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SOLVING OF SPECTRAL PROBLEMS

FOR CURL AND STOKES OPERATORS

R.S. SAKS

Abstract. In the work we explicitly solve the spectral problems for curl, gradient-
divergence, and Stokes operators in a ball 𝐵 of radius 𝑅. The eigenfunctions u±

𝜅 of the curl
associated with non-zero eigenvalues ±𝜆𝜅 are expressed by explicit formulas, as well as the
vector-functions q𝜅 associated with the zero eigenvalue,

𝑟𝑜𝑡u±
𝜅 = ±𝜆𝜅 u±

𝜅 , 𝜓𝑛(±𝜆𝜅𝑅) = 0, n · u±
𝜅 |𝑆 = 0; 𝑟𝑜𝑡q𝜅 = 0, n · q𝜅|𝑆 = 0,

where

𝜓𝑛(𝑧) = (−𝑧)𝑛
(︂

𝑑

𝑧𝑑𝑧

)︂𝑛 sin 𝑧

𝑧
, 𝜅 = (𝑛,𝑚, 𝑘), 𝑛 ≥ 0, 𝑚 ∈ N, |𝑘| 6 𝑛

The same vector-functions are the eigenfunctions for the gradient-divergence operator with
other eigenvalues,

∇ divu±
𝜅 = 0; ∇ divq𝜅 = 𝜇𝜅q𝜅, 𝜇𝜅 = (𝛼𝑛,𝑚/𝑅)

2, 𝜓′
𝑛(𝛼𝑛,𝑚) = 0.

The constructed system of vector eigenfunctions is complete and orthogonal in space L2(𝐵).
The eigenfunctions (v𝜅, 𝑝𝜅) of the Stokes operator in the ball are represented as a sum

of two eigenfunctions of the curl associated with opposite eigenvalues: v𝜅 = u+
𝜅 + u−

𝜅 ,
𝑝𝜅 = const.

Keywords: curl, gradient-divergence, and Stokes operators, eigenvalues, eigenfunctions,
Fourier series.
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1. Introduction

1.1. Formulation of problem. Let 𝐺 be a bounded domain in 𝑅3 with a piecewise smooth
boundary Γ, n be the outward normal to Γ. In particular, 𝐺 can be a ball 𝐵, |𝑥| < 𝑅, with
boundary 𝑆.

Problem 1. Find all the eigenvalues 𝜆 and the eigenfunctions u(x) in L2(𝐺) for the curl
operator such that

rot u = 𝜆u in 𝐺, (1)

n · u|Γ = 0, (2)

where n · u is the scalar product of the vectors u and n.

As the domain ℳℛ of the operator ℛ in Problem 1, we choose all the vector-functions v(x)
in the class 𝒞2(𝐺) ∩ 𝒞(𝐺) satisfying boundary condition (2) and condition rotv ∈ L2(𝐺).

The space of test vector-functions D(𝐺) is included into ℳℛ and is dense in L2(𝐺) [3].
Thus, the problem is to find the values 𝜆 for which equation (1) has nonzero solutions u(x)

in the domain ℳℛ, i.e., to determine the pair (𝜆,u) of an eigenvalue 𝜆 and an eigenfunctions
u ̸= 0.
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1.2. On applications. The eigenfunctions of Problem 1 have application in hydrodynamics,
where they are called the Beltrami fields [9], in celestial mechanics and in the physics of plasma
they are called the force-free fields (see S. Chandrasekhar [11] and J.B. Taylor [12]).

By Taylor’s theory, on the force-free fields, in the last stable equilibrium before decay, the
speed of the plasma in tokamaks is u(x), for which rotu = 𝜆u and 𝜆 = 𝑐𝑜𝑛𝑠𝑡.

According to S. Chandrasekhar, outside the photosphere of a star, the magnetic field H is
so that the Lorentz force 𝐿 proportional to the cross-product [rotH,H] disappears.

By Arnold theorem [13] 1965, almost all current-flow lines of the ideal liquid reel on ei-
ther cylinders or tori. At that, stationary flows with the speed v(x) satisfying the condition
[rotv,v] = 0 are excluded from the consideration. The flows with the speed v(x) obeying
equation (1) obviously satisfy this condition. Referring to the calculations of M. Henon [14],
V. Arnold writes that “such flows can have current-flow lines with rather complicated topology
typical for the problems in celestial mechanics.”

In 1970, the author studied the boundary value problems for non-elliptic system

rot u + 𝜆u = f (3)

in a bounded domain 𝐺 with a smooth boundary and proved that for each 𝜆 ̸= 0, the system
has Fredholm solvable boundary value problems with a non-zero index [17], [18]. The problem
of this kind is that with the boundary condition

n · u|Γ = 𝑔. (4)

For a ball 𝐵, a way of explicit solving problem (3),(4) was found (see [19]) and the formulas for
the eigenfunctions of the curl as 𝜆 ̸= 0 were written as solutions to a homogeneous problem.

The feature of this problem is that the low-order term 𝜆u in system (3) improves essentially
its solvability (see S7).

I published this result (formulae (36),(37)) in 2000 [21], when I learnt about the applications
and work by S. Chandrasekhar and P.S. Kendall [22] 1957 suggested another approach for
solving spectral problem 1 in a ball and cylinder.

In a ball their method does not work, and in a cylinder it was performed by D. Montgomery,
L. Turner, G. Vahala [23] 1978, who suggested to employ the eigenfunctions of the curl in
studying a turbulence in a plasma.

Self-adjoint extensions of the operator in Problem 1 were studied by P.E. Berhin [24] 1975,
Y. Giga, Z. Yoshida [25] 1990, and R. Picard [26] 1996.

For other aspects of the theory see book by V.V. Kozlov [4] and the reviews by
V.V. Pukhnachev [9] and by A. Makhalov and V. Nikolaenko [28].

In 2003, O.A. Ladyzhesnkaya solved the problem “On constructing the basis in the space of
solenoidal fields” [1] and interested in a possibility of explicit calculating the eigenfunctions
for the Stokes operator in simplest domains.

It happened [16] that in the periodic case the vector eigenfunctions (v𝑘, 𝑝𝑘) of the Stokes
operator are so that ∇𝑝𝑘 = 0 and the vector-functions v𝑘 coincide with the solenoidal eigen-
functions of the curl u±

𝑘 as 𝑘 ̸= 0 and u𝑗
0 as 𝑘 = 0.

On their basis, global solutions to the Navier-Stokes equations in a uniformly rotating space
were constructed [29] and the equations describing the interaction between basis vortical flows
were found [30].

Later [15], the author succeeded to calculated the eigenfunctions (v𝑛, 𝑝𝑛) of the Stokes op-
erator in a ball subject to the condition v𝑛|𝑆 = 0. In this case, each vector eigenfunction v𝑛

of the Stokes operator is the sum, v𝑛 = u+
𝑛 + u−

𝑛 , of the vector eigenfunctions u±
𝑛 of the curl

associated with opposite eigenvalues and 𝑝𝑛 = const. (see S6).

1.3. Structure of work and main results. In Section 1, the solving of Problem 1 in a
ball as 𝜆 ̸= 0 is reduced to the solving of the spectral Dirichlet problem for the scalar Laplace
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operator subject to the condition 𝑣(0) = 0 at the center of the ball that is solved explicitly
in Section 2. Its eigenvalues are determined by the zeroes of the Bessel functions of a half-
integer order, and the eigenfunctions are the products of the Bessel functions and the spherical
functions.

In Section 3, we give explicit formulae for nonzero eigenvalues ±𝜆𝑛,𝑚 and the eigenfunctions
q±
𝑛,𝑚,𝑘(x) of the curl operator in a ball. Formulas (36),(37) were published in [21], while for-

mulas (43) are published here for the first time. They give a possibility to calculate the speed
distribution of the liquid flow q±

𝑛,𝑚,𝑘(x) inside a ball and conceive of the motion of such flow.
In Section 4, the spectral problem for the gradient-divergence operator is reduced to the

solution of the Neumann problem for the scalar Laplace operator whose solutions are known.
We provide formulae (53) for the eigenfunctions q𝑛,𝑚,𝑘(x) of the curl operator in a ball associated
with the zero eigenvalue. These formulae are published here for the first time.

In Section 5, we prove that the constructed family of the eigenfunctions

{q𝑛,𝑚,𝑘(x), q+
𝑛,𝑚,𝑘(x), q−

𝑛,𝑚,𝑘(x)} 𝑛 ≥ 0, 𝑚 ∈ N, |𝑘| 6 𝑛,

for the curl operator is orthogonal and complete in the space L2(𝐵) that consists of the square
integrable vector functions f . This family makes an orthonormal basis in L2(𝐵).

We provide an analogue of Weil expansion [10] of a vector field f in L2(𝐵) (with zero com-
ponent n · f

⃒⃒
𝑆
= 0) into a curlfree field a and a solenoidal field b, f(x) = a(x) + b(x).

In Section 6, we determine the relation between the solutions of the spectral problems for the
curl and Stokes operator and give explicitly the solutions to the spectral problem for the Stokes
operator in a ball. Formulae (93) for the eigenfunctions of the Stokes operator are published
here for the first time.

In Section 7, as an example, we provide the solving of the boundary value problem (2),(3)
by the Fourier method in two cases: as 𝜆 ̸= 0,±𝜆𝑛,𝑚 and as 𝜆 = 0. We note that as 𝜆 = 0, the
solvability of the problem worsens and its kernel becomes infinite-dimensional.

1.4. Study of operator in problem. As 𝜆 ̸= 0, systems (3) and

∇ divu + 𝜆u = f (5)

are elliptic by Vainberg and Grushin [6]. The first order operator rot + 𝜆I is not elliptic since
the rank of its symbolic matrix 𝜎1(rot )(𝜉) equals two for each 𝜉 ∈ ℛ3∖0 and is less than three
[20].

