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DECAY OF SOLUTION OF ANISOTROPIC DOUBLY
NONLINEAR PARABOLIC EQUATION IN UNBOUNDED
DOMAINS

L.M. KOZHEVNIKOVA, A.A. LEONTIEV

Abstract. This work is devoted to a class of parabolic equations with a double nonlinearity
whose representative is a model equation
n
(ul"2u)e = (Jtee P *Uny)as Pn> ... 2p1 >k, ke (L,2)
a=1

For the solution of Dirichlet initial boundary value problem in a cylindrical domain D =
(0,00) xQ, Q C Ry, n > 2, with homogeneous Dirichlet boundary condition and compactly
supported initial function, precise estimates the decay rate as t — oo are established.
Earlier these results were obtained by the authors for & > 2. The case k € (1,2) differs by
the method of constructing Galerkin approximations that for an isotropic model equation
was proposed by E.R. Andriyanova and F.Kh. Mukminov.

Keywords: anisotropic equation, doubly nonlinear parabolic equations, existence of strong
solution, decay rate of solution.

1. INTRODUCTION

Let € be an unbounded domain in the space R,, = {x = (x1,22,...,2,)}, n > 2. In the
cylindrical domain D = {t > 0} x Q we consider a Dirichlet initial boundary value problem for
a second order anisotropic quasilinear parabolic equation

n

(Julf ) = (aa(vl Jta)a,, k€ (1,2), (t,x) € D; (1)
u(t,x)‘szo, S ={t>0} x o 2)
U(O,X) = QO(X)7 QO(X) € Lk(Q>’ Pra (X) S Lpa (Q)7 o= 1,_TL (3)

Nonnegative functions aq(s), s > 0, a = 1,n are assumed to obey the conditions a,(0) = 0,
aa(s) € C1(0,00),

asP2/2 Cag(s) < asPe—2/2, (4)
£l a(s) < aals) + dl(s)s < baa(s) (5)
with positive constants @ > @, 2b > p1 > k (p1 < ps < ... < pn). For example, aq(s) = sPa=2/2,

a=1,n,b=p,/2.
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The work is devoted to studying the stabilization rate as t — oo of the solution to problem
(1)) with a compactly supported initial function ¢(x).

The study of behavior of solutions to initial boundary value problems for linear and quasi-
linear parabolic equations of second and higher orders as t — oo was done in the works of
A K. Gushchin, V.I. Ushakov, F.Kh. Mukminov, A.F. Tedeev, L.M. Kozhevnikova, R.Kh. Ka-
rimov, and others. The surveys of appropriate results can be found in [I], [2], [3].

In the isotropic case, i.e., as all p, are same and equal to p, p > 2, for k = 2 problem —
was studied in work [3]. Estimates for the decay rate of the solution to a Cauchy problem for
a parabolic degenerate equation with the anisotropic p-Laplacian and a double nonlinearity as
k € (1,2) were established in the work of S.P. Degtyarev, A.F. Tedeev [4].

The questions on existence and uniqueness of solutions to an isotropic parabolic equation with
a double nonlinearity were considered in the works by P.A. Raviart, J.L. Lions, A. Bamberger,
O. Grange, F. Mignot, H-W. Alt, S. Luckhaus, F. Bernis, and others. However, to obtain a
lower bound for the decay of the solution as t — oo one needs additional smoothness.

F.Kh. Mukminov and E.R. Andriyanova [5] suggested a usual approach of construction a
strong solution to a model isotropic parabolic equation with a double non-linearity in an un-
bounded domain on the basis of Galerkin approximations which in the cases k € (1,2) and
k > 2 are constructed in different ways. In work [6] this method was adapted to a certain class
of anisotropic parabolic equation like as k > 2 and on the basis of Galerkin approxima-
tion they obtained an estimate for the admissible decay rate of the solution in an unbounded
domain. The present work is the continuation of work [6] for the case k € (1, 2).

We consider the domains located along a selected axis Ox,, s € 1,n (the domain © lies
in the half-space Rf[s] = {x € R, |zs > 0}, the cross-section v, ={x € Q |z, =r} is
non-empty and bounded for each r > 0). In what follows we shall employ the notation
O ={x€Q|a<z, <b}, at that the values a = 0, b = oo are omitted.

The initial function is assumed to be bounded and compactly supported so that

supp ¢ C Q% Ry > 0. (6)

Theorem 1. Let the domain is located along the axis Ox,, s € 1,n and condition @ 18
satisfied. Then there ezist positive numbers k(ps, k), M(ps, k) and a bounded solution u(t,x)
to problem — such that for all t > 0, r > 2Ry the estimate

pe] /@)
u(®lle < Mesp (—m ) el )

holds true.

On the basis of inequality (7)) we establish a lower estimate for decay of a solution to problem
f as t — o0.

The admissible stabilization rate for a solution to an high order isotropic quasilinear parabolic
equation as k = 2 was studied by A.F. Tedeev [7] for a Dirichlet initial boundary value problem
and by N. Alikakos, R. Rostmanian [§] for a Cauchy problem.

