
ISSN 2074-1871 Уфимский математический журнал. Том 11. № 3 (2019). С. 89-99.

УДК 517.958, 517.984, 519.21

WEAK POSITIVE MATRICES AND

HYPONORMAL WEIGHTED SHIFTS

H. EL-AZHAR, K. IDRISSI, E.H. ZEROUALI

Abstract. In the paper we study 𝑘-positive matrices, that is, the class of Hankel matrices,
for which the (𝑘 + 1) × (𝑘 + 1)-block-matrices are positive semi-definite. This notion is
intimately related to a 𝑘-hyponormal weighted shift and to Stieltjes moment sequences.
Using elementary determinant techniques, we prove that for a 𝑘-positive matrix, a 𝑘 × 𝑘-
block-matrix has non zero determinant if and only if all 𝑘 × 𝑘-block matrices have non
zero determinant. We provide several applications of our main result. First, we extend the
Curto-Stampfly propagation phenomena for for 2-hyponormal weighted shift 𝑊𝛼 stating
that if 𝛼𝑘 = 𝛼𝑘+1 for some 𝑛 > 1, then for all 𝑛 > 1, 𝛼𝑛 = 𝛼𝑘, to 𝑘-hyponormal weighted
shifts to higher order. Second, we apply this result to characterize a recursively generated
weighted shift. Finally, we study the invariance of 𝑘-hyponormal weighted shifts under one
rank perturbation. A special attention is paid to calculating the invariance interval of 2-
hyponormal weighted shift; here explicit formulae are provided.

Keywords: Subnormal operators, 𝑘-hyponormal operators, 𝑘-positive matrices, weighted
shifts, perturbation, moment problem.
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1. Introduction

Let ℋ be a complex Hilbert space and let ℒ(ℋ) be the algebra of bounded operators on ℋ. We
denote by [𝑇, 𝑆] := 𝑇𝑆 − 𝑆𝑇 the commutator of 𝑆 and 𝑇 in ℒ(ℋ). An operator 𝑇 ∈ ℒ(ℋ) is said to
be normal if [𝑇 *, 𝑇 ] = 0, to be hyponormal if [𝑇 *, 𝑇 ] > 0 and to be subnormal if 𝑇 = 𝑁|ℋ, where 𝑁 is
a normal operator on some Hilbert space 𝒦 ⊇ ℋ.

The concepts of subnormal and hyponormal operators were introduced by Paul R. Halmos in [1]. The
first notion, hyponormal, reflects the geometric nature of normality with the corresponding implications
in terms of positive matrices; while subnormal is intimately related to the notion of analyticity for
complex functions through the restriction of the functional calculus to invariant subspaces.

In order to establish a bridge between the operator theory and matrix theory, we recall the Bram-
Halmos criterion for subnormality [2, 3], which says that an operator 𝑇 is subnormal if and only
if ∑︁

𝑖,𝑗6𝑘

⟨𝑇 𝑖𝑥𝑗 , 𝑇
𝑗𝑥𝑖⟩ > 0 for all 𝑘 > 0, (1.1)

for any 𝑥0, 𝑥1, . . . , 𝑥𝑘 ∈ ℋ. An application of the Choleski algorithm for operator matrices shows that
(1.1) is equivalent to the positivity test
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𝑀𝑘(𝑇 ) :=

⎛⎜⎜⎜⎝
[𝑇 *, 𝑇 ] [𝑇 *2, 𝑇 ] . . . [𝑇 *𝑘, 𝑇 ]
[𝑇 *, 𝑇 2] [𝑇 *2, 𝑇 2] . . . [𝑇 *𝑘, 𝑇 2]

...
...

. . .
...

[𝑇 *, 𝑇 𝑘] [𝑇 *2, 𝑇 𝑘] . . . [𝑇 *𝑘, 𝑇 𝑘]

⎞⎟⎟⎟⎠ > 0 for all 𝑘 > 0. (1.2)

To illustrate and to study the gap between subnormal and hyponormal operators, A. Athavale [4]
introduced the classes of 𝑘-hyponormal operators as follows. An operator 𝑇 ∈ ℒ(ℋ) is 𝑘-hyponormal
if 𝑀𝑘(𝑇 ) > 0. Clearly

𝑇 is subnormal ⇔ 𝑇 is 𝑘-hyponormal for each 𝑘 ∈ N.

Moreover,

(𝑘 + 1)-hyponormal ⇒ 𝑘-hyponormal ⇒ 1-hyponormal = hyponormal.

Weighted shifts defined below provide several examples and counterexamples in the operator theory
and hence are an important motivation in the analysis of operators. Given a bounded sequence of
positive numbers 𝛼 ≡ {𝛼𝑛}𝑛>0 (called weights), the unilateral weighted shift 𝑊𝛼 associated with 𝛼
is a bounded operator on ℓ2(N) defined by 𝑊𝛼𝑒𝑛 := 𝛼𝑛𝑒𝑛+1 for each 𝑛 > 0, where {𝑒𝑛}∞𝑛=0 is the
canonical orthonormal basis for ℓ2; the moments of 𝛼 are defined by 𝛾0 := 1, 𝛾𝑛+1 := 𝛼2

𝑛𝛾𝑛(𝑛 > 0). It
is straightforward to check that 𝑊𝛼 can never be normal, and that 𝑊𝛼 is hyponormal if and only if
𝛼𝑛 6 𝛼𝑛+1 for all 𝑛 > 0.

The Stieltjes moment problem associated with a given sequence {𝛾𝑛}𝑛>0 entails finding a positive
Borel measure 𝜇 supported in R+ such that

𝛾𝑛 =

∫︁
R+

𝑡𝑛𝑑𝜇 for each 𝑛 > 0. (1.3)

When the moment problem possesses a solution 𝜇, then 𝜇 is said to be a representing measure of the
moment sequence {𝛾𝑛}𝑛>0. The well known Berger theorem says that a weighted shift 𝑊𝛼 is subnormal
precisely when the sequence of its moments is a moment sequence of a positive measure supported in
[0, ‖𝑊𝛼‖].