Relation div rotu ≡ 0 for each smooth vector function u and system of equations (1) as
𝜆 ̸= 0 imply that divu = 0. Hence, u(x) solves the elliptic system

rot u− 𝜆u = 0, div u = 0. (6)

Such operator, rot + 𝜆𝐼, is called the reducible to an elliptic operator [6].
It is easy to check that system (6) and boundary condition (2) is an overdetermined elliptic

boundary value problem is the sense of the theory by V.A. Solonnikov [7]. It follows from the
relation

(rot + 𝜆 𝐼)(rot − 𝜆 𝐼)u = −∆u + ∇ div u− 𝜆2 u (7)

that as 𝜆 ̸= 0, a solution u ∈ 𝒞2(𝐵) to equation (1) solves also the second order elliptic system

− ∆u = 𝜆2u, div u = 0. (8)

Moreover, there is a one-to-one correspondence between the solutions u of problem (3), (4) and
the solutions (u, 𝑞) to the elliptic boundary value problem

rot u + 𝜆u + ∇𝑞 = f , 𝜆div u = div f , n · u|Γ = 𝑔, 𝑞|Γ = 0 (9)

where 𝑞 = 0 in 𝐺.
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In accordance with the theory of elliptic boundary value problems, for problem (9) in a
bounded domain 𝐺 with a smooth boundary Γ, the estimate

𝐶𝑠‖u‖𝑠+1 6 ‖rotu‖𝑠 + ‖divu‖𝑠 + |n · u|𝑠+1/2 + ‖u‖𝑠 (10)

holds true for a vector function u in the Sobolev space H𝑠+1(𝐺) ≡ W𝑠+1
2 (𝐺), where 𝐶𝑠 is a

positive constant, n · u is the trace of the normal component of u on Γ, and |n · u|𝑠+1/2 is its

norm in 𝐻𝑠+1/2(Γ), 𝑠 ≥ 0 (see [7], [8], [20], [25]).
This theory implies that as 𝜆 ̸= 0
a) the number of linear independent solutions to Problem 1 is finite,
b) each (generalized) solution to the problem is infinitely differentiable up to the boundary if

the boundary is infinitely differentiable.

1.5. Reduction of Problem 1 to Dirichlet spectral problem in ball. While construct-
ing the eigenfunctions associated with nonzero eigenvalues of the curl operator in a ball 𝐵, we
arrive at the following Dirichlet problem for the Laplace operator.

Problem 2. Find the eigenvalues 𝜇 and the eigenfunctions 𝑣(𝑥) of the scalar Laplace oper-
ator −∆ such that

− ∆𝑣 = 𝜇 𝑣 in 𝐵, 𝑣|𝑆 = 0, 𝑣(0) = 0. (11)

As the domain ℳℒ1 of the operator ℒ1 in Problem 2, we choose the functions 𝑣(x) in
𝒞2(𝐵) ∩ 𝒞(𝐵) satisfying the conditions 𝑣|𝑆 = 0, 𝑣(0) = 0, and ∆𝑣 ∈ 𝐿2(𝐵).

We denote by 𝑣(x) = x · u = 𝑟 𝑢𝑟 the scalar product of the vectors x and u. The following
lemma holds true.

Lemma 1. As 𝜆 ̸= 0, for each solution (𝜆,u) of Problem 1 in the ball 𝐵, (𝜆2,x · u) is a
solution to Problem 2.

Indeed, by (8), (2), and the boundedness of u in a vicinity of zero we have

−∆ 𝑣 = −x · ∆u− 2divu = 𝜆2 𝑣, 𝑣|𝑆 = 𝑅𝑢𝑟|𝑟=𝑅 = 0, 𝑣(0) = 𝑟 𝑢𝑟|𝑟=0 = 0.

2. Solving of spectral problem 2.

2.1. Zeroes of functions 𝜓𝑛(𝑧). Let 𝜌𝑚,𝑛 > 0 be the Bessel functions of half-integer order,
i.e., 𝐽𝑛+ 1

2
(𝜌𝑚,𝑛) = 0, where 𝑛 ≥ 0, 𝑚 = 1, 2, . . . . They are also the zeroes of the functions

𝜓𝑛(𝑧) ≡
√︂

𝜋

2𝑧
𝐽𝑛+ 1

2
(𝑧) =

√︂
𝜋

2𝑧

∞∑︁
𝑝=0

(−1)𝑝

𝑝!Γ
(︀
𝑛+ 1 + 𝑝+ 1

2

)︀ (︁𝑧
2

)︁𝑛+2𝑝+ 1
2
, (12)

As L. Euler showed (see [3], Section 23, P. 356), the cylindrical functions 𝐽𝑛+ 1
2
(𝑧) of half-integer

order are expressed in terms of the elementary functions, namely,

𝜓𝑛(𝑧) = (−𝑧)𝑛
(︂

𝑑

𝑧𝑑𝑧

)︂𝑛(︂
sin 𝑧

𝑧

)︂
. (13)

It implies that

𝜓𝑛(−𝑧) = (−1)𝑛𝜓𝑛(𝑧) (14)

and that the zeroes of the functions 𝜓𝑛(𝑧) are located on the real axis symmetrically w.r.t. the
point 𝑧 = 0.
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2.2. Dirichlet spectral problem. It is solved by the separations of variables in spheri-
cal coordinates (𝑟, 𝜃, 𝜙). By 𝐿 we denote the operator in the problem. In the textbook by
V.S. Vladimirov [3, Section 26], it was shown that the eigenvalues of the Laplace operator ℒ in
the ball 𝐵 are 𝜆2𝑛,𝑚, where 𝜆𝑛,𝑚 = 𝜌𝑛,𝑚𝑅

−1, 𝑛 ≥ 0, 𝑚 ∈ 𝑁 , and the numbers 𝜌𝑛,𝑚 > 0 are the
zeroes of the functions 𝜓𝑛(𝑧),

the real eigenfunctions 𝑣𝜅 associated with eigenvalues 𝜆2𝑛,𝑚 read as follows,

𝑣𝜅(𝑟, 𝜃, 𝜙) = 𝑐𝜅𝜓𝑛(𝜆𝑛,𝑚𝑟)𝑌
𝑘
𝑛 (𝜃, 𝜙), (15)

where 𝜅 = (𝑛,𝑚, 𝑘) is a multi-index, 𝑛 ≥ 0, |𝑘| ≤ 𝑛, 𝑚 ∈ N, 𝑐𝜅 are arbitrary real constants,
𝑃 𝑘
𝑛 (cos 𝜃) are the associated Legendre functions, 0 < 𝑟 ≤ 𝑅, 0 ≤ 𝜃 ≤ 𝜋, 𝑌 𝑘

𝑛 (𝜃, 𝜙) are real
spherical functions 0 ≤ 𝜙 ≤ 2𝜋. They are

𝑌 𝑘
𝑛 (𝜃, 𝜙) =

{︂
𝑃 𝑘
𝑛 (cos 𝜃) cos(𝑘𝜙), if 𝑘 = 0, 1, ..., 𝑛;

𝑃
|𝑘|
𝑛 (cos 𝜃) sin(|𝑘|𝜙), if 𝑘 = −1, ...,−𝑛. (16)

As 𝑛 = 0, 1, 2, the functions 𝑌𝑛(𝜃, 𝜙) =
∑︀𝑛

𝑘=−𝑛 𝑎𝑘𝑛 𝑌
𝑘
𝑛 (𝜃, 𝜙) read as follows,

𝑌0 = 𝑎00, 𝑌1 = 𝑎01 cos 𝜃 + (𝑎11 cos𝜙+ 𝑎−1,1 sin𝜙) sin 𝜃, (17)

𝑌2 = 𝑎02(3 cos2 𝜃 − 1) + (𝑎12 cos𝜙+ 𝑎−1,2 sin𝜙) sin 𝜃 cos 𝜃 + (𝑎22 cos 2𝜙+ 𝑎−2,2 sin 2𝜙) sin2 𝜃.

By the definition of the spherical functions, the product 𝑟𝑛𝑌 𝑘
𝑛 (𝜃, 𝜙) is a homogeneous harmonic

polynomial of order 𝑛 w.r.t. 𝑥1, 𝑥2, 𝑥3. It follows from formulae (15), (13) that the functions
𝑣𝜅(𝑥) belong to the class 𝐶∞(𝐵) in a ball 𝐵 of an arbitrary radius 𝑅 > 0.

The orthogonality and completeness of the Bessel functions in 𝐿2[(0, 𝑅); 𝑟] and of the spherical
functions in 𝐿2(𝑆1) yield that for different 𝜅 = (𝑛,𝑚, 𝑘), the functions 𝑣𝜅 are orthogonal in
𝐿2(𝐵).

The system of the functions {𝑣𝜅} is complete in 𝐿2(𝐵) [3]. Being normalized by the condition∫︀
𝐵

𝑣𝜅′𝑣𝜅 𝑑x =

= 𝑎𝜅′ 𝑎𝜅
𝑅∫︀
0

𝜓𝑛′(𝜌𝑛′,𝑚′𝑟/𝑅)𝜓𝑛(𝜌𝑛,𝑚𝑟/𝑅)𝑟2 𝑑𝑟
𝜋∫︀
0

2𝜋∫︀
0

𝑌 𝑘′

𝑛′ (𝜃, 𝜙)𝑌 𝑘
𝑛 (𝜃, 𝜙) sin 𝜃𝑑𝜃 𝑑𝜙 = 𝛿𝜅′,𝜅,

(18)

it makes an orthonormal basis in 𝐿2(𝐵). The normalizing factors 𝑎𝜅 are such that

(𝑎𝑛,𝑚,𝑘)−1 = 𝑅|𝐽 ′
𝑛+1/2(𝜌𝑛,𝑚)|

√︃
𝜋

1 + 𝛿0𝑘
2𝑛+ 1

(𝑛+ |𝑘|)!
(𝑛− |𝑘|)!

. (19)

2.3. Equivalent integral equation. It was shown in the book [3, Section 29] that if 𝑓 ∈
𝐶1(𝐵) ∩ 𝐶(𝐵), the boundary value problem

− ∆𝑣 = 𝜇 𝑣 + 𝑓(𝑥), 𝑣|𝑆 = 0, 𝑣 ∈ 𝐶2(𝐵) ∩ 𝐶(𝐵), (20)

is equivalent to the integral equation

𝑣(𝑥) =

∫︁
𝐵

𝐺(𝑥, 𝑦)[𝜇 𝑣(𝑦) + 𝑓(𝑦)] 𝑑 𝑦, 𝑣 ∈ 𝐶(𝐵), (21)

with the symmetric weakly polar kernel

𝐺(𝑥, 𝑦) =
1

4𝜋|𝑥− 𝑦|
− 𝑅|𝑦|

4𝜋|𝑥|𝑦|2 − 𝑦𝑅2|
. (22)

As the domain ℳℒ of the operator ℒ in Problem (20), one chooses [3] the functions 𝑣 in the
class 𝒞2(𝐵) ∩ 𝒞(𝐵) satisfying the boundary condition 𝑣|𝑆 = 0 and the belonging ∆𝑣 ∈ 𝐿2(𝐵).

