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SIMPLEST GRAPHS WITH SMALL EDGES:

ASYMPTOTICS FOR RESOLVENTS AND

HOLOMORPHIC DEPENDENCE OF SPECTRUM

D.I. BORISOV, M.N. KONYRKULZHAEVA

Abstract. In the work we consider a simplest graph formed by two finite edges and a small
edge coupled at a common vertex. The length of the small edge serves as a small parameter.
On such graph, we consider the Schrödinger operator with the Kirchoff condition at the
internal vertex, the Dirichlet condition on the boundary vertices of finite edges and the
Dirichlet or Neumann condition on the boundary vertex of the small edge. We show that
such operator converges to a Schrödinger operator on the graph without the small edge in
the norm resolvent sense; at the internal vertex one has to impose the Dirichlet condition
if the same was on the boundary vertex of the small edge. If the boundary vertex was
subject to the Neumann condition, the internal vertex keeps the Kirchoff condition but the
coupling constant can change. The main obtained result for the resolvents is the two-terms
asymptotics for their resolvents and an estimate for the error term.

The second part of the work is devoted to studying the dependence of the eigenvalues
on the small parameter. Despite the graph is perturbed singularly, the eigenvalues are
holomorphic in the small parameter and are represented by convergent series. We also
find out that under the perturbation, there can be stable eigenvalues independent of the
parameter. We provide a criterion determining the existence of such eigenvalues. For
varying eigenvalues we find the leading terms of their Taylor series.
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1. Introduction

During the last twenty years, the spectra of elliptic operators on graphs, or simply the theory
of quantum graphs, is being intensively developed and there is a huge number of works on this
subject. Not trying to mention all works, we just cite the monographs [5], [7] and the references
therein.

An important direction of studies is the developing of the perturbation theory for quantum
graphs. And one of the most interesting perturbations due to the specific geometry of graphs is
small edges. The study of such problems was initiated rather recently. It was shown in work [9]
that an arbitrary boundary condition at a vertex can be approximated in the norm resolvent
sense by means of a graph with small edges and a 𝛿-interaction in internal vertices. The most
detailed study of the graphs with small edges was made in a recent work [8]. Here graphs
of arbitrary structure with arbitrary boundary conditions at the vertices were considered and
some of the edges were assumed to be of a small length. The norm resolvent convergence and
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the convergence of the spectra were studied in great details depending on the structure of the
graphs and of given boundary conditions.

The results of work [8] give rise to the following natural issues: how the asymptotics of the
resolvents of operators on graphs with small edges looks like? What is the dependence of the
spectrum on the lengths of small edges, for instance, how do the eigenvalues depend on them?
Of course, the answers for these questions are to be found first for simple graphs and a simplest
model seems to be a star-shaped graph with three edges, one of which is of a small length, see
Figure 1. Surprisingly, but even such simple model features rather unexpectable properties. In
our opinion, these properties deserve a separate study and exactly this is done in the present
paper.

The main obtained results are as follows. In the internal vertex of the considered graph
we impose a 𝛿-interaction, the boundary vertices of finite edges are subject to the Dirichlet
condition, while on the boundary edge of the small the Neumann condition is imposed. The
length of the small edge serves as a small parameter. As an operator, we choose a Schrödinger
operator and at the small edge, a singular dependence of the potential on the small parameter
is admitted. The limiting operator is the same Schrödinger operator but on a graph without
the small edge, see Figure 2. In the case of the Dirichlet condition on the boundary vertex of
the small edge, in the limit, the 𝛿-interaction in the internal vertex is replaced by the Dirichlet
condition. In the case of the Neumann condition on the boundary vertex of the small edge,
the 𝛿-interaction in the internal vertex is kept but in the coefficient there arises an additional
term equalling to the mean value of the singular potential on the small edge. In both cases we
obtain the leading terms in the asymptotics of the resolvents and we estimate an error term in
the sense of the operator norm of the resolvent. At that, it turns out that the error is estimated
only by 𝐿2-norm on the small edge of a function, at which the resolvents of the original and
limiting operators act, see Theorems 2.1, 2.2.

We also study the behavior of the eigenvalue with respect to the small parameter. We find
out that the eigenvalues of the considered graphs with small edge are holomorphic in the small
parameter. This is a rather unexpected result in view of the fact that a small edge is a singular
perturbation and as a rule, under such perturbations, one can write out asymptotic series for
the eigenvalues but usually, these series diverge. Moreover, our model turns out to have stable
eigenvalues independent of the small parameter. For moving eigenvalues we find explicitly the
leading terms of their Taylor series and in the case of the Dirichlet condition on the boundary
vertex of the small edge the first correctors turn out to be negative.

The paper is organized as follows. In the next section we introduce main notations and
formulate the main results. In the third and fourth sections we construct the leading terms in
the asymptotics for the resolvents. The behavior of the eigenvalues is studied in the fifth and
the sixth sections.

2. Formulation of problem and main results

Let Γ𝜀 be an oriented graph formed by three finite edges, one internal vertex connecting
these edges and three boundary edges. Two edges are chosen to be of fixed lengths, while the
third edge is assumed to be small, see Figure 1. We denote the edges of the graph by 𝑒−, 𝑒+,
𝑒𝜀 with lengths 𝑎−, 𝑎+ and 𝜀, respectively, where 𝜀 is a small positive parameter. On the edges
we introduce respectively variables 𝑥± ∈ [0, 𝑎±] and 𝑥𝜀 ∈ [0, 𝜀]. The internal vertex is denoted
by 𝑀0; we suppose that it corresponds to 𝑥± = 0, 𝑥𝜀 = 0. The boundary vertices correspond
to the values 𝑥± = 𝑎±, 𝑥𝜀 = 𝜀 and are denoted by 𝑀± and 𝑀𝜀.

In the space 𝐿2(Γ𝜀) := 𝐿2(𝑒−) ⊕ 𝐿2(𝑒+) ⊕ 𝐿2(𝑒𝜀) we introduce the Schrödinger operator

− 𝑑2

𝑑𝑥2
+ 𝑉𝜀(𝑥) + 𝛼𝛿(𝑥), (2.1)



58 D.I. BORISOV, M.N. KONYRKULZHAEVA

Figure 1. Graph Γ𝜀 with a small edge: the lengths of 𝑒± are equal to fixed numbers
𝑎±, the length of 𝑒𝜀 is equal to 𝜀 being a small parameter

where the derivatives are taken with respect to the variables on the edges and the potential 𝑉𝜀

is defined by the identity

𝑉𝜀(𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝑊−(𝑥−) on 𝑒−,

𝑊+(𝑥+) on 𝑒+,

𝜀−1𝑊−1

(︁𝑥𝜀

𝜀

)︁
+ 𝑊0

(︁𝑥𝜀

𝜀

)︁
on 𝑒𝜀.

Here 𝑊± are real bounded measurable functions on 𝑒±, 𝑊−1, 𝑊0 are real bounded measurable
functions on [0, 1]. The last term in (2.1) describes a 𝛿-interaction with the coupling constant
𝛼 ∈ R and it corresponds to the following boundary condition in the internal vertex:

𝑢−(0) = 𝑢+(0) = 𝑢𝜀(0) =: 𝑢(𝑀0), 𝑢′
−(0) + 𝑢′

+(0) + 𝑢′
𝜀(0) = 𝛼𝑢(𝑀0), (2.2)

where 𝑢 = (𝑢−, 𝑢+, 𝑢𝜀) is a function defined on the graph Γ𝜀. On the boundary vertices 𝑀± we
impose the Dirichlet condition

𝑢±(𝑀±) = 0, (2.3)

while the vertex 𝑀𝜀 is subject to the Dirichlet condition

𝑢𝜀(𝜀) = 0 (2.4)

or to the Neumann condition
𝑢′
𝜀(𝜀) = 0. (2.5)

We denote the introduced operator by ℋ𝐷
𝜀 in the case of boundary condition (2.4) and by ℋ𝑅

𝜀 in
the case of boundary condition (2.5). As the domains of the operators ℋ𝐷

𝜀 and ℋ𝑅
𝜀 , we choose

the following dense in 𝐿2(Γ𝜀) subsets:

D(ℋ𝐷
𝜀 ) :=

{︀
𝑢 = (𝑢−, 𝑢+, 𝑢𝜀) ∈ 𝐿2(Γ𝜀) : 𝑢± ∈ 𝑊 2

2 (𝑒±), 𝑢𝜀 ∈ 𝑊 2
2 (𝑒𝜀),

conditions (2.2), (2.3), (2.4) hold
}︀
,

D(ℋ𝑅
𝜀 ) :=

{︀
𝑢 = (𝑢−, 𝑢+, 𝑢𝜀) ∈ 𝐿2(Γ𝜀) : 𝑢± ∈ 𝑊 2

2 (𝑒±), 𝑢𝜀 ∈ 𝑊 2
2 (𝑒𝜀),

conditions (2.2), (2.3), (2.5) hold
}︀
.

