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ELLIPTIC DIFFERENTIAL-DIFFERENCE

EQUATIONS WITH DIFFERENTLY DIRECTED

TRANSLATIONS IN HALF-SPACES

A.B. MURAVNIK

Abstract. We study the Dirichlet problem in the half-space for elliptic differential-
difference equations with operators being the compositions of differential operators and
translation operators acting on spatial variables, which are independent variables ranging
in the entire real axis. These equations generalize essentially the classical elliptic partial
differential equations and they arise in various applications of mathematical physics, which
are characterized by nonlocal and (or) inhomogeneous properties of the process or medium.
In theoretical terms, an interest in such equations is due to the fact that they relate the
values of the unknown function to each other (and its derivatives) not at one point, but at
different points, which makes many classical methods not applicable.

For the considered problem we establish the solvability in the sense of generalized func-
tions, while for the equation a classical solvability is proved. We also find an integral
representation of the solution by a Poisson type formula and we prove that the constructed
solution is classical outside boundary hyperplane and uniformly tends to zero as the only
independent variable, changing on the positive axis orthogonal to the boundary data hy-
perplane, tends to infinity. Earlier, there were studied only the cases when the translation
operator acts only in one spatial variable. In this work, the translation operators act on
each spatial variable.

To obtain the Poisson kernel, we use classic operation scheme by Gelfand-Shilov: we
apply Fourier transform to the problem with respect to all spatial variables and use the
fact that the translation operators, as well as differential operators, are Fourier multipli-
ers. Then we study the obtained Cauchy problem for the ordinary differential equation
depending on dual variables as on parameters.

Keywords: elliptic problems, differential-difference equations, multi-directed shifts.

Mathematics Subject Classification: 35R10, 35J25

1. Introduction. Formulation of problem

Boundary value problems in the half-space are traditionally regarded as typical for parabolic
and hyperbolic equations: the only independent variable varying on the semi-axis is naturally
treated as a time, while other variables are spatial, while the data imposed on the boundary of
the domain, that is, on the hyperplane orthogonal to this semi-axis, are treated respectively as
initial data. However, the example of the Laplace equation in the half-space, see, for instance,
[1], [2], shows well that some problems in the half-space are well-posed also for stationary
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equations and the selected in the aforementioned way spatial variable acquires so-called time-
like properties. Indeed, the problem

𝑛∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
+ 𝑢𝑦𝑦 = 0, 𝑥 ∈ R𝑛, 𝑦 > 0, (1.1)

𝑢
⃒⃒
𝑦=0

= 𝑢0(𝑥), 𝑥 ∈ R𝑛, (1.2)

that is, the Dirichlet problem for the Laplace equation in the half-space and the Cauchy problem
(with the same boundary condition) for the heat equation

𝑛∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
− 𝑢𝑦 = 0, 𝑥 ∈ R𝑛, 𝑦 > 0, (1.3)

have the following principal common property: both problems are well-defined in the class of
bounded solutions and the solution of each of these problems is represented as a convolution of
the boundary function 𝑢0 with the Poisson kernel, which for problem (1.2), (1.3) reads as

𝑒−
|𝑥|2
4𝑦

(2
√
𝜋𝑦)𝑛

,

while for problem (1.1)–(1.2) it is as follows:

Γ
(︀
𝑛+1
2

)︀
𝜋

𝑛+1
2

𝑦

(|𝑥|2 + 𝑦2)
𝑛+1
2

. (1.4)