The eigenvalues and the eigenfunctions of the operator ℒ coincide with the characteristic
numbers and the associated eigenfunctions of the kernel 𝐺(𝑥, 𝑦).
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According to the theory of integral equations, the set of all the eigenvalues of the Laplace
operator ℒ has no finite accumulating points and each eigenvalue is of finite multiplicity. Each
function in ℳℒ can be expanded into a regular convergent Fourier series in terms of the eigen-
functions of the operator ℒ.

Therefore, all the eigenvalues 𝜆2𝑛,𝑚 = 𝜌2𝑛,𝑚𝑅
−2 of the operator ℒ can be taken in the ascending

order

0 < 𝜇1 6 𝜇2 6 ..., 𝜇𝑙 → ∞, 𝑙 → ∞ (23)

counting 𝜇𝑙 in accordance with its multiplicity (the number 𝜆2𝑛,𝑚 is counted 2𝑛+ 1 times). The
associated eigenfunctions are denoted by 𝑉1, 𝑉2, . . . , so that each eigenvalue 𝜇𝑙 in series (23) is
associated with the eigenfunction 𝑉𝑙(𝑥),

ℒ𝑉𝑙 = 𝜇𝑙 𝑉𝑙, 𝑙 = 1, 2, ..., 𝑉𝑙 ∈ ℳℒ. (24)

We choose the eigenfunctions 𝑉𝑙(𝑥) being real and orthonormalized,

(ℒ𝑉𝑙, 𝑉𝑚) = 𝜇𝑙 (𝑉𝑙, 𝑉𝑚) = 𝜇𝑙 𝛿𝑙𝑚. (25)

Each function 𝑓(𝑥) in ℳℒ is expanded into the Fourier series in terms of the orthonormal
system {𝑉𝑙(𝑥)},

𝑓(𝑥) =
∞∑︁
𝑙=1

(𝑓, 𝑉𝑙)𝑉𝑙(𝑥). (26)

This series converges in 𝐿2(𝐵), and by Hilbert-Schmidt theorem the series regularly converges
on 𝐵 (see [3] S20.1). But the set ℳℒ is dense in 𝐿2(𝐵). It implies the completeness of the
system {𝑉𝑙(𝑥)} in 𝐿2(𝐵). We note that {𝑉𝑙(𝑥)} is the systen {𝑣𝜅(𝑥)} with the aforementioned
ordering.

We shall write series (26) (and other similar series) as

𝑓(x) =
∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(𝑓, 𝑣𝑛,𝑚,𝑘) 𝑣𝑛,𝑚,𝑘(x) ≡
∑︁
𝜅

(𝑓, 𝑣𝜅) 𝑣𝜅(x), (27)

assuming that the summation of series (27) is made w.r.t. 𝑛,𝑚 obeying 0 < 𝜌𝑛,𝑚 < 𝑁 where
𝑁 → ∞.

2.4. Convergence of series in Sobolev space 𝐻𝑠(𝐵). According to Theorems 8 and 9 in
[5, Chapter 4], for a ball we have the following.

A function 𝑓 is expanded into Fourier series (27) in terms of the eigenfunctions of the
Dirichlet problem in a ball and this series converges in the Sobolev space 𝐻𝑠(𝐵) if and only if
𝑓 belongs to

𝐻𝑠
𝒟(𝐵) = {𝑓 ∈ 𝐻𝑠(𝐵) : 𝑓 |𝑆 = 0, ...,△𝜎𝑓 |𝑆 = 0}, where 𝜎 = [(𝑠− 1)/2], 𝑠 ≥ 1. (28)

If 𝑓 ∈ 𝐻𝑠
𝒟(𝐵), the series ∑︁

𝜅

(𝑓, 𝑣𝜅)2 𝜆2𝑠𝜅 (29)

converges and there exists a positive constant 𝐶 > 0 independent of 𝑓 such that∑︁
𝜅

(𝑓, 𝑣𝜅)2 𝜆2𝑠𝜅 6 𝐶‖𝑓‖2𝐻𝑠(𝐵). (30)

If 𝑠 ≥ 2, each function 𝑓 in 𝐻𝑠
𝒟(𝐵) is expanded into Fourier series (27) converging in the space

𝒞𝑠−2(𝐵).
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2.5. Solving of Problem 2. Since 𝜓0(0) = 1, as 𝜅 = (0,𝑚, 0), the functions {𝑣𝜅} satisfies
the condition 𝑣𝜅(0) = 0 of Problem 2 if and only if the corresponding coefficients 𝑐(0,𝑚,0) vanish.
It implies

Theorem 1. The eigenvalues 𝜇𝑛,𝑚 of Problem 2 equal 𝜆2𝑛,𝑚, where 𝜆𝑛,𝑚 = 𝜌𝑛,𝑚𝑅
−1, and the

numbers 𝜌𝑛,𝑚 are zeroes of the functions 𝜓𝑛(𝑧), 𝑚, 𝑛 ∈ N. The eigenfunctions 𝑣𝜅 associated
with 𝜆2𝑛,𝑚 read as follows,

𝑣𝜅(𝑟, 𝜃, 𝜙) = 𝑐𝜅𝜓𝑛(𝜆𝑛,𝑚𝑟)𝑌
𝑘
𝑛 (𝜃, 𝜙), (31)

where 𝑚,𝑛 ∈ N and |𝑘| ≤ 𝑛, 𝜅 = (𝑛,𝑚, 𝑘). The multiplicity of the eigenvalues 𝜇𝑛,𝑚 equals
2𝑛+ 1.

Thus, the spectrum of Problem 2 is discrete and has no finite accumulation points, and the
eigenfunctions 𝑣𝜅 of the problem are expressed in terms of cylindrical and spherical functions.

3. Solving of spectral problem 1 in ball

3.1. Construction of solutions to Problem 1. In addition, we prove that its eigenvalues
±𝜆𝑛,𝑚 are the square roots of the eigenvalues of Problem 2.

Lemma 2. In the ball 𝐵, as 𝜇 > 0, to each solution (𝜇, 𝑣) of Problem 2, there correspond
exactly two solutions (

√
𝜇,u+) and (−√

𝜇,u−) of Problem 1 such that x · u+ = x · u− = 𝑣.

Proof. The proof is based on the representation of the system rotu = 𝜆u, divu = 0 of four
real equations written in the spherical coordinates as the system of two complex equations

(𝜕𝑟 − 𝑖𝜆) 𝑟𝑤 = 𝑟−1H𝑣, K𝑤 = 𝜆𝑣 − 𝑖𝑟−1𝜕𝑟(𝑟𝑣) (32)

w.r.t. to the complex-valued function 𝑤 = 𝑢𝜙+𝑖𝑢𝜃 and the real function 𝑣 = 𝑟𝑢𝑟. The operators
H and K read as follows,

H𝑣 =
(︀
sin−1𝜃𝜕𝜙 + 𝑖𝜕𝜃

)︀
𝑣, K𝑤 = sin−1 𝜃(𝜕𝜃 sin 𝜃 + 𝑖𝜕𝜙)𝑤. (33)

It is easy to make sure that −∆𝑣 = 𝜆2𝑣 is the compatibility condition of equations (32).
Let (𝜇, 𝑣) be a fixed solution to Problem 2. We find nonzero solutions to the problem as

follows. The function 𝑢𝑟 is defined as the fraction 𝑣/𝑟. We let 𝜆 =
√
𝜇 or 𝜆 = −√

𝜇 and
substitute 𝜆 and 𝑣 = 𝑣 into equation (32). Now their right hand sides are defined and the
equations are compatible. We define the functions 𝑢𝜃 and 𝑢𝜙 by solving these systems. The
general solution to the first equation (32) is

𝑤 = 𝑑𝑟−1𝑒𝑖𝜆𝑟 + 𝑟−1

𝑟∫︁
0

𝑒𝑖𝜆(𝑟−𝑡)H𝑣(𝑡, 𝜃, 𝜙)𝑡−1𝑑𝑡, (34)

where 𝑑 is a function of the variables 𝜙 and 𝜃 being zero if we seek the solution in the Sobolev
space 𝑊 1

2 (𝐵) or in the class of bounded functions. It remains to check that the function 𝑤
satisfies the second equation in (32). We obtain

K𝑤 = 𝑟−1

𝑟∫︁
0

𝑒𝑖𝜆(𝑟−𝑡)KH𝑣(𝑡, 𝜃, 𝜙)𝑡−1𝑑𝑡 = 𝑟−1

𝑟∫︁
0

𝑒𝑖𝜆(𝑟−𝑡)
[︀
sin−1 𝜃(𝜕𝜃𝜕𝜙 − 𝜕𝜙𝜕𝜃)𝑣 + 𝑖∆𝜃, 𝜙𝑣

]︀
𝑡−1𝑑𝑡,

where ∆𝜃,𝜙 is the Laplace-Beltrami operator. We write the Helmholtz equation in the spherical
coordinates,

1

𝑟 sin 𝜃

[︂
𝜕𝜃 (sin 𝜃𝜕𝜃) +

1

sin 𝜃
(𝜕𝜙)2

]︂
𝑣 = −𝜆2𝑟𝑣 − 1

𝑟
𝜕𝑟

(︀
𝑟2𝜕𝑟

)︀
𝑣. (35)
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The function 𝑣 is its solutions as 𝜆2 = 𝜆2 = 𝜇. Substituting the right hand side of this identity
into the integral instead of the expression 𝑟−1∆𝜃,𝜙𝑣 for 𝜆2 = 𝜆2, 𝑣 = 𝑣, 𝑟 = 𝑡, we obtain

K𝑤 = −𝑖𝑟−1

𝑟∫︁
0

𝑒𝑖𝜆(𝑟−𝑡)

(︂
𝜆2𝑡𝑣 +

1

𝑡
𝜕𝑡
(︀
𝑡2𝜕𝑡𝑣

)︀)︂
𝑑𝑡.

Integrating by parts and taking into consideration the relation 𝑣(0) = 0, we obtain the right
hand side of the second identity in (32). The proof is complete.

3.2. Formulae for solutions. Substituting the expressions 𝜆±𝜅 = ±𝜆𝑛,𝑚 and 𝑣𝜅 from (31)
into the fraction 𝑣/𝑟 and the integral (34) (instead of 𝜆 and 𝑣), as well as 𝑑 = 0, we obtain the
explicit formulas for the eigenfunctions of the problem. The following theorem holds true.