The operators ℋ𝐷
𝜀 and ℋ𝑅

𝜀 are self-adjoint.
The main aim of our work is to study the behavior of resolvents and spectra of the operators

ℋ𝐷
𝜀 and ℋ𝑅

𝜀 for small 𝜀.
To formulate the main results, we shall need auxiliary notations. By Γ0 we denote the graph

obtained from Γ𝜀 by removing the edge 𝑒𝜀 and vertex 𝑀𝜀, that is, the graph Γ0 consists of two
edges 𝑒− and 𝑒+ coupled by the vertex 𝑀0 and two boundary vertices 𝑀±, see Figure 2.
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Figure 2. Limiting graph Γ0

In the space 𝐿2(Γ0) := 𝐿2(𝑒−)⊕𝐿2(𝑒+) we consider the operator with the differential expres-
sion

− 𝑑2

𝑑𝑥2
+ 𝑉0, 𝑉0 := 𝑊± on 𝑒±,

subject to the Dirichlet condition at the boundary vertices 𝑀±:

𝑢±(𝑀±) = 0. (2.6)

At the vertex 𝑀0 we impose either the Dirichlet condition

𝑢±(0) = 0, (2.7)

or a delta-interaction:

𝑢−(0) = 𝑢+(0) =: 𝑢(0), 𝑢′
+(0) + 𝑢′

−(0) = (𝛼 + 𝛽)𝑢(0), 𝛽 :=

1∫︁
0

𝑊−1(𝑡) 𝑑𝑡. (2.8)

In the case of condition (2.7), the operator is denoted by ℋ𝐷
0 , in the case of condition (2.8),

the notation is ℋ𝑅
0 . As the domains of these operators, the following dense in 𝐿2(Γ0) subsets

serve:

D(ℋ𝐷
0 ) :=

{︀
𝑢 = (𝑢−, 𝑢+) ∈ 𝐿2(Γ0) : 𝑢± ∈ 𝑊 2

2 (𝑒±), conditions (2.6), (2.7) hold},
D(ℋ𝑅

0 ) :=
{︀
𝑢 = (𝑢−, 𝑢+) ∈ 𝐿2(Γ0) : 𝑢± ∈ 𝑊 2

2 (𝑒±), conditions (2.6), (2.8) hold}.

The operators ℋ𝐷
0 , ℋ𝑅

0 are self-adjoint.
By 𝑈± = 𝑈±(𝑥±, 𝜆) we denote the solutions to the Cauchy problems:

− 𝑈 ′′
± + (𝑊± − 𝜆)𝑈± = 0 in (0, 𝑎±), 𝑈±(𝑎±, 𝜆) = 0, 𝑈 ′

±(𝑎±, 𝜆) = 1. (2.9)

Such problems are uniquely solvable and their solutions are holomorphic in 𝜆 ∈ C in the norm
𝑊 2

2 (0, 𝑎±). For Im𝜆 ̸= 0 we denote

Ψ(𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝑈−(𝑥−, 𝜆)

𝑈−(0, 𝜆)
on 𝑒−,

𝑈+(𝑥+, 𝜆)

𝑈+(0, 𝜆)
on 𝑒+.

This function is well-defined and 𝑈±(0, 𝜆) ̸= 0 as Im𝜆 ̸= 0 since otherwise the Schrödinger

operators − 𝑑2

𝑑𝑥2 + 𝑊± on the edges 𝑒± with Dirichlet conditions would have possessed complex
eigenvalues.

Our first result describes the uniform resolvent convergence of the operators ℋ𝐷
𝜀 and ℋ𝑅

𝜀 to
the operators ℋ𝐷

0 and ℋ𝑅
0 . A convergence theorem for the operator ℋ𝐷

𝜀 is as follows.
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Theorem 2.1. As Im𝜆 ̸= 0, for each 𝑓 ∈ 𝐿2(Γ𝜀), the estimates hold:⃦⃦
(ℋ𝐷

𝜀 − 𝜆)−1𝑓 − (ℋ𝐷
0 − 𝜆)−1𝑓 |Γ0 − ℓ𝐷𝑒 (𝑓𝜀)Ψ‖𝑊 2

2 (𝑒−)⊕𝑊 2
2 (𝑒+) 6 𝑐𝜀

5
2‖𝑓‖𝐿2(𝑒𝜀), (2.10)

‖(ℋ𝐷
𝜀 − 𝜆)−1𝑓‖𝐿2(𝑒𝜀) 6 𝐶𝜀‖𝑓‖𝐿2(𝑒𝜀), (2.11)

where 𝑐 is a constant independent of 𝑓 and 𝜀,

ℓ𝐷𝜀 (𝑓𝜀) :=

𝜀∫︁
0

𝑥𝜀𝑓𝜀(𝑥𝜀) 𝑑𝑥𝜀, |ℓ𝐷𝜀 (𝑓𝜀)| 6
𝜀

3
2

√
3
‖𝑓𝜀‖𝐿2(𝑒𝜀). (2.12)

The results on convergence of the resolvents of the operator ℋ𝑅
𝜀 are provided in the next

theorem.

Theorem 2.2. As Im𝜆 ̸= 0, for each 𝑓 ∈ 𝐿2(Γ𝜀), the estimates hold:⃦⃦
(ℋ𝑅

𝜀 − 𝜆)−1𝑓 − (ℋ𝑅
0 − 𝜆)−1𝑓 |Γ0 − 𝜀ℓ𝑅𝜀 (𝑓)Ψ‖𝑊 2

2 (𝑒−)⊕𝑊 2
2 (𝑒+) 6 𝑐𝜀

5
2‖𝑓‖𝐿2(𝑒𝜀), (2.13)

‖(ℋ𝑅
𝜀 − 𝜆)−1𝑓‖𝐿2(𝑒𝜀) 6 𝑐𝜀‖𝑓‖𝐿2(𝑒𝜀), (2.14)

where 𝑐 is some constant independent of 𝑓 and 𝜀,

ℓ𝑅𝜀 (𝑓) :=
𝑈−(0, 𝜆)𝑈+(0, 𝜆)

𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆)

𝜀∫︁
0

𝑓(𝑥𝜀) 𝑑𝑥𝜀, |ℓ𝑅𝜀 (𝑓)| 6 𝑐𝜀
1
2‖𝑓‖𝐿2(𝑒𝜀).

The expression 𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆) is non-zero as Im𝜆 ̸= 0.

The operators ℋ𝐷
𝜀 , ℋ𝑅

𝜀 , ℋ𝐷
0 , and ℋ𝑅

0 have compact resolvents and their spectra are pure
discrete. By 𝜆𝐷

𝑛 (𝜀) and 𝜆𝑅
𝑛 (𝜀) we denote the eigenvalues of the operators ℋ𝐷

𝜀 and ℋ𝑅
𝜀 taken

in the ascending order counting the multiplicities. Our second result describes the behavior of
these eigenvalues as 𝜀 → +0. Before we formulate this result, let us describe the spectra of the
operators ℋ𝐷

0 and ℋ𝑅
0 .

The eigenvalues of the operator ℋ𝐷
0 coincide with the roots of the equation

𝑈−(0, 𝜆)𝑈+(0, 𝜆) = 0. (2.15)

We denote these roots by Λ𝐷
𝑛 , 𝑛 ∈ N, and take them in ascending order counting the multi-

plicities as of eigenvalues. If some Λ𝐷
𝑛 is a zero of only one of the functions 𝑈±(0, 𝜆), then such

eigenvalue is simple. If it is a zero of both functions 𝑈±(0, 𝜆), then such eigenvalues is double
and in this case Λ𝐷

𝑛 = Λ𝐷
𝑛+1 according the chosen ordering.