Theorem 2. Suppose the domain is located along the axis Ox,, s € 1,n and condition @

-~

is satisfied. Then there exists a positive number C(p, k,p1,a,b) and a bounded solution u(t,x)

to problem f such that for all t > 0 the inequality

a2y > Nl (o)t + 1)~/ 8
holds true.
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We define a function

() = inf {9z, lz,y o) | 900) € CE (), lgllzaan = 1} 7> 0. (9)
we shall study the decay in the domain obeying the condition
lim py(r) = 0. (10)
r—00

It is shown that if this condition is not satisfied, the maximal decay rate of a solution is attained,
i.e., the estimate

|w(t)|| L, < Mt=YE=R ¢ 50, (11)
£ (2)

is valid (see [6, Cor. 2]).
We let

() = it {ge, 1,000 | 903) € C), gl =1}, 7> 0. (12)

We assume that the domain €2 satisfies the condition

/Vpl/ps (r)dr = oo. (13)
1
Let r(t) be an arbitrary positive function obeying the inequality
r(t)
O =g P ) R (14
1

The existence of such function follows from . Moreover, it follows from , that

tliglo r(t) = oo.

Theorem 3. Suppose the domain is located along the axis Oxy, s € 2,n and the conditions

@, , are satisfied. Then there exist a positive number M (ps,p1,|¢|lL. @) and a
bounded solution u(t, x) to problem (I)-(3) such that the estimate

()| Luiey < M (G (r(£) VPP e >0, (15)
holds true.

If the conditions
pi(r)y >Cr=* r>1, a,C >0,

T

1
lim —/Vpl/ps(p)dp = 00,

r—oo ln 7
1

are satisfied, one can let

r(t) =t/ >0, e€e(0,1), (16)
and estimate casts into the form
[u(t)[| () < Mt~/ g >0, (17)

The choice of the function r(¢) by formula is satisfactory since estimate has an
exponent close to the exponent 1/(p; — k) of lower bound . Other examples of the domains
of revolution are provided in work [6].
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2.  AUXILIARY STATEMENTS

Let || - ||,,¢ be the norm in L,(Q), p > 1, (-,-)g be the scalar product in Ly(Q) and the values
p =2, Q= Q are omitted. By D’ = (a,b) x Q we denote the cylinder, the values a = 0 and
b = oo can be absent.

A Banach space 17, 1(€) is introduced as the completion of the space Cg°(Q) w.r.t. the
norm

n
lalhw, 20y = 3 atae e + Nl
a=1

We introduce Banach spaces W 01 (D7), W iz;(DT) as the completions of the space C§°(D™ )
w.r.t. the norms

lullor oy = lulleor + D 1t llpa,0r
' a=1
n
||“||w,§:;(DT) = [lull,pr + lluellsor + Z [tz llpa, 07
a=1

respectively.
Definition 1. By a genemlized solution to problem (|1} .f. we call a function u(t,x) such

that for all T > 0 u(t,x) € Wk p(DT) and the integral identity

/( u|*2uv, —{—Zaa uxavxa) dxdt = /]gp )" 20(x)v(0, x)dx (18)

T
is satisfied for each function v(t,x) EW oL (D7), v(T,x) = 0.
Conditions imply inequalities
(p1 — Daa(s) < an(s) +2a,(s)s < Can(s), ¢=20—1, s>0, a=1,n, (19)
which can be rewritten as

0 < (an(2?)2) < Can(2?), z€R, a=1,n. (20)

We let A,(s) = [ aq(7)dr, then, employing conditions , we deduce the inequalities
0

%Aa(s) < aa(s)s <bAL(s), s>0, a=T1,n. (21)
Lemma 1. Fach bounded set of reflexive Banach space is weakly compact (see [9, Ch. V,

Sec. 19.7, Th. 1]).

Remark 1. The spaces I/f/kL(Q), W 2:11)(DT) are reflexive separable Banach spaces (cf. [0,
Rem. 1]).

Remark 2. In what follows, in order to avoid bulking while arguing, instead of the statements
M converging in Ly(Q) as i — 0o” we
shall say shortly “a sequence u™ selectively converges in Ly(Q2) as M — oo”. In a similar way
we shall employ the notion “selectively weakly converges”, etc.

like “in a sequence u™ one can select a subsequence u

Lemma 2. Let g™ (t,x), M = 1,00, g(t,x) be functions in L,(Q), 1 < p < oo such that
19" lpo <C, g™ = gasM — oo a.e. inQ,
then g™ — g as M — oo weakly in L,(Q) (see [10, Ch. I, Sec. 1.4, Lem. 1.3])
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Remark 3. Lemma is formulated in [10] for a bounded domain Q, but it is true also for an
arbitrary unbounded domain. We shall apply Lemma [2| for QQ = Q and for Q = (0,T) x €.
Lemma 3. Let the system of functions ¢;(x) € C3°(Q), i = 1,00, is linearly independent

and its linear span is a dense set in the space W, |, L(Q). By Pr we denote the set of the functions

L
> di(t)Yi(x), where d;(t) € C°[0,T]. Then the set P = U Py, is dense in the space Wk L(DT).

=1
Proof. Let us prove the density of the set P in the space Cg°(DX{1). Let v(t,x) € C°(D1H),
obviously, v(t,x) € C([-1,7 + 1] — I/i)/}gp(Q)) We choose an arbitrary € and fix ¢ such that
for all t,t* € [—1,T + 1] obeying |t — t*| < 20 the inequality

[o(t) = v(t") (22)

V?/;lc’ p(Q) < €

holds true. N

We choose a finite sequence of points ¢;, j = 1, N such that (—=1,7 +1) = |J (¢; — 9,t; +6)
j=1

and a partition of the unity
S wit) =1, wi(t) € C((t; — 6.4, +6)) 0 <wy(t) < L.

