ≡ 𝜂* 6 𝜂, 𝜂* > 0. (35)
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Passing in (29) to the limit as 𝑥 → ∞, by employing the known property of the convolutions
and formula (4), we get 𝜂* = 𝑄(𝜂*). Since 𝜂 is a first positive root of the equation 𝑄(𝑥) = 𝑥
and 0 < 𝜂* 6 𝜂, we have 𝜂* = 𝜂.

Therefore,

0 6 𝜂 − 𝜓 ∈ 𝐿0
∞(R+). (36)

Let us prove the following auxiliary inequality,

𝜂 − 𝜓(𝑥) ≥ 𝜂

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏, 𝑥 ∈ R+. (37)

By (29), (4), and the properties of the function 𝑄 we have

𝜂 − 𝜓(𝑥) = 𝜂 −
∞∫︁
0

𝐾0(𝑥− 𝑡)𝑄(𝜓(𝑡))𝑑𝑡 = 𝜂

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏 + 𝜂

𝑥∫︁
−∞

𝐾0(𝜏)𝑑𝜏−

−
∞∫︁
0

𝐾0(𝑥− 𝑡)𝑄(𝜓(𝑡))𝑑𝑡 = 𝜂

∞∫︁
𝑥

𝐾0(𝜏)𝑑𝜏 +

∞∫︁
0

𝐾0(𝑥− 𝑡)(𝑄(𝜂) −𝑄(𝜓(𝑡)))𝑑𝑡 ≥ 𝜂

∞∫︁
𝑥

𝐾0(𝑡)𝑑𝑡.

Consider the following iterations for equation (1),⎧⎨⎩ 𝑓𝑛+1(𝑥) =
∞∫︀
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝑓𝑛(𝑡))𝑑𝑡+
∞∫︀
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓𝑛(𝑡))𝑑𝑡, (38)

𝑓0(𝑥) = Φ𝜂0(𝑥), 𝑛 = 0, 1, 2, . . . 𝑥 ∈ R+. (39)

By induction, we first prove that

𝑓𝑛(𝑥) ↑ w.r.t. 𝑛. (40)

Since

0 6 𝑓0(𝑥) 6 𝜂

∞∫︁
𝑥

𝐾1(𝑧)𝑑𝑧 6 𝜂

∞∫︁
𝑥

𝐾0(𝑧)𝑑𝑧,

then

𝑓1(𝑥) ≥
∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓0(𝑡))𝑑𝑡 ≥ Φ𝜂0(𝑥) ≡ 𝑓0(𝑥),

𝑓1(𝑥) 6

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝜂)𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂)𝑑𝑡 6 𝜂

𝑥∫︁
−∞

𝐾0(𝜏)𝑑𝜏+

+𝜂

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 6 𝜂.

Assuming 𝜂 ≥ 𝑓𝑛(𝑥) ≥ 𝑓𝑛−1(𝑥) for some 𝑛 ∈ N, by (38), conditions c) and d) we get

𝑓𝑛+1(𝑥) ≥
∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝑓𝑛−1(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝑓𝑛−1(𝑡))𝑑𝑡 = 𝑓𝑛(𝑥)

and

𝑓𝑛+1(𝑥) 6

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝜂)𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂)𝑑𝑡 6 𝜂.
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Let us make sure that the inequality

𝑓𝑛(𝑥) 6 𝜂 − 𝜓(𝑥), 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+ (41)

holds true. Indeed, as 𝑛 = 0, (37) implies immediately (41). Let 𝑓𝑛(𝑥) 6 𝜂 − 𝜓(𝑥) for some
𝑛 ∈ N. Then by (38) and conditions a) and d) we get

𝑓𝑛+1(𝑥) 6

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑁0(𝑡, 𝜂 − 𝜓(𝑡))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂 − 𝜓(𝑡))𝑑𝑡 6

6

∞∫︁
0

𝐾0(𝑥− 𝑡)(𝜂 −𝑄(𝜓(𝑡)))𝑑𝑡+

∞∫︁
0

𝐾1(𝑥+ 𝑡)𝑁1(𝑡, 𝜂)𝑑𝑡 6

6 𝜂

𝑥∫︁
−∞

𝐾0(𝜏)𝑑𝜏 − 𝜓(𝑥) + 𝜂

∞∫︁
𝑥

𝐾1(𝜏)𝑑𝜏 6 𝜂 − 𝜓(𝑥).

Therefore, (40) and (41) yield the pointwise convergence of the sequence {𝑓𝑛(𝑥)}∞𝑛=0 :
lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) and

0 6 Φ𝜂0(𝑥) 6 𝑓(𝑥) 6 𝜂 − 𝜓(𝑥) ∈ 𝐿0
∞(R+), 𝑥 > 0. (42)

By Levi’s theorem, 𝑓(𝑥) solves equation (1). It follows from (42) that 𝑓 ∈ 𝐿0
∞(R+). The

proof is complete.