Thus, the solution of elliptic problem (1.1)–(1.2) behaves similar to the solution of the evo-
lution problem; for instance, the resolving operator possesses a semi-group property in the
spatial variable 𝑦 and moreover, the same Repnikov-Eidel’man criterion of solution stabiliza-
tion as 𝑦 → +∞ holds as for the Cauchy problem for the heat equation, see [3]. This suggests an
idea to characterize the spatial variable 𝑦 as a time-like one, and this time-likeness is produced
exactly by the anisotropy of the domain, in which the problem is posed: the considered equation
is elliptic and hence, none of independent variables is distinguished with respect to the others,
but studying it in an anisotropic domain, we distinguish in this way at least one independent
variable; in the considered case this is the only variable, which ranges not over entire axis, but
only over the semi-axis. This influences the qualitative properties of the solution. A natural
interesting question arises how general is the described phenomenon. In the present paper,
we consider the Dirichlet problem in the half-space for elliptic differential-difference equations,
in which on an unknown function, apart of differential operators, translation operators act as
well. Nowadays, such functional differential equations are actively studied worldwide, see, for
instance, [4] and the references therein. This is motivated by numerous applications not cov-
ered by classical models in mathematical physics, see, for instance, [5]–[8] and the references
therein. A deep and complete exposition of the theory of problems in bounded domains for
elliptic differential-difference equations as well as for closely related nonlocal problems for dif-
ferential elliptic equations can be found in [8]–[11], see also the references therein. Problems in
unbounded domains are studied essentially less.

In the present work we consider a case when a differential-difference equation involves a
superposition of a differential operator and a difference operator. Namely, in the half-plane{︁

(𝑥, 𝑦)
⃒⃒⃒
𝑥 ∈ R𝑛, 𝑦 > 0

}︁
we consider the Dirichlet problem for the equation

𝑛∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) +

𝑛∑︁
𝑗=1

𝑎𝑗𝑢𝑥𝑗𝑥𝑗
(𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗 + ℎ𝑗, 𝑥𝑗+1, . . . , 𝑥𝑛, 𝑦) = 0, (1.5)
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where

𝑎0 := max
𝑗=1,𝑛

|𝑎𝑗| < 1, (1.6)

and ℎ1, . . . , ℎ𝑛 are arbitrary real parameters.
A prototype equation involving the translation operator only along one spatial variable, that

is, equation (1.5), in which 𝑎2 = . . . = 𝑎𝑛 = 0, was considered in [12]. In the present work we
consider a more general case, in which the translation operator, as well as, the second derivative,
acts in each of spatial-like variables.

The two-dimensional case, when the variable 𝑥 is scalar, was studied in [13]–[16]. To the best
of author’s knowledge, the multi-dimensional case is considered here for the first time.

2. Operation scheme

We shall employ a classical Gelfand-Shilov operation scheme, see, for instance, [17, Sect. 10]:
we formally apply the Fourier transform in an 𝑛-dimensional variable 𝑥 to problem (1.2), (1.5):

𝑓(𝜉) =

∫︁
R𝑛

𝑒−𝑖𝑥·𝜉𝑓(𝑥)𝑑𝑥.

This gives rise to the following initial problem for an ordinary differential equation:

𝑑2̂︀𝑢
𝑑𝑦2

=

(︃
|𝜉|2 +

𝑛∑︁
𝑗=1

𝑎𝑗𝜉
2
𝑗 cosℎ𝑗𝜉𝑗 + 𝑖

𝑛∑︁
𝑗=1

𝑎𝑗𝜉
2
𝑗 sinℎ𝑗𝜉𝑗

)︃̂︀𝑢, 𝑦 ∈ (0,+∞), (2.1)

̂︀𝑢(0; 𝜉) = ̂︀𝑢0(𝜉). (2.2)

We mention that the obtained problem is not the Cauchy problem since the equation is of the
second order, while we have just one initial condition.

Denoting
𝑛∑︀

𝑗=1

𝑎𝑗𝜉
2
𝑗 cosℎ𝑗𝜉𝑗 by 𝑎(𝜉) and

𝑛∑︀
𝑗=1

𝑎𝑗𝜉
2
𝑗 sinℎ𝑗𝜉𝑗 by 𝑏(𝜉), we obtain the equation

𝑑2̂︀𝑢
𝑑𝑦2

=
(︀
|𝜉|2 + 𝑎(𝜉) + 𝑖𝑏(𝜉)

)︀ ̂︀𝑢.
Thus, (2.1) is a linear ordinary second order differential equation depending on an 𝑛-dimensional
parameter 𝜉. Its characteristic equation has two roots ±𝜌(cos 𝜃 + 𝑖 sin 𝜃), where

𝜌 = 𝜌(𝜉) =
(︁(︀

|𝜉|2 + 𝑎(𝜉)
)︀2

+ 𝑏2(𝜉)
)︁ 1

4
, 𝜃 = 𝜃(𝜉) =

1

2
arctan

𝑏(𝜉)

|𝜉|2 + 𝑎(𝜉)
.