The definition of the system of the functions v (x) implies that for each j, j = 1, N, there
exists an index L;(¢) and numbers fjk such that

[o(t; nykwk <e j=1,N. (23)

J=1,N

N Lj L N
Let us show that the functions Y > w;(t) fixte(x) = > (Z wj(t)fjk) Yr(x), L = max Lj,
j=1k=1 k=1 \j=1

fit =0, k > L;, approximate the function v(t,x) in the norm of the space V?/}QP(Q) uniformly
int e [—1,T + 1]. Indeed, employing (22 @ we deduce

max ||v(t,x) — Z O fie@llg, 1 o) =

te[—1,T+1]

N
= max HZw] Z U)j(t)fjkwk(X)HVf/k1(Q)<

te[—1,T+1]

N L

< max |w;(t)v(t,x) — w;(t) Z Firton(x)]] o L

= [—6+tj,5+tj}

N

< max ”U t X Zf]kwk
J

— [=5+t;,0+1;] Wk lp(Q

N

<0 max o(tx) = o(t;. )|

° +
o et o Wy, b ()

N L
+Z |v(ts, x) — ijkiﬂk(X)HV; L S Ne+ Ne = 2Ne =¢;.
= k=1

k,p
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L

We introduce the notation fi(t) = Y w;(t)fix. We take w € C(D'') and let
k=1

v(t,x) = wy(t,x) € CF (D). According to proven above, for each e; > 0 there exists L(e;)

such that
L(e1)

te[I—nlE,li}“{—i-l}Hwt ka %)l e S (24)
t

Consider the function w(t,x) = [ w.(7,x)dr and let us show that the functions
.

L t o
> (J fulm)dr)ir(x) approximate the function w(t,x) in the space W, 1L(€) uniformly in

k
t€[-1,T+1]. Indeed, as L — o

L

(¢, )d
te[Enlf,ii}“(Jrl]Hw x) Z/fk JUrlx TH

k=1,

L

= mlaTXHH/wTTxdT—Z/fk Vg (X)dT

k=1,
= max H/(wTTx
(—1,7+1]

L
<(T+2) max |w,(7r,x)— ka(T)wk(X)HV;k vy 0
k=1 °

T€[-1,T+1]

o

I (Q)

L

S h <T>wk<x>) @rllg s <

T

Denote di(7) = [ fi(p)dp, then inequality and the latter relations as L — oo imply

-1

T di (T
P 0 = A 0
L
[ Ilngfl HU}(T X) £ dk(T)wk(X) Vf/k,lp(Q) - 07
. L
that yields ||w(7,x) — Z K (T)Uk(x )”Wk LT — 0. O

Theorem 4. Let p(x) er/kz,Il)(Q)z p1 >k, k€ (1,2), then there exists a generalized solution
u(t,x) to problem (1) -[) which for each T > 0 satisfies the conditions

U € Lo((0,00), W 5()); (25)
u| #7272y, € Ly(DT),  w e C([0,00), Li()); (26)
u, € Lp(DT). (27)

At that, the inequalities

t
(k= Dllu®)li + WZ/ e, (T)padr < (k= Dlellz, t>0, (28)
a=1 0



DECAY OF SOLUTION OF ANISOTROPIC PARABOLIC EQUATION... 69

d B n
(k— 1)@||U(t)ll’é +ka Y g, (B)]52 <0, >0, (29)
a=1

hold true.

Proof. We choose a linearly independent system of functions ;(x) € C§°(2), i = 1,00, such

that its linear span is a dense set in the space I/f/ 1“1)(9) This system is assumed to be
orthonormalized in Ly(2). We let I = Uf\il supp ¥;(x), m; = max |1 (x)].
xel

M
We seek approximate solutions uM (t,x) as uM(t,x) = > M (t)h;(x), M =1,00. At that,
i=1

the functions ¢ (¢), t € [0, 00), are determined by the system of ordinary differential equations

(@M, wis) + D (aal(ug)uss (85)a,) = 0, (30)
a=1
M mye R ow 7
w :(u )+§5 , J=1M,
(we shall choose the numbers ¢ > 0 later) and by initial conditions
"0y =¢c, i=1M, (31)

chosen so that
M [¢]
u™(0,x) = Zcfwwz(x) — p(x) in W5 (Q) as M — oco. (32)
i=1
It implies immediately that

1™ ()l @ < Er(lllw, 10y). M = T55. (33)

d
Let us make sure that equations are solvable w.r.t. the derivatives ﬁcfw (t). It is obvious
that equations (30]) read as

ZAji(cf/‘[(t),...,c%(t))—c (t) = Fy(cM(t),...,ALt)), j=1,M, (34)

M 2
Aji<617 o ’CM) - gMg + (k - 1> (Z cn/jl) (wM)k/272’l/}i7 w] =
:<w“¢])M7 Zlhj:lJM? Fj(clv"'acM>:

