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DISCS AND BOUNDARY UNIQUENESS FOR PSH

FUNCTIONS ON ALMOST COMPLEX MANIFOLD

A. SUKHOV

Abstract. This paper is inspired by the work by J.-P. Rosay (2010). In this work, there
was sketched a proof of the fact that a totally real submanifold of dimension 2 can not
be a pluripolar subset of an almost complex manifold of complex dimension 2. In the
present paper we prove a considerably more general result, which can be viewed as a
boundary uniqueness theorem for plurisubharmonic functions. It states that a function
plurisubharmonic in a wedge with a generic totally real edge is equal to −∞ identically if
it tends to −∞ approaching the edge. Our proof is completely different from the argument
by J.-P. Rosay. We develop a method based on construction of a suitable family of 𝐽-
complex discs. The origin of this approach is due to the well-known work by S. Pinchuk
(1974), where the case of the standard complex structure was settled. The required family
of complex discs is obtained as a solution to a suitable integral equation generalizing the
classical Bishop method. In the almost complex case this equation arises from the Cauchy-
Green type formula. We hope that the almost complex version of this construction presented
here will have other applications.

Keywords:almost complex structure, plurisubharmonic function, complex disc, totally real
manifold.
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1. Introduction

This paper addresses some aspects of pluripotential theory on almost complex manifolds. In
the general case of non-integrable almost complex structures, the development of this theory
began recently and many natural questions remain open. Our main motivation arises from
the paper by J.-P.Rosay [5], where several interesting properties of (non) pluripolar subsets of
almost complex manifolds were established. In particular, he proved that a 𝐽-complex curve is
a pluripolar set. On the other hand, [5] there was sketched a proof of the fact that a totally
real submanifold of dimension 2 can not be a pluripolar subset of an almost complex manifold
of complex dimension 2 (a hint for a higher dimension argument was also indicated without
details).
In the present paper we prove a considerably more general result (Theorem 4.1), which can

be viewed as a boundary uniqueness theorem for plurisubharmonic functions. It states that a
function plurisubharmonic in a wedge with generic totally real edge is equal to −∞ identically if
it tends to −∞ approaching the edge. Our proof is completely different from the argument of [5].
Our approach is based on construction of a suitable family of 𝐽-complex discs and is inspired
by the well-known work [3]. We hope that the almost complex version of this construction
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presented here will have other applications. Another approach to filling a wedge by discs is
used in [6] and is based on stability results for the Riemann-Hilbert boundary value problem.
The method of present paper is more direct and gives an additional information on geometry of
the discs. The required family of complex discs is obtained as a solution to a suitable integral
equation generalizing the classical Bishop method. In the almost complex case this equation
arises from the Cauchy-Green type formula.
The paper is organized as follows. In Section 2 we recall basic properties of almost complex

manifolds (see more in [1]). Section 3 contains the construction of Bishop type discs glued to a
totally real manifold along a boundary arc. In section 4 we obtain the main result on boundary
uniqueness for psh functions.

2. Almost complex manifolds, discs and plurisubharmonic functions

Throughout this paper we assume that manifolds and structures are 𝐶∞ smooth although
the main results remain true under considerably weaker regularity assumptions.
Let 𝑀 be a smooth manifold of dimension 2𝑛. An almost complex structure 𝐽 on 𝑀 is a

smooth map, which associates to every point 𝑝 ∈ 𝑀 a linear isomorphism 𝐽(𝑝) : 𝑇𝑝𝑀 → 𝑇𝑝𝑀
of the tangent space 𝑇𝑝𝑀 satisfying 𝐽(𝑝)2 = −𝐼. Here 𝐼 denotes the identity map of 𝑇𝑝𝑀 . Thus,
𝐽(𝑝) is a linear complex structure on 𝑇𝑝𝑀 . A couple (𝑀,𝐽) is called an almost complex manifold

of complex dimension 𝑛. Note that every almost complex manifolds admits the canonical
orientation.
The standard complex structure 𝐽𝑠𝑡 = 𝐽

(2)
𝑠𝑡 on 𝑀 = R2 is given by the matrix

𝐽𝑠𝑡 =

(︂
0 −1
1 0

)︂
(1)

in the canonical coordinates of R2. More generally, the standard complex structure 𝐽𝑠𝑡 on

R2𝑛 is represented by the block diagonal matrix diag (𝐽
(2)
𝑠𝑡 , . . . , 𝐽

(2)
𝑠𝑡 ); we skip the notation of

dimension because it will be clear from the context. As usually, setting 𝑖𝑣 := 𝐽𝑣 for 𝑣 ∈ R2𝑛,
we identify (R2𝑛, 𝐽𝑠𝑡) with C