We solve problem (2.1)–(2.2) choosing appropriately the free arbitrary constant, which appears
since the number of initial conditions is less than the order of the equation and to the obtained
solution ̂︀𝑢0(𝜉)𝑒−𝑦𝜌(𝜉)[cos 𝜃(𝜉)+𝑖 sin 𝜃(𝜉)]

we apply formally the inverse Fourier transform:

𝑓(𝑥) =
1

(2𝜋)𝑛

∫︁
R𝑛

𝑒𝑖𝑥·𝜉𝑓(𝜉)𝑑𝜉.



ELLIPTIC DIFFERENTIAL-DIFFERENCE EQUATIONS. . . 107

We then get:

1

(2𝜋)𝑛

∫︁
R𝑛

𝑒𝑖𝑥·𝜉−𝑦𝜌(𝜉)(cos 𝜃(𝜉)+𝑖 sin 𝜃(𝜉))

∫︁
R𝑛

𝑢0(𝑧)𝑒𝑖𝑧·𝜉𝑑𝑧𝑑𝜉

=
1

(2𝜋)𝑛

∫︁
R𝑛

𝑢0(𝑧)

∫︁
R𝑛

𝑒𝑖(𝑥−𝑧)·𝜉−𝑦𝜌(𝜉)(cos 𝜃(𝜉)+𝑖 sin 𝜃(𝜉))𝑑𝜉𝑑𝑧

=
1

(2𝜋)𝑛

∫︁
R𝑛

𝑢0(𝑧)

∫︁
R𝑛

𝑒𝑖((𝑥−𝑧)·𝜉−𝑦𝜌(𝜉) sin 𝜃(𝜉))𝑒−𝑦𝜌(𝜉) cos 𝜃(𝜉)𝑑𝜉𝑑𝑧

=
1

(2𝜋)𝑛

∫︁
R𝑛

𝑢0(𝑧)

∫︁
R𝑛

cos((𝑥− 𝑧) · 𝜉 − 𝑦𝜌(𝜉) sin 𝜃(𝜉))𝑒−𝑦𝜌(𝜉) cos 𝜃(𝜉)𝑑𝜉𝑑𝑧

+
𝑖

(2𝜋)𝑛

∫︁
R𝑛

𝑢0(𝑧)

∫︁
R𝑛

sin((𝑥− 𝑧) · 𝜉 − 𝑦𝜌(𝜉) sin 𝜃(𝜉))𝑒−𝑦𝜌(𝜉) cos 𝜃(𝜉)𝑑𝜉𝑑𝑧.

In view of the oddness of the function 𝑏(𝜉) in each variable 𝜉𝑗, we finally obtain the function

𝑢(𝑥, 𝑦) =

∫︁
R𝑛

ℰ(𝑥− 𝜉, 𝑦)𝑢0(𝜉)𝑑𝜉, (2.3)

where

ℰ(𝑥, 𝑦) =
1

(2𝜋)𝑛

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉, (2.4)

𝐺1(𝜉) =𝜌(𝜉) cos 𝜃(𝜉), 𝐺2(𝜉) = 𝜌(𝜉) sin 𝜃(𝜉). (2.5)

Since the values of arctangent lie in the segment
(︁
−𝜋

2
,
𝜋

2

)︁
, we have the inequality |𝜃(𝜉)| 6 𝜋

4
,

that is, cos 𝜃(𝜉) > 0 and cos 2𝜃(𝜉) > 0. Thus, cos 𝜃(𝜉) can be represented as

√︂
1 + cos 2𝜃(𝜉)

2
.