==> > ¢t (Z CICHES (Vi)aas (Wj)an |+ G =1,M,

a=1 i=1 =1
It is easy to check that (g,h)u, g,h € C3°(Q2), is a scalar product. Therefore, for each ¢
the matrix of the coefficients A;; (¢ (t), ..., c)5(t)) is the Gram matrix of the system of linearly
independent vectors v;, « = 1, M, and is invertible. This is why system can be rewritten
as

L. S A, o O Fy (e (8, M), i =T, (35)
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Let us establish the estimate for Galerkin approximations. We multiply jth equation in (30)
by c?/[ (t) and sum up then all the equations in j from 1 to M that results in the identities

((@™)r2t),, +Z ao((uh))ull ull) =0, M =T o,

which can be rewritten as

n

d [ k-1 k -
p T/(wM)k/2dx—€M§/(wM)k/2_1 —i—Z(aa((ui\i)Q)u%,uﬁ) =0, M=1,00.

™M M a=1
(36)
After integration from 0 to ¢t we get
k-1 k . -
M 0 e = 5 [ @V 20 3 (el (Pl ), =
M a=l1
k=1 i k mk M k/2—1 —
= @)= O — ™5 [ (WP (0,%))7"dx, M =1,00 (37)

M
We choose the numbers e < 1/M to satisfy inequalities
mes IM < (eM)7F4 M =T, . (38)
Employing , , we deduce the inequalities

k 1/2
I 2O € MO+ (52l < IO (39)
L 1/2 L\ /2 1\ 172
#(3) e em (5)Een(3)

k koM kN K\
§€M/(MM(t,X))k/2_1dX < (§5M> mes M < (§> (gM)k/4 < <§) . (40)

M

Taking into consideration and mimicking (39 , , for t > 0 we obtain
[(@)2(@)|IF + Z [u P e < Ea, M =1, 00. (41)
Moreover, inequalities . allows one to establish the estimates

Z |aa((u :Ea“pa/ pa—1),Dt = az ||uM ||Za3t S Es, M=1,00. (42)

a=1

Hereinafter the constants E; depend only on @, @, b, p, H<p||W @)

Let us show that all p0881ble solutions to problem (31} . are uniformly bounded as t > 0.
Indeed, employing (41)), for ¢ > 0 we deduce

Z i (O = [u™ (®)]* =

S e 1))

Jj=1

<




DECAY OF SOLUTION OF ANISOTROPIC PARABOLIC EQUATION... 71

v @-k)/2 , o (2—k)/2
< (yor) (w)
j=1 j=1

It yields
(2—k)/2

M k/2 M
e ()] < (Z !cy(t)ﬁ) < B (Zm?) , i=T1,M.
Jj=1 j=1

In view of the continuity of the right hand side of equations , there exist absolute continuous
functions ¢M(t), t € [0,00), i = 1, M, which almost everywhere satisfy system and initial
condition (31)) (see [II, Ch. VII, Sec. 8]).
d
We multiply jth equation in (30]) by acéw (t) and sum up then all the equations in j from 1
to M that results in the identities

(((wM)k/Q_luM)t,uiw) + Z (aa((ua)P)ud jupr ) =0, M =1, 00,

a=1
which can be rewritten as

k
(k= DI @M g2 4 &M M) |24 (43)

1d Mooy o jp—
+2dt2/Aa((u%(t)) Jdx =0, M =T, 00.
R ?)

After integration from 0 to ¢, employing , we get

k
(k= DI @) g M B+ M S M) | et

< =D (aa((uz, (0)))ug, (0),uz, (0), M =1, c0.

Further, due to the inequalities (k — 1)(u™)? + eM£ > (k — 1)w™, applying (4)) and using ,
we deduce

@™ B2 D+ Jlup ()1 < Bs, M =T, 0. (44)
a=1

Let T" be an arbitrary positive number. Inequalities , imply the boundedness
of the sequence {(w™)¥/2}3_, in the spaces C([0,00), Ly(2)), Li(DT) and the same for
the sequence {uM}59_, in the space C([0,0), W rp(Q)), W QZL(DT) and for the sequence
{(wM)(F=2)/4yMAe  in Ly(DT). Moreover, inequalities yield the boundedness of the se-
quences aq((uh)*)ul! in the spaces Ly, jpa—1)(DT), o = 1,n. These facts ensure the selective
weak convergence of the mentioned sequences as M — oo in the following spaces,

u —u in I/f/g’;)(DT),

aa((ups )z, = ba I Ly pe-1y(D7), a=Tn.

T
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Moreover, consider the sequence v™ = (WM)*=2/4%M M = T oo, and the sequence of its
derivatives v} = (wM)F=0/4yM (2242 4 M) M = T oo. It is obvious that implies
inequalities
k _ -
[0 llpe < SI@") 2 4 | pe < Bs, M =T, 00, (45)
which yield the selective weak convergence
oM =g in Ly(DT).

In what follows we shall prove that u* selectively a.e. in D converges to v and it will allow
us to establish that g = (|u|*=2/2u),.