A description of subnormality for an abstract operator 𝑇 in terms of weighted shifts can be found
in [5]. Namely, a one-to-one operator 𝑇 is subnormal if and only if, for each ℎ ̸= 0 in ℋ, the weighted
shift associated with the weight sequence {‖𝑇𝑛+1ℎ‖/‖𝑇𝑛ℎ‖} is subnormal.

J. Stampfli in [6] (see also [7]) showed that for subnormal weighted shifts 𝑊𝛼, a propagation
phenomenon occurs which forces the flatness of 𝑊𝛼 whenever two equal weights are present. That
is, if 𝛼𝑘 = 𝛼𝑘+1 for some 𝑘 > 0, then 𝛼𝑛 = 𝛼𝑛+1 for every 𝑛 > 1. Later, in [8], R. Curto proved
that the above result remains valid for 2-hyponormal weighted shifts. Our main goal in this note is
to generalize the propagation phenomena in order to study the gap between different classes of 𝑘-
hyponormal weighted shifts. To this aim we introduce the notion of 𝑘-positive matrices (or sequences),
and we study this concept to exhibit some useful results. The approach we use here provides clear direct
computations, which makes proof much simpler than [8, 9]. It can also lead to more generalizations on
perturbation problems of 𝑘-hyponormal operators.

This paper is organized as follows. In Section 2 we define the concept of 𝑘-positive matrices, and
we give some of their basic properties. In Section 3 we formulate the main results. In Section 4 we
give an elementary proof to the propagation phenomena for 𝑘-positive matrix, that is, a 𝑘-positive
matrix has a 𝑘 × 𝑘-sub-matrix with zero determinant if and only if all 𝑘 × 𝑘-sub-matrices have zero
determinant. We devote Section 5 to translate the propagation phenomena in term of 𝑘-hyponormal
weighted shifts. In the last section we study the invariance of 𝑘-hyponormal weighted shifts under one
rank perturbation, and a simple algorithm for calculating the stable perturbation intervals.
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2. 𝑘-positive Hankel matrices

Given a sequence of non negative numbers 𝛾 = {𝛾𝑛}𝑛>0, the associated Hankel matrix is built as
follows

𝑀𝛾 := (𝛾𝑖+𝑗)𝑖,𝑗 =

⎛⎜⎜⎜⎝
𝛾0 𝛾1 𝛾2 𝛾3
𝛾1 𝛾2 𝛾3 . . .
𝛾2 𝛾3 . . . . . .

𝛾3
...

. . .
. . .

⎞⎟⎟⎟⎠ .

For 𝑘, 𝑛 ∈ N, we denote by [𝑀𝛾 ]
𝑛
𝑘 the Hankel (𝑘 + 1)× (𝑘 + 1)-sub-matrix

[𝑀𝛾 ]
𝑛
𝑘 =

⎛⎜⎜⎜⎝
𝛾𝑛 𝛾𝑛+1 . . . 𝛾𝑛+𝑘

𝛾𝑛+1 𝛾𝑛+2 . . . 𝛾𝑛+𝑘+1
...

. . .
. . .

...
𝛾𝑛+𝑘 𝛾𝑛+𝑘+1 . . . 𝛾𝑛+2𝑘

⎞⎟⎟⎟⎠ . (2.1)

Definition 2.1. A Hankel matrix 𝑀𝛾, or a sequence 𝛾, is said to be 𝑘-positive if for every 𝑛 ∈ N,
the (𝑘 + 1)× (𝑘 + 1)-sub-matrix [𝑀𝛾 ]

𝑛
𝑘 is positive semi-definite.

Clearly, 𝑀𝛾 is 𝑘-positive means that ⟨𝑀𝛾𝑥, 𝑥⟩ > 0 for each 𝑥 =
𝑘∑︀

𝑖=0
𝑥𝑖𝑒𝑛+𝑖 and 𝑛 ∈ N. Also, it is

easy to see that the set of 𝑘-positive matrices, denoted by 𝒞𝑘
+, is a convex cone, and that 𝒞𝑘+1

+ ⊂ 𝒞𝑘
+

for all 𝑘 ∈ N.
Further immediate properties and examples are given in the next remark:

Remark 1.

1. 𝒞0
+ is the set of all matrices with non-negative entries.

2. 𝛾 = {𝛾𝑛}𝑛>0 is 1-positive if and only if 𝛾 is non-negative and log-convex.

3. Let 𝜇 be a positive finite measure such that Supp(𝜇) ⊂ R+ and R[𝑋] ⊂ 𝐿1(R+, 𝜇). By Stieltjes’s

Theorem [10] for every 𝑘 ∈ N, the Hankel matrices (𝛾𝑖+𝑗)06𝑖,𝑗6𝑘 and (𝛾𝑖+𝑗+1)06𝑖,𝑗6𝑘 are positives

semi-definite. In other words, 𝛾 is 𝑘-positive for all 𝑘 ∈ N.

3. main results

From the log-convexity of 𝑘-positive sequences, we deduce the next useful statement.

Proposition 1. Let 𝑀 ∈ 𝒞𝑘
+. If 𝛾𝑛0 = 0, for some 𝑛0 ∈ N, then 𝛾𝑛 = 0 for every 𝑛 > 1.

Proposition 1 states that a propagation phenomena occurs, in the sense that if a term of our sequence
is zero, then almost all the sequence is forced to be zero. The general case of higher order propagation
was established by R. Curto and L. Fialkow in [11, Proposition 5.13]. Our first contribution in this
section is to provide an elementary proof of this fact based on a version of block matrices determinants.

Theorem 3.1 (Propagation phenomena for 𝑘-positive matrices). Let 𝑀 ∈ 𝒞𝑘
+ be such that there

exists an integer 𝑛0 > 0 satisfying det([𝑀𝛾 ]
𝑛0
𝑘−1) = 0. Then det([𝑀𝛾 ]

𝑛
𝑘−1) = 0 for all 𝑛 > 1.