Theorem 2.3. For sufficiently small 𝜀, the eigenvalues 𝜆𝐷
𝑛 (𝜀) are holomorphic in 𝜀 and

𝜆𝐷
𝑛 (0) = Λ𝐷

𝑛 . If Λ𝐷
𝑛 is a simple eigenvalue, then the eigenvalue 𝜆𝐷

𝑛 (𝜀) is also simple and

𝑑𝜆𝐷
𝑛

𝑑𝜀
(0) = −

(︀
𝑈 ′
±(0,Λ𝐷

𝑛 )
)︀2

‖𝑈±(·,Λ𝐷
𝑛 )‖2𝐿2(𝑒±)

as 𝑈±(0,Λ𝐷
𝑛 ) = 0, 𝑈∓(0,Λ𝐷

𝑛 ) = 0. (2.16)

If Λ𝐷
𝑛 = Λ𝐷

𝑛+1 is a double eigenvalue, then the operator ℋ𝐷
𝜀 possesses two eigenvalues 𝜆𝐷

𝑛 (𝜀)
and 𝜆𝐷

𝑛+1(𝜀) converging to Λ𝐷
𝑛 as 𝜀 → +0. The eigenvalue 𝜆𝐷

𝑛 (𝜀) is holomorphic in 𝜀 and the
identity holds:

𝑑𝜆𝐷
𝑛

𝑑𝜀
(0) = −

(︀
𝑈 ′
−(0,Λ𝐷

𝑛 )
)︀2

‖𝑈−(·,Λ−
𝑛 )‖2𝐿2(𝑒−)

−
(︀
𝑈 ′
+(0,Λ𝐷

𝑛 )
)︀2

𝑈+(·,Λ+
𝑛 )‖2𝐿2(𝑒+)

. (2.17)

The eigenvalue 𝜆𝐷
𝑛+1(𝜀) is independent of 𝜀 and coincides with Λ𝐷

𝑛 .
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We denote
𝐹 (𝜆) := 𝑈 ′

+(0, 𝜆)𝑈−(0, 𝜆) + 𝑈 ′
−(0, 𝜆)𝑈+(0, 𝜆).

The eigenvalues of the operator ℋ𝑅
0 coincide with the roots of the equation

𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆) = 0. (2.18)

We denote these eigenvalues by Λ𝑅
𝑛 and take them in the ascending order counting the multi-

plicities.

Theorem 2.4. All eigenvalues Λ𝑅
𝑛 are simple. For each Λ𝑅

𝑛 , the numbers 𝑈−0(0,Λ𝑅
𝑛 ) are

𝑈+0(0,Λ𝑅
𝑛 ) vanish simultaneously.

For sufficiently small 𝜀, the eigenvalues 𝜆𝑅
𝑛 (𝜀) are holomorphic in 𝜀 and the identities hold

𝜆𝑅
𝑛 (0) = Λ𝑅

𝑛 . If 𝑈±(0,Λ𝑅
𝑛 ) = 0, then 𝜆𝑅

𝑛 (𝜀) is independent of 𝜀 and coincides with Λ𝑅
𝑛 . If

𝑈±(0,Λ𝑅
𝑛 ) ̸= 0, the identities hold:

𝑑𝜆𝑅
𝑛

𝑑𝜀
(0) =

𝑈−(0,Λ𝑅
𝑛 )𝑈+(0,Λ𝑅

𝑛 )

(︃
1∫︀
0

𝑊0(𝑡) 𝑑𝑡−
1∫︀
0

(︂
1∫︀
𝑡

𝑊−1(𝑠) 𝑑𝑠

)︂2

𝑑𝑡 + Λ𝑅
𝑛

)︃
(︀
𝑈+(0,Λ𝑅

𝑛 )
)︀2‖𝑈−(·,Λ−

𝑛 )‖2𝐿2(𝑒−) +
(︀
𝑈−(0,Λ𝑅

𝑛 )
)︀2‖𝑈+(·,Λ+

𝑛 )‖2𝐿2(𝑒+)

. (2.19)

Let us discuss the main results. First of all we stress that despite a simple form of the graph
Γ𝜀, the obtained results are quite rich by their content. According Theorems 2.1, 2.2, as the
the edge 𝑒𝜀 shrinks, the resolvents of the operators ℋ𝐷

𝜀 and ℋ𝑅
𝜀 converge to the resolvents of

the operators ℋ𝐷
0 and ℋ𝑅

0 . For the operator ℋ𝐷
𝜀 , the convergence means that if the boundary

vertex of the small edge is subject to the Dirichlet condition, then in the limit 𝜀 → +0, this
boundary condition replaces the original Kirchoff condition in the internal vertex 𝑀0. In view
of work [8], this is a rather expectable result. At the same time, Theorem 2.1 provides more
information on information about the convergence. Namely, estimate (2.10) is established in a
stronger norm of bounded operators acting from 𝐿2(Γ𝜀) into 𝑊 2

2 (𝑒−) ⊕𝑊 2
2 (𝑒+). Moreover, in

this estimate we also provide the first corrector in the expansion of the resolvent, which is the
term ℓ𝐷𝑒 (𝑓𝜀)Ψ. It is small by (2.12). Estimate (2.11) means that the resolvent of the perturbed
operator restricted on the small edge 𝑒𝜀 is small in 𝐿2(𝑒𝜀)-norm. Let us also pay a special
attention to the right hand sides of estimates (2.10) and (2.11). They involve only the norm of
the right hand side over the small edge. This means that if the right hand side vanishes on the
small edge, then the actions of the resolvents of the operators ℋ𝐷

𝜀 and ℋ𝐷
0 on such functions 𝑓

coincides on Γ0 and the actions of the resolvent of the operator ℋ𝐷
𝜀 on the small edge vanishes.

In other words, the difference depends only on values of the right hand side on the small edge.
A similar situation holds for the operators ℋ𝑅

𝜀 and ℋ𝑅
0 . Despite now on the boundary vertex

of the edge 𝑒𝜀 the Neumann condition is imposed, the limiting boundary value at the vertex 𝑀0

involves a special coefficient 𝛽, see (2.8). This coefficient is due to the presence of the potential
𝑊−1 on the edge 𝑒𝜀 in the perturbed operator. Such phenomenon agrees the well-known results
on approximation of one-dimensional delta-interactions by potentials of form 𝜀−1𝑉

(︀
𝑥
𝜀

)︀
with

compactly supported functions 𝑉 having non-zero mean, see, for instance, [6, Ch. 1.3].
The presence of uniform resolvent convergence for the operators with singular perturbation

is a rather expectable fact once we compare the operators on graphs with those in multi-
dimensional domains. As an example, we mention problems in the domains with small holes,
a classical model in the theory of singular perturbations. A uniform resolvent convergence
for such problems was proved in works [1], [2]. From this point of view, singularly perturbed
operators exhibit properties similar to regularly perturbed operators. At the same time, in
the case of regular perturbations, the resolvents and eigenvalues are holomorphic in a small
parameter describing the perturbation. As a rule, the same statement fails for singularly
perturbed operators. For instance, in the classical problem in domains with small holes, one
can construct complete asymptotic expansions in the small parameter, [3, Ch. III], [4], but
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no statements on convergence of these series and moreover, on their sums coinciding with the
perturbed resolvents and eigenvalues, were proved.

In view of the said above, the results of Theorems 2.3, 2.4 look quite unexpectable and
interesting. The main key statement of these theorems is on the holomorphic dependence of the
eigenvalues on the small parameter. In other words, the asymptotic series of the eigenvalues
of the considered operators converge and the sums coincide with the perturbed eigenvalues.
In addition, we find one more phenomenon, stable eigenvalues. For the operators ℋ𝐷

𝜀 , such
eigenvalues arise in the vicinity of limiting double eigenvalue: each such limiting eigenvalue
splits into two perturbed eigenvalues, one of which is stable and independent of 𝜀, while the
other moves to the left. For the operator ℋ𝑅

𝜀 a similar picture holds as well if the eigenfunction
corresponding to the limiting eigenvalue vanishes at the vertex 𝑀0. Here the limiting eigenvalue
is simple but is stable under the perturbation.