The sequence u™ € C([0,00), W (), M = 1,00, is bounded in this space. For each
bounded domain ) C Q with a smooth boundary we have a compact embedding L;(Q) C
W(Q). This is why by a diagonal process one can establish a strong selective convergence
uM(t;,x) — h(t;,x) in Li(Q) on a countable dense set {t;}52, C [0,7]. We shall assume
that 0,7 € {t;}32,. One can also assume that u"(t;,x) — h(t;,x) selectively a.e. in Q for
each t;, j = 1,00. Completely in the same way as &k < p; we can assume that the sequence
uM(t;,x) — h(t;,x) strongly in Lj(Q) for each t;, j =1, cc.

Following J.L. Lions [10, Ch. I, Sec. 12.2], let us prove the selective strong convergence of
the sequence vM = (WM)*=2/4yM in the space C([0,7], L1(Q)). First, applying (45), let us
prove the equicontinuity in ¢ of the sequence v™ in Lo(€2),

to to
0¥ t2) = ot = | [ o 0at] < [ ¥ 0l <
t1 t1
1/2

to
< |t — t1]M? /||utM(t)||2dt < Bolty — 1Y%, t,t,€[0,T], M =T, 00. (46)
t1

Inequalities imply the uniform in ¢ € [0,7] boundedness of the sequence v*(¢,x) in
L2<Q)7

— k/2 I
[ (@) = 1@M)E2 M @1 < @ = 1@ 2 < B M =T

Due to the boundedness of the sequence v¥(t,x), M = 1,00, in the space C([0,7T], L2(92)),
it selectively weakly converges in Ly(€2) for the same ¢; as above. The established selective
convergence u (t;,x) — h(t;,x) a.e. in Q for each t; implies selective convergence v (¢;,x) —
v(t;, x) = |h(t;, x)|*=2/2R(t;,x) a.e. in Q. Then, by Egorov theorem, for each § > 0 we obtain
the uniform convergence v (t;,x) = v(t;,x) on Qs, mes(Q\Qs) < d. By inequalities

[0 (t;) — v(t;) |10 < mes mee%fg WM (t5,%x) — v(ty,x)| + [0 (t;) — v(t;)]

LQ\Qs S
< mes Q max [0 (85, %) = o(t;, %) + 62 ([0 (t;) = v(t)2.0\@5
X€Qs

it implies the strong convergence v (¢;,x) — v(t;,x) in L1(Q) for each ¢;.

For a bounded domain @ by one can easily establish the uniform fundamentality of the
sequence v™ (¢,x) in the norm of L;(Q),

™ (t) = o™ (O llrq = o™ () = v (t;) + 0™ (t5,) — 0™ () + 0 () — v ()]l <
< Q(mes Q>1/2E6|t - tjz|1/2 + HUN(tjl> - UM(tjl)Hl,Q‘

Choosing a finite set of the numbers ¢; with a small step and increasing then N, M, we achieve
the uniform in ¢ smallness of the right hand side.
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Thus, we have established the selective strong convergence of v — v in C([0,T], L1(Q)).
The convergence holds also in Li((0,T) x @), and hence v™ — v selectively converges a.e. in
(0,T) x Q. Due to the arbitrariness of Q, the sequence v selectively converges to v a.e. in D7.
Moreover, due to the the arbitrariness of T, choosing T' = 1, 2, ..., by a diagonal process one can
select a subsequence v — v a.e. in D as M — oo. Then the subsequence u (t,x) selectively
converges to h(t,x) a.e. in D. According to Lemma 2, v (t,x) — h(t,x) in Ly(DT) for any
T > 0, and by the uniqueness of the limit h(t,x) = u(t,x) a.e. in D. Thus, v™ selectively
converges to v = |u|*2/2y a.e. in D.

According to Lemma 2} v — v weakly in Ly(DT). Further, (vM,w)pr = —(v™, w;)pr for
each function w € C§°(DT), and passing to the limit as M — oo, we obtain

(9, w)pr = —(v,wy)pr.

It follows that g = v, = (|u|*"?/2u),. We observe that the belonging v, v, € Ly(D”) implies
GRS C([()? OO), L2<Q))
Let us show that the sequence u}, M =1, 00, is bounded in Li(DT). Indeed, it follows from

(A1), that

1/k
ol = || [ | <
T
< @) D g pr | @) 2 e < By
The boundedness of ||u}” ||, pr implies u} — b in Li(DT). Then (u}!, w)pr = —(uM, w;) pr for

each function w € C§°(DT), and passing to the limit as M — oo, we get

(ba w)DT = _<u> wt)DT7

hence, b = u;. Then one can assume that ui‘” — u; weakly in Lk(DT). We note that the
belonging u, u; € Li(DT) yields u € C([0,00), L (Q)).

On one hand, estimate and the convergence u*(0,x) — u(0,x) a.e. as M — oo by
Lemma [2| imply the weak convergence u™ (0,x) — u(0,x) in Ly(Q) as M — oo. On the other
hand, by the choice (32)), u'(0,x) strongly converges to ¢(x) in L;(Q2). Due to the uniqueness
of the weak limit, u(0,x) = ¢(x) for a.e.x € Q.