In terms of weighted shifts, the propagation phenomena is formulated as follows.

Theorem 3.2. Let 𝛼 = {𝛼𝑛}𝑛>0 be a sequence of positive numbers such that the weighted shift 𝑊𝛼

is 𝑘-hyponormal. We assume that det([𝑀𝛾 ]
𝑛0
𝑝 ) = 0 for some 𝑛0 > 0, 𝑝 < 𝑘, then,

det([𝑀𝛾 ]
𝑛
𝑝 ) = 0 for all 𝑛 > 1.

In particular, 𝑊𝛼 is subnormal.

Let 𝑊𝛼 be a weighted shift, and let 𝛾 = {𝛾𝑛}𝑛>0 be its moment sequence. We will say that 𝑊𝛼 is
recursively generated if there exist 𝑟 ∈ N*, 𝑎0, · · · , 𝑎𝑟−1 ∈ R such that for every 𝑘 > 0,

𝛾𝑘+𝑟 = 𝑎𝑟−1𝛾𝑘+𝑟−1 + · · ·+ 𝑎1𝛾𝑘+1 + 𝑎0𝛾𝑘.

Using Theorem 3.2, we obtain the following recursiveness criterion for subnormal weighted shifts.
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Theorem 3.3 (recursively generated subnormal weighted shift). Let 𝑊𝛼 be a subnormal weighted

shift and let 𝛾 = {𝛾𝑛}𝑛>0 be its moment sequence. Then the following conditions are equivalent:

(i) 𝑊𝛼 is recursively generated,

(ii) there exist 𝑛0, 𝑘 ∈ N such that det([𝑀𝛾 ]
𝑛0
𝑘 ) = 0.

Let 𝑊𝛼 be a 𝑘-hyponormal weighted shift. A rank one perturbation of 𝑊𝛼 associated with 𝑖 ∈ N
and 𝑡 > 0 is the weighted shift 𝑊𝛼(𝑙,𝑡) given by, 𝛼(𝑙, 𝑡)𝑖 = 𝛼𝑖 if 𝑖 ̸= 𝑙 and 𝛼(𝑙, 𝑡)𝑙 = 𝑡𝛼𝑙. We also associate
with 𝑊𝛼, the 𝑘-hyponormal stable set defined by

𝐼𝑘 =
{︀
𝑡 > 0 ; 𝑊𝛼(𝑙,𝑡) is 𝑘-hyponormal

}︀
.

Clearly 1 ∈ 𝐼𝑘. Furthermore,

Theorem 3.4 (Rank-one perturbation). 𝐼𝑘 is a nonempty bounded closed interval.

The last result concerns local perturbation, that is, as there exist 𝜖 > 0 such that ]1− 𝜖, 1 + 𝜖[⊂ 𝐼𝑘.
More precisely, we get:

Theorem 3.5 (local perturbation). Let 𝑊𝛼 be a 𝑘-hyponormal weighted shift. Then,

1 ∈
∘̂︀𝐼𝑘 ⇐⇒ [𝑀𝛾 ]

𝑛
𝑘 is positive definite ∀𝑛 6 𝑘.

4. Proof of Theorem 3.1

We start by the introduction of some notations before expanding the proof of Theorem 3.1.
For an (𝑛 + 1) × (𝑛 + 1)-matrix 𝑀 = (𝑎𝑖,𝑗)06𝑖,𝑗6𝑛, and for 𝑖0, 𝑗0 6 𝑛, we denote by 𝑀(𝑖0𝑗0) the

𝑛×𝑛−matrix resulting by removing the 𝑖0+1 row and 𝑗0+1 column. We also use the notation 𝑀(0 𝑛
0 𝑛)

for the (𝑛 − 1) × (𝑛 − 1)-matrix resulting by removing the first and the last row and column. In the

case where 𝑗0 = 0 (resp 𝑗0 = 𝑛), we simply denote 𝑀(𝑖00 ) by 𝑀(̃︀𝑖0) (resp 𝑀(𝑖0𝑛 ) by 𝑀(𝑖0)).

The next lemma is the key of our proof. It provides the next interesting expansion formula,

Lemma 4.1 (Desnanot-Jacobi adjoint matrix). If 𝑀 = (𝑎𝑖,𝑗)06𝑖,𝑗6𝑛 is an (𝑛+1)× (𝑛+1) matrix,

then

det(𝑀) det
(︀
𝑀(0 𝑛

0 𝑛)
)︀
= det(𝑀(̃︀0)) det(𝑀(̂︀𝑛))− det(𝑀(̂︀0)) det(𝑀(̃︀𝑛)). (4.1)

For the proof of this lemma, we refer to [12].

Proof of Theorem 3.1. Suppose that det([𝑀𝛾 ]
𝑖
𝑘−1]) = 0, for some 𝑖 > 𝑛0, and let us show that

det([𝑀𝛾 ]
𝑗
𝑘−1]) = 0 for every 𝑗 ∈ N ∖ {0}. We shall prove that

det([𝑀𝛾 ]
𝑖−1
𝑘−1]) = det([𝑀𝛾 ]

𝑖+1
𝑘−1]) = 0.

For 𝑀 = [𝑀𝛾 ]
𝑖
𝑘, we get

𝑀(0 𝑘
0 𝑘) = [𝑀𝛾 ]

𝑖+2
𝑘−2, 𝑀(̃︀0) = [𝑀𝛾 ]

𝑖+2
𝑘−1, 𝑀(̂︀𝑘) = [𝑀𝛾 ]

𝑖
𝑘−1, 𝑀(̂︀0) = 𝑀(̃︀𝑘) = [𝑀𝛾 ]

𝑖+1
𝑘−1.