For moving eigenvalues of the perturbed operators, we find their first correctors in Theo-
rems 2.3, 2.4, see formulae (2.17), (2.19). As it follows from formula (2.17), in the case of the
Dirichlet condition at the vertex 𝑀𝜀, the first correctors are negative and adding a small edge
acts as a non-positive perturbation. In the case of the Neumann condition at the vertex 𝑀𝜀,
the first corrector becomes more complicated and apriori its sign is unclear.

We expect that the described phenomena are not due to a simple structure of graphs the Γ𝜀

and Γ0 but a general feature of a wide class of graphs with small edges. This conjecture will
be justified in one of our future works.

3. Asymptotics for resolvent of operator ℋ𝐷
𝜀

In the present section we prove Theorem 2.1. Given 𝑓 ∈ 𝐿2(Γ𝜀), by 𝑓0 we denote the
restriction of 𝑓 on the graph Γ0, while 𝑓𝜀 stands for the restriction of 𝑓 on the edge 𝑒𝜀. We let
𝑢𝜀 := (ℋ𝐷

𝜀 −𝜆)−1𝑓 , 𝑢0 := (ℋ𝐷
0 −𝜆)−1𝑓0. In view of boundary condition (2.2) and the definition

of functions 𝑈±, it is clear that

𝑢𝜀 = 𝑢0 + 𝐶𝜀Ψ on Γ0, (3.1)

where 𝐶𝜀 is some constant, which will be determined later.
To determine the function 𝑢𝜀 on the edge 𝑒𝜀, we consider an auxiliary Cauchy problem

− 𝑈 ′′
𝐷 + (𝜀𝑊−1(𝜉) + 𝜀2𝑊0(𝜉) − 𝜇)𝑈𝐷 = 0, 𝜉 ∈ (0, 1), 𝑈𝐷

⃒⃒
𝜉=1

= 0, 𝑈 ′
𝐷

⃒⃒
𝜉=1

= 1, (3.2)

where 𝜇 is a small complex parameter. This problem is uniquely solvable, possesses a solution
𝑈𝐷 = 𝑈𝐷(𝜉, 𝜀, 𝜇) holomorphic with respect to 𝜀 and 𝜇 in 𝑊 2

2 (0, 1)-norm. By straightforward
calculations we confirm that

𝑈𝐷(𝜉, 𝜀, 𝜇) = 𝜉 − 1 + 𝑂(𝜀 + |𝜇|). (3.3)

By 𝒮𝐷
𝜀 we denote the Schrödinger operator in the space 𝐿2(0, 1) with the differential expres-

sion

− 𝑑2

𝑑𝜉2
+ 𝜀𝑊−1(𝜉) + 𝜀2𝑊0(𝜉) (3.4)

subject to the Dirichlet condition. The domain of the operator 𝒮𝐷
𝜀 is the set of the functions

in 𝑊 2
2 (0, 1) vanishing at the boundary. It is clear that the operator 𝒮𝐷

0 is invertible and the
inverse is bounded as an operator from 𝐿2(0, 1) into 𝑊 2

2 (0, 1). This is why the same is true for
the operator 𝒮𝐷

𝜀 −𝜀2𝜆: for sufficiently small 𝜀, the inverse operator (𝒮𝐷
𝜀 −𝜀2𝜆)−1 is well-defined

as a bounded operator from 𝐿2(0, 1) into 𝑊 2
2 (0, 1) and it is also holomorphic in 𝜀. In particular,

(𝒮𝐷
𝜀 − 𝜀𝜆)−1 = (𝒮𝐷

0 )−1 + 𝑂(𝜀), ((𝒮𝐷
0 )−1𝑔)(𝜉) = −

1∫︁
0

|𝜉 − 𝑡| − 𝜉 − 𝑡 + 2𝜉𝑡

2
𝑔(𝑡) 𝑑𝑡, (3.5)
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where 𝑔 ∈ 𝐿2(0, 1). In view of the first boundary condition in (2.2) and formula (3.1), it is easy
to see that on the edge 𝑒𝜀, the function 𝑢𝜀 reads as

𝑢𝜀(𝑥𝜀) = 𝜀2𝑣𝜀

(︁𝑥𝜀

𝜀

)︁
+ 𝐶𝜀

𝑈𝐷

(︀
𝑥𝜀

𝜀
, 𝜀, 𝜀2𝜆

)︀
𝑈𝐷(0, 𝜀, 𝜀2𝜆)

, 𝑣𝜀 := (𝒮𝐷
𝜀 − 𝜀2𝜆)−1𝑓𝜀(𝜀 ·). (3.6)

We determine the constant 𝐶𝜀 by the second condition in (2.2) and identities (3.1), (3.6):

𝐶𝜀

(︂
𝑈 ′
−(0, 𝜆)

𝑈−(0, 𝜆)
+

𝑈 ′
+(0, 𝜆)

𝑈+(0, 𝜆)
− 𝛼 + 𝜀−1𝑈

′
𝐷(0, 𝜀, 𝜀2𝜆)

𝑈𝐷(0, 𝜀, 𝜀2𝜆)

)︂
+ 𝜀𝑣′𝜀(0) = 0. (3.7)

According identities (3.3), for small 𝜀 the relation holds:

𝑈 ′
𝐷(0, 𝜀, 𝜀2𝜆)

𝑈𝐷(0, 𝜀, 𝜀2𝜆)
= 1 + 𝑂(𝜀) ̸= 0, (3.8)

and this is why by equation (3.7) we can determine the constant 𝐶𝜀:

𝐶𝜀 := − 𝜀2𝑣′𝜀(0)
𝑈 ′
𝐷(0,𝜀,𝜀2𝜆)

𝑈𝐷(0,𝜀,𝜀2𝜆)
+ 𝜀

(︁
𝑈 ′
−(0,𝜆)

𝑈−(0,𝜆)
+

𝑈 ′
+(0,𝜆)

𝑈+(0,𝜆)
− 𝛼

)︁ . (3.9)

It follows from relations (3.5) that⃒⃒⃒⃒
⃒⃒𝑣′𝜀(0) − 𝜀−1

𝜀∫︁
0

(︁
1 − 𝑥𝜀

𝜀

)︁
𝑓𝜀(𝑥𝜀) 𝑑𝑥𝜀

⃒⃒⃒⃒
⃒⃒ 6 𝑐𝜀‖𝑓𝜀(𝜀 ·)‖𝐿2(0,1) = 𝑐𝜀

1
2‖𝑓𝜀‖𝐿2(𝑒𝜀). (3.10)

Hereinafter the symbol 𝑐 stands for various inessential constants independent of 𝜀 and 𝑓 . We
also observe that by the Cauchy-Schwarz inequality, the estimate⃒⃒⃒⃒

⃒⃒𝜀2
𝜀∫︁

0

𝑓(𝑥𝜀) 𝑑𝑥𝜀

⃒⃒⃒⃒
⃒⃒ 6 𝜀

5
2‖𝑓𝜀‖𝐿2(Γ𝜀),

⃒⃒⃒⃒
⃒⃒

𝜀∫︁
0

𝑥𝜀𝑓(𝑥𝜀) 𝑑𝑥𝜀

⃒⃒⃒⃒
⃒⃒ 6 𝜀

3
2

√
3
‖𝑓𝜀‖𝐿2(Γ𝜀) (3.11)

holds true. We substitute the obtained estimate, (3.8), (3.10) in (3.9) to obtain⃒⃒⃒⃒
⃒⃒𝐶𝜀 −

𝜀∫︁
0

𝑥𝜀𝑓(𝑥𝜀) 𝑑𝑥𝜀

⃒⃒⃒⃒
⃒⃒ 6 𝑐𝜀

5
2‖𝑓𝜀‖𝐿2(𝑒𝜀). (3.12)

Inequality (2.10) follows the above estimate and formula (3.1).
Let us prove estimate (2.11). First we observe that it follows from (3.12) and the second

inequality in (3.11) that

|𝐶𝜀| 6 𝑐𝜀
3
2‖𝑓𝜀‖𝐿2(𝑒𝜀). (3.13)

We can estimate the norm of the function— 𝑣𝜀 by the aforementioned properties of the operator
(𝒮𝐷

𝜀 − 𝜀2𝜆)−1:⃦⃦⃦
𝑣𝜀

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(𝑒𝜀)

= 𝜀−
1
2‖𝑣𝜀‖𝐿2(0,1) 6 𝑐𝜀−

1
2‖𝑓𝜀(𝜀 ·)‖𝐿2(0,1) = 𝑐𝜀−1‖𝑓𝜀‖𝐿2(𝑒𝜀).