Let us prove that the function wu(t,x) satisfies integral identity. . Equations imply
the identities

(W) E22uM) ) +Z aq(( 2o Weo) pr = 0, M =T, 00, (47)

satisfied for each funcion w(r,x) € P =J;._, Pr. We integrate the first term by parts,

(=T
((wM)(k_Q)/QuM, w) - ((wM)(k_Q)/QUM, wt)DT + (48)
=0
+Z (aa(( M o) pr =0, M=T,
We observe that the 1nequahty (wM)E=2/214M | L (WM)*=D/2 € O(]0, 00), Ly (Q)) holds true,
since ||(wM)E=D/2||,, = ||(wM)2||F7 is a bounded sequence in C[0,00). Hence, by Lemma

2, the convergence (wM)*=2/2yM gelectively weakly converges to |u|*~2u in Ly (D?) and
(WM(T)*22M(T) — [u(T)|*2u(T), (w™(0))*272u(0) — [u(0)*2u(0) in Ly(2). One
can also state that (WM (T))Y2 — |u(T)|, (wW™(0))"/2 — |u(0)| in Li(2). The fact that the
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limiting functions look exactly like this is justified by the above proven convergence of the
subsequence v a.e. in DT, and also a.e. in  for t = 0,7.

In (48) we can pass to the limit as M — oo that results in the identity
t=T

- (|U’|k_2u7 wt)DT + Z (bow wﬂ?a)DT = 07 (49)

t=0 a=1

(Jul*2u, w)

valid for each function w € P. Since P is dense in the space I/i)/,lgL(DT) (Lemma 3), identity
holds true for arbitrary w EWl ! o(DT). Here we employ that [ul*?u € Ly(D7), b, €
Lpa/(pa_l)(DT), a=1,n In partlcular for w = u, we employ the identity

t

_ 1
[t an)r = 2ol

0

t=T

to get
n t=T

> (basus)pr + @l — (Jul*?u,u)pr =
t=T = (51)

+ Z(ba, Uy, ) pr = 0.

Let us show that for each function v EWl ! (D) the identity

a=1
k—1
= (o)

t=0

n n

Z(baa Uz, ) pT = Z(aa((uma)2)u%, Uzo ) DT (52)
a=1 a=1
holds true. We deduct identity from with ¢t =T and for w € P we obtain the relations
t=T
_ ((WM)(k—2)/2uM7w) X ((WM)(k_Q)/QUM,wt)DT X
t=0
+Z aa() ), (u = w)a,) e +
ko1 t=T & t=T
LA Rl I / @) —0, M =T,
k t=0 21M t=0

that by the condition of monotonic non-decay of the functions a,(22)z, 2 € R, a = 1,n, (see
(20)) and inequality imply the estimates

t=T
4 ((WM)(k—Q)/QuM, wt)
t=0

. ((WM)(k—Z)/Zquw) +

DT

T Z (aa((wxa)Q)wxm (UM - w)za)DT +

k—1 £\ */?
ey eon] - e () <o m-ts
t=0

Further, we pass to the limit as M — oo for a fixed w € P employing at that the above proven
convergence.
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Thus, for arbitrary w € P the inequality

t=T n
— (|u|k_2u, w) + (|U|k_2u, wt)DT + Z (aa(wia)w$a7 (U - w):va)DT +
t=0 a=1 (53)
k—1 N
@l <o
t=0

holds true. According to Lemma |3| the set P is dense in the space W kp( DT). Then for an
arbitrary function w EWl 1 o(D") there exists a sequence w' € P such that |lw' — wHwi,l oy = 0
P

as [ — oo. We write . for w = w' and pass then to the limit as [ — oo. Justification of
passage to the limits as [ — oo

(aa((wia)Q)w;lvaa (u - wl):ca)DT — (aa(wia)wwav (U - w)xa>DT y = 17_”7

was provided in [6]. Thus 1dent1ty l} is established for an arbitrary w er . (D7)
We deduct (51)) from and add (49) that yields the inequality

> (w2, )y, = b, (1 —w)y, ) pr <0, (54)

a=1

being true for w EWl ! o(DT). In we let w = u + ev, € > 0, where v GWk p(DT) that gives

us
n

Z(aa((uwa + 802,)?) (U, + €V2,) = by Uiy ) pr > 0,

a=1
The latter inequality as € — 0 yields the relation

n

Z(aa(uia)u% - bavvxa)DT >0,

a=1

which by the arbitrariness of v lead us to identity . By and for v Gvf/,lﬁi)( D7) we

conclude that

n t=T
— (|u|k_2u,vt)DT + Z (an(ul ug,, Vzo) pr + (|ul*~2u, v) = 0. (55)
a=1 t=0
Thus, is proven.
By , we get the identity
. k=1 &
—H )l + Z (aa (U, Jtza, teo)dT = ——]lells, 20, (56)
a=1 0
differentiating which w.r.t. ¢, we obtain
k—1d .
O Dl 1) =0, e>0 (57

Applying then (4)), by (56 m E we get ([28] @ @ ]
Proposition 1. A genemhzed solution u(t,x) of problem (1} . ) with a bounded initial func-
tion ©(x) € Loo(2)N kap(Q) is bounded, i.e.,

vraisup | u(t,x) |< B < oo. (58)
D

We omit the proof of this proposition.
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3. ADMISSIBLE DECAY RATE OF SOLUTION

Since the unique solvability of the problem — is not established, we in fact obtain the
lower estimate for the constructed solution.
Proof of Theorem[J. We first assume that the domain € is bounded and let us prove estimate
for Galerkin approximations.

