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ON GEOMETRIC PROPERTIES OF MORREY SPACES

H. GUNAWAN, D.I. HAKIM, A.S. PUTRI

Abstract. The study of Morrey spaces is motivated by many reasons. Initially, these
spaces were introduced in order to understand the regularity of solutions to elliptic partial
differential equations [1]. In line with this, many authors study the boundedness of various
integral operators on Morrey spaces. In this article, we are interested in their geometric
properties, from functional analysis point of view. We show constructively that Morrey
spaces are not uniformly non-ℓ1𝑛 for any 𝑛 > 2. This result is sharper than earlier results,
which showed that Morrey spaces are not uniformly non-square and also not uniformly non-

octahedral. We also discuss the 𝑛-th James constant 𝐶
(𝑛)
J (𝑋) and the 𝑛-th Von Neumann-

Jordan constant 𝐶
(𝑛)
NJ (𝑋) for a Banach space 𝑋, and obtain that both constants for any

Morrey space ℳ𝑝
𝑞(R𝑑) with 1 6 𝑝 < 𝑞 < ∞ are equal to 𝑛.
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1. Introduction

For 1 6 𝑝 6 𝑞 < ∞, the Morrey space ℳ𝑝
𝑞 = ℳ𝑝

𝑞(R
𝑑) is the set of all measurable functions

𝑓 such that

‖𝑓‖ℳ𝑝
𝑞

:= sup
𝑎∈R𝑑,𝑅>0

|𝐵(𝑎,𝑅)|
1
𝑞
− 1

𝑝

(︂ ∫︁
𝐵(𝑎,𝑅)

|𝑓(𝑦)|𝑝𝑑𝑦
)︂ 1

𝑝

< ∞,

where |𝐵(𝑎,𝑅)| denotes the Lebesgue measure of the open ball 𝐵(𝑎,𝑅) in R𝑑, with center 𝑎 and
radius 𝑅. Morrey spaces are Banach spaces (see, e.g., [12]). For 𝑝 = 𝑞, the space ℳ𝑞

𝑞 is identical

with the space 𝐿𝑞 = 𝐿𝑞(R𝑑), the space of 𝑞-th power integrable functions on R𝑑. Knowledge
of Morrey spaces is important in studying regularity of solutions to elliptic partial differential
equations [1].
In [4], three geometric constants have been computed for Morrey spaces. The first two

constants, namely Von Neumann–Jordan constant and James constant, are closely related to
the notion of uniformly non-squareness of (the unit ball in) a Banach space [5, 6, 8]. For a
general Banach space (𝑋, ‖ · ‖𝑋), the constants are defined by

𝐶NJ(𝑋) := sup

{︂
‖𝑥 + 𝑦‖2𝑋 + ‖𝑥− 𝑦‖2𝑋

2(‖𝑥‖2𝑋 + ‖𝑦‖2𝑋)
: 𝑥, 𝑦 ∈ 𝑋 ∖ {0}

}︂
,

and
𝐶J(𝑋) := sup

{︀
min{‖𝑥 + 𝑦‖𝑋 , ‖𝑥− 𝑦‖𝑋} : 𝑥, 𝑦 ∈ 𝑆𝑋

}︀
,

respectively. Here 𝑆𝑋 := {𝑥 ∈ 𝑋 : ‖𝑥‖𝑋 = 1} denotes the unit sphere in 𝑋. A few basic facts
about these constants are:

∙ 1 6 𝐶NJ(𝑋) 6 2 and 𝐶NJ(𝑋) = 1 if and only if 𝑋 is a Hilbert space [7].
∙
√

2 6 𝐶J(𝑋) 6 2 and 𝐶J(𝑋) =
√

2 if 𝑋 is a Hilbert space [3].
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Note also that, for 1 6 𝑝 6 ∞, we have [2, 3]:

𝐶NJ(𝐿
𝑝) = max{2

2
𝑝
−1, 21− 2

𝑝} and 𝐶J(𝐿
𝑝) = max{2

1
𝑝 , 21− 1

𝑝}.