This yields: ⃦⃦⃦
𝜀2𝑣𝜀

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(𝑒𝜀)

6 𝑐𝜀‖𝑓𝜀‖𝐿2(𝑒𝜀). (3.14)

Taking into consideration the obvious relations⃦⃦⃦
𝑈𝐷

(︁ ·
𝜀
, 𝜀, 𝜀2𝜆

)︁⃦⃦⃦
𝐿2(𝑒𝜀)

= 𝜀
1
2

⃦⃦
𝑈𝐷(·, 𝜀, 𝜀2𝜆)

⃦⃦
𝐿2(0,1)

6 𝑐𝜀
1
2 , (3.15)

by (3.13) and (3.6) we get estimate (2.11). The proof of Theorem 2.1 is complete.
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4. Asymptotics for resolvent of operator ℋ𝑅
𝜀

Here we prove Theorem 2.2. As in the previous section, by 𝑓0 we denote the restriction of
𝑓 on the graph Γ0, while 𝑓𝜀 is the restriction of 𝑓 on the edge 𝑒𝜀. We let 𝑢𝜀 := (ℋ𝑅

𝜀 − 𝜆)−1𝑓 ,
𝑢0 := (ℋ𝐷

0 − 𝜆)−1𝑓𝜀. The latter functions again obey identity (3.1) with some constant 𝐶𝜀.
Instead of Cauchy problem (3.2), here we consider the following one:

−𝑈 ′′
𝑅 + (𝜀𝑊−1(𝜉) + 𝜀2𝑊0(𝜉) − 𝜇)𝑈𝑅 = 0, 𝜉 ∈ (0, 1), 𝑈𝑅

⃒⃒
𝜉=1

= 1, 𝑈 ′
𝑅

⃒⃒
𝜉=1

= 0,

where 𝜇 is a small complex parameter. This problem is also uniquely solvable and its solution
𝑈𝑅 = 𝑈𝑅(𝜉, 𝜀, 𝜇) is holomorphic in 𝜀 and 𝜇 in the norm of 𝑊 2

2 (0, 1). It is easy to confirm that
the leading terms of the expansion of the function 𝑈𝑅 is of the form:

𝑈𝑅(𝜉, 𝜀, 𝜇) = 1 + 𝜀𝜑1(𝜉) + 𝜀2𝜑2(𝜉) + 𝜇𝜑3(𝜉) + 𝑂(𝜀3 + 𝜀|𝜇| + |𝜇|2), (4.1)

𝜑1(𝜉) =

1∫︁
𝜉

(𝑡− 𝜉)𝑊−1(𝑡) 𝑑𝑡, 𝜑3(𝜉) =
(1 − 𝜉)2

2
,

𝜑2(𝜉) =

1∫︁
𝜉

(𝑡− 𝜉)
(︀
𝑊0(𝑡) + 𝑊−1(𝑡)𝜑1(𝑡)

)︀
𝑑𝑡.

We also observe that the number 𝛽 should satisfy the identity

𝛽 = −𝜑′
1(0). (4.2)

Instead of the operator 𝒮𝐷
𝜀 , we should take the Schrödinger operator in 𝐿2(0, 1) with differ-

ential expression (3.4), the Dirichlet condition at the point 𝜉 = 0 and the Neumann condition
at the point 𝜉 = 1. We denote such operator by 𝒮𝑅

𝜀 . It possesses the same properties as the
operator 𝒮𝐷

𝜀 , namely, for sufficiently small 𝜀, the inverse operator (𝒮𝑅
𝜀 − 𝜀2𝜆)−1 is well-defined,

bounded as an operator from 𝐿2(0, 1) into 𝑊 2
2 (0, 1), holomorphic in 𝜀 and the relations hold:

(𝒮𝑅
𝜀 − 𝜀𝜆)−1 = (𝒮𝑅

0 )−1 + 𝑂(𝜀), ((𝒮𝑅)−1𝑔)(𝜉) = −
1∫︁

0

|𝜉 − 𝑡| − 𝜉 − 𝑡

2
𝑔(𝑡) 𝑑𝑡, (4.3)

where 𝑔 ∈ 𝐿2(0, 1). An analogue of identity (3.6) reads as follows:

𝑢𝜀(𝑥) = 𝜀2𝑣𝜀

(︁𝑥𝜀

𝜀

)︁
+ 𝐶𝜀

𝑈𝑅

(︀
𝑥𝜀

𝜀
, 𝜀, 𝜀2𝜆

)︀
𝑈𝑅(0, 𝜀, 𝜀2𝜆)

, 𝑣𝜀 := (𝒮𝑅
𝜀 − 𝜀2𝜆)−1𝑓𝜀(𝜀 ·); (4.4)

this ensures the first condition in (2.2). Substituting (3.1), (4.4) into the second condition gives
the equation for 𝐶𝜀:

𝐶𝜀

(︂
𝑈 ′
−(0, 𝜆)

𝑈−(0, 𝜆)
+

𝑈 ′
+(0, 𝜆)

𝑈+(0, 𝜆)
− 𝛼 + 𝜀−1𝑈

′
𝑅(0, 𝜀, 𝜀2𝜆)

𝑈𝑅(0, 𝜀, 𝜀2𝜆)

)︂
+ 𝜀𝑣′𝜀(0) = 0.

According (4.1), (4.2), for small 𝜀 the identities hold true:

𝜀−1𝑈
′
𝑅(0, 𝜀, 𝜀2𝜆)

𝑈𝑅(0, 𝜀, 𝜀2𝜆)
= −𝛽 + 𝑂(𝜀). (4.5)

We also observe that

𝑈 ′
−(0, 𝜆)

𝑈−(0, 𝜆)
+

𝑈 ′
+(0, 𝜆)

𝑈+(0, 𝜆)
− 𝛼− 𝛽 =

𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆)

𝑈−(0, 𝜆)𝑈+(0, 𝜆)
̸= 0, (4.6)
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since otherwise 𝜆 is a complex eigenvalue of the operator ℋ𝑅
0 with the corresponding eigenfunc-

tion equalling to 𝑈±(𝑥±,𝜆)
𝑈±(0,𝜆)

on 𝑒±. The constant 𝐶𝜀 is found by the formula:

𝐶𝜀 = − 𝜀𝑣′𝜀(0)
𝑈 ′
−(0,𝜆)

𝑈−(0,𝜆)
+

𝑈 ′
+(0,𝜆)

𝑈+(0,𝜆)
− 𝛼− 𝛽 +

(︁
𝜀−1𝑈

′
𝑅(0,𝜀,𝜀2𝜆)

𝑈𝑅(0,𝜀,𝜀2𝜆)
+ 𝛽

)︁ , (4.7)

and the second term in the denominator is of order 𝑂(𝜀) by (4.5).
Let us find out the behavior of the numerator in (4.7). Employing (4.3), by straightforward

calculations we check that⃒⃒⃒⃒
𝑣′𝜀(0) −

1∫︁
0

𝑓𝜀(𝜀𝑡) 𝑑𝑡

⃒⃒⃒⃒
6 𝑐𝜀‖𝑓𝜀(𝜀 ·)‖𝐿2(0,1) = 𝑐𝜀

1
2‖𝑓𝜀‖𝐿2(𝑒𝜀),

1∫︁
0

𝑓𝜀(𝜀𝑡) 𝑑𝑡 = 𝜀−1

𝜀∫︁
0

𝑓𝜀(𝑥𝜀) 𝑑𝑥𝜀.

Substituting the obtained relations into (4.7) and bearing in mind (4.5), (4.6), we obtain:⃒⃒⃒⃒
𝐶𝜀 +

𝑈−(0, 𝜆)𝑈+(0, 𝜆)

𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆)

⃒⃒⃒⃒
6 𝑐𝜀

5
2‖𝑓𝜀‖𝐿2(𝑒𝜀). (4.8)

By (3.1) this implies estimate (2.13).
It also follows from (4.8) that

|𝐶𝜀| 6 𝑐𝜀
3
2‖𝑓𝜀‖𝐿2(𝑒𝜀). (4.9)

The first term in (4.4) obeys an estimate similar to (3.14), while the function 𝑈𝑅 satisfies an
estimate similar to (3.15). These estimates and (4.9) prove (2.14).