We introduce the notations

60 =3 [aaltattax, ) = S [ Aul(ullPax
a=1 Q a=1 Q
M k=1, k/2 mk, (k—2)/2 2\ Mk/4
EY(t) = T(W ()" —¢ 5(00 () dx + z (™)
M
employing , we obtain inequalities
%HM(t) < GM(t) <DHM(), t>0. (59)
We rewrite identities , as
dEM (t
()+GM(t) =0, t>0, (60)
dt
1dHM
/ ((k — D (uM)? + gsM) (W) k=972, M)2 4 §d yr ®) _ 0, t>0. (61)

M

Applying Cauchy-Schwarz inequality for integrals, we obtain the relations

EM()\
(d dt(t)) _ / <(k 1) (M) kD2 +€M§(2 _ k)(wM)(k—zx)/Q) WMuMax | <
M
1/2 1/2
<|m=n | femeorweay) | [
M M
1/2 1/2
+€M§ /(wM)(k—4)/2(ui\/[>2 /(2 . k)(wM)(k—Q)/Q
M M
Employing Cauchy-Schwarz inequality for sums, by , we deduce
M 2
() < [ (= 0+ 5 e
M
Mk/2 Mk m (k—2)/2
X (k— 1) (™) + (2= k)e 5(0.) ) dx <
i (62)
1dHM (t k2 2\
< _§T(> / ((/{3 . 1)(WM)k/2 . EME(WM)(IC_Q)/Q) dX—|— k (E) (SM)k;/AL —
M
__karq)

2 dt (®)
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Relations , , imply inequalities

B ) dEM (1)

p1dEM ()
oy <
2 (t) dt dt

2 dt

GM(t) < HY(t),

which we rewrite as

dHM() pldE ()

T v < 5 ),
Solving differential inequality and applying (5 , we obtam the estimates

%GM@%éHM@%éﬂMmﬂEM@Dm“ﬂEM@W“ﬂ t>0. (63)

Mimicking , , , we arrive at the relations
dEM(t)

= > M (O)(BY () (B () =

> 2 0) (B () (B )
which we rewrite as
AB () g gy 5 _ 2 o) ¢ )y
TR HE O = - 26N )/ (B ),

Solving differential inequality, we obtain the estimate

—k/(p1—Fk)
o AT(O)/EM(O)H) , t>0. (64)

EM@)ZEMm)G

For a fixed t > 0 as k < p; in the case of the bounded domain  the sequence u? (t,x) is
selectively strongly converges as M — oo to u(t,x) in the space L(€2). It is obvious that

k—1 2\ '/ S
Y0 < E W ol (F) @0 =T,
and according to (38)), the inequality
kE—1
: M k_
Jim BV () < T (o) = B()

holds true.
Moreover, due to the inequalities

_ (k-1 2\"?2 -k k-1
fim £(0) > lim <T||uM<o>||z+ (7) T(eMW) = E L,

M —o00 M—
n
Jim GY(0) < lim CLZHU —521”%&”%
o=

hold true. After the passage to the limit in as M — oo, we obtain
lu(®)llk = HwHi(l*—CXHwﬂwqpan)ﬂ‘%/@1*”- (65)
Let us establish estimate for a solution to problem f in an unbounded domain €.

Let QO C Q be bounded subdomains such that Q® c QY | =1 00, |J QO = Q. By v
=1
we denote the solutions in Q%) with a compactly supported initial function (supp ¢ C QW);

one can assume that these solutions are extended by zero outside Q). The convergence of the
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sequence uY)(¢,x) to the solution u(t, x) of problem — as [ — oo can be shown in the same
way as in Theorem 4.
Property ensures the estimate

Hu(l)HWk’L(Q) < Ca > Oa L= 1700

Then for a fixed t > 0 one can assume that vV (¢,x) — u(t,x) in I/IO/,lg(QT) as [ — oo. Employing
the compactness of the embedding W (Q") C Li(Q2"), we establish the strong convergence
u (t,x) — u(t,x) in Ly(Q") as | — oo for each r > 0. Owing to estimate , for any e there
exists r such that the inequality

lu®®lke, < e

holds true. The function u¥) satisfies estimate that yields

[ Olkor > lellk(+ Clllelwg @)t ™™ —e.

Employing the strong convergence in Ly(€2"), we pass to the limit as [ — oo and then as
r — oo (¢ — 0). Thus, estimate is proven for the unbounded domain €2 for arbitrary
t>0. O

4. UPPER ESTIMATES

In this section we prove Theorem 1,3.
Proof of Theorem [ Let £(x;) be a Lipshitz nonnegative cut-off function. In (55]) we let v = ué
and employ to obtain the relation

dx+Z/ Uy Vg, (U€)s, dxdr = 0.

Using ({)), we obtain (taking into consideration that £p = 0)

E/|u(t,x)|k§(3v$)dx+Ezn:/§|u$a|p“clxal7' < (66)

k
Q O‘:1Dt

<a / s,
Dt

Let O(x), > 0, be an absolute continuous function being one as x > 1, vanishing as = < 0,
and being linear as z € [0, 1]. In (66 we let {(z5) = 0((zs — r)/p). It is clear that

Pl (g )dxdr = I'.