Then we apply the formula

cos2 2𝜃(𝜉) =
1

1 + tan2 2𝜃(𝜉)

and we again take into consideration the non-negativeness of cos 2𝜃(𝜉). We obtain that

cos 2𝜃(𝜉) =
1√︀

1 + tan2 2𝜃(𝜉)
.

Since

2𝜃(𝜉) = arctan
𝑏(𝜉)

|𝜉|2 + 𝑎(𝜉)
,

the identity holds:

tan 2𝜃(𝜉) =
𝑏(𝜉)

|𝜉|2 + 𝑎(𝜉)
,

and hence,

cos 2𝜃(𝜉) =

(︂
1 +

𝑏2(𝜉)

(|𝜉|2 + 𝑎(𝜉))2

)︂− 1
2

=

√︃
(|𝜉|2 + 𝑎(𝜉))2

(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉)
=

|𝜉|2 + 𝑎(𝜉)√︁
(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉)

,
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since condition (1.6) ensures the non-negativeness of the function |𝜉|2 + 𝑎(𝜉) for each 𝜉 ∈ R𝑛.
Then

cos 𝜃(𝜉) =
1√
2

⎛⎝1 +
|𝜉|2 + 𝑎(𝜉)√︁

(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉)

⎞⎠ 1
2

.

In R𝑛 we introduce a function

𝜙(𝜉) :=

√︁
(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉) =

√︀
|𝜉|4 + 𝑎2(𝜉) + 𝑏2(𝜉) + 2𝑎(𝜉)|𝜉|2 .

Then

𝐺1(𝜉) =
√︀
𝜙(𝜉)

1√
2

⎛⎝1 +
|𝜉|2 + 𝑎(𝜉)√︁

(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉)

⎞⎠ 1
2

=
√︀

𝜙(𝜉)
1√
2

√︃
𝜙(𝜉) + |𝜉|2 + 𝑎(𝜉)

𝜙(𝜉)

=
1√
2

√︀
𝜙(𝜉) + |𝜉|2 + 𝑎(𝜉) >

1√
2

√︀
|𝜉|2 + 𝑎(𝜉)

owing to the negativeness of the function 𝜙. Therefore, the function 𝐺1(𝜉) is bounded from
below by the expression

1√
2

⎯⎸⎸⎷|𝜉|2 −
𝑛∑︁

𝑗=1

|𝑎𝑗|𝜉2𝑗 >
1√
2

⎯⎸⎸⎷|𝜉|2 − 𝑎0

𝑛∑︁
𝑗=1

𝜉2𝑗 =
1√
2

√︀
|𝜉|2(1 − 𝑎0) =

√︂
1 − 𝑎0

2
|𝜉|

and this guarantees that function (2.4) is well-defined in the half-space R𝑛 × (0,+∞).
We observe that applying the direct and inverse Fourier transform in this section, according

to the general scheme [17, Sect. 10], we do not care about justifying the convergence of the
integrals and the possibility of interchanging the integration order since we treated the solutions
in sense of distributions. In Lemma 3.1 in the next section we discuss the case of smooth
functions but this lemma will be proved independently.

3. Construction of Poisson kernel

We call a function 𝑢(𝑥, 𝑦) a classical solution of equation (1.5) if at each point of the half-
space R𝑛 × (0,+∞) there exist classical derivatives 𝑢𝑥𝑗𝑥𝑗

, 𝑗 = 1, 𝑛, and 𝑢𝑦𝑦 defined in the sense
of the limits of finite differences and at each point of this half-space relation (1.5) holds true.

The following statement holds true.