5. Spectrum of operator ℋ𝐷
𝜀

In the present section we find the spectrum of the operator ℋ𝐷
𝜀 and we prove Theorem 2.3.

The eigenvalues of the operator ℋ𝐷
0 are determined by equation (2.15) that follows boundary

condition (2.7) written for the functions 𝑈±. The eigenfunctions are of the form:

Ψ𝐷
𝑛 (𝑥) =

{︃
𝑈−(𝑥−,Λ

𝐷
𝑛 ) on 𝑒−,

0 on 𝑒+
(5.1)

if Λ𝐷
𝑛 is a zero of the function 𝑈−(0, 𝜆) and

Ψ𝐷
𝑛 (𝑥) =

{︃
0 on 𝑒−,

𝑈+(𝑥+,Λ
𝐷
𝑛 ) on 𝑒+

(5.2)

if Λ𝐷
𝑛 is a zero of the function 𝑈−(0, 𝜆). If Λ𝐷

𝑛 is a joint zero of the functions 𝑈±(0, 𝜆), then
such eigenvalue is double with a pair of associated eigenfunctions determined by identities (5.1),
(5.2).

In what follows we make use of the following auxiliary lemma.

Lemma 5.1. The relations hold:
𝑑𝑈±

𝑑𝜆
(0,Λ𝐷

𝑛 ) = − 1

𝑈 ′
±(0,Λ𝐷

𝑛 )

⃦⃦
𝑈±(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒±)

̸= 0, 𝑈 ′
±(0,Λ𝐷

𝑛 ) ̸= 0.

Proof. Inequality 𝑈 ′
±(0,Λ𝑛) ̸= 0 is obvious since otherwise we are led to the identity 𝑈±(𝑥,Λ𝑛) =

0, which is false.
Differentiating problem (2.9) in 𝜆, it is easy to infer that the functions

𝑣±(𝑥±) :=
𝑑𝑈±

𝑑𝜆
(𝑥±,Λ𝑛)

solve the Cauchy problem

−𝑣′′± + (𝑉± − Λ𝐷
𝑛 )𝑣± = 𝑈±(·,Λ𝑛) in (0, 𝑎±), 𝑣±(𝑎±) = 0, 𝑣′±(𝑎±) = 0.
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Multiplying the equation in this problem by 𝑈±(𝑥±,Λ𝑛) and integrating twice by parts over
the segment (0, 𝑎±), we obtain the required formula.

Let us find the spectrum of the operator ℋ𝐷
𝜀 . We construct the eigenfunctions of the operator

ℋ𝐷
𝜀 as

Ψ𝐷
𝜀 (𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝐶−𝑈−(𝑥−, 𝜆) on 𝑒−,

𝐶+𝑈+(𝑥+, 𝜆) on 𝑒+,

𝐶𝜀𝜀𝑈𝐷

(︁𝑥𝜀

𝜀
, 𝜀, 𝜀2𝜆

)︁
on 𝑒𝜀,

where 𝐶±, 𝐶𝜀 are some constants. It is clear that such function satisfies the required differential
equation and conditions (2.3). This is why it remains to check the condition at the vertex 𝑀0:⎧⎪⎨⎪⎩

𝐶−𝑈−(0, 𝜆) − 𝐶+𝑈+(0, 𝜆) = 0,

𝐶−𝑈−(0, 𝜆) − 𝐶𝜀𝜀𝑈𝐷(0, 𝜀, 𝜀2𝜇) = 0,

𝐶−
(︀
𝑈 ′
−(0, 𝜆) + 𝛼𝑈−(0, 𝜆)

)︀
+ 𝐶+𝑈

′
+(0, 𝜆) + 𝐶𝜀𝑈

′
𝐷(0, 𝜀, 𝜀2𝜆) = 0.

The eigenvalues of the operator ℋ𝐷
𝜀 correspond to nontrivial solutions (𝐶−, 𝐶+, 𝐶𝜀) of this

system of linear equations. Applying the Cramer’s rule to this system, we arrive at the equation
for the eigenvalues:

𝐺𝐷(𝜆, 𝜀) = 0, (5.3)

where

𝐺𝐷(𝜆, 𝜀) := 𝜀𝑈𝐷(0, 𝜀, 𝜀2𝜆)𝐹 (𝜆) +
(︀
𝑈 ′
𝐷(0, 𝜀, 𝜀2𝜆) − 𝜀𝛼𝑈𝐷(0, 𝜀, 𝜀2𝜆)

)︀
𝑈−(0, 𝜆)𝑈+(0, 𝜆).

The function 𝐺𝐷 is holomorphic in 𝜆 and 𝜀. As 𝜀 = 0, Λ = Λ𝐷
𝑛 , equation (5.3) obviously holds.

By the holomorphic property of the functions 𝐺𝐷 in 𝜆 and 𝜀, we obtain immediately that the
roots of equation (5.3) converge to Λ𝐷

𝑛 as 𝜀 → +0.
To describe the behavior of roots of equation (5.3) for small 𝜀, we need to study the structure

of the function 𝐺𝐷 as 𝜆 is close to Λ𝐷
𝑛 .

First we suppose that Λ𝐷
𝑛 is a simple eigenvalue. For the sake of definiteness, we suppose

that Λ𝐷
𝑛 is a zero of the function 𝑈−(0, 𝜆) and 𝑈+(0,Λ𝐷

𝑛 ) ̸= 0. Then employing Lemma 5.1 and
identities (3.3), it is straightforward to infer that

𝑑𝐺𝐷

𝑑𝜆
(Λ𝐷

𝑛 , 0) = 𝑈+(0,Λ𝐷
𝑛 )

𝑑𝑈−

𝑑𝜆
(0,Λ𝐷

𝑛 ) = −𝑈+(0,Λ𝐷
𝑛 )

𝑈 ′
−(0,Λ𝐷

𝑛 )

⃦⃦
𝑈−(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒−)

̸= 0. (5.4)

Therefore, by the implicit function theorem, there exists the unique root 𝜆𝑛(𝜀) of equation (5.3)
converging to Λ𝐷

𝑛 and this root is holomorphic in 𝜀. Since by identity (3.3) we have

𝑑𝐺𝐷

𝑑𝜀
(Λ𝐷

𝑛 , 0) = −𝑈 ′
−(0,Λ𝐷

𝑛 )𝑈+(0,Λ𝐷
𝑛 ),

by (5.4) and the formula

𝑑𝜆𝐷
𝑛

𝑑𝜀
(0) = −

𝑑𝐺𝐷

𝑑𝜀
(Λ𝐷

𝑛 , 0)
𝑑𝐺
𝑑𝜆

(Λ𝐷
𝑛 , 0)

(5.5)

we obtain immediately identity (2.16).
Let Λ𝐷

𝑛 be a double eigenvalue, that is, Λ𝐷
𝑛 is a joint zero of the functions 𝑈−(0, 𝜆) and

𝑈+(0, 𝜆). Then it follows from the definition of the function 𝐹 and Lemma 5.1 that

𝐹 (𝜆) = (𝜆− Λ𝐷
𝑛 )𝐹*(𝜆), 𝑈+(0, 𝜆)𝑈−(0, 𝜆) = (𝜆− Λ𝐷

𝑛 )2𝑄(𝜆), (5.6)
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where 𝐹*(𝜆), 𝑄(𝜆) are holomorhpic functions and

𝐹*(Λ
𝐷
𝑛 ) = −

𝑈 ′
+(0,Λ𝐷

𝑛 )

𝑈 ′
−(0,Λ𝐷

𝑛 )

⃦⃦
𝑈−(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒−)

−
𝑈 ′
−(0,Λ𝐷

𝑛 )

𝑈 ′
+(0,Λ𝐷

𝑛 )

⃦⃦
𝑈+(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒+)

,

𝑄(Λ𝐷
𝑛 ) =

1

𝑈 ′
−(0,Λ𝐷

𝑛 )𝑈 ′
+(0,Λ𝐷

𝑛 )

⃦⃦
𝑈−(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒−)

⃦⃦
𝑈+(·,Λ𝐷

𝑛 )
⃦⃦2
𝐿2(𝑒+)

̸= 0.