Remark 1. The results of Theorem 2 remain true if we replace condition (28) by a weaker

one,
0∫︀

−∞
𝐾0(𝜏)𝑑𝜏 ≥ 1

2
.

4. Examples of functions 𝑁0, 𝑁1, and 𝑄

In what follows we give several examples of functions 𝑁0, 𝑁1, and 𝑄 subject to the assump-
tions of the proven theorems.

Examples for Theorem 1.

I) 𝑁0(𝑡, 𝑧) ≡ ℎ(𝑡, 𝑧) ̃︀𝑁(𝑧), where the function ℎ is continuous w.r.t. all its arguments on the

set R+ × [0, 𝜂], 0 6 ℎ(𝑡, 𝑧) 6 1, (𝑡, 𝑧) ∈ R+ × [0, 𝜂], ℎ ↑ in 𝑧 on [0, 𝜂], ̃︀𝑁 ∈ 𝐶[0, 𝜂], ̃︀𝑁 ↑ in 𝑧 on

[0, 𝜂], 0 6 ̃︀𝑁(𝑧) 6 𝑧, 𝑧 ∈ [0, 𝜂]. As the functions ℎ and ̃︀𝑁 , we can take the following examples,

∙ ℎ(𝑡, 𝑧) = 𝑧𝑒−𝑧 · 𝑠𝑖𝑛2𝑡, ̃︀𝑁(𝑧) = 𝑧𝑝, 𝑝 > 1, 𝜂 = 1.

∙ ℎ(𝑡, 𝑧) = 𝜂𝑒
𝑧
𝜂
−1, ̃︀𝑁(𝑧) = 𝑠𝑖𝑛𝑧.

II)

𝑁1(𝑡, 𝑧) =
𝛼𝑧

𝑧 + ( 𝛼
𝜂0

− 1)Φ𝜂0(𝑡)
, 𝜂 > 𝛼 > 𝜂0 > 0, (43a)

𝑁1(𝑡, 𝑧) =
𝛼𝑧

𝑧 + ( 𝛼
𝜂0

− 1)Φ𝜂0(𝑡)
+

1

2𝜂𝑝−1
𝑧𝑝, 𝑝 > 1, 𝜂 ≥ 2𝛼, 𝛼 > 𝜂0. (43b)

Examples for Theorem 2.
III) 𝑄(𝑧) = 𝑧𝛼

𝜂𝛼−1 , 𝛼 ∈ (0, 1),

IV) 𝑄(𝑧) = 𝜂𝑒
𝑧
𝜂
−1

V) 𝑄(𝑧) =
√
𝑧𝑒𝑧−1, 𝜂 = 1
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VI) 𝑁0(𝑡, 𝑧) =
(𝜂 −𝑄(𝜂 − 𝑧))𝛽

𝜂𝛽−1
, 𝛽 ≥ 1

VII) 𝑁0(𝑡, 𝑧) = 𝑠𝑖𝑛(𝜂 −𝑄(𝜂 − 𝑧))
As 𝑁1(𝑡, 𝑧), in Theorem 2 we can consider examples (43𝑎) and (43𝑏).

5. On solvability of problem (2)-(3) in Sobolev space 𝑊 1
1 (R+)

The following theorem holds true.

Theorem 3. Suppose the function 𝐻(𝑡, 𝑧) in equation (2) satisfies all the assumptions for
the function 𝑁0(𝑡, 𝑧) in Theorem 1, and 𝐻1(𝑡, 𝑧) is a real function defined on the set R+ × R
and there exist positive numbers 𝜂 > 0, 𝜂0 ∈ (0, 𝜂), 𝜉 ∈ (0, 1

𝜆
), 𝜃 ∈ (0, 1) such that

𝑖1) 𝐻1(𝑡, 𝜉𝜌
𝜎
𝜂0

(𝑡)) ≥ 𝜂0, 𝐻1(𝑡, 𝜂) 6 𝜂, (44)

where

𝜌𝜎𝜂0(𝑡) = 𝜂0

∞∫︁
𝑡+𝜎

𝑇1(𝑧)𝑑𝑧, 𝜎 =
1

𝜆𝜃
𝑙𝑛

1

1 − 𝜆𝜉
(45)

𝑖2) 𝐻1(𝑡, 0) ≡ 0, 𝐻1 ∈ 𝐶𝑎𝑟𝑎𝑡𝑧(R+ × [0, 𝜂]). (46)

𝑖3) 𝐻1(𝑡, 𝑧) ↑ w.r.t. 𝑧 on [0, 𝜂] for each fixed 𝑡 ∈ R+.
Then under conditions (6)-(9), problem (2)-(3) has a nonnegative nontrivial solution in the

Sobolev space 𝑊 1
1 (R+).