Applying the identity (4.1), we obtain

det([𝑀𝛾 ]
𝑖
𝑘) det

(︀
[𝑀𝛾 ]

𝑖+2
𝑘−2

)︀
= det([𝑀𝛾 ]

𝑖
𝑘−1) det([𝑀𝛾 ]

𝑖+2
𝑘−1)− det([𝑀𝛾 ]

𝑖+1
𝑘−1)

2. (4.2)

Hence, det
(︀
[𝑀𝛾 ]

𝑖+2
𝑘−2

)︀
det([𝑀𝛾 ]

𝑖
𝑘) > 0, and therefore

0 = det([𝑀𝛾 ]
𝑖
𝑘−1) det([𝑀𝛾 ]

𝑖+2
𝑘−1) > det([𝑀𝛾 ]

𝑖+1
𝑘−1)

2. (4.3)

Now 𝑀𝛾 ∈ 𝒞𝑘
+ implies that det([𝑀𝛾 ]

𝑖+1
𝑘−1) = 0. Finally, det([𝑀𝛾 ]

𝑛
𝑘−1) = 0 for each 𝑛 > 𝑛0.

Replacing 𝑖 by 𝑖− 2 in Equation (4.3), we obtain

0 = det([𝑀𝛾 ]
𝑖−2
𝑘−1) det([𝑀𝛾 ]

𝑖
𝑘−1) > det([𝑀𝛾 ]

𝑖−1
𝑘−1)

2. (4.4)

This proves that det([𝑀𝛾 ]
𝑖−1
𝑘−1) = 0 and therefore det([𝑀𝛾 ]

𝑗
𝑘−1) = 0 for each 𝑗 > 1. This completes the

proof.
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5. Propagation phenomena for 𝑘-hyponormal weighted shifts

We recall the Stampfli propagation result for subnormal weighted shifts [6, Theorem 6] (see also [7,
Proposition 4.5]):

Theorem 5.1. Let 𝑊𝛼 be a injective hyponormal weighted shift and assume that 𝑊𝛼 is subnormal

and that 𝛼𝑖0 = 𝛼𝑖0+1 for some arbitrary 𝛼0. Then

𝛼𝑖 = 𝛼𝑖+1 for all 𝑖 > 1.

In terms of moment sequence associated to 𝑊𝛼, we can reformulate the result as follows.

Theorem 5.2. Let 𝑊𝛼 be a subnormal weighted shift, and let 𝛾 be the associated moment sequence.

Under the assumption

⃒⃒⃒⃒
𝛾𝑖0 𝛾𝑖0+1

𝛾𝑖0+1 𝛾𝑖0+2

⃒⃒⃒⃒
= 0 for some 𝑖0 > 0, we have⃒⃒⃒⃒

𝛾𝑖 𝛾𝑖+1

𝛾𝑖+1 𝛾𝑖+2

⃒⃒⃒⃒
= 0, for all 𝑖 > 1.

The first extension of the previous propagation notion relaxes subnormality and was given by Curto
in [8]. More precisely:

Theorem 5.3 ([8, Corollary 6]). Let 𝑊𝛼 be a 2-hyponormal weighted shift and assume that

𝛼𝑖0 = 𝛼𝑖0+1. Then

𝛼𝑖 = 𝛼𝑖+1 for all 𝑖 > 1, and 𝛼0 is arbitrary.

In view of this results, we shall extend the notion of propagation phenomena for 𝑘-hyponormal
weighted shifts. Recall that if 𝑊𝛼 is a weighted shift with bounded weight sequence 𝛼 = {𝛼𝑛}𝑛>0, the
moments of 𝑊𝛼 are usually defined by 𝛾0 := 1 and 𝛾𝑛+1 := 𝛼2

𝑛𝛾𝑛 (𝑛 > 0). It is known that (see [8,
Theorem 4]) 𝑊𝛼 is 𝑘-hyponormal if and only if [𝑀𝛾 ]

𝑛
𝑘 > 0 for all 𝑛 > 0.

Following [11] R. E. Curto and L. Fialkow, a 𝑘−hyponormal weighted shift is 𝑘-extremal if it satisfies
det([𝑀𝛾 ]

𝑛
𝑘) = 0 for every 𝑛 > 0. They proved that such weighted shift are recursively generated [11,

Theorem 5.12], by using Šmulian theorem on extension of positive semi-definite matrix. Using the
propagation phenomena for 𝑘-positive matrix we can easily improve the next result due to Curto and
Fialkow.

Theorem 5.4 ([11, Proposition 5.13]). Let 𝛼 = {𝛼𝑛}𝑛>0 be a sequence of positive numbers such

that the weighted shift 𝑊𝛼 is 𝑘-hyponormal. Assume that det([𝑀𝛾 ]
𝑛0
𝑝 ) = 0 for some 𝑛0 > 0 and 𝑘 < 𝑝,

then

det([𝑀𝛾 ]
𝑛
𝑝 ) = 0 for all 𝑛 > 1.

In particular, 𝑊𝛼 is subnormal.

Доказательство. Since 𝑊𝛼 is 𝑘-hyponormal if and only if 𝑀𝛾 is 𝑘-positive, it is (𝑝 + 1)-positive.
Since we also have det([𝑀𝛾 ]

𝑛0
𝑝 ) = 0, Theorem 3.1 implies that det([𝑀𝛾 ]

𝑛
𝑝 ) = 0 for all 𝑛 > 1. Therefore,

det([𝑀𝛾 ]
𝑛
𝑙 ) = 0 for all 𝑙 > 𝑘 and 𝑛 > 0. It follows that [𝑀𝛾 ]

𝑛
𝑙 is positive semi-definite for all 𝑙 > 𝑘 and

𝑛 > 0, and in particular, that 𝑊𝛼 is subnormal.

For 𝑘 = 2, the next extension of Stampfli’s propagation result [7, Proposition 4.5] can be found in [8].