1
£ (zs) = > TE€ (ror+p), &) =0, =& (rr+p). (67)
Let us estimate the integral
R t
= g/ / || [y, [P~ dxdrT.
P
0 Qrte

Employing Young inequality and , for each ¢ > 0 we deduce

re //|u |7’*dxdr+ B”* //|u|kdxdr | (68)
P Ds

0 Qrer QT+P
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Mimicking , , we obtain the inequality

—_— / lu(t, x) kdx+a2/ / [ty |Pedxdr < (69)

Qrip
t
psdxd7+€ps/ / |u|*dxdr

t
C
e
ep

0 Q:-&-p 0 Q:+p

We introduce the notation

.t
:/|u(t,x)|kdx+2//|uza|p‘*dxd7',
Q, =19 g,

then can be rewritten as
o t
Fopo(t) < =2 | Fo(t) 4 & / E.(r)dr | . (70)
Ep
0

Let us establish the inequality

1—1 _1/175
2C _
Pty < © (£2) t’/ps{H 1+z/ps} lollt, 1=005 ()
=0

by induction in [. As the zeroth step of the induction, inequality for each t > 0 implies
inequality Fg,(t) < C|¢||¥. Suppose that holds true for some integer [ > 0. Substituting

_ [avm) )P . o .
€= |—/ , 7= Ry + lp into ([70)) and bearing in mind (|71]), we obtain

—1/ps

o\ l .
s (t) < cf(i) tl/ps{Huﬂ/ps) ol x
1=0

t ! —1/ps
1+1/ps 2C .
§ tl/ps++T/zo / vy :o( ) l+1>/ps{H<1+z/ps>} el

0 P 1=0

Inequality is proven.
Let p = (r — Ry)/l. Employing Stirling’s approximation, by ([71]) one can easily get

L. (r—R)
E.(t) < Cyexp (—p—l W) [ (72)
(T _ Ro)p ps_l)
Letting [ being the integer part of the expression [T} , by inequality (72) we
€Ly
obtain
r— Ro)ps 1Y/ ®s—1)
Fi{t) < Cexp (—06 = ol (73)

In the case [ = 0 inequality follows from relation . Finally, as » > 2R, by we get
estimate . [

Theorem |3|is proven on the basis of the following statement.
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Lemma 4. Suppose the domain is located along the azis Ox,, s € 2,n and conditions (13,
@ hold true. Then there exists positive numbers k(ps, k), M(ps, k) such that for the constructed
bounded solution u(t,x) to problem f for allt >0, r > 2Ry the estimate

r

la(®) ke, < Mexp | —r / e (0)dp | ol (74)

1
holds true.

Proof. Let 6(x), x > 0, be an absolute continuous function being one as x > r, vanishing as
xr < Ry, being linear as x € [Ry, 2Ro|, and satisfying equation
0'(x) = PP (2)0(x), x € (2Ry,7), (75)

(we shall determine the constant § later). Solving this equation, we find, in particular, that

r

o (x) = Q%}EO) _ Rioexp 5 / s (Vdp | . € (Ro, 2Ro). (76)

2R

For each function v(x) € C§°(2) the definition of the function v(p) implies the inequality

V(ﬂ)”””pl,vp < H'Umel,vM p >0,

that yields the relations

s s

[ o @Il do < [ 0 lloalz,do (77)

2Ro 2Ro

Applying for each function v € C5°(Q) as s € 2,n, we deduce

[ @ ol do < maxloP [ o7 ()6 (ol do <
2Ry 2Ro
<ugx oGO [ 07 ()] 1, 4o (79)
2Rg

We note that inequalities (1)) hold true for any bounded function v GI/f/}w(Q) (see [6l, Corollary
1]).
In we let {(xs) = 0P (xs) and obtain

k—1 " < )
T/|u(t,x)\ or (ms)dx—l—aZ/Hp
Q a:lDt

t
a [ [l

0 Q

Uy, |PodxdT < (79)

Pl 0 ()07 (x,)dxdT = al'.

Employing Young inequality, we get

t
I' < elps — 1) / / i,
0 Q

Ps OPs dxdr ulP* (0’ ()P dxdr. (80)
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a 1
We choose € = 2 7 and mimicking , , we obtain the inequality
aps —
—/|u (t,x)|"0" (z,)dx + @ Z /9”3 Uy, |PrdxdT < C7/|u Ps(0' ()P dxdr.  (81)

a= 10&768

Employing (75| , , one can easily reduce (81]) to

/|utx o (aydxta 3 /eps Pedxdr < (82)
a= 1o¢;£s
T t
< Cr—pr Rps exp [ —dps / VPP (p)dp / / |ulP dxdT+
2R 0 QQRO

Pyt ()0 (z5)dxdr = I} + I,

t
s [ [

0 5
Employing [6, Ineq. (73)] and relation (28), we deduce
< Cgexp | —ops /Vpl/ps )dp /Hux bedr < Cyexp | —0ps / VPP (pYdp | ||k, (83)
2Rg 2Ro
Applying , we get
t
I < 0105”5/ / |tz |PrOP dxdr. (84)
0 Qp
0
a \ /P
Choosing 6 = (C’_) , mimicking (82| — (84]), we obtain
10
k Pa P1/Ds
P ute Mg, +@ Z Hum )grdr < Coexp | =Cu [ 7P (p)dp | |l
a= 20c7£s 1
Inequality is proven. O

Theorem 3 is proven on the basis of estimate by analogy with the proof of Theorem 3
in [6].
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