The two constants measure the non-squareness of (the unit ball in) a Banach space. The
larger the constants, the lesser round the unit ball. We note from [5, 8] that a Banach space 𝑋
is uniformly non-square if and only if 𝐶J(𝑋) < 2 or, equivalently, 𝐶NJ(𝑋) < 2.
In this paper, the main objects of our study are Morrey spaces. We know that Morrey spaces

ℳ𝑝
𝑞 contain Lebesgue spaces 𝐿𝑞. While 𝐿𝑞 are uniformly non-square for 1 < 𝑞 < ∞, we have the

following result which tell us that ℳ𝑝
𝑞 are not uniformly non-square whenever 1 6 𝑝 < 𝑞 < ∞.

Theorem 1.1. ([4]). For 1 6 𝑝 < 𝑞 < ∞, we have 𝐶NJ(ℳ𝑝
𝑞) = 𝐶J(ℳ𝑝

𝑞) = 2.

In [11], it was shown that Morrey spaces are not uniformly non-octahedral, that is, there
exists no 𝛿 > 0 such that

min ‖𝑓 ± 𝑔 ± ℎ‖ℳ𝑝
𝑞
6 3(1 − 𝛿)

for all 𝑓, 𝑔, ℎ ∈ ℳ𝑝
𝑞 with

‖𝑓‖ℳ𝑝
𝑞

= ‖𝑔‖ℳ𝑝
𝑞

= ‖ℎ‖ℳ𝑝
𝑞

= 1.

Here the minimum is taken over all choices of signs in the expression 𝑓 ± 𝑔± ℎ. We recall that
a Banach space (𝑋, ‖ · ‖𝑋) is uniformly non-octahedral if there exists a 𝛿 > 0 such that

min ‖𝑥± 𝑦 ± 𝑧‖𝑋 6 3(1 − 𝛿)

for every 𝑥, 𝑦, 𝑧 ∈ 𝑆𝑋 . Precisely, we have the following theorem.

Theorem 1.2. ([11]). Let 1 6 𝑝 < 𝑞 < ∞. Then, for every 𝛿 > 0, there exist 𝑓, 𝑔, ℎ ∈ ℳ𝑝
𝑞

depending on 𝛿 with

‖𝑓‖ℳ𝑝
𝑞

= ‖𝑔‖ℳ𝑝
𝑞

= ‖ℎ‖ℳ𝑝
𝑞

= 1

such that

‖𝑓 ± 𝑔 ± ℎ‖ℳ𝑝
𝑞
> 3(1 − 𝛿)

for all choices of the signs.

In this paper we show constructively that Morrey spaces are not uniformly non-ℓ1𝑛, see [5,
Definition 2.1]. The result is not only more general than the previous ones, but also sharper
than knowing results stating that Morrey spaces are neither uniformly non-square nor uniformly
non-octahedral; if 𝑋 is not uniformly non-ℓ1𝑛 for 𝑛 > 3, then 𝑋 is not uniformly non-ℓ1𝑛−1. In

addition, given a Banach space 𝑋, we discuss the 𝑛-th Von Neumann-Jordan constant 𝐶
(𝑛)
NJ (𝑋)

and the 𝑛-th James constant 𝐶
(𝑛)
J (𝑋) for 𝑛 > 2. These two constants were studied in [9] and

[10], respectively. We show that for each Morrey space ℳ𝑝
𝑞 with 1 6 𝑝 < 𝑞 < ∞ both constants

are equal to 𝑛. We also indicate that Morrey spaces are not uniformly 𝑛-convex for 𝑛 > 2.

2. ℳ𝑝
𝑞 are not uniformly non-ℓ1𝑛

Before we present our main theorems, we prove several lemmata. Unless otherwise stated,
we assume that 1 6 𝑝 < 𝑞 < ∞.

Lemma 2.1. Let 𝑓(𝑥) := |𝑥|−𝑑/𝑞. Then 𝑓 ∈ ℳ𝑝
𝑞 with

‖𝑓‖ℳ𝑝
𝑞

=
(︁𝜔𝑑−1

𝑑

)︁ 1
𝑞
(︁ 𝑞

𝑞 − 𝑝

)︁ 1
𝑝
,

where 𝜔𝑑−1 denotes the ‘area’ of the unit sphere in R𝑑.
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Proof. For each 𝑟 > 0, one may compute that

|𝐵(0, 𝑟)|
1
𝑞
− 1

𝑝

(︁∫︁
𝐵(0,𝑟)

|𝑥|−𝑑𝑝/𝑞𝑑𝑥
)︁ 1

𝑝
=

(︁𝜔𝑑−1

𝑑

)︁ 1
𝑞
(︁ 𝑞

𝑞 − 𝑝

)︁ 1
𝑝
,

which is independent of 𝑟. Since the integral of 𝑓 over 𝐵(𝑎, 𝑟) is less than that over 𝐵(0, 𝑟) for
each 𝑎 ∈ R𝑑, we conclude that

‖𝑓‖ℳ𝑝
𝑞

=
(︀𝜔𝑑−1

𝑑

)︀ 1
𝑞
(︀ 𝑞

𝑞 − 𝑝

)︀ 1
𝑝 ,

as claimed.