Theorem 2. Nonzero eigenvalues 𝜆±𝑛,𝑚 of Problem 1 are equal to ±𝜆𝑛,𝑚, where

𝜆𝑛,𝑚 = 𝜌𝑛,𝑚𝑅
−1, 𝑅 is the radius of the ball, and the number 𝜌𝑛,𝑚 are zeroes of the functions

𝜓𝑛(𝑧), 𝑚, 𝑛 ∈ N. The components 𝑢𝑟 and 𝑤 = 𝑢𝜙 + 𝑖𝑢𝜃 of the eigenfunctions 𝑢±𝜅 of Problem 1
in the spherical coordinates are calculated by the formulae,

(𝑢𝑟)
±
𝜅 = 𝑐±𝜅 (𝜆±𝑛,𝑚𝑟)

−1𝜓𝑛(𝜆±𝑛,𝑚𝑟)𝑌
𝑘
𝑛 (𝜃, 𝜙), (36)

(𝑢𝜙 + 𝑖𝑢𝜃)
±
𝜅 = 𝑐±𝜅 (𝜆±𝑛,𝑚𝑟)

−1
Φ𝑛(𝜆±𝑛,𝑚𝑟)H𝑌 𝑘

𝑛 (𝜃, 𝜙), (37)

where 𝑖 is the imaginary unit, 𝑐±𝜅 ∈ R, 𝑚,𝑛 ∈ N, |𝑘| ≤ 𝑛,𝜅 = (𝑛,𝑚, 𝑘),

Φ𝑛(𝜆±𝑛,𝑚𝑟) =

𝑟∫︁
0

𝑒𝑖𝜆
±
𝑛,𝑚(𝑟−𝑡)𝜓𝑛(𝜆±𝑛,𝑚𝑡)𝑡

−1𝑑𝑡, (38)

H𝑌 𝑘
𝑛 (𝜃, 𝜙) =

(︀
sin−1𝜃𝜕𝜙 + 𝑖𝜕𝜃

)︀
𝑌 𝑘
𝑛 (𝜃, 𝜙). (39)

The functions 𝑢𝑟, 𝑢𝜃, 𝑢𝜙 are infinitely differentiable everywhere in 𝐵 except the axis 𝑥3, on
which 𝑟 sin 𝜃 = 0, and they are bounded in 𝐵. In terms of the initial coordinates 𝑥1, 𝑥2, 𝑥2 the
components 𝑢𝑗 of the eigenfunctions of Problem 1 belong to 𝐶∞(𝐵).

Proof. In terms of the functions 𝑢𝑟 and 𝑤 = 𝑢𝜙 + 𝑖𝑢𝜃, they are expressed as follows,

𝑢1 = 𝑢𝑟𝑌
1
1 + Re (𝑤H𝑌 1

1 ), 𝑢2 = 𝑢𝑟𝑌
−1
1 + Re (𝑤H𝑌 −1

1 ), 𝑢3 = 𝑢𝑟𝑌
0
1 + Re (𝑤H𝑌 0

1 ), (40)

where in accordance with the textbook by Vladimirov [3]

𝑥1/𝑟 = 𝑌 1
1 (𝜃, 𝜙) = sin 𝜃 cos𝜙, 𝑥2/𝑟 = 𝑌 −1

1 (𝜃, 𝜙) = sin 𝜃 sin𝜙, 𝑥3/𝑟 = 𝑌 0
1 (𝜃) = cos 𝜃, (41)

𝐻𝑌 1
1 = − sin𝜙+ 𝑖 cos 𝜃 cos𝜙, 𝐻𝑌 −1

1 = cos𝜙+ 𝑖 cos 𝜃 sin𝜙, 𝐻𝑌 0
1 = −𝑖 sin 𝜃. (42)

The smoothness of the vector functions 𝑢±𝜅 (𝑥) in 𝐵 follows from the general theory (see state-
ment b) in Subsection 1.4) and can be checked by straightforward calculations. The proof is
complete.

We represent the vector functions 𝑢±𝜅 as a sum of three real orthogonal vectors. Employing
the frame i𝑟, i𝜃, i𝜙 and splitting real and imaginary parts in (37), (38), (39), we have

𝑢±𝜅 = 𝑐±𝜅 (𝜆±𝑛,𝑚𝑟)
−1𝜓𝑛(𝜆±𝑛,𝑚𝑟)𝑌

𝑘
𝑛 (𝜃, 𝜙) i𝑟+

𝑐±𝜅 (𝜆±𝑛,𝑚𝑟)
−1

Re [Φ𝑛(𝜆±𝑛,𝑚𝑟)](Re𝐻𝑌 𝑘
𝑛 i𝜙 + Im𝐻𝑌 𝑘

𝑛 i𝜃)+

𝑐±𝜅 (𝜆±𝑛,𝑚𝑟)
−1

Im [Φ𝑛(𝜆±𝑛,𝑚𝑟)](−Im𝐻𝑌 𝑘
𝑛 i𝜙 + Re𝐻𝑌 𝑘

𝑛 i𝜃).

(43)

These formulae allow us to represent the motion of liquid vortical flow in the ball whose speed
is 𝑢±𝜅 (𝑥) as 𝑛 = 1, 2, .... The vorticity of these flows rot𝑢±𝜅 equalling 𝜆±𝑛,𝑚𝑢

±
𝜅 is nonzero at each

point of the ball.
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3.3. The property of functions Φ𝑛(𝜆±𝑛,𝑚𝑟). The functions 𝜓𝑛(𝜆±𝑛,𝑚𝑟) , 𝑌 𝑘
𝑛 (𝜃, 𝜙) and num-

bers 𝜆±𝑛,𝑚 = ±𝜌𝑛,𝑚/𝑅 are real. According to (14), 𝜓𝑛(𝜆−𝑛,𝑚𝑟) = (−1)𝑛 𝜓𝑛(𝜆𝑛,𝑚𝑟). This is why

Φ𝑛(𝜆−𝑛,𝑚𝑟) =
𝑟∫︀
0

𝑒−𝑖𝜆𝑛,𝑚(𝑟−𝑡)𝜓𝑛(−𝜆𝑛,𝑚𝑡)𝑡−1𝑑 𝑡 =

= (−1)𝑛
𝑟∫︀
0

𝑒−𝑖𝜆𝑛,𝑚(𝑟−𝑡)𝜓𝑛(𝜆𝑛,𝑚𝑡)𝑡
−1𝑑 𝑡 = (−1)𝑛Φ𝑛(𝜆𝑛,𝑚𝑟).

(44)

Let us prove that the number Φ𝑛(𝜆𝑛,𝑚𝑅) is real and thus

Φ𝑛(𝜌𝑛,𝑚) =

𝑅∫︁
0

cos𝜆𝑛,𝑚(𝑅− 𝑡)𝜓𝑛(𝜆𝑛,𝑚𝑡)𝑡
−1𝑑𝑡. (45)

By the construction, the vector functions 𝑢±𝜅 (𝑥) satisfy equation (1) as 𝜆 = ±𝜆𝑛,𝑚, and the
complex functions

𝑤±
𝜅 = (𝑢𝜙 + 𝑖𝑢𝜃)

±
𝜅 = 𝑎±𝜅 (𝜆±𝑛,𝑚𝑟)

−1
Φ𝑛(𝜆±𝑛,𝑚𝑟)H𝑌 𝑘

𝑛 (𝜃, 𝜙), 𝑎±𝜅 ∈ R, (46)

satisfy system of equations (32) as 𝜆 = ±𝜆𝑛,𝑚, 𝑣 = 𝑣𝜅(𝑥) and 𝑣𝜅|𝑟=𝑅 = 0.
By the second equation in (32) we see that as 𝑟 → 𝑅,

Re𝐾𝑤±
𝜅 |𝑟→𝑅 = ±𝜆𝑛,𝑚 𝑣𝜅|𝑟=𝑅 = 0. (47)

The composition KH of the operators K and H on the real functions 𝑌 𝑘
𝑛 (𝜃, 𝜙) reads as

KH𝑌 𝑘
𝑛 = sin−1 𝜃(𝜕𝜃 sin 𝜃 + 𝑖𝜕𝜙)

(︀
sin−1𝜃𝜕𝜙 + 𝑖𝜕𝜃

)︀
𝑌 𝑘
𝑛 =

sin−1(𝜕𝜃𝜕𝜙 − 𝜕𝜙𝜕𝜃)𝑌
𝑘
𝑛 + 𝑖∆𝜃,𝜙𝑌

𝑘
𝑛 = 𝑖𝑛(𝑛+ 1)𝑌 𝑘

𝑛 .
(48)

Hence,

Re K𝑤±
𝜅 |𝑟=𝑅 = −𝑛(𝑛+ 1)𝑎±𝜅 (𝜌±𝑛,𝑚)

−1
Im Φ𝑛(𝜌±𝑛,𝑚)𝑌 𝑘

𝑛 (𝜃, 𝜙) = 0 (49)

for each 𝜃 and 𝜙. Therefore, Im Φ𝑛(𝜌𝑛,𝑚) = 0 and the number Φ𝑛(𝜌𝑛,𝑚) is real.

4. Solving of spectral problem 1 as 𝜆 = 0

4.1. Reduction of Problem 1 as 𝜆 = 0 to Neumann spectral problem. We shall seek
the vector eigenfunctions of the curl operator associated with the zero eigenvalue among the
solutions of the following spectral problem.

Problem 3. To find nonzero eigenvalues 𝜇 and vector eigenfunctions u(x) in L2(𝐺) of the
gradient-divergence operator such that

−∇divu = 𝜇u in 𝐺, n · u|Γ = 0, (50)

where n · u is the projection of the vector u on the normal vector n.

As the domain ℳ𝒢𝒟 of the operator 𝒢𝒟 in Problem 3, we take the vector functions u(x) in
𝒞2(𝐺)∩𝒞1(𝐺) satisfying the boundary condition n·u|Γ = 0 and the assumption ∇divu ∈ L2(𝐺).

The problem is related to the Neumann spectral problem for the scalar Laplace operator.