(5.7)

Substituting relations (5.6), (5.7) into equation (5.3), we see that it has two roots converging to
Λ𝐷

𝑛 . The first root is independent of 𝜀 and coincides with Λ𝐷
𝑛 . The second root is determined

by the equation

𝜀𝑈𝐷(0, 𝜀, 𝜀2𝜆)𝐹*(𝜆) +
(︀
𝑈 ′
𝐷(0, 𝜀, 𝜀2𝜆) − 𝜀𝛼𝑈𝐷(0, 𝜀, 𝜀2𝜆)

)︀
(𝜆− Λ𝐷

𝑛 )𝑄(𝜆) = 0.

We apply the implicit function theorem to this equation in the same way as above. This
immediately leads us to the conclusion that the latter equation possesses exactly one solution
converging to Λ𝐷

𝑛 as 𝜀 → +0, this solution is holomorphic in 𝜀 and identity (2.17) holds. Since
the left hands side of this identity is negative, it is cleat that for small positive 𝜀 the root
obeying (2.17) is less than Λ𝐷

𝑛 . The proof of Theorem 2.1 is complete.

6. Spectrum of operator ℋ𝑅
𝜀

The present section is devoted to the proof of Theorem 2.4. First we clarify the origination
of equation (2.18). The eigenfunctions of the operator ℋ𝑅

0 are to be sough as

Ψ𝑅(𝑥) :=

{︂
𝐶−𝑈−(𝑥−, 𝜆) on 𝑒−,

𝐶+𝑈+(𝑥+, 𝜆) on 𝑒+,
(6.1)

where 𝐶± are some constants. Condition (2.8) leads us to a system of linear equations for
these constants and the Cramer’s rule allows us to find the cases when the system possesses
a non-trivial solution. The vanishing of the corresponding determinant gives rise to equation
(2.18).

Each eigenvalue Λ𝑅
𝑛 is simple since otherwise we are led to the existence of an eigenfunction

given by formula (6.1) with 𝐶1 = 0. By boundary condition (2.8) this yields 𝐶2 = 0 that
contradicts the definition of an eigenfunction.

Assume now that 𝑈−(0,Λ𝑅
𝑛 ) = 0. Then we necessarily have 𝑈 ′

−(0,Λ𝑅
𝑛 ) ̸= 0 and it follows from

equation (2.18) that 𝑈+(0,Λ𝑅
𝑛 ) = 0. In the same way we check that the identity 𝑈+(0,Λ𝑅

𝑛 ) = 0
implies 𝑈−(0,Λ𝑅

𝑛 ) = 0. This is why the numbers 𝑈−0(0,Λ𝑅
𝑛 ) and 𝑈+0(0,Λ𝑅

𝑛 ) vanish simultane-
ously.

In what follows, we shall need an analogue of auxiliary lemma 5.1.

Lemma 6.1. Let 𝑈±(0,Λ𝑅
𝑛 ) = 0. Then

𝑑𝐹

𝑑𝜆
(Λ𝑅

𝑛 ) = −
𝑈 ′
+(0,Λ𝑅

𝑛 )

𝑈 ′
−(0,Λ𝑅

𝑛 )

⃦⃦
𝑈−(·,Λ𝑅

𝑛 )
⃦⃦2
𝐿2(𝑒−)

−
𝑈 ′
−(0,Λ𝑅

𝑛 )

𝑈 ′
+(0,Λ𝑅

𝑛 )

⃦⃦
𝑈+(·,Λ𝑅

𝑛 )
⃦⃦2
𝐿2(𝑒+)

̸= 0. (6.2)

Let 𝑈±(0,Λ𝑅
𝑛 ) ̸= 0. Then

𝑑(𝐹 − (𝛼 + 𝛽)𝑈−(0, ·)𝑈+(0, ·))
𝑑𝜆

(Λ𝑅
𝑛 ) =

𝑈+(0,Λ𝑅
𝑛 )

𝑈−(0,Λ𝑅
𝑛 )

⃦⃦
𝑈−(·,Λ𝑅

𝑛 )
⃦⃦2
𝐿2(𝑒−)

+
𝑈−(0,Λ𝑅

𝑛 )

𝑈+(0,Λ𝑅
𝑛 )

⃦⃦
𝑈+(·,Λ𝑅

𝑛 )
⃦⃦2
𝐿2(𝑒+)

̸= 0.

(6.3)

Proof. Similar to the proof of Lemma 5.1, it is easy to check the inequalities:

𝑈±(0,Λ𝑅
𝑛 )

𝑑𝑈 ′
±

𝑑𝜆
(0,Λ𝑅

𝑛 ) − 𝑈 ′
±(0,Λ𝑅

𝑛 )
𝑑𝑈±

𝑑𝜆
(0,Λ𝑅

𝑛 ) =
⃦⃦
𝑈±(·,Λ𝑅

𝑛 )
⃦⃦2
𝐿2(𝑒±)

> 0. (6.4)
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Assume first that 𝑈±(0,Λ𝑅
𝑛 ) = 0. Then it follows from (6.4) that 𝑈 ′

±(0,Λ𝑅
𝑛 ) ̸= 0. It is clear

that
𝑑𝐹

𝑑𝜆
(Λ𝑅

𝑛 ) = 𝑈 ′
+(0,Λ𝑅

𝑛 )
𝑑𝑈−

𝑑𝜆
(0,Λ𝑅

𝑛 ) + 𝑈 ′
−(0,Λ𝑅

𝑛 )
𝑑𝑈+

𝑑𝜆
(0,Λ𝑅

𝑛 ).

The obtained identities imply formula (6.2) for the derivative of the function 𝐹 (𝜆). Moreover,

the quotients
𝑈 ′
+(0,Λ𝑅

𝑛 )

𝑈 ′
−(0,Λ𝑅

𝑛 )
and

𝑈 ′
−(0,Λ𝑅

𝑛 )

𝑈 ′
+(0,Λ𝑅

𝑛 )
are of the same sign and this is why the derivative of the

function 𝐹 at the point Λ𝑅
𝑛 is non-zero.

We proceed to the case 𝑈±(0,Λ𝑅
𝑛 ) ̸= 0. Then it follows from equation (2.18) that

𝑈 ′
±(0,Λ𝑅

𝑛 ) = (𝛼 + 𝛽)𝑈±(0,Λ𝑅
𝑛 ) − 𝑈 ′

∓(0,Λ𝑅
𝑛 )

𝑈±(0,Λ𝑅
𝑛 )

𝑈∓(0,Λ𝑅
𝑛 )

.

Employing these identities, by straightforward calculations we check

𝑑(𝐹 − (𝛼 + 𝛽)𝑈−(0, ·)𝑈+(0, ·))
𝑑𝜆

(Λ𝑅
𝑛 ) = 𝑈 ′

+(0,Λ𝑅
𝑛 )

𝑑𝑈−

𝑑𝜆
(0,Λ𝑅

𝑛 ) + 𝑈 ′
−(0,Λ𝑅

𝑛 )
𝑑𝑈+

𝑑𝜆
(0,Λ𝑅

𝑛 )

+ 𝑈−(0,Λ𝑅
𝑛 )

𝑑𝑈 ′
+

𝑑𝜆
(0,Λ𝑅

𝑛 ) + 𝑈+(0,Λ𝑅
𝑛 )

𝑑𝑈 ′
−

𝑑𝜆
(0,Λ𝑅

𝑛 )

− (𝛼 + 𝛽)𝑈−(0,Λ𝑅
𝑛 )

𝑑𝑈+

𝑑𝜆
(0,Λ𝑅

𝑛 ) − (𝛼 + 𝛽)𝑈+(0,Λ𝑅
𝑛 )

𝑑𝑈−

𝑑𝜆
(0,Λ𝑅

𝑛 )

= − 𝑈+(0,Λ𝑅
𝑛 )

𝑈−(0,Λ𝑅
𝑛 )

𝑈 ′
−(0,Λ𝑅

𝑛 )
𝑑𝑈−

𝑑𝜆
(0,Λ𝑅

𝑛 ) + 𝑈+(0,Λ𝑅
𝑛 )