Corollary 1. [8, Corollary 6] Let 𝛼 = {𝛼𝑛}𝑛>0 be a bounded sequence of positive numbers associated

with a 2-hyponormal weighted shift. If 𝛼𝑛0 = 𝛼𝑛0+1 for some 𝑛0 > 0, then 𝛼𝑛 = 𝛼𝑛0 for all 𝑛 > 1. In
particular, 𝑊𝛼 is subnormal.

We recall that a measure 𝜇 is said to be of finite mass point if 𝜇 has finite support or equivalently,
𝜇 is a finite combination of Dirac measures.

The question of characterizing finite mass measure in terms of moments has been intensively studied
and arises in several branches, where finite interpolation is needed. It is closely related to a truncated
moment problem. For charges (non necessary positive measures), we can see Corollary 4.3 in [14]. In the
case of positive measures on R, a more recent work of C. Berg and D. Szwarc provides an interesting
study, see Theorem 1.1 of [13]. We prove Theorem 3.3 that gives a simple characterization of finite
mass measure on R+.
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Proof of Theorem 3.3. (𝑖) ⇒ (𝑖𝑖) If we suppose that 𝑊𝛼 is recursively generated, the there exists 𝑘 > 0
and 𝑎0, 𝑎1, . . . , 𝑎𝑘 ∈ R such that

𝛾𝑝+𝑘+1 =

𝑘∑︁
𝑗=0

𝑎𝑗𝛾𝑝+𝑗 for each 𝑝 ∈ N.

This yields that det([𝑀𝛾 ]
𝑝
𝑘+1) = 0.

(𝑖𝑖) ⇒ (𝑖) Since 𝑊𝛼 is subnormal, we conclude that in particular, 𝑊𝛼 is 𝑘+1-hyponormal. Then by
the condition det([𝑀𝛾 ]

𝑛0
𝑘 ) = 0 and Theorem 5.4, we obtain

det([𝑀𝛾 ]
𝑛
𝑘+1) = 0 for each 𝑛 ∈ N.

Hence, there exists 𝑎0, 𝑎1, . . . , 𝑎𝑘 ∈ R such that

𝛾𝑝+𝑘+1 =

𝑘∑︁
𝑗=0

𝑎𝑗𝛾𝑝+𝑗 for each 𝑝 ∈ N.

Finally, 𝑊𝛼 is recursively generated. The proof is complete.

6. Perturbation of k-positive matrices

Let 𝑀 ∈ 𝒞𝑘
+(𝐻) (𝑀 = 𝑀𝛾). For 𝑙 ∈ N* and 𝑡 > 0 we denote by 𝑀𝛾′ the perturbed Hankel matrix

whose entries are given by

𝛾′𝑛 =

{︂
𝛾𝑛 𝑖𝑓 𝑛 6 𝑙;
𝑡𝛾𝑛 𝑖𝑓 𝑛 > 𝑙 + 1,

where

𝑀𝛾′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾0 𝛾1 . . . 𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 . . .
𝛾1 . . . 𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 . . . . . .
... . . . 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 . . . . . . . . .
𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 . . . . . . . . . . . .

𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 . . . . . . . . . . . . . . .
𝑡𝛾𝑙+2 . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The main goal of this section is to determine when such perturbation of 𝑘-positive matrix remains
𝑘-positive.

We notice that for 𝑛 > 𝑙 + 1, we get [𝑀𝛾′ ]𝑛𝑘 = 𝑡[𝑀𝛾 ]
𝑛
𝑘 and we deduce that

𝑀𝛾′ is k-positive ⇐⇒ [𝑀𝛾′ ]𝑛𝑘 is positive semi-definite ∀𝑛 6 𝑙. (6.1)

For 𝑛 6 𝑙, we write

[𝑀𝛾′ ]𝑛𝑘 = 𝑡[𝑀𝛾 ]
𝑛
𝑘 + (1− 𝑡)𝐻𝑛

𝑘 (𝑙), (6.2)

with

𝐻𝑛
𝑘 (𝑙) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾𝑛 𝛾𝑛+1 · · · 𝛾𝑙 0 · · · 0
𝛾𝑛+1 𝛾𝑛+2 · · · 0 0 · · · 0
...

...
. . .

... · · · 0

𝛾𝑙 0
. . .

... · · · 0

0
...

. . .
... · · · 0

...
...

. . .
... · · · 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and we denote

𝐼𝑘𝑛 = {𝑡 > 0 : 𝑡[𝑀𝛾 ]
𝑛
𝑘 + (1− 𝑡)𝐻𝑛

𝑘 (𝑙) is positive semi-definite} .
We have the following property.

Proposition 2. For each 𝑛 6 𝑙, 𝐼𝑘𝑛 is a non empty closed interval of R+.
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Доказательство. For 𝑘 ∈ N, let 𝑃+
𝑘 be the closed convex cone of (𝑘 + 1) × (𝑘 + 1) positive semi

definite matrices, and denote

𝐷 = {𝑡[𝑀𝛾 ]
𝑛
𝑘 + (1− 𝑡)𝐻𝑛

𝑘 (𝑙) : 𝑡 > 0} .

It is obvious that 𝐷 is a closed convex subset of ℳ𝑘+1 and then 𝐷 ∩ 𝑃+
𝑘 is a closed convex set.

Moreover, the mapping 𝛾𝑘𝑛 given by

𝛾𝑘𝑛 : R+ −→ 𝐷
𝑡 ↦−→ 𝑡[𝑀𝛾 ]

𝑛
𝑘 + (1− 𝑡)𝐻𝑛

𝑘 (𝑙),

is a continuous affine function, and hence 𝐼𝑛𝑘 = (𝛾𝑘𝑛)
−1(𝐷 ∩ 𝑃+

𝑘 ) is a closed interval of R+. Also, 𝑀 is

𝑘-positive implies that [𝑀𝛾 ]
𝑛
𝑘 is positive for all 𝑛 ∈ N, and hence that 1 ∈ 𝐼𝑘𝑛 for all 𝑛 ∈ N. The proof

is complete.