Problem 4. To find all the eigenvalues 𝜈 and the eigenfunctions 𝑔(x) of the Laplace operator
−∆ such that

− ∆𝑔 = 𝜈𝑔 in 𝐺, n · ∇ 𝑔|Γ = 0. (51)

As the domain ℳ𝒩 of the operator 𝒩 in Problem 4, we take the functions 𝑔(x) in 𝒞2(𝐺) ∩
𝒞1(𝐺) satisfying the conditions n · ∇ 𝑔|Γ = 0 , ∆ 𝑔 ∈ 𝐿2(𝐺).

It is easy to make sure that following lemma holds true.

Lemma 3. Each solution (𝜇,u) of Problem 3 in the domain 𝐺 corresponds to the solution
(𝜈, 𝑔) = (𝜇, divu) of Problem 4. And vice versa, each solution (𝜈, 𝑔) of Problem 4 corresponds
to the solution (𝜇,u) = (𝜈,∇𝑔) of Problem 3.
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4.2. Solving of spectral problem 4 in ball. The solution to this problem is known. In
accordance with the book by V.S. Vladimirov [3],

the eigenvalues of the operator −∆ in a ball 𝐵 subject to the Neumann condition are equal
to 𝜈2𝑛,𝑚, where 𝜈𝑛,𝑚 = 𝛼𝑛,𝑚𝑅

−1, 𝑛 ≥ 0, 𝑚 ∈ 𝑁 , and the numbers 𝛼𝑛,𝑚 > 0 are the zeroes of the
derivatives 𝜓′

𝑛(𝑧) of the functions 𝜓𝑛(𝑧), i.e., 𝜓′
𝑛(𝛼𝑛,𝑚) = 0. The eigenfunctions 𝑔𝜅 associated

with 𝜈2𝑛,𝑚 read as follows,

𝑔𝜅(𝑟, 𝜃, 𝜙) = 𝑐𝜅𝜓𝑛(𝛼𝑛,𝑚𝑟/𝑅)𝑌 𝑘
𝑛 (𝜃, 𝜙), (52)

where 𝜅 = (𝑛,𝑚, 𝑘) is a multi-index, 𝑐𝜅 are arbitrary real constants, 𝑌 𝑘
𝑛 (𝜃, 𝜙) are real spherical

functions, 𝑛 ≥ 0, |𝑘| ≤ 𝑛, 𝑚 ∈ 𝑁 .
The functions 𝑔𝜅(𝑥) belong to the class 𝐶∞(𝐵) and for different 𝜅, they are orthogonal in

𝐿2(𝐵). The system of the functions {𝑔𝜅} is complete in 𝐿2(𝐵) [5]. Normalizing them, we obtain
a orthonormalized basis in 𝐿2(𝐵).

4.3. Solving of spectral problem 3 in ball. According to Lemma 3, the vector functions
q𝜅(𝑥) = ∇𝑔𝜅(𝑥) solve Problem 3 for 𝜇𝑛,𝑚 = 𝛼2

𝑛,𝑚𝑅
−2 in L2(𝐵). Their components (𝑞𝑟, 𝑞𝜃, 𝑞𝜙)

read as follows,
𝑞𝑟,𝜅(𝑟, 𝜃, 𝜙) = 𝑐𝜅(𝛼𝑛,𝑚/𝑅)𝜓′

𝑛(𝛼𝑛,𝑚𝑟/𝑅)𝑌 𝑘
𝑛 (𝜃, 𝜙),

(𝑞𝜙 + 𝑖𝑞𝜃)𝜅 = 𝑐𝜅(1/𝑟)𝜓𝑛(𝛼𝑛,𝑚𝑟/𝑅)H𝑌 𝑘
𝑛 (𝜃, 𝜙).

(53)

As 𝜅 = (0,𝑚, 0), we have 𝑌 0
0 (𝜃, 𝜙) = 1, H𝑌 0

0 = 0. Hence,

𝑞𝑟,(0,𝑚,0)(𝑟) = 𝑐(0,𝑚,0)(𝛼0,𝑚/𝑅)𝜓′
0(𝛼0,𝑚𝑟/𝑅),

(𝑞𝜙 + 𝑖𝑞𝜃)(0,𝑚,0) = 0.
(54)

By these formulae, one can easily write the normalizing constants 𝑐𝜅 guaranteeing ‖q𝜅‖ = 1.

4.4. Solving of spectral problem 1 as 𝜆 = 0 in ball. The numbers 𝜇𝑛,𝑚 = 𝛼2
𝑛,𝑚𝑅

−2 are
positive for each 𝑛 ≥ 0, 𝑚 ∈ 𝑁 . This is why the vector functions q𝜅 solve also Problem 1 as
𝜆 = 0. Moreover, q𝜅 and q𝜅′ are orthogonal as 𝜅′ ̸= 𝜅.

Indeed, by Gauss-Ostrogradsky formula,∫︁
𝐵

∇𝑔𝜅′ · ∇𝑔𝜅𝑑𝑥 = −
∫︁
𝐵

𝑔𝜅′∆𝑔𝜅𝑑𝑥+

∫︁
𝑆

𝑔𝜅′(𝑛 · ∇)𝑔𝜅𝑑𝑆. (55)

The functions 𝑔𝜅(𝑥) solve Problem 4, they satisfy Helmholtz equation (51) as 𝜈 = 𝛼2
𝑛,𝑚/𝑅

2 > 0
subject to the Neumann condition. Hence, the boundary integral disappears and∫︁

𝐵

q𝜅′ · q𝜅𝑑𝑥 =
𝛼2
𝑛,𝑚

𝑅2

∫︁
𝐵

𝑔𝜅′𝑔𝜅𝑑𝑥. (56)

But according to (52), the functions 𝑔𝜅(𝑥) and 𝑔𝜅′(𝑥) are orthogonal in 𝐿2(𝐵) as 𝜅′ ̸= 𝜅. Hence,
the last integral in (56) vanishes and the vector functions q𝜅 and q𝜅′ are orthogonal in L2(𝐵).

Observe that ‖q𝜅(𝑥)‖ = (𝛼𝑛,𝑚/𝑅) ‖𝑔𝜅(𝑥)‖.

5. Space L2(𝐵) and eigenfunctions for curl operator

5.1. Subspace 𝒜 = ∇𝐻1(𝐵). We denote by 𝒜 the linear subspace in L2(𝐵) formed by an
orthonormalized system of the vector-functions {q𝜅(𝑥)}. In fact,

𝒜 = {∇ℎ : ℎ ∈ 𝐻1(𝐵)}. (57)

Indeed, for each element, q𝜅(𝑥) = ∇ 𝑔𝜅, where 𝑔𝜅 ∈ 𝐻1(𝐵). On the other hand, a function ℎ
in 𝐻1(𝐵) can be expanded into the convergent series

ℎ =
∑︁
𝜅

(ℎ, ̂︀𝑔𝜅)̂︀𝑔𝜅, ̂︀𝑔𝜅 = (𝛼𝑛,𝑚/𝑅)𝑔𝜅, (̂︀𝑔𝜅, ̂︀𝑔𝜅′) = 𝛿𝜅,𝜅′ . (58)
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5.2. Subspace ℬ = V0(𝐵). We denote by q±
𝜅 (𝑥) the solutions to Problem 1 associated in

accordance with Theorem 2 with the eigenvalues 𝜆±𝑛,𝑚, 𝑛,𝑚 ∈ N, and normalized in L2(𝐵), i.e.,
‖q±

𝜅 (𝑥)‖ = 1. They belong to the subspace

V0(𝐵) = {u ∈ L2(𝐵) : divu = 0, n · u|𝑆 = 0, ‖u‖V0(𝐵) = ‖u‖L2(𝐵)}, (59)

where divu = 0, n · u|𝑆 = 0 are treated in the sense of the distributions theory,

V0(𝐵) = {u ∈ L2(𝐵) :

∫︁
𝐵

u · ∇ℎ 𝑑 𝑥 = 0, for each ℎ ∈ 𝐻1(𝐵)}. (60)

It is obvious that 𝒜 and ℬ ≡ V0(𝐵) are orthogonal subspaces in L2(𝐵). By ℬ± we indicate the
subspaces in ℬ formed by the systems of the vector functions {q±

𝜅 (𝑥)}. The following lemma
holds true.

Lemma 4. The vector functions q+
𝜅 (𝑥) (respectively, q−

𝜅 (𝑥)) are orthogonal for different 𝜅.
The vector functions q+

𝜅 (𝑥) and q−
𝜅 (𝑥) are orthogonal for all 𝜅.

Proof. We employ the Green formula for the curl operator,∫︁
𝐵

rotu · v 𝑑x−
∫︁
𝐵

u · rotv 𝑑x =

∫︁
𝑆

[u,v] · n 𝑑𝑆. (61)

On the sphere 𝑆, the scalar triple product [u,v] · n coincides with the determinant⃒⃒⃒⃒
⃒⃒ 1 0 0
𝑢𝑟 𝑢𝜃 𝑢𝜙
𝑣𝑟 𝑣𝜃 𝑣𝜙

⃒⃒⃒⃒
⃒⃒ (62)

and equals 𝑢𝜃𝑣𝜙−𝑢𝜙𝑣𝜃 or Im (𝑊 𝑉 ) in the complex notations𝑊 = (𝑢𝜙+𝑖𝑢𝜃) and 𝑉 = (𝑣𝜙 − 𝑖𝑣𝜃).
Let us prove the orthogonality of the vector functions q+

𝜅′(𝑥) and q+
𝜅 (𝑥) as 𝜅′ ̸= 𝜅. They

solve Problem 1 and are calculated by the formulae (36), (37), where 𝜆+𝑛,𝑚 = 𝜌𝑛,𝑚/𝑅 and 𝑐+𝜅
are real constants.

We first consider the case (𝑛′,𝑚′) ̸= (𝑛,𝑚), and hence, 𝜆+𝑛′,𝑚′ ̸= 𝜆+𝑛,𝑚. Substituting these
functions into formula (61), we obtain the identity

(𝜆𝑛′,𝑚′ − 𝜆𝑛,𝑚)

∫︁
𝐵

q+
𝜅′ · q+

𝜅 𝑑𝑥 = Im

𝜋∫︁
0

2𝜋∫︁
0

𝑊+
𝑘′ 𝑊

+

𝑘 sin 𝜃 𝑑𝜃 𝑑𝜙. (63)

The orthogonality will be proven if the latter integral 𝐼 vanishes. In accordance with formulae
(37), it read as

𝐼 = 𝐴 Im

𝜋∫︁
0

2𝜋∫︁
0

H𝑌 𝑘′

𝑛′ (𝜃, 𝜙) H𝑌 𝑘
𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙, (64)

where 𝐴 = 𝑐+𝜅′(𝜌𝑛′,𝑚′)−1𝑐+𝜅 (𝜌𝑛,𝑚)−1 Φ𝑛′(𝜌𝑛′,𝑚′)Φ𝑛(𝜌𝑛,𝑚) is a real constant according to Subsection
3.3.