Lemma 2.2. Let 𝑓(𝑥) := |𝑥|−𝑑/𝑞 and 𝑅 > 1. Then, for any 𝑐1, 𝑐2 > 0, we have

|𝐵𝑐1𝑅|1/𝑞−1/𝑝
(︁∫︁

{𝑥:𝑐1<|𝑥|<𝑐1𝑅}
|𝑓(𝑥)|𝑝𝑑𝑥

)︁ 1
𝑝

= |𝐵𝑐2𝑅|1/𝑞−1/𝑝
(︁∫︁

{𝑥:𝑐2<|𝑥|<𝑐2𝑅}
|𝑓(𝑥)|𝑝𝑑𝑥

)︁ 1
𝑝
, (2.1)

where 𝐵𝑐1𝑅 and 𝐵𝑐2𝑅 are balls centered at the origin with radii 𝑐1𝑅 and 𝑐2𝑅.

Proof. It suffices to prove that (2.1) holds for arbitrary 𝑐1 > 0 and 𝑐2 = 1. But this is immediate
by the change of variable 𝑥 = 𝑐1𝑥

′.

As a consequence of the above lemma, we have the following corollary, which is an important
ingredient in the proof of our main theorems.

Corollary 2.1. Let 𝑓(𝑥) := |𝑥|−
𝑑
𝑞 . For 𝜀 ∈ (0, 1) and 𝑘 ∈ Z+, we denote

𝑓𝜀,𝑘 := 𝑓𝜒{𝑥:𝜀𝑘+1<|𝑥|<𝜀𝑘}.

Then 𝑓𝜀,𝑘 ∈ ℳ𝑝
𝑞 with

‖𝑓𝜀,𝑘‖ℳ𝑝
𝑞
> (1 − 𝜀𝑑−

𝑑𝑝
𝑞 )

1
𝑝‖𝑓‖ℳ𝑝

𝑞
. (2.2)

Proof. In view of Lemma 2.2, it suffices to prove that

‖𝑓𝜀,0‖ℳ𝑝
𝑞
> (1 − 𝜀𝑑−

𝑑𝑝
𝑞 )

1
𝑝‖𝑓‖ℳ𝑝

𝑞
.

We observe that

‖𝑓𝜀,0‖ℳ𝑝
𝑞
> |𝐵(0, 1)|

1
𝑞
− 1

𝑝

(︁∫︁
{𝑥:𝜀<|𝑥|<1}

|𝑓(𝑥)|𝑝𝑑𝑥
)︁ 1

𝑝
=

(︁𝜔𝑑−1

𝑑

)︁ 1
𝑞
(︁ 𝑞

𝑞 − 𝑝

)︁ 1
𝑝
(1 − 𝜀𝑑−

𝑑𝑝
𝑞 )

1
𝑝 .

Hence, by Lemma 2.1, the desired inequality follows.

We are now ready to state our main results. Our first theorem is the following.

Theorem 2.1. For 1 6 𝑝 < 𝑞 < ∞, the Morrey space ℳ𝑝
𝑞 is not uniformly non-ℓ1𝑛 for

any 𝑛 > 2, that is, for each 𝛿 ∈ (0, 1), there exist 𝐹1, 𝐹2, . . . , 𝐹𝑛 ∈ ℳ𝑝
𝑞 depending on 𝛿 with

‖𝐹𝑖‖ℳ𝑝
𝑞

= 1 for 𝑖 = 1, 2, . . . , 𝑛, such that

‖𝐹1 ± 𝐹2 ± · · · ± 𝐹𝑛‖ℳ𝑝
𝑞
> 𝑛(1 − 𝛿)

for all choices of signs.

Proof. To understand the idea of the proof, let us first illustrate how the proof goes for 𝑛 = 3.