𝑛 having 𝑧 = 𝑥+ 𝑖𝑦 = 𝑥+𝐽𝑦 for the standard complex coordinates
𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛.
Let (𝑀,𝐽) and (𝑀 ′, 𝐽 ′) be smooth almost complex manifolds. A 𝐶1-map 𝑓 : 𝑀 ′ → 𝑀 is

called (𝐽 ′, 𝐽)-complex or (𝐽 ′, 𝐽)-holomorphic if it satisfies the Cauchy-Riemann equations

𝑑𝑓 ∘ 𝐽 ′ = 𝐽 ∘ 𝑑𝑓. (2)

Of course, a map 𝑓 : C𝑛 → C𝑚 is (𝐽𝑠𝑡, 𝐽𝑠𝑡)-holomorphic if and only if each component of 𝑓 is
a usual holomorphic function.
Every almost complex manifold (𝑀,𝐽) can be viewed locally as a unit ball B in C𝑛 equipped

with a small almost complex deformation of 𝐽𝑠𝑡. Indeed, we have the following useful statement.

Lemma 2.1. Let (𝑀,𝐽) be an almost complex manifold. Then for every point 𝑝 ∈𝑀 , every
real 𝛼 > 0 and 𝜆0 > 0, there exist a neighborhood 𝑈 of 𝑝 and a coordinate diffeomorphism
𝑧 : 𝑈 → B such that 𝑧(𝑝) = 0, 𝑑𝑧(𝑝) ∘ 𝐽(𝑝) ∘ 𝑑𝑧−1(0) = 𝐽𝑠𝑡 and the direct image
𝑧*(𝐽) := 𝑑𝑧 ∘ 𝐽 ∘ 𝑑𝑧−1 satisfies ||𝑧*(𝐽) − 𝐽𝑠𝑡||𝐶𝛼(B) 6 𝜆0.

Доказательство. There exists a diffeomorphism 𝑧 from a neighborhood 𝑈 ′ of 𝑝 ∈ 𝑀 onto
B satisfying 𝑧(𝑝) = 0 and 𝑑𝑧(𝑝) ∘ 𝐽(𝑝) ∘ 𝑑𝑧−1(0) = 𝐽𝑠𝑡. For 𝜆 > 0, we consider the dilation
𝑑𝜆 : 𝑡 ↦→ 𝜆−1𝑡 in R2𝑛 and the composition 𝑧𝜆 = 𝑑𝜆 ∘ 𝑧. Then lim𝜆→0 ||(𝑧𝜆)*(𝐽) − 𝐽𝑠𝑡||𝐶𝛼(B) = 0

for each real 𝛼 > 0. Setting 𝑈 = 𝑧−1
𝜆 (B) for 𝜆 > 0 small enough, we obtain the desired

statement.

Gromov’s theory of pseudoholomorphic curves studies the property of solutions 𝑓 of (2) in
the special case, when 𝑀 ′ has the complex dimension 1. These holomorphic maps are called
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𝐽-complex (or 𝐽-holomorphic) curves. We use the notation D = {𝜁 ∈ C : |𝜁| < 1} for the unit
disc in C always assuming that it is equipped with the standard complex structure 𝐽st. If in
the above definition we have 𝑀 ′ = D we call such a map 𝑓 a 𝐽-complex disc or a pseudo-
holomorphic disc or just a holomorphic disc if 𝐽 is fixed. Similarly, if𝑀 ′ is the Riemann sphere,
𝑓 is called a 𝐽-complex sphere. These two classes of pseudo-holomorphic curves are particularly
useful.
Let (𝑀,𝐽) be an almost complex manifold and 𝐸 ⊂𝑀 be a real submanifold of 𝑀 . Suppose

that a 𝐽-complex disc 𝑓 : D →𝑀 is continuous on D. With some abuse of terminology, we also
call the image 𝑓(D) simply by a disc and we call he image 𝑓(𝑏D) by the boundary of a disc. If
𝑓(𝑏D) ⊂ 𝐸, then we say that (the boundary of ) the disc 𝑓 is glued or attached to 𝐸 or simply
that 𝑓 is attached to 𝐸. Sometimes such maps are called Bishop discs for 𝐸 and we employ
this terminology. Of course, if 𝑝 is a point of 𝐸, then the constant map 𝑓 ≡ 𝑝 always satisfies
this definition.
In this paper we deal with a special class of real submanifolds. A submanifold 𝐸 of an almost

complex 𝑛-dimensional (𝑀,𝐽) is called totally real if at every point 𝑝 ∈ 𝐸 the tangent space
𝑇𝑝𝐸 contains no non-trivial complex vectors that is 𝑇𝑝𝐸 ∩ 𝐽𝑇𝑝𝐸 = {0}. This is a well-known
fact that the (real) dimension of a totally real submanifold of 𝑀 does not exceed 𝑛; we will
consider in this paper only 𝑛-dimensional totally real submanifolds that is the case of the
maximal dimension.
A totally real manifold 𝐸 can be defined as