From (6.1), a perturbation of 𝑘-positive matrix remains 𝑘-positive if and only if 𝑡 ∈ 𝐼𝑘 := ∩𝑛6𝑙𝐼
𝑘
𝑛, our

second result is the next proposition.

Proposition 3. For each 𝑘 > 1, 𝐼𝑘 is a compact interval.

Доказательство. By Proposition 2 we have that 𝐼𝑘 is a closed non empty interval. To show that 𝐼𝑘

is bounded, we observe that if [𝑀𝛾′ ]𝑛𝑘 is positive semi-definite, then [𝑀𝛾′ ]𝑛𝑘−1 is positive semi-definite.

We deduce that 𝐼𝑘𝑛 ⊂ 𝐼𝑘−1
𝑛 , and by induction we see that 𝐼𝑘𝑛 ⊂ 𝐼1𝑛. Finally, 𝐼

𝑘 ⊂ 𝐼1. Hence, 𝑡 ∈ 𝐼1 if
and only if 𝑀𝛾′1

𝑙−1 and 𝑀𝛾′1
𝑙 have non-negative determinants, that is,

𝛾2𝑙
𝛾𝑙−1𝛾𝑙+1

6 𝑡 6
𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

.

Thus, for each 𝑘 > 1, 𝐼𝑘 ⊂ 𝐼1 =

[︂
𝛾2
𝑙

𝛾𝑙−1𝛾𝑙+1
;
𝛾𝑙𝛾𝑙+2

𝛾2
𝑙+1

]︂
is bounded. The proof is complete.

6.1. Determination of 𝐼2. The problem of determining 𝐼𝑘 for 𝑘 > 2 seems to be complicated.

From the previous proof, we see that 𝐼1 =

[︂
𝛾2
𝑙

𝛾𝑙−1𝛾𝑙+1
;
𝛾𝑙𝛾𝑙+2

𝛾2
𝑙+1

]︂
. We devote this section to calculating 𝐼2.

Since 𝑡 ∈ 𝐼2 if and only if the next four matrices [𝑀𝛾′ ]2𝑙−3, [𝑀𝛾′ ]2𝑙−2, [𝑀𝛾′ ]2𝑙−1 and [𝑀𝛾′ ]2𝑙 are positives
semi-definite. We exhibit the corresponding conditions in each case :

∙ [𝑀𝛾′ ]2𝑙−3 > 0:

[𝑀𝛾′ ]2𝑙−3 =

⎛⎝ 𝛾𝑙−3 𝛾𝑙−2 𝛾𝑙−1

𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 𝑡𝛾𝑙+1

⎞⎠ ,

is positive semi-definite if and only if⃒⃒⃒⃒
𝛾𝑙−1 𝛾𝑙
𝛾𝑙 𝑡𝛾𝑙+1

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
𝛾𝑙−3 𝛾𝑙−1

𝛾𝑙−1 𝑡𝛾𝑙+1

⃒⃒⃒⃒
> 0 and

⃒⃒⃒⃒
⃒⃒ 𝛾𝑙−3 𝛾𝑙−2 𝛾𝑙−1

𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 𝑡𝛾𝑙+1

⃒⃒⃒⃒
⃒⃒ > 0.

This is equivalent to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑡 >max

(︃
𝛾2𝑙

𝛾𝑙−1𝛾𝑙+1
,

𝛾2𝑙−1

𝛾𝑙−3𝛾𝑙+1

)︃
,

𝑡 >

⃒⃒⃒⃒
⃒⃒ 𝛾𝑙−3 𝛾𝑙−2 𝛾𝑙−1

𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 0

⃒⃒⃒⃒
⃒⃒

𝛾𝑙+1

⃒⃒⃒⃒
𝛾𝑙−3 𝛾𝑙−2

𝛾𝑙−2 𝛾𝑙−1

⃒⃒⃒⃒ .
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The last condition is redundant. Indeed, using Lemma 4.1 (also called Dodgson condensation
method), we obtain:⃒⃒⃒⃒

⃒⃒ 𝛾𝑙−3 𝛾𝑙−2 𝛾𝑙−1

𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 0

⃒⃒⃒⃒
⃒⃒ = −1

𝛾𝑙−1

[︃
𝛾2𝑙

⃒⃒⃒⃒
𝛾𝑙−3 𝛾𝑙−2

𝛾𝑙−2 𝛾𝑙−1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝛾𝑙−2 𝛾𝑙−1

𝛾𝑙−1 𝛾𝑙

⃒⃒⃒⃒2]︃
6 0.

By using a simple observation

𝛾2𝑙
𝛾𝑙−1𝛾𝑙+1

=
𝛾2𝑙−1

𝛾𝑙−3𝛾𝑙+1

𝛾𝑙−3𝛾𝑙−1

𝛾2𝑙−2

(︃
𝛾𝑙−2𝛾𝑙
𝛾2𝑙−1

)︃2

>
𝛾2𝑙−1

𝛾𝑙−3𝛾𝑙+1
,

we get that

[𝑀𝛾′ ]2𝑙−3 is positive semidefinite if and only if 𝑡 >
𝛾2𝑙

𝛾𝑙−1𝛾𝑙+1
. (6.3)

∙ [𝑀𝛾′ ]2𝑙−2 > 0: Using the same argument for

[𝑀𝛾′ ]2𝑙−2 =

⎛⎝ 𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 𝑡𝛾𝑙+1

𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2

⎞⎠ ,

we obtain:⃒⃒⃒⃒
𝛾𝑙−2 𝛾𝑙
𝛾𝑙 𝑡𝛾𝑙+2

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
𝛾𝑙 𝛾𝑙+1

𝑡𝛾𝑙+1 𝛾𝑙+2

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
⃒⃒ 𝛾𝑙−2 𝛾𝑙−1 𝛾𝑙
𝛾𝑙−1 𝛾𝑙 𝑡𝛾𝑙+1

𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2

⃒⃒⃒⃒
⃒⃒ > 0.