Given 𝛿 ∈ (0, 1), we choose 𝜀 ∈
(︀
0, (1 − (1 − 𝛿)𝑝)

𝑞
𝑑𝑞−𝑑𝑝

)︀
. For 𝑓(𝑥) := |𝑥|−

𝑑
𝑞 and 𝑘 ∈ Z+, put

𝑓𝜀,𝑘 := 𝑓𝜒{𝑥:𝜀𝑘+1<|𝑥|<𝜀𝑘}. Now write

𝑓1 := (+1,+1,+1,+1) := 𝑓𝜀,3 + 𝑓𝜀,2 + 𝑓𝜀,1 + 𝑓𝜀,0,

𝑓2 := (+1,+1,−1,−1) := 𝑓𝜀,3 + 𝑓𝜀,2 − 𝑓𝜀,1 − 𝑓𝜀,0,

𝑓3 := (+1,−1,+1,−1) := 𝑓𝜀,3 − 𝑓𝜀,2 + 𝑓𝜀,1 − 𝑓𝜀,0.
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Observe that ‖𝑓𝑖‖ℳ𝑝
𝑞

= ‖𝑓𝜒{𝑥:𝜀4<|𝑥|<1}‖ℳ𝑝
𝑞

for 𝑖 = 1, 2, 3, and that

3𝑓𝜀,3 6 |𝑓1 + 𝑓2 + 𝑓3| 6 3𝑓𝜒{𝑥:𝜀4<|𝑥|<1},

3𝑓𝜀,2 6 |𝑓1 + 𝑓2 − 𝑓3| 6 3𝑓𝜒{𝑥:𝜀4<|𝑥|<1},

3𝑓𝜀,1 6 |𝑓1 − 𝑓2 + 𝑓3| 6 3𝑓𝜒{𝑥:𝜀4<|𝑥|<1},

3𝑓𝜀,0 6 |𝑓1 − 𝑓2 − 𝑓3| 6 3𝑓𝜒{𝑥:𝜀4<|𝑥|<1}.

By virtue of Corollary 2.1, we have

3(1 − 𝜀𝑑−
𝑑𝑝
𝑞 )

1
𝑝‖𝑓‖ℳ𝑝

𝑞
6 ‖𝑓1 ± 𝑓2 ± 𝑓3‖ℳ𝑝

𝑞
6 3‖𝑓𝜒{𝑥:𝜀4<|𝑥|<1}‖ℳ𝑝

𝑞

for all choices of signs. For 𝑖 = 1, 2, 3, define

𝐹𝑖 :=
𝑓𝑖

‖𝑓𝑖‖ℳ𝑝
𝑞

.

Then, ‖𝐹𝑖‖ℳ𝑝
𝑞

= 1 for 𝑖 = 1, 2, 3, and

‖𝐹1 ± 𝐹2 ± 𝐹3‖ℳ𝑝
𝑞

=
‖𝑓1 ± 𝑓2 ± 𝑓3‖ℳ𝑝

𝑞

‖𝑓𝜒{𝑥:𝜀4<|𝑥|<1}‖ℳ𝑝
𝑞

>
3(1 − 𝜀𝑑−

𝑑𝑝
𝑞 )

1
𝑝‖𝑓‖ℳ𝑝

𝑞

‖𝑓‖ℳ𝑝
𝑞

> 3(1 − 𝛿).

This proves that ℳ𝑝
𝑞 is not uniformly non-ℓ13.

In order to reveal the pattern, we shall now present the proof for 𝑛 = 4. With similar
notations as above, we write

𝑓1 := (+1,+1,+1,+1,+1,+1,+1,+1),

𝑓2 := (+1,+1,+1,+1,−1,−1,−1,−1),

𝑓3 := (+1,+1,−1,−1,+1,+1,−1,−1),

𝑓4 := (+1,−1,+1,−1,+1,−1,+1,−1),

where the 𝑖-th term corresponds to the sign of 𝑓𝜀,8−𝑖 for 𝑖 = 1, 2, . . . , 8. Observe that