We move the operator H in this integral by integration by parts. We have

Im [𝐴
𝜋∫︀
0

2𝜋∫︀
0

𝑌 𝑘′

𝑛′ (𝜃, 𝜙)[−sin−1𝜃𝜕𝜃(sin 𝜃𝜕𝜃) − sin−2𝜃𝜕2𝜙]𝑌 𝑘
𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙]+

Im [𝑖𝐴
𝜋∫︀
0

2𝜋∫︀
0

𝑌 𝑘′

𝑛′ (𝜃, 𝜙)[sin−1𝜃(𝜕𝜙𝜕𝜃 − 𝜕𝜃𝜕𝜙)]𝑌 𝑘
𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙].

The latter integral vanishes, since the spherical functions and all their derivatives w.r.t. 𝜙 and
𝜃 are continuous. The operator in the brackets in the first integral is the Laplace-Beltrami
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operator, −∆𝜃𝜙. According to the property of the spherical functions, −∆𝜃𝜙𝑌
𝑘
𝑛 (𝜃, 𝜙) = 𝑛(𝑛+

1)𝑌 𝑘
𝑛 (𝜃, 𝑘). Substituting this expression into the integral, we get

(𝜆𝑛′,𝑚′ − 𝜆𝑛,𝑚)

∫︁
𝐵

𝑞+𝜅′ · 𝑞+𝜅 𝑑𝑥 = Im [𝑛(𝑛+ 1)𝐴

𝜋∫︁
0

2𝜋∫︁
0

𝑌 𝑘′

𝑛′ 𝑌 𝑘
𝑛 sin 𝜃 𝑑𝜃 𝑑𝜙]. (65)

Since the spherical functions are orthogonal as (𝑛′, 𝑘′) ̸= (𝑛, 𝑘), this integral vanishes. Hence,
the vector functions q+

𝜅′(𝑥) and q+
𝜅 (𝑥) are orthogonal as (𝑛′,𝑚′) ̸= (𝑛,𝑚) and (𝑛′, 𝑘′) ̸= (𝑛, 𝑘).

If (𝑛′, 𝑘′) = (𝑛, 𝑘), 𝑚′ ̸= 𝑚, the integral in the right hand side of (65) is a real number. The
numbers 𝑐𝜅, Φ𝑛(𝜌𝑛,𝑚), and 𝐴 are real as well, and hence q+

𝑘,𝑚′,𝑛(𝑥) and q+
𝑘,𝑚,𝑛(𝑥) are orthogonal.

In the case (𝑛′,𝑚′) = (𝑛,𝑚) and 𝑘′ ̸= 𝑘, formula (65) is not suitable, since both its sides
vanishes. According to formulae (36), (37), we have∫︀

𝐵

q+
𝑘′,𝑚,𝑛 · q

+
𝑘,𝑚,𝑛 𝑑𝑥 = 𝑐+𝑘′,𝑚,𝑛𝑐

+
𝑘′,𝑚,𝑛𝜆

−2
𝑚,𝑛[

𝑅∫︀
0

𝜓2
𝑛(𝜆𝑛,𝑚𝑟) 𝑑𝑟

𝜋∫︀
0

2𝜋∫︀
0

𝑌 𝑘′
𝑛 (𝜃, 𝜙)𝑌 𝑘

𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙+

+
𝑅∫︀
0

Φ𝑛(𝜆𝑛,𝑚𝑟)Φ𝑛(𝜆𝑛,𝑚𝑟) 𝑑𝑟
𝜋∫︀
0

2𝜋∫︀
0

H𝑌 𝑘′
𝑛 (𝜃, 𝜙)H𝑌 𝑘

𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃].

(66)
Because of the orthogonality of the functions 𝑌 𝑘′

𝑛 and 𝑌 𝑘
𝑛 in 𝐿2(𝑆1) both integrals disappear

and the vectors q+
𝑘′,𝑚,𝑛 and q+

𝑘,𝑚,𝑛 are thus orthogonal.

The orthogonality of the vector functions q−
𝜅′(𝑥) and q−

𝜅 (𝑥) as 𝜅′ ̸= 𝜅 can be proven in the
same way.

For all 𝜅′ and 𝜅, consider the eigenfunctions q+
𝜅′(𝑥) and q−

𝜅 (𝑥) associated with the eigenvalues
𝜆𝑛,𝑚 and −𝜆𝑛,𝑚 of opposite signs. Reproducing the above calculations, we have

(𝜆𝑛′,𝑚′ + 𝜆𝑛,𝑚)
∫︀
𝐵

q+
𝜅′ · q−

𝜅 𝑑𝑥 = Im
𝜋∫︀
0

2𝜋∫︀
0

𝑊+
𝑘′ 𝑊

−
𝑘 sin 𝜃 𝑑𝜃 𝑑𝜙 =

= Im [𝑛(𝑛+ 1)𝐵
𝜋∫︀
0

2𝜋∫︀
0

𝑌 𝑘′

𝑛′ (𝜃, 𝜙)𝑌 𝑘
𝑛 (𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙],

(67)

where the constant 𝐵 = (−1)(𝑛+1) 𝑐+𝜅′(𝜌𝑛′,𝑚′)−1𝑐−𝜅 (𝜌𝑛,𝑚)−1 Φ𝑛′(𝜌𝑛′,𝑚′)Φ𝑛(𝜌𝑛,𝑚) is real.
The right hand side in (67) disappears for all 𝜅′ and 𝜅. Therefore, the vector functions q+

𝜅′(𝑥)
and q−

𝜅 (𝑥) are orthogonal. The proof is complete.

5.3. H. Weil expansion. The completeness of the eigenfunctions for the Laplace operators
subject to the Dirichlet and Neumann condition in 𝐿2(𝐵) implies that the system of the vector
functions {q𝜅(𝑥)} is complete in the subspace 𝒜, the union of the systems {q+

𝜅 (𝑥)} and {q−
𝜅 (𝑥)}

is complete in the subspace ℬ. There are no other solutions to Problem 1.
The subspaces 𝒜 and ℬ are orthogonal in L2(𝐵). In the case of a ball, their union coincides

with L2(𝐵) (see H. Weil [10]). Hence, we obtain an orthogonal decomposition of the space
L2(𝐵) in terms of the vector eigenfunctions of the curl operator

L2(𝐵) = 𝒜⊕ ℬ = 𝒜⊕ ℬ+ ⊕ ℬ−. (68)

Theorem 3. The union of the systems {q𝜅(𝑥)}, {q+
𝜅 (𝑥)} and {q−

𝜅 (𝑥)} of the vector eigen-
functions for Problem 1 makes an orthonormalized basis in the space L2(𝐵). Each vector
function in L2(𝐵) can be expanded into the Fourier series in terms of this basis.

The Weil expansion of a vector field f in L2(𝐵) into a curlfree field a and a solenoidal field
b reads as f(x) = a(x) + b(x), where

a =
∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(f ,q𝑛,𝑚,𝑘)q𝑛,𝑚,𝑘(x), (69)
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b =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

[(f ,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + (f ,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)] (70)

the summation of series (69), (70) is in 𝑛,𝑚 satisfying 0 < 𝛼𝑛,𝑚 < 𝑁 and 0 < 𝜌𝑛,𝑚 < 𝑁 , where
𝑁 → ∞.

The Parseval-Steklov identity ‖f‖2 = ‖a‖2 + ‖b‖2 holds true and we write it as

‖f‖2 =
∞∑︁

𝑁=1

∑︁
(𝑛,𝑚)∈P𝑁

∑︁
𝑘∈[−𝑛,𝑛]

[(f ,q𝑛,𝑚,𝑘)2 + (f ,q+
𝑛,𝑚,𝑘)2 + (f ,q−

𝑛,𝑚,𝑘)2], (71)

where the lattice is given by the formula P𝑁 = {(𝑛,𝑚) : 0 < 𝜌𝑛,𝑚 < 𝑁, 0 < 𝛼𝑛,𝑚 < 𝑁} and
q±
0,𝑚,0 = 0.
We note that the expansion of the vector field f(x) into a curlfree field ∇ℎ(x) and a solenoidal

field u(x) is related with the solution to the Neumann problem

△ℎ = div f in 𝐵, n · ∇ℎ|𝑆 = n · f |𝑆, (72)

in the classical or generalized formulation [2].
We obtain the solution to this problem as the series (69), (70). Let us note their properties.
If f = ∇ℎ, where ℎ(x) is a compactly supported in 𝐵 infinitely differentiable function, i.e.,

ℎ ∈ 𝒟(𝐵), then ∇ div f = ∇△ℎ and for each integer 𝑠 > 1, (∇ 𝑑𝑖𝑣)𝑠 f = ∇△𝑠ℎ ∈ L2(𝐵).
Hence, integrating by parts, we have

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

((∇ 𝑑𝑖𝑣)𝑠 f ,q𝑛,𝑚,𝑘)q𝑛,𝑚,𝑘(x) =
∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(𝛼𝑛,𝑚/𝑅)2𝑠(f ,q𝑛,𝑚,𝑘)q𝑛,𝑚,𝑘(x). (73)

The series converges to (∇div )𝑠 f in L2(𝐵) and

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(𝛼𝑛,𝑚/𝑅)4𝑠|(f ,q𝑛,𝑚,𝑘)|2 = ‖(∇div )𝑠 f‖2L2(𝐵). (74)

If the vector function f is solenoidal and its components belong to the space 𝒟(𝐵), then for
each integer 𝑠 ≥ 1, (𝑟𝑜𝑡)𝑠 f ∈ V0(𝐵). Hence, by analogy with above arguments,

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

[((rot )𝑠f ,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + ((rot )𝑠f ,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)] = (75)

=
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(𝜌𝑛,𝑚/𝑅)𝑠[(f ,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + (−1)𝑠(f ,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)].