Proof. We introduce the function

𝐾0(𝑥) =

∞∫︁
0

𝑒−𝜆𝑧𝑇 (𝑥− 𝑧)𝑑𝑧, 𝑥 ∈ R. (47)

By the Fubini theorem, the function 𝐾0(𝑥) possesses the following “splendid” properties,

𝐾0(𝑥) ≥ 0,

+∞∫︁
−∞

𝐾0(𝑥)𝑑𝑥 = 1, 𝐾0 ∈ 𝐿1(R) ∩ 𝐿∞(R), (48)

𝜈(𝐾0) < 0,

+∞∫︁
−∞

𝜏 2𝐾0(𝜏)𝑑𝜏 < +∞. (49)

Let us prove the following inequality
∞∫︁
𝑥

𝐾0(𝑡)𝑑𝑡 ≥
1

𝜆

∞∫︁
𝑥

𝑇 (𝑡)𝑑𝑡, 𝑥 ∈ R+. (50)

We have
∞∫︁
𝑥

𝐾0(𝑡)𝑑𝑡 =

∞∫︁
𝑥

∞∫︁
0

𝑒−𝜆𝑧𝑇 (𝑡− 𝑧)𝑑𝑧𝑑𝑡 =

∞∫︁
0

𝑒−𝜆𝑧

∞∫︁
𝑥

𝑇 (𝑡− 𝑧)𝑑𝑡𝑑𝑧 =

=

∞∫︁
0

𝑒−𝜆𝑧

∞∫︁
𝑥−𝑧

𝑇 (𝑦)𝑑𝑦𝑑𝑧 ≥ 1

𝜆

∞∫︁
𝑥

𝑇 (𝑡)𝑑𝑡.

Consider the homogeneous Wiener-Hopf equation

𝑆(𝑥) =

∞∫︁
0

𝐾0(𝑥− 𝑡)𝑆(𝑡)𝑑𝑡, 𝑥 ∈ R+, (51)
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with a kernel of the form (47). As it was noted, (48), (49) imply the existence of a positive
solution with properties (16), (17), (21), (22).

Denote

𝐹 (𝑥) =
𝑑𝜙

𝑑𝑥
+ 𝜆𝜙(𝑥). (52)

Then equation (2) with initial condition (3) casts into the form

𝐹 (𝑥) =

∞∫︁
0

𝑇 (𝑥− 𝑡)𝐻

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝐹 (𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡+

+

∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝐹 (𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡, 𝑥 ∈ R+.

(53)

Consider the iterations

𝐹𝑛+1(𝑥) =

∞∫︁
0

𝑇 (𝑥− 𝑡)𝐻

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝐹𝑛(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡+

+

∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝐹𝑛(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡

𝐹0(𝑥) = 𝜆(𝜂 − 𝑆(𝑥)), 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

(54)

In what follows we shall show that

𝑗1) 𝐹𝑛(𝑥) ↓ w.r.t. 𝑛, (55)

𝑗2) 𝐹𝑛(𝑥) ≥ 𝜌𝜎𝜂0(𝑥), 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+. (56)

By (22) and (50) we have

𝐹0(𝑥) = 𝜆(𝜂 − 𝑆(𝑥)) ≥ 𝜆𝜂

∞∫︁
𝑥

𝐾0(𝑡)𝑑𝑡 ≥ 𝜂

∞∫︁
𝑥

𝑇 (𝑡)𝑑𝑡 ≥ 𝜂

∞∫︁
𝑥

𝑇1(𝑡)𝑑𝑡 ≥

≥ 𝜂0

∞∫︁
𝑥+𝜎

𝑇1(𝑡)𝑑𝑡 = 𝜌𝜎𝜂0(𝑥).

In particular, it implies that

𝜌𝜎𝜂0(𝑥) 6 𝜆𝜂, 𝑥 ∈ R+. (57)

Employing the properties of the functions 𝐻, 𝐻1, 𝑇 , and 𝑇1, we obtain

𝐹1(𝑥) 6

∞∫︁
0

𝑇 (𝑥− 𝑡)𝐻

⎛⎝𝑡, 𝜂 − 𝜆

𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝑆(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡+

∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1(𝑡, 𝜂)𝑑𝑡 6

6 𝜂

∞∫︁
0

𝑇 (𝑥− 𝑡)𝑑𝑡− 𝜆

∞∫︁
0

𝑇 (𝑥− 𝑡)

𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝑆(𝜏)𝑑𝜏𝑑𝑡+ 𝜂

∞∫︁
𝑥

𝑇1(𝑧)𝑑𝑧 6

6 𝜆𝜂 − 𝜆

∞∫︁
0

𝐾0(𝑥− 𝜏)𝑆(𝜏)𝑑𝜏 = 𝜆(𝜂 − 𝑆(𝑥)) = 𝐹0(𝑥).
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Let 𝐹𝑛(𝑥) ≥ 𝜌𝜎𝜂0(𝑥) for some 𝑛 ∈ N. Then by (44), (45), (54), 𝑖3), monotonicity of 𝐻(𝑡, 𝑧) we
obtain

𝐹𝑛+1(𝑥) ≥
∞∫︁
0

𝑇 (𝑥− 𝑡)𝐻

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝜌𝜎𝜂0(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡+

+

∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝜌𝜎𝜂0(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡 ≥

≥
∞∫︁
0

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎝𝑡, 𝑡∫︁
0

𝑒−𝜆(𝑡−𝜏)𝜌𝜎𝜂0(𝜏)𝑑𝜏

⎞⎠ 𝑑𝑡 ≥

≥
∞∫︁
𝜎

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎜⎝𝑡, 𝑡∫︁
(1−𝜃)𝜎

𝑒−𝜆(𝑡−𝜏)𝜌𝜎𝜂0(𝜏)𝑑𝜏

⎞⎟⎠ 𝑑𝑡 ≥

≥
∞∫︁
𝜎

𝑇1(𝑥+ 𝑡)𝐻1

⎛⎜⎝𝑡, 𝜌𝜎𝜂0(𝑡)
𝜎∫︁

(1−𝜃)𝜎

𝑒−𝜆(𝜎−𝜏)𝑑𝜏

⎞⎟⎠ 𝑑𝑡 ≥

≥
∞∫︁
𝜎

𝑇1(𝑥+ 𝑡)𝐻1

(︂
𝑡, 𝜌𝜎𝜂0(𝑡)

(1 − 𝑒−𝜆𝜃𝜎)

𝜆

)︂
𝑑𝑡 =

=

∞∫︁
𝜎

𝑇1(𝑥+ 𝑡)𝐻1

(︀
𝑡, 𝜉𝜌𝜎𝜂0(𝑡)

)︀
𝑑𝑡 ≥ 𝜂0

∞∫︁
𝑥+𝜎

𝑇1(𝑦)𝑑𝑦 = 𝜌𝜎𝜂0(𝑥).

Suppose 𝐹𝑛(𝑥) 6 𝐹𝑛−1(𝑥) for some 𝑛 ∈ N. Then the monotonicity of 𝐻 and 𝐻1 immediately
yields that 𝐹𝑛+1 6 𝐹𝑛. Therefore, there exists

lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹 (𝑥) (58)

and 𝐹 (𝑥) satisfies equation (53) and the estimates

𝜌𝜎𝜂0(𝑥) 6 𝐹 (𝑥) 6 𝜆(𝜂 − 𝑆(𝑥)) ∈ 𝐿1(R+) ∩ 𝐿0
∞(R+). (59)

It follows from (59) that 𝐹 ∈ 𝐿1(R+) ∩ 𝐿0
∞(R+).

Solving the simplest Cauchy problem{︃
𝑑𝜙

𝑑𝑥
+ 𝜆𝜙(𝑥) = 𝐹 (𝑥), 𝑥 ∈ R+,

𝜙(0) = 0,
(60)

we complete the proof.

Remark 2. Since a solution to problem (60) reads as

𝜙(𝑥) =

𝑥∫︁
0

𝑒−𝜆(𝑥−𝑡)𝐹 (𝑡)𝑑𝑡,

by (59) we get the following two-sided estimate
𝑥∫︁

0

𝑒−𝜆(𝑥−𝑡)𝜌𝜎𝜂0(𝑡)𝑑𝑡 6 𝜙(𝑥) 6 𝜆

𝑥∫︁
0

𝑒−𝜆(𝑥−𝑡)(𝜂 − 𝑆(𝑡))𝑑𝑡

for 𝜙(𝑥).
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In the end of the work, we give two examples of 𝐻1(𝑡, 𝑧),

1) 𝐻1(𝑡, 𝑧) =
𝛼𝑧

𝑧 + ( 𝛼
𝜂0

− 1)𝜌𝜎𝜂0(𝑡)
, 𝜂 > 𝛼 > 𝜂0 > 0,

2) 𝐻1(𝑡, 𝑧) =
𝛼𝑧

𝑧 + ( 𝛼
𝜂0

− 1)𝜌𝜎𝜂0(𝑡)
+

1

2𝜂𝑝−1
𝑧𝑝, 𝑝 > 1, 𝜂 ≥ 2𝛼, 𝛼 > 𝜂0.

In conclusion we express out gratitude to prof. N.B. Engibaryan and prof. V.N. Margaryan
for useful advices.
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