This implies:
𝛾2𝑙

𝛾𝑙−2𝛾𝑙+2
6 𝑡 6

𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

and that the quadric polynomial

𝑃 (𝑡) := −𝛾𝑙−2𝛾
2
𝑙+1𝑡

2 + (𝛾𝑙−2𝛾𝑙𝛾𝑙+2 + 2𝛾𝑙−1𝛾𝑙𝛾𝑙+1 − 𝛾2𝑙−1𝛾𝑙+2)𝑡− 𝛾3𝑙 ,

is positive. The first and the second inequalities are satisfied immediately since

𝑃

(︂
𝛾2𝑙

𝛾𝑙−2𝛾𝑙+2

)︂
= −

(𝛾2𝑙 𝛾𝑙+1 − 𝛾𝑙−1𝛾𝑙𝛾𝑙+2)
2

𝛾2𝑙+2𝛾𝑙−2
6 0,

and

𝑃

(︃
𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

)︃
= −𝛾𝑙(𝛾𝑙𝛾𝑙+1 − 𝛾𝑙−1𝛾𝑙+2)

2

𝛾2𝑙+1

6 0.

Using the inequality 𝛾2𝑙−1 6 𝛾𝑙−2𝛾𝑙, we see that the second coefficient of 𝑃 is positive, and hence
by the classical Descartes rule for positive roots of polynomials, 𝑃 has two distinct positive roots.
Then

[𝑀𝛾′ ]2𝑙−2 is positive semidefinite if and only if 𝑡 ∈ [𝛼(𝑃 );𝛽(𝑃 )] , (6.4)

where 𝛼(𝑃 ) and 𝛽(𝑃 ) are the two positive solutions of 𝑃 (𝑡) = 0.

∙ [𝑀𝛾′ ]2𝑙−1: This case is treated exactly as the last one and leads us to

[𝑀𝛾′ ]2𝑙−1 is positive semidefinite if and only if 𝑡 ∈ [𝛼(𝑄);𝛽(𝑄)] , (6.5)

where 𝛼(𝑄) and 𝛽(𝑄) are the two positive solutions of

𝑄(𝑡) := −𝛾3𝑙+1𝑡
2 + (𝛾𝑙−1𝛾𝑙+1𝛾𝑙+3 + 2𝛾𝑙𝛾𝑙+1𝛾𝑙+2 − 𝛾𝑙−1𝛾

2
𝑙+2)𝑡− 𝛾2𝑙 𝛾𝑙+3 = 0.

∙ [𝑀𝛾′ ]2𝑙 : The computations in this case outlines the first one, indeed,

[𝑀𝛾′ ]2𝑙 =

⎛⎝ 𝛾𝑙 𝑡𝛾𝑙+1 𝑡𝛾𝑙+2

𝑡𝛾𝑙+1 𝑡𝛾𝑙+2 𝑡𝛾𝑙+3

𝑡𝛾𝑙+2 𝑡𝛾𝑙+3 𝑡𝛾𝑙+4

⎞⎠ ,
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is positive semi-definite if and only if⃒⃒⃒⃒
𝛾𝑙 𝛾𝑙+1

𝑡𝛾𝑙+1 𝛾𝑙+2

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
𝛾𝑙 𝛾𝑙+2

𝑡𝛾𝑙+2 𝛾𝑙+4

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
⃒⃒ 𝛾𝑙 𝛾𝑙+1 𝛾𝑙+2

𝑡𝛾𝑙+1 𝛾𝑙+2 𝛾𝑙+3

𝑡𝛾𝑙+2 𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒ > 0.

This is is equivalent to

𝑡 6 min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

,
𝛾𝑙𝛾𝑙+4

𝛾2𝑙+2

,

−𝛾𝑙

⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ 0 𝛾𝑙+1 𝛾𝑙+2

𝛾𝑙+1 𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+2 𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

But

𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

=
𝛾𝑙𝛾𝑙+4

𝛾2𝑙+2

𝛾2𝑙+3

𝛾𝑙+4𝛾𝑙+2

(︃
𝛾2𝑙+2

𝛾𝑙+3𝛾𝑙+1

)︃2

6
𝛾𝑙𝛾𝑙+4

𝛾2𝑙+2

with

𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

+

𝛾𝑙

⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ 0 𝛾𝑙+1 𝛾𝑙+2

𝛾𝑙+1 𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+2 𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒
=

𝛾𝑙𝛾𝑙+2

𝛾2𝑙+1

⎡⎢⎢⎢⎣1−
⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
+ 1

𝛾2
𝑙+1

⃒⃒⃒⃒
𝛾𝑙+1 𝛾𝑙+2

𝛾𝑙+2 𝛾𝑙+3

⃒⃒⃒⃒2
⎤⎥⎥⎥⎦ > 0.

This yields

[𝑀𝛾′ ]2𝑙 is positive semidefinite if and only if 0 6 𝑡 6
−𝛾𝑙

⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ 0 𝛾𝑙+1 𝛾𝑙+2

𝛾𝑙+1 𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+2 𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒
. (6.6)

Finally from (6.3), (6.4), (6.5) and (6.6) we conclude that

𝐼2 =

⎡⎢⎢⎢⎢⎢⎢⎣max

{︂
𝛼(𝑃 ), 𝛼(𝑄),

𝛾2𝑙
𝛾𝑙+1𝛾𝑙−1

}︂
; min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛽(𝑃 ), 𝛽(𝑄),

−𝛾𝑙

⃒⃒⃒⃒
𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ 0 𝛾𝑙+1 𝛾𝑙+2

𝛾𝑙+1 𝛾𝑙+2 𝛾𝑙+3

𝛾𝑙+2 𝛾𝑙+3 𝛾𝑙+4

⃒⃒⃒⃒
⃒⃒

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎦ .

Remark 2. ∙ The existence of positive roots for 𝑃 and 𝑄 can be checked also by using the classical

Bolzano’s theorem because of the fact that 𝑃 (1) > 0, 𝑄(1) > 0, and 𝑃 (0) 6 0, 𝑄(0) 6 0, and that

lim
𝑡→∞

𝑃 (𝑡) = lim
𝑡→∞

𝑄(𝑡) = −∞.

∙ A direct calculation of discriminants gives the inequality

min{𝛾2𝑙−1𝛾𝑙+1𝛾𝑙+3; 𝛾𝑙−2𝛾𝑙𝛾
2
𝑙+2} > (2𝛾𝑙𝛾𝑙+1 − 𝛾𝑙−1𝛾𝑙+2)

2.

6.2. One rank perturbation of weighted shifts. Let 𝑙 ∈ N be given, 𝑡 > and let 𝑊𝛼

be a weighted shift. A (𝑙, 𝑡)-one perturbation of 𝑊𝛼 is the weighted shift 𝑊𝛼(𝑙,𝑡) defined by

𝑊𝛼(𝑙,𝑡)(𝑒𝑘) = 𝑊𝛼(𝑒𝑘) = 𝛼𝑘𝑒𝑘+1 for 𝑘 ̸= 𝑙 and 𝑊𝛼(𝑙,𝑡)(𝑒𝑙) =
√
𝑡𝛼𝑙𝑒𝑙+1.

We denote by 𝛾 the moment sequence associated with 𝛼 defined by 𝛾0 = 1 and 𝛾𝑛 = 𝛼2
𝑛−1𝛾𝑛−1 and

by 𝛾′(𝑡) (or simply 𝛾′) the moment sequence associated with 𝛼(𝑙, 𝑡). It is easily seen that 𝛾′𝑘 = 𝛾𝑘 for
𝑘 6 𝑙 and 𝛾′𝑘 = 𝑡𝛾𝑘 for 𝑘 > 𝑙.

We let

𝐽𝑘 =
{︀
𝑡 > 0;𝑊𝛼(𝑙,𝑡) is 𝑘-hyponrmal

}︀
.
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Since 𝑊𝛼 is 𝑘-hyponormal if and only if 𝑀𝛾 is 𝑘-positive, we conclude that

𝐽𝑘 =
{︀
𝑡 > 0;𝑊𝛼(𝑙,𝑡) is 𝑘-hyponrmal

}︀
=
{︀
𝑡 > 0;𝑀𝛾′ is 𝑘-positive

}︀
= 𝐼𝑘.

and then from Proposition 3 we see that 𝐼𝑘 is a compact interval.
The behavior of one rank perturbation of subnormal weighted shift is described by the next theorem.

Theorem 6.1 ([9, Theorem 2.1]). Let 𝑊𝛼 be a subnormal weighted shift. We have

𝐼∞ := ∩𝑘>1𝐼
𝑘 = {1}.

We state our main result in this section as follows.

Theorem 6.2. Let 𝑊𝛼 be a 𝑘-hyponormal weighted shift. We have

1 ∈
∘̂︀𝐼𝑘 ⇐⇒ [𝑀𝛾 ]

𝑛
𝑘 is positive definite ∀𝑛 6 𝑙.

We shall use the same notations as in the proof of Proposition 2. We begin with proving that our
condition is sufficient. To this aim, we consider

𝛾𝑘𝑛 : R+ −→ 𝐷
𝑡 ↦−→ 𝑡[𝑀𝛾 ]

𝑛
𝑘 + (1− 𝑡)𝐻𝑛

𝑘 (𝑙)
.

Since [𝑀𝛾 ]
𝑛
𝑘 ∈

∘̂︁𝑃+
𝑘 ( the set of all positive definite matrices) and 𝛾𝑘𝑛 is continuous, for 𝑉 an open

neighborhood of [𝑀𝛾 ]
𝑛
𝑘 such that 𝑉 ⊂

∘̂︁𝑃+
𝑘 , we get the (𝛾𝑘𝑛)

−1(𝑉 ∩ 𝐷) is an open neighborhood of

(𝛾𝑘𝑛)
−1([𝑀𝛾 ]

𝑛
𝑘) = 1. Hence, there exists ]𝑟𝑛, 𝑡𝑛[⊂ R+ such that 1 ∈]𝑟𝑛, 𝑡𝑛[ and 𝛾𝑘𝑛(]𝑟𝑛, 𝑡𝑛[) ⊂ 𝑃+

𝑘 and

then ]𝑟𝑛, 𝑡𝑛[⊂ 𝐼𝑘𝑛. Finally,

1 ∈] max
𝑛6𝑙

𝑟𝑛, inf
𝑛6𝑙

𝑡𝑛[⊂
∘̂︀𝐼𝑘.

Conversely, we assume that there is 𝑛 6 𝑙 such that [𝑀𝛾 ]
𝑛
𝑘 is not positive definite, or equivalently,

there is 𝑝 6 𝑘 such that det([𝑀𝛾 ]
𝑛
𝑝 ) = 0. We distinguish two cases:

𝑝 < 𝑘: By Theorem 5.4 𝑊𝛼 is subnormal, then 𝐼𝑘 = 𝐼∞ = {1} that means

∘̂︀𝐼𝑘 = ∅.
𝑝 = 𝑘: Simple computations give

det(𝛾𝑛𝑘 (𝑡)) = 𝑡𝑘+1 det([𝑀𝛾 ]
𝑛
𝑘) + (1− 𝑡)𝑡𝑘𝛾𝑛𝐶𝑜𝑓(𝛾𝑛) = 𝛾𝑛𝐶𝑜𝑓(𝛾𝑛)(1− 𝑡)𝑡𝑘,

where 𝐶𝑜𝑓(𝛾𝑛) stands for the (1, 1) cofactor of [𝑀𝛾 ]
𝑛
𝑘 . It follows from 𝑡 ∈ 𝐼𝑘 that det(𝛾𝑛𝑘 (𝑡)) > 0

and hence 𝑡 6 1. Thus 1 ̸∈
∘̂︀𝐼𝑘.
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