‖𝑓𝑖‖ℳ𝑝
𝑞

= ‖𝑓𝜒{𝑥:𝜀8<|𝑥|<1}‖ℳ𝑝
𝑞

for 𝑖 = 1, . . . , 4, and that

4𝑓𝜀,7 6 |𝑓1 + 𝑓2 + 𝑓3 + 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,6 6 |𝑓1 + 𝑓2 + 𝑓3 − 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,5 6 |𝑓1 + 𝑓2 − 𝑓3 + 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,4 6 |𝑓1 + 𝑓2 − 𝑓3 − 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,3 6 |𝑓1 − 𝑓2 + 𝑓3 + 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,2 6 |𝑓1 − 𝑓2 + 𝑓3 − 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,1 6 |𝑓1 − 𝑓2 − 𝑓3 + 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1},

4𝑓𝜀,0 6 |𝑓1 − 𝑓2 − 𝑓3 − 𝑓4| 6 4𝑓𝜒{𝑥:𝜀8<|𝑥|<1}.

Taking the Morrey norms, we get

4(1 − 𝜀𝑑−
𝑑𝑝
𝑞 )

1
𝑝‖𝑓‖ℳ𝑝

𝑞
6 ‖𝑓1 ± 𝑓2 ± 𝑓3 ± 𝑓4‖ℳ𝑝

𝑞
6 4‖𝑓𝜒{𝑥:𝜀8<|𝑥|<1}‖ℳ𝑝

𝑞
(2.3)

for all choices of signs. Taking 𝐹𝑖 := 𝑓𝑖
‖𝑓𝑖‖ℳ𝑝

𝑞

, we obtain ‖𝐹𝑖‖ℳ𝑝
𝑞

= 1 for 𝑖 = 1, . . . , 4. By our

choice of 𝜀 and the fact that ‖𝑓𝑖‖ℳ𝑝
𝑞

= ‖𝑓𝜒{𝑥:𝜀8<|𝑥|<1}‖ℳ𝑝
𝑞

for 𝑖 = 1, . . . , 4, we get

‖𝐹1 ± 𝐹2 ± 𝐹3 ± 𝐹4‖ℳ𝑝
𝑞
> 4(1 − 𝛿).

Hence ℳ𝑝
𝑞 is not uniformly non-ℓ14. Continuing the pattern, we see that ℳ𝑝

𝑞 is not uniformly

non-ℓ1𝑛 for 𝑛 > 2.
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3. 𝑛-th Von Neumann-Jordan Constant and 𝑛-th James Constant

In this section we assume that 𝑛 > 2. For a Banach space (𝑋, ‖·‖𝑋), the 𝑛-th Von Neumann-

Jordan constant 𝐶
(𝑛)
NJ (𝑋) [9] and the 𝑛-th James constant 𝐶

(𝑛)
J (𝑋) [10] are defined by

𝐶
(𝑛)
NJ (𝑋) := sup

{︂∑︀
± ‖𝑥1 ± · · · ± 𝑥𝑛‖2𝑋
2𝑛−1

∑︀𝑛
𝑖=1 ‖𝑥𝑖‖2𝑋

: 𝑥𝑖 ̸= 0, 𝑖 = 1, . . . , 𝑛

}︂
,

and

𝐶
(𝑛)
J (𝑋) := sup

{︁
min{‖𝑥1 ± · · · ± 𝑥𝑛‖𝑋 : all possible choices of signs} :

𝑥𝑖 ∈ 𝑆𝑋 , 𝑖 = 1, . . . , 𝑛
}︁
,

respectively. In the definition of 𝐶
(𝑛)
NJ (𝑋), the sum

∑︀
± is taken over all possible choices of

signs.
We state some results about the two constants. The last one is specific for Morrey spaces.

Theorem 3.1. [9] For a general Banach space (𝑋, ‖ · ‖𝑋) we have 1 6 𝐶
(𝑛)
NJ (𝑋) 6 𝑛. In

particular, 𝐶
(𝑛)
NJ (𝑋) = 1 if and only if 𝑋 is a Hilbert space.

Theorem 3.2. [10] For a Banach space (𝑋, ‖ · ‖𝑋) in general, we have 1 6 𝐶
(𝑛)
J (𝑋) 6 𝑛. If

dim(𝑋) = ∞, then
√
𝑛 6 𝐶

(𝑛)
J (𝑋) 6 𝑛. For a Hilbert space (𝑋, ⟨·, ·⟩𝑋), we have 𝐶

(𝑛)
J (𝑋) =

√
𝑛.