𝐸 = {𝑝 ∈𝑀 : 𝜌𝑗(𝑝) = 0} (3)

where 𝜌𝑗 : 𝑀 → R are smooth functions with non-vanishing gradients. The condition of total
reality means that for every 𝑝 ∈ 𝐸 the 𝐽-complex linear parts of the differentials 𝑑𝜌𝑗 are
(complex) linearly independent.
A subdomain

𝑊 = {𝑝 ∈𝑀 : 𝜌𝑗 < 0, 𝑗 = 1, . . . , 𝑛}. (4)

t is called the wedge with the edge 𝐸.

2.1. Cauchy-Riemann equations in coordinates. All our consideration are local, so
(as above) we are in a neighborhood Ω of 0 in C𝑛 with the standard complex coordinates
𝑧 = (𝑧1, . . . , 𝑧𝑛). We assume that 𝐽 is an almost complex structure defined on Ω and 𝐽(0) = 𝐽𝑠𝑡.
Let

𝑧 : D → Ω,

𝑧 : 𝜁 ↦→ 𝑧(𝜁)

be a 𝐽-complex disc. Setting 𝜁 = 𝜉 + 𝑖𝜂 we write (2) in the form 𝑧𝜂 = 𝐽(𝑍)𝑍𝜉. This equation
can be in turn written as

𝑧𝜁 − 𝐴(𝑧)𝑧𝜁 = 0, 𝜁 ∈ D. (5)

Here a smooth map 𝐴 : Ω → 𝑀𝑎𝑡(𝑛,C) is defined by the identity 𝐿(𝑧)𝑣 = 𝐴𝑣 for any vector
𝑣 ∈ C𝑛 and 𝐿 is an R-linear map defined by 𝐿 = (𝐽𝑠𝑡 + 𝐽)−1(𝐽𝑠𝑡 − 𝐽). It is easy to check that
the condition 𝐽2 = −𝐼𝑑 iq equivalent to the fact that 𝐿 is C-linear. The matrix 𝐴(𝑧) is called
the complex matrix of 𝐽 in the local coordinates 𝑧. Locally the correspondence between 𝐴 and
𝐽 is one-to-one. Note that the condition 𝐽(0) = 𝐽𝑠𝑡 means that 𝐴(0) = 0.
If 𝑍 ′ are other local coordinates and 𝐴′ is the corresponding complex matrix of 𝐽 ′, then, as

it is easy to check, we have the following transformation rule:

𝐴′ = (𝑧′𝑧𝐴+ 𝑧′𝑧)(𝑧
′
𝑧 + 𝑧′𝑧𝐴)−1 (6)

(see [7]).
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2.2. Plurisubharmonic functions on almost complex manifolds: background. Let
𝑢 be a real 𝐶2 function on an open subset Ω of an almost complex manifold (𝑀,𝐽). Denote
by 𝐽*𝑑𝑢 the differential form acting on a vector field 𝑋 by 𝐽*𝑑𝑢(𝑋) := 𝑑𝑢(𝐽𝑋). Given a
point 𝑝 ∈ 𝑀 and a tangent vector 𝑉 ∈ 𝑇𝑝(𝑀), we consider a smooth vector field 𝑋 in a
neighborhood of 𝑝 satisfying 𝑋(𝑝) = 𝑉 . The value of the complex Hessian ( or of the Levi
form ) of 𝑢 with respect to 𝐽 at 𝑝 and 𝑉 is defined by 𝐻(𝑢)(𝑝, 𝑉 ) := −(𝑑𝐽*𝑑𝑢)𝑝(𝑋, 𝐽𝑋). This
definition is independent of the choice of a vector field 𝑋. For instance, if 𝐽 = 𝐽𝑠𝑡 in C, then
−𝑑𝐽*𝑑𝑢 = ∆𝑢𝑑𝜉 ∧ 𝑑𝜂; here ∆ denotes the Laplacian. In particular, 𝐻𝐽𝑠𝑡(𝑢)(0, 𝜕

𝜕𝜉
) = ∆𝑢(0).

Let us recall some basic properties of the complex Hessian (see, for instance, [2]).