The series converge to (rot )𝑠 f in L2(𝐵) and

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(𝜌𝑛,𝑚/𝑅)2𝑠[|(f ,q+
𝑛,𝑚,𝑘)|2 + |(f ,q−

𝑛,𝑚,𝑘)|2] = ‖(rot )𝑠 f‖2L2(𝐵). (76)

These series converge also in H𝑙(𝐵) as 𝑙 = 1, 2, .... Indeed, denote by S𝑗 a partial sum of series
(75) and employ estimate (10). We obtain

‖S𝑗 − S𝑖‖2H1(𝐵) 6 𝐶 (‖𝑟𝑜𝑡(S𝑗 − S𝑖)‖2H0(𝐵) + ‖S𝑗 − S𝑖‖2H0(𝐵)), (77)

since div (S𝑗 − S𝑖) = 0 and n · (S𝑗 − S𝑖)|𝑆 = 0. As 𝑖, 𝑗 → ∞, the right hand side in (77) tends
to zero in accordance with (76). Hence, the series converges in H1(𝐵) and so forth.
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6. Solution of Stokes spectral problem

6.1. Relation between solutions to spectral problems for Stokes and curl oper-
ators. We pass to the study of the spectral problem for the Stokes operator in a bounded
domain 𝐺 with the viscosity parameter 𝜈 > 0 .

Problem 5. To find all the vector eigenfunctions (v(x), 𝑝(x)) and the eigenvalues 𝜇 for the
Stokes operator such that

− 𝜈∆v + ∇𝑝 = 𝜇v, div v = 0 in 𝐺, (78)

v|Γ = 0. (79)

We note that as an eigenfunction for this operator, one usually regards only the vector
function v(x) since ∇𝑝 can be determined via 𝑣 and 𝜇. In the monograph [2] by O.A. La-
dyzhenskaya, it is shown that in a bounded domain 𝐺 with a smooth boundary Γ this problem
has a discrete spectrum {𝜇𝑘}, where 𝑘 = 1, 2, . . . and each 𝜇𝑘 is of finite multiplicity. We shall
specify this result in the case of a ball.

There are useful relations between the solutions to Problems 1 and 5.

Theorem 4. Let u+, u− satisfy equations rotu± = ±𝜆u± in the domain 𝐺, 𝜆 > 0, and
𝑝(x) is a harmonic in 𝐺 function. Then the pair (v, 𝑝), where

v = u+ + u− + 𝜈−1𝜆−2∇𝑝, (80)

solves Stokes equation (78) for 𝜇 = 𝜈𝜆2.
If the functions u+, u−, and 𝑝(x) satisfy also the boundary conditions

n · u±|Γ = 0, (u+ + u−)|Γ = 0, (81)

(n · ∇)𝑝|Γ = 0, (82)

the solution (v, 𝑝) to Problem 5 for 𝜇 = 𝜈𝜆2 reads as

v = u+ + u−, 𝑝 = 𝐶𝑜𝑛𝑠𝑡. (83)

Proof. The proof of the first statement is based on straightforward calculations taking into
consideration that the functions u+ and u− solve equations (6), (8). Indeed,

−𝜈∆v + ∇𝑝 = 𝜈𝜆2(u+ + u−) + ∇𝑝 = 𝜈𝜆2 v.

If 𝑝 satisfies homogeneous Neumann condition (82), then 𝑝 = 𝐶𝑜𝑛𝑠𝑡. Homogeneous Neumann
problem (82) for the function 𝑝(x) harmonic in the bounded domain 𝐺 with the smooth bound-
ary Γ has the solution 𝑝 = 𝐶𝑜𝑛𝑠𝑡, since it follows from the Gauss-Ostrogradsky formula that∫︁

G

|∇𝑝|2𝑑𝑥 = 0. (84)

Hence, expansion (80) for the vector v is simplified and casts into the form v = u+ +u−, while
the boundary condition v|Γ = 0 follows from the relation (u+ + u−)|Γ = 0.

On the other hand, the following theorem holds true.

Theorem 5. a) Suppose a vector function (v(x), 𝑝(x)) solves Stokes equation (78) for 𝜇 > 0,

v(x) ̸= 0, 𝑝(x) is a harmonic in 𝐺 function and 𝜆 =
√︀
𝜇𝜈−1. Then the vector function v can

be represented as the sum
v = w + 𝜇−1∇𝑝, (85)

where w satisfies the equation

(rot + 𝜆 I)(rot − 𝜆 I)w = 0, divw = 0. (86)

b) If 𝑝(x) satisfies boundary condition (82), then ∇𝑝(x) = 0 and v = w.
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In the case 𝐺 = 𝐵, there exist vector functions u± solving equations rotu± = ±𝜆u± and
satisfying boundary conditions (81) such that the vector function v is represented as the sum

v = u+ + u−. (87)

Proof. The vector functions v(x) and ∇𝑝(x) satisfy equations (78). We write first three of
them as

(rot + 𝜆 I)(rot − 𝜆 I)v = −𝜈−1∇𝑝. (88)

Fixing 𝑝, we consider relation (88) as a matrix differential equation for the vector v. Since
rot∇𝑝 ≡ 0 and 𝜇 = 𝜈𝜆2, then 𝜇−1∇𝑝 is its particular solutions and the expression w =
v − 𝜇−1∇𝑝 solves homogeneous equation, i.e., the first equation in (86). The second equation,
divw = 0, follows from the equation div v = 0.

Moreover, n ·w|Γ = n · v|Γ − 𝜇−1n · ∇𝑝|Γ = 𝜇−1n · ∇𝑝|Γ, since v|Γ = 0.
It is clear that in the case n · ∇𝑝|Γ ̸= 0 there exists no w such that n ·w|Γ = 0.
b) If 𝑝 satisfies Neumann condition (82), then ∇𝑝 = 0 and w = v.
In the case 𝐺 = 𝐵, v is an element of the space ℬ, since div v = 0 and n · v|𝑆 = 0. We

represent v ∈ ℬ as the series

v =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

[(v,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + (v,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)] (89)

and substitute the series into the equation. We obtain the identity

(rot + 𝜆 I)(rot − 𝜆 I)v =

=
∞∑︁
𝑛=1

∞∑︁
𝑚=1

(𝜆2𝑛,𝑚 − 𝜆2)
𝑛∑︁

𝑘=−𝑛

[(v,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + (v,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)] = 0. (90)

If 𝜆2𝑛,𝑚 − 𝜆2 ̸= 0 for each 𝑛,𝑚 ∈ 𝒩 , then (v,q±
𝑛,𝑚,𝑘) = 0 for each 𝑛,𝑚 ∈ 𝒩 , 𝑘 ∈ [−𝑛, 𝑛] due

to the orthogonality of the basis vectors q±
𝑛,𝑚,𝑘. The completeness of the system {q±

𝑛,𝑚,𝑘} in ℬ
yields v(x) = 0. But it is impossible by the assumption. Hence, there exists a pair 𝑛′,𝑚′ ∈ 𝒩
such that 𝜆2 = 𝜆2𝑛′,𝑚′ . Letting

u±(x) =
𝑛′∑︁

𝑘=−𝑛′

(v,q±
𝑛′,𝑚′,𝑘)q±

𝑛′,𝑚′,𝑘(x),

we obtain expansion (87). The proof is complete.

Thus, the solution of Problem 5 is reduced to finding the solutions (𝜆,u+) and (−𝜆,u−) to
Problem 1 as 𝜆 ̸= 0 satisfying the condition (u+ + u−)|𝑆 = 0.

6.2. Formulae for eigenfunctions of Stokes operator in ball. We let 𝑐±𝜅 = 𝑐𝜅Φ𝑛(𝜆∓𝑛,𝑚𝑅)
in formulae (37) to obtain

(𝑢𝜙 + 𝑖𝑢𝜃)
+
𝜅 = 𝑐𝜅Φ𝑛(𝜆−𝑛,𝑚𝑅)(𝜆+𝑛,𝑚𝑟)

−1Φ𝑛(𝜆+𝑛,𝑚𝑟)H𝑌
𝑘
𝑛 (𝜃, 𝜙),

(𝑢𝜙 + 𝑖𝑢𝜃)
−
𝜅 = 𝑐𝜅Φ𝑛(𝜆+𝑛,𝑚𝑅)(𝜆−𝑛,𝑚𝑟)

−1Φ𝑛(𝜆−𝑛,𝑚𝑟)H𝑌
𝑘
𝑛 (𝜃, 𝜙).

It follows that as 𝑟 = 𝑅, the sum 𝑤+
𝜅 + 𝑤−

𝜅 vanishes for all angles 𝜃 and 𝜙 and each complex
constant 𝑐𝜅.

The functions 𝜓𝑛(𝜆±𝑛,𝑚𝑟) , 𝑌 𝑘
𝑛 (𝜃, 𝜙) and the number 𝜆±𝑛,𝑚 = ±𝜌𝑛,𝑚/𝑅 are real. According to

(14), 𝜓𝑛(𝜆−𝑛,𝑚𝑟) = (−1)𝑛 𝜓𝑛(𝜆𝑛,𝑚𝑟). Hence, Φ𝑛(𝜆−𝑛,𝑚𝑟) = (−1)𝑛Φ𝑛(𝜆𝑛,𝑚𝑟) (see Subsection 3.3,
where it was proven that the number Φ𝑛(𝜌𝑛,𝑚) is real).

Hence, the radial component of the vector v𝜅 = u+
𝜅 + u−

𝜅 disappears,

𝑐𝜅(𝜆𝑛,𝑚𝑟)
−1[Φ𝑛(𝜆−𝑛,𝑚𝑅)𝜓𝑛(𝜆+𝑛,𝑚𝑟) − Φ𝑛(𝜆+𝑛,𝑚𝑅)𝜓𝑛(𝜆−𝑛,𝑚𝑟)]𝑌

𝑘
𝑛 (𝜃, 𝜙)i𝑟 =

= 𝑐𝜅(−1)𝑛(𝜆𝑛,𝑚𝑟)
−1[Φ𝑛(𝜌𝑛,𝑚) − Φ𝑛(𝜌𝑛,𝑚)]𝜓𝑛(𝜆𝑛,𝑚𝑟)𝑌

𝑘
𝑛 (𝜃, 𝜙)i𝑟 = 0,

(91)
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and its tangential projection is

Re {𝑐𝜅(−1)𝑛(𝜆𝑛,𝑚𝑟)
−1Φ𝑛(𝜌𝑛,𝑚)[Φ𝑛(𝜆𝑛,𝑚𝑟) − Φ𝑛(𝜆𝑛,𝑚𝑟)]𝐻 𝑌 𝑘

𝑛 (𝜃, 𝜙)i𝜙}+
+Im {𝑐𝜅(−1)𝑛(𝜆𝑛,𝑚𝑟)

−1Φ𝑛(𝜌𝑛,𝑚)[Φ𝑛(𝜆𝑛,𝑚𝑟) − Φ𝑛(𝜆𝑛,𝑚]𝐻 𝑌 𝑘
𝑛 (𝜃, 𝜙)i𝜃}.