Lemma 3.1. Function (2.4) is a classical solution of equation (1.5) in the half-space R𝑛 ×
(0,+∞).
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Proof. We substitute the function (2𝜋)𝑛ℰ into equation (1.5):

(2𝜋)𝑛ℰ𝑥𝑗𝑥𝑗
(𝑥, 𝑦) = −

∫︁
R𝑛

𝜉2𝑗 𝑒
−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉, 𝑗 = 1, 𝑛;

(2𝜋)𝑛ℰ𝑦(𝑥, 𝑦) = −
∫︁
R𝑛

𝐺1(𝜉)𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

+

∫︁
R𝑛

𝐺2(𝜉)𝑒−𝑦𝐺1(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉;

(2𝜋)𝑛ℰ𝑦𝑦(𝑥, 𝑦) =

∫︁
R𝑛

𝐺2
1(𝜉)𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

−
∫︁
R𝑛

𝐺1(𝜉)𝐺2(𝜉)𝑒−𝑦𝐺1(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

−
∫︁
R𝑛

𝐺1(𝜉)𝐺2(𝜉)𝑒−𝑦𝐺1(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

−
∫︁
R𝑛

𝐺2
2(𝜉)𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

=

∫︁
R𝑛

(︀
𝐺2

1(𝜉) −𝐺2
2(𝜉)

)︀
𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

− 2

∫︁
R𝑛

𝐺1(𝜉)𝐺2(𝜉)𝑒−𝑦𝐺1(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉.

We observe that in all above cases the differentiation under the integral is justified since the
factors appearing in the integrand have no singularities and their growth in 𝜉 is at most poly-
nomial.

Employing (2.5), we obtain:

2𝐺1(𝜉)𝐺2(𝜉) = 2𝜌(𝜉) cos 𝜃(𝜉)𝜌(𝜉) sin 𝜃(𝜉) = 𝜌2(𝜉) sin 2𝜃(𝜉)

= 𝜌2(𝜉) tan 2𝜃(𝜉) cos 2𝜃(𝜉)𝜌2(𝜉)
𝑏(𝜉)

|𝜉|2 + 𝑎(𝜉)
cos 2𝜃(𝜉)

= 𝜌2(𝜉)
𝑏(𝜉)

|𝜉|2 + 𝑎(𝜉)

|𝜉|2 + 𝑎(𝜉)√︁
(|𝜉|2 + 𝑎(𝜉))2 + 𝑏2(𝜉)

= 𝑏(𝜉).

Now we calculate

𝐺2
1(𝜉) −𝐺2

2(𝜉) = 𝜌2(𝜉)
[︁

cos2 𝜃(𝜉) − sin2 𝜃(𝜉)
]︁

= 𝜌2(𝜉) cos 2𝜃(𝜉)

= 𝜙(𝜉)
|𝜉|2 + 𝑎(𝜉)

𝜙(𝜉)
= |𝜉|2 + 𝑎(𝜉).
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This yields:

(2𝜋)𝑛ℰ𝑦𝑦(𝑥, 𝑦) =

∫︁
R𝑛

(︀
|𝜉|2 + 𝑎(𝜉)

)︀
𝑒−𝑦𝐺1(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

−
∫︁
R𝑛

𝑏(𝜉)𝑒−𝑦𝐺1(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉,

and hence

(2𝜋)𝑛
𝑛∑︁

𝑗=1

ℰ𝑥𝑗𝑥𝑗
(𝑥, 𝑦) + (2𝜋)𝑛ℰ𝑦𝑦(𝑥, 𝑦)

=

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉)

(︂
𝑎(𝜉) cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉)) − 𝑏(𝜉) sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉))

)︂
𝑑𝜉

=

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉)

(︃
𝑛∑︁

𝑗=1

𝑎𝑗𝜉
2
𝑗 cosℎ𝑗𝜉𝑗 cos (𝑥 · 𝜉 − 𝑦𝐺2(𝜉))

−
𝑛∑︁

𝑗=1

𝑎𝑗𝜉
2
𝑗 sinℎ𝑗𝜉𝑗 sin (𝑥 · 𝜉 − 𝑦𝐺2(𝜉))

)︃
𝑑𝜉

=

∫︁
R𝑛

𝑒−𝑦𝐺1(𝜉)

𝑛∑︁
𝑗=1

𝑎𝑗𝜉
2
𝑗 cos (𝑥 · 𝜉 + ℎ𝑗𝜉𝑗 − 𝑦𝐺2(𝜉)) 𝑑𝜉

=
𝑛∑︁

𝑗=1

𝑎𝑗

∫︁
R𝑛

𝜉2𝑗 𝑒
−𝑦𝐺1(𝜉) cos ((𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗 + ℎ𝑗, 𝑥𝑗+1, . . . , 𝑥𝑛) · 𝜉 − 𝑦𝐺2(𝜉)) 𝑑𝜉

= − (2𝜋)𝑛
𝑛∑︁

𝑗=1

𝑎𝑗ℰ𝑥𝑗𝑥𝑗
(𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗 + ℎ𝑗, 𝑥𝑗+1, . . . , 𝑥𝑛, 𝑦).