Theorem 3.3. For a general Banach space (𝑋, ‖ · ‖𝑋) we have

[𝐶
(𝑛)
J (𝑋)]2 6 𝑛𝐶

(𝑛)
NJ (𝑋).

Proof. For every 𝑥𝑖 ∈ 𝑆𝑋 , 𝑖 = 1, . . . , 𝑛, let

𝑚 := min{‖𝑥1 ± · · · ± 𝑥𝑛‖𝑋 : all possible choices of signs}.

Then, clearly 𝑚 6
(︁∏︀

± ‖𝑥1±· · ·±𝑥𝑛‖𝑋
)︁ 1

𝑛
, where the product is taken over all possible choices

of signs. Next, by the GM-QM inequality and the last inequality, we have

𝑚 6

(︂∑︀
± ‖𝑥1 ± · · · ± 𝑥𝑛‖2𝑋

2𝑛−1

)︂ 1
2

=

(︂
𝑛 ·

∑︀
± ‖𝑥1 ± · · · ± 𝑥𝑛‖2𝑋
2𝑛−1

∑︀𝑛
𝑖=1 ‖𝑥𝑖‖2𝑋

)︂ 1
2

6
(︀
𝑛𝐶

(𝑛)
NJ (𝑋)

)︀ 1
2 .

Taking the supremum over all 𝑥𝑖 ∈ 𝑆𝑋 , 𝑖 = 1, . . . , 𝑛, the desired inequality follows.

Theorem 3.4. For 1 6 𝑝 < 𝑞 < ∞, we have 𝐶
(𝑛)
J (ℳ𝑝

𝑞) = 𝐶
(𝑛)
NJ (ℳ𝑝

𝑞) = 𝑛.

Proof. It follows immediately from Theorem 2.1 that 𝐶
(𝑛)
J (ℳ𝑝

𝑞) = 𝑛. Combining this fact

and Theorem 3.3, we get 𝐶
(𝑛)
NJ (ℳ𝑝

𝑞) > 𝑛. On the other hand, by Theorem 3.1, we have

𝐶
(𝑛)
NJ (ℳ𝑝

𝑞) 6 𝑛. Thus, 𝐶
(𝑛)
NJ (ℳ𝑝

𝑞) = 𝑛.

4. Concluding Remarks

Before we end our paper, let us consider a Banach space (𝑋, ‖ · ‖𝑋) which is uniformly
𝑛-convex, that is, for each 𝜀 ∈ (0, 𝑛) there exists 𝛿 ∈ (0, 1) such that for all 𝑥1, . . . , 𝑥𝑛 ∈
𝑆𝑋 with ‖𝑥1 ± · · · ± 𝑥𝑛‖𝑋 > 𝜀 for all choices of signs except for ‖𝑥1 + · · · + 𝑥𝑛‖𝑋 , we have
‖𝑥1 + · · · + 𝑥𝑛‖𝑋 6 𝑛(1 − 𝛿). This condition is stronger than the uniformly non-ℓ1𝑛 condition,
as we state in the following theorem.

Theorem 4.1. If 𝑋 is uniformly 𝑛-convex, then 𝑋 is uniformly non-ℓ1𝑛.

Proof. Take an 𝜀 ∈ (0, 𝑛) and choose a corresponding 𝛿 ∈ (0, 1) such that for all 𝑥1, . . . , 𝑥𝑛 ∈ 𝑆𝑋

with ‖𝑥1 ± · · · ± 𝑥𝑛‖𝑋 > 𝜀 for all choices of signs except for ‖𝑥1 + · · · + 𝑥𝑛‖𝑋 , we have
‖𝑥1 + · · · + 𝑥𝑛‖𝑋 6 𝑛(1 − 𝛿). Observe that if 𝑛(1 − 𝛿) > 𝜀, then we are done. Otherwise, we
choose 𝛿0 ∈ (0, 𝛿) such that 𝑛(1− 𝛿0) > 𝜀. This 𝛿0 satisfies the uniformly non-ℓ1𝑛 condition.



136 H. GUNAWAN, D.I. HAKIM, A.S. PUTRI

As a consequence of the above theorem and the fact that, for 1 6 𝑝 < 𝑞 < ∞, the Morrey
space ℳ𝑝

𝑞 is not uniformly non-ℓ1𝑛, we conclude that ℳ𝑝
𝑞 is not uniformly 𝑛-convex.
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