(92)

The expression in square brackets is a pure imaginary quantity. Taking the constant 𝑐𝜅 = 𝑖 𝑏𝜅
pure imaginary as well, 𝑏𝜅 ∈ ℛ, we obtain the vector function v𝜅 = u+

𝜅 +u−
𝜅 which is represented

as the sum of two orthogonal vectors

v𝜅 = 𝑏𝜅Φ𝑛(𝜌𝑛,𝑚) (𝜆𝑛,𝑚𝑟)
−1Im [Φ𝑛(𝜆𝑛,𝑚𝑟)]

(Re𝐻 𝑌 𝑘
𝑛 (𝜃, 𝜙) i𝜙 + Im 𝐻 𝑌 𝑘

𝑛 (𝜃, 𝜙) i𝜃).
(93)

Thus, v𝜅 = u+
𝜅 + u−

𝜅 is a real vector eigenfunction for the Stokes operator associated with
the eigenvalue 𝜈𝜆2𝑛,𝑚. Normalizing vector functions u±

𝜅 in L2(𝐵), we obtain the vector eigen-
functions for the Stokes operator in the form v𝜅 = q+

𝜅 + q−
𝜅 . Hence, we have proven

Theorem 6. The eigenvalues 𝜇𝑛,𝑚 of Problem 5 in a ball 𝐵 are equal to 𝜈𝜆2𝑛,𝑚, where

𝜆𝑛,𝑚 = 𝜌𝑛,𝑚𝑅
−1, 𝑅 is the radius of the ball, and the numbers 𝜌𝑛,𝑚 are the zeroes of the functions

𝜓𝑛(𝑧), 𝑚, 𝑛 ∈ N.
At that, 𝑝𝜅 = const, and the associated vector eigenfunctions v𝜅 of the Stokes operator are

the sums q+
𝜅 + q−

𝜅 of the vector eigenfunctions for the curl operator.
In the spherical coordinates they are represented as sum (93) of two orthogonal vectors.

The vector functions v𝜅 = q+
𝜅 +q−

𝜅 belong to the space J0(𝐵) that is the closure of compactly
supported infinitely differentiable solenoidal vector functions 𝐽(𝐵) in L2(𝐵) [2]. These vector
functions form an orthogonal system in L2(𝐵) since the systems {q+

𝜅 }, {q−
𝜅 } are orthonormal-

ized.
The system {v𝜅} is complete in J0(𝐵) ⊂ ℬ and the expansion of a vector function g(x) ∈

J0(𝐵) is as follows,

g = 1/2
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(g,v𝑛,𝑚,𝑘)v𝑛,𝑚,𝑘(x), (94)

where the summation of series (94) is w.r.t. 𝑛,𝑚 obeying 0 < 𝜌𝑛,𝑚 < 𝑁 and 𝑁 → ∞.

7. Solving of boundary value problem (2), (3)

By the Fourier method, one can easily solve the following boundary value problem.

Problem 6. Given a vector function f(x) ∈ ℳℛ, in H1(𝐵), find a vector function u(x)
such that

rot u + 𝜆u = f in 𝐵, (95)

n · u|𝑆 = 0, (96)

where n · u is the projection of the vector u on the outward normal n.

By E𝑠(𝐵) or by H𝑠
div (𝐵) one denotes [8] the following subspaces in L2(𝐵),

E𝑠(𝐵) = {v ∈ H𝑠(𝐵) : div v ∈ 𝐻𝑠(𝐵), ‖v‖E𝑠 = (‖v‖2H𝑠 + ‖div v‖2𝐻𝑠)1/2}, (97)

where 𝑠 ≥ 0 are integer numbers. They are complete Hilbert spaces and

𝒟(𝐵) ⊂ E𝑠(𝐵), H𝑠+1(𝐵) ⊂ E𝑠(𝐵) ⊂ H𝑠(𝐵). (98)

The quantity n · v|𝑆 is well-defined for a vector function v(x) ∈ E0(𝐵).
Let us give the solution to the problem in two cases.
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7.1. Solving of boundary value problem (95), (96) as 𝜆 ̸= 𝑆𝑝 (𝑟𝑜𝑡).

Theorem 7. If 𝜆 ̸= 0,±𝜆𝑛,𝑚, 𝑛,𝑚 ∈ N, f ∈ E0(𝐵), and n · f |𝑆 = 0, then the unique
solution u to Problem 6 is given by the sum of the series u1 + u2, where

u1 = 𝜆−1

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(f ,q𝑛,𝑚,𝑘)q𝑛,𝑚,𝑘(x), (99)

u2 =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

[(𝜆+ 𝜆𝑛,𝑚)−1(f ,q+
𝑛,𝑚,𝑘)q+

𝑛,𝑚,𝑘(x) + (𝜆− 𝜆𝑛,𝑚)−1(f ,q−
𝑛,𝑚,𝑘)q−

𝑛,𝑚,𝑘(x)]. (100)

The solution belongs to the Sobolev space H1(𝐵).
If f ∈ 𝒜 = {∇ℎ : ℎ ∈ 𝐻1(𝐵)}, the operator u = 𝜆−1f maps 𝒜 onto 𝒜.
If f ∈ ℬ⊥𝒜 in L2(𝐵), then u = u2 maps ℬ into H1(𝐵).
If f ∈ 𝐶∞

0 (𝐵), u is a classical solution to the problem belonging to 𝐶∞(𝐵).

Proof. Formulae (99) can be obtained in various ways. For instance, assuming that u and f in
equation (95) belong to the space 𝒟(𝐵), we multiply both sides by q𝑛,𝑚,𝑘(x) (respectively, by
q±
𝑛,𝑚,𝑘(x)) and integrate by parts. The uniqueness of the solution follows from the completeness

of the eigenfunctions of the curl operator in L2(𝐵).
If f ∈ 𝒟(𝐵), in accordance with Subsection 5.3, series (99), (100) converge in each of the

spaces H𝑠(𝐵), 𝑠 = 1, 2, . . . and give the classical solution to the problem.
If f ∈ 𝒜 ⊂ L2(𝐵), in accordance with Subsection 5.3, we have b = 0 and thus, u2 = 0 and

u1 = 𝜆−1f . In this case, solving of the problem is reduced to the multiplication of f by 𝜆−1.
If f ∈ ℬ⊥𝒜 in L2(𝐵), in accordance with Subsection 5.3, a = 0, b = f and the series u1

thus disappears and u2 is determined by series (100). This series converges in L2(𝐵) since
the numbers |𝜆 ± 𝜆𝑛,𝑚|−1 tends to zero as 𝜆𝑛,𝑚 → ∞. The space L2(𝐵) is embedded into the
distributions space 𝒟′(𝐵), where series (100) can be differentiated term by term. Applying the
operator rot term by term, we obtain the series

rot u2 =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

[
𝜆𝑛,𝑚

𝜆+ 𝜆𝑛,𝑚
(f ,q+

𝑛,𝑚,𝑘)q+
𝑛,𝑚,𝑘(x) − 𝜆𝑛,𝑚

𝜆− 𝜆𝑛,𝑚
(f ,q−

𝑛,𝑚,𝑘)q−
𝑛,𝑚,𝑘(x)] (101)

converging in L2(𝐵). Moreover, by the construction, the partial sums S𝑗𝑢 of series (100)
satisfy the relations divS𝑗𝑢 = 0 and n · S𝑗𝑢|𝑆 = 0. Therefore, div u2 = 0 and n · u2|𝑆 = 0 as
distributions. In accordance with Subsection 5.3, series (100) converges in H1(𝐵).

Applying the operator rot+𝜆I to this series, we obtain the expansion of the vector function
f(x) ∈ ℬ. Hence, this series is a generalized solution to Problem 6.

In the general case, as f ∈ E0(𝐵) and n · f |𝑆 = 0, series (99) also belongs to H1(𝐵). Since
div q𝑛,𝑚,𝑘 = ∆ 𝑔𝑛,𝑚,𝑘 = −(𝛼𝑛,𝑚/𝑅)2 𝑔𝑛,𝑚,𝑘 and ‖(𝛼𝑛,𝑚/𝑅) 𝑔𝑛,𝑚,𝑘‖ = 1, we have

divu1 = 𝜆−1

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(f ,q𝑛,𝑚,𝑘)△ 𝑔𝑛,𝑚,𝑘(x) = (102)

𝜆−1

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

(div f , 𝑔𝑛,𝑚,𝑘) (𝛼𝑛,𝑚/𝑅)2 𝑔𝑛,𝑚,𝑘(x) = 𝜆−1div f .

Therefore, the sum of series (99) and (100) is the solution to Problem 6. The proof is complete.
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7.2. Solving of Problem 6 as 𝜆 = 0.

Theorem 8. If 𝜆 = 0, f ∈ E0(𝐵) and n · f |𝑆 = 0, then Problem 6 is solvable in L2(𝐵)
if and only if div f = 0. The homogeneous problem has infinitely many linearly independent
solutions,

u0 =
∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

𝜉𝑛,𝑚,𝑘 q𝑛,𝑚,𝑘(x), (103)

where 𝜉𝑛,𝑚,𝑘 are arbitrary constants such that u0 ∈ L2(𝐵).
The general solution to the inhomogeneous problem reads as u0 +𝐺+

0 f +𝐺−
0 f , where

𝐺±
0 f ≡ ±

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛∑︁
𝑘=−𝑛

𝜆−1
𝑛,𝑚(f ,q±

𝑛,𝑚,𝑘)q±
𝑛,𝑚,𝑘(x), 𝐺±

0 f ∈ H1(𝐵). (104)

If 𝜉𝑛,𝑚,𝑘 are such that u0 ∈ H1(𝐵), the solution of the problem belongs to H1(𝐵).

Proof. The necessity of the condition div f = 0 is obvious, while the sufficiency follows from the
identity divu1 = 𝜆−1div f . The relations 𝐺±

0 f ∈ H1(𝐵) were proven in Subsection 7.1. Next,
rotu0 = 0, if u0 ∈ H1(𝐵), and rot (𝐺+

0 f +𝐺−
0 f) = f . The proof is complete.
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