𝑑𝑈 ′
−

𝑑𝜆
(0,Λ𝑅

𝑛 )

− 𝑈−(0,Λ𝑅
𝑛 )

𝑈+(0,Λ𝑅
𝑛 )

𝑈 ′
+(0,Λ𝑅

𝑛 )
𝑑𝑈+

𝑑𝜆
(0,Λ𝑅

𝑛 ) + 𝑈−(0,Λ𝑅
𝑛 )

𝑑𝑈 ′
+

𝑑𝜆
(0,Λ𝑅

𝑛 )

=
𝑈+(0,Λ𝑅

𝑛 )

𝑈−(0,Λ𝑅
𝑛 )

(︂
𝑈−(0,Λ𝑅

𝑛 )
𝑑𝑈 ′

−

𝑑𝜆
(0,Λ𝑅

𝑛 ) − 𝑈 ′
−(0,Λ𝑅

𝑛 )
𝑑𝑈−

𝑑𝜆
(0,Λ𝑅

𝑛 )

)︂
+

𝑈−(0,Λ𝑅
𝑛 )

𝑈+(0,Λ𝑅
𝑛 )

(︂
𝑈+(0,Λ𝑅

𝑛 )
𝑑𝑈 ′

+

𝑑𝜆
(0,Λ𝑅

𝑛 ) − 𝑈 ′
+(0,Λ𝑅

𝑛 )
𝑑𝑈+

𝑑𝜆
(0,Λ𝑅

𝑛 )

)︂
.

By formulae (6.4) this implies identity (6.3). Here the quotients 𝑈+(0,Λ𝑅
𝑛 )

𝑈−(0,Λ𝑅
𝑛 )

and 𝑈−(0,Λ𝑅
𝑛 )

𝑈+(0,Λ𝑅
𝑛 )

are of

the same sign and this is why the right hand side of identities (6.3) does not vanish. The proof
is complete.

Let us find the spectrum of the operator ℋ𝑅
𝜀 . We seek the eigenfunctions of the operator ℋ𝑅

𝜀

as

Ψ𝑅
𝜀 (𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝐶−𝑈−(𝑥−, 𝜆) on 𝑒−,

𝐶+𝑈+(𝑥+, 𝜆) on 𝑒+,

𝐶𝜀𝑈𝑅

(︁𝑥𝜀

𝜀
, 𝜀, 𝜀2𝜆

)︁
on 𝑒𝜀,

where 𝐶±, 𝐶𝜀 are some constants. Again, it is sufficient to check the condition at the point 𝑀0

for such functions; this leads us to the system of linear equations:⎧⎪⎨⎪⎩
𝐶−𝑈−(0, 𝜆) − 𝐶+𝑈+(0, 𝜆) = 0,

𝐶−𝑈−(0, 𝜆) − 𝐶𝜀𝑈𝑅(0, 𝜀, 𝜀2𝜇) = 0,

𝐶−
(︀
𝑈 ′
−(0, 𝜆) + 𝛼𝑈−(0, 𝜆)

)︀
+ 𝐶+𝑈

′
+(0, 𝜆) + 𝐶𝜀𝜀

−1𝑈 ′
𝑅(0, 𝜀, 𝜀2𝜆) = 0.

Equating the determinant of this system to zero, we arrive to the equation for the eigenvalues
of the operator ℋ𝑅

𝜀 :

𝐺𝑅(𝜆, 𝜀) = 0, (6.5)
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where

𝐺𝑅(𝜆, 𝜀) :=𝑈𝑅(0, 𝜀, 𝜀2𝜆)
(︀
𝐹 (𝜆) − 𝛼𝑈−(0, 𝜆)𝑈+(0, 𝜆)

)︀
+ 𝜀−1𝑈 ′

𝑅(0, 𝜀, 𝜀2𝜆)𝑈−(0, 𝜆)𝑈+(0, 𝜆)

=
(︀
𝐹 (𝜆) − (𝛼 + 𝛽)𝑈−(0, 𝜆)𝑈+(0, 𝜆)

)︀
+ 𝐴(𝜆, 𝜀)𝑈−(0, 𝜆)𝑈+(0, 𝜆),

𝐴(𝜆, 𝜀) :=𝜀−1𝑈 ′
𝑅(0, 𝜀, 𝜀2𝜆) + 𝛽𝑈𝑅(0, 𝜀, 𝜀2𝜆).

By relations (4.1), (4.2), the function 𝐴 is holomorphic in 𝜆 and 𝜀 and the identities hold:

𝐴(Λ𝑅
𝑛 , 0) = 0,

𝑑𝐴

𝑑𝜀
(Λ𝑅

𝑛 , 0) = 𝛽𝜑1(0) + 𝜑′
2(0) + Λ𝑅

𝑛𝜑
′
3(0). (6.6)

This is why the function 𝐺𝑅 is holomorphic in 𝜆 and 𝜀. It is clear that equation (6.5) holds
as Λ = Λ𝑅

𝑛 , 𝜀 = 0. This implies immediately that the roots of equation (6.5) converge to Λ𝑅
𝑛 as

𝜀 → +0.
Let us find out the structure of the function 𝐺𝑅 in the vicinity of the points 𝜆 = Λ𝑅

𝑛 . First
we consider the case 𝑈±(Λ𝑅

𝑛 ) = 0. Here by (6.2) and relations (4.1) we have

𝑑𝐺𝑅

𝑑𝜆
(Λ𝑅

𝑛 , 0) =
𝑑𝐹

𝑑𝜆
(Λ𝑅

𝑛 ) ̸= 0

and by the implicit function theorem, equation (6.5) possesses the unique solution. By straight-
forward substitution we infer easily that 𝜆 = Λ𝑅

𝑛 is a solution of equation (6.5) for all considered
values 𝜀. This proves the theorem in the case 𝑈±(Λ𝑅

𝑛 ) = 0.
Assume now that 𝑈±(Λ𝑅

𝑛 ) ̸= 0. In this case by (6.3), (6.6) we have

𝑑𝐺𝑅

𝑑𝜆
(Λ𝑅

𝑛 , 0) =
𝑑(𝐹 − (𝛼 + 𝛽)𝑈−(0, ·)𝑈+(0, ·))

𝑑𝜆
(Λ𝑅

𝑛 ) ̸= 0 (6.7)

and by the implicit function theorem there exists the unique solution 𝜆𝑅
𝑛 (𝜀) of equation (6.5)

holomorphic in 𝜀 and converging to Λ𝑅
𝑛 as 𝜀 → +0. The derivative of this solution is expressed

by the formula similar to (5.5):

𝑑𝜆𝑅
𝑛

𝑑𝜀
(0) = −

𝑑𝐺𝑅

𝑑𝜀
(Λ𝑅

𝑛 , 0)
𝑑𝐺𝑅

𝑑𝜆
(Λ𝑅

𝑛 , 0)
= −

𝑑𝐴
𝑑𝜀

(Λ𝑅
𝑛 , 0)

𝑑(𝐹−(𝛼+𝛽)𝑈−(0,·)𝑈+(0,·))
𝑑𝜆

(Λ𝑅
𝑛 )

, (6.8)

where we have also employed formula (6.7). Let us calculate the denominator in this formula.
We have

𝜑′
2(0) = −

∫︁ 1

0

𝑊0(𝑡) 𝑑𝑡−
∫︁ 1

0

𝑊−1(𝑡)𝜑1(𝑡) 𝑑𝑡,

−
∫︁ 1

0

𝑊−1(𝑡)𝜑1(𝑡) 𝑑𝑡 = −
∫︁ 1

0

𝜑′′
1(𝑡)𝜑1(𝑡) 𝑑𝑡 = 𝜑1(0)𝜑′

1(0) +

∫︁ 1

0

(︀
𝜑′
1(𝑡)
)︀2

𝑑𝑡

= −𝛽𝜑1(0) +

∫︁ 1

0

⎛⎝ 1∫︁
𝑡

𝑊−1(𝑠) 𝑑𝑠

⎞⎠2

𝑑𝑡.

Substituting the obtained identities and (6.3), (6.6) into (6.8), we arrive at formula (2.19). The
proof of Theorem 2.4 is complete.
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