Remark 3.1. If we let 𝑎1 = · · · = 𝑎𝑛 = 0, that is, if we consider a classical differential
equation instead of the differential-difference one, then formula (2.4) gives the known Poisson
kernel (1.4) for the Dirichlet problem in the half-space for the Laplace equation.

4. Convolution with summable functions

Now we are going to find a majorant for the function ℰ(𝑥, 𝑦) and for its derivatives of arbitrary
order. In order to do this, it is sufficient to take into consideration that the differentiation of
this function with respect to each variable produces factors of form 𝐺𝑗(𝜉), 𝑗 = 1, 2, in the
integrand in (2.4) and the absolute values of these factors can be bounded from above by the

function 𝑐𝑜𝑛𝑠𝑡|𝜉|. Then we also employ the estimate 𝐺1(𝜉) >
√︁

1−𝑎0
2

|𝜉| obtained in Section 2.

Then we get that

|∇𝑚ℰ(𝑥, 𝑦)| 6 𝐶(𝑚)

(2𝜋)𝑛

∫︁
R𝑛

|𝜉|𝑚𝑒−𝑦|𝜉|
√︁

1−|𝑎0|
2 𝑑𝜉 =

2
𝑚−𝑛

2 𝐶(𝑚)

𝜋𝑛(1 − |𝑎0|)
𝑚+𝑛

2 𝑦𝑚+𝑛

∫︁
R𝑛

|𝜂|𝑚𝑒−|𝜂|𝑑𝜂

=
𝑐𝑜𝑛𝑠𝑡

𝑦𝑚+𝑛

∫︁
R𝑛

𝜌𝑚+𝑛−1𝑒−𝜌𝑑𝜌 =
𝑐𝑜𝑛𝑠𝑡

𝑦𝑚+𝑛
,

(4.1)

where the constant depends only on 𝑚, 𝑛 and 𝑎0.
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Theorem 4.1. If 𝑢0 ∈ 𝐿1(R
𝑛), then function (2.3) is a classical infinitely differentiable

solution of equation (1.5) in R𝑛 × (0,+∞). This solution takes its boundary value 𝑢0 as 𝑦 = 0
in the sense of generalized functions.

Proof. The first statement is implied by Lemma 3.1 and estimate (4.1). The second statement
can be proved following the lines of Remark 2 in [12]. Namely, the boundary value problem
is treated in the Gel’fand-Shilov sense, see [17, Sect. 10], the solution is sought in the class
of generalized functions of a 𝑛-dimensional variable 𝑥, depending on the real parameter 𝑦
and being twice differentiable with respect to this parameter on the positive semi-axis and
continuous with respect to this parameter at zero, see, for instance, [18, Sect. 9, Item 5]. Thus,
outside the boundary hyperplane the constructed solution is smooth and classical and at the
same time, boundary condition (1.2) is treated as the limit 𝑢(·, 𝑦) → 𝑢0 in the topology of
distributions depending on the variable 𝑥 as the real parameter 𝑦 approaches the zero from the
right.

The established in this section estimate for the Poisson kernel and for its derivatives we easily
obtain the following statement.

Corollary 4.1. If 𝑢0 ∈ 𝐿1(R
𝑛), then solution (2.3) and each its derivative tends to zero as

as 𝑦 → +∞ uniformly in 𝑥 ∈ R𝑛 and their absolute values are bounded from above by the
function 𝐶(𝑚,𝑛)‖𝑢0‖𝐿1(R𝑛) 𝑦

−𝑚−𝑛, where 𝑚 is the order of the derivative.
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