Lemma 2.2. Consider a real function 𝑢 of class 𝐶2 in a neighborhood of a point 𝑝 ∈𝑀 .

(i) Let 𝐹 : (𝑀 ′, 𝐽 ′) −→ (𝑀,𝐽) be a (𝐽 ′, 𝐽)-holomorphic map, 𝐹 (𝑝′) = 𝑝. For each vector
𝑉 ′ ∈ 𝑇𝑝′(𝑀

′) we have 𝐻𝐽 ′(𝑢 ∘ 𝐹 )(𝑝′, 𝑉 ′) = 𝐻𝐽(𝑢)(𝑝, 𝑑𝐹 (𝑝)(𝑉 ′)).
(ii) If 𝑓 : D −→𝑀 is a 𝐽-complex disc satisfying 𝑓(0) = 𝑝, and 𝑑𝑓(0)( 𝜕

𝜕𝜉
) = 𝑉 ∈ 𝑇𝑝(𝑀), then

𝐻𝐽(𝑢)(𝑝, 𝑉 ) = ∆(𝑢 ∘ 𝑓)(0).

Property (i) expresses the holomorphic invariance of the complex Hessian. Property (ii) is
often useful in order to compute the complex Hessian on a given tangent vector 𝑉 .
Let Ω be a domain 𝑀 . An upper semicontinuous function 𝑢 : Ω → [−∞,+∞[ on (𝑀,𝐽)

is 𝐽-plurisubharmonic (psh) if for every 𝐽-complex disc 𝑓 : D → Ω the composition 𝑢 ∘ 𝑓 is
a subharmonic function on D. By Proposition 2.2, a 𝐶2 function 𝑢 is psh on Ω if and only if
it has a positive semi-definite complex Hessian on Ω i.e. 𝐻𝐽(𝑢)(𝑝, 𝑉 ) > 0 for any 𝑝 ∈ Ω and
𝑉 ∈ 𝑇𝑝(𝑀). A real 𝐶2 function 𝑢 : Ω → R is called strictly 𝐽-psh on Ω, if 𝐻𝐽(𝑢)(𝑝, 𝑉 ) > 0 for
each 𝑝 ∈ 𝑀 and 𝑉 ∈ 𝑇𝑝(𝑀)∖{0}. Obviously, these notions are local: an upper semicontinuous
(resp. of class 𝐶2) function on Ω is 𝐽-psh (resp. strictly) on Ω if and only if it is 𝐽-psh (resp.
strictly) in some open neighborhood of each point of Ω.
A useful observation is that the Levi form of a function 𝑟 at a point 𝑝 in an almost complex

manifold (𝑀,𝐽) coincides with the Levi form with respect to the standard structure 𝐽𝑠𝑡 of R
2𝑛

if suitable local coordinates near 𝑝 are choosen. Let us explain how to construct these adapted
coordinate systems.
As above, choosing local coordinates near 𝑝 we may identify a neighborhood of 𝑝 with a

neighborhood of the origin and assume that 𝐽-holomorphic discs are solutions of (5).

Lemma 2.3. There exists a second order polynomial local diffeomorphism Φ fixing the origin
and with linear part equal to the identity such that in the new coordinates the complex matrix
𝐴 of 𝐽 (that is 𝐴 from the equation (5)) satisfies

𝐴(0) = 0, 𝐴𝑧(0) = 0 (7)

Thus, by a suitable local change of coordinates one can remove the terms linear in 𝑧 in the
matrix 𝐴. We stress that in general it is impossible to get rid of first order terms containing 𝑧
since this would impose a restriction on the Nijenhuis tensor 𝐽 at the origin.
The author learned this result from unpublished E. Chirka’s notes; see [2] for the proof.

It was shown in [7] that in an almost complex manifold of (complex) dimension 2, a similar
normalization is possible along a given embedded 𝐽-holomorphic disc.
As a typical consequence, we consider a totally real manifold 𝐸 defined by (3). Then the

function 𝑢 =
∑︀𝑛

𝑗=1 𝜌
2 is strictly 𝐽-psh in a neighborhood of 𝐸. Indeed, it suffices to choose

local coordinates near 𝑝 ∈ 𝑀 according to Lemma 2.3. This reduces the verification to the
well-known case of 𝐽𝑠𝑡.
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3. Filling a wedge by complex discs

Here we construct a family of Bishop’s type discs filling a wedge with a totally real edge.
Each disc is glued to the edge 𝐸 along the upper semi-circle.

3.1. Case of the standard structure. First consider the model case𝑀 = C𝑛 with 𝐽 = 𝐽𝑠𝑡
and 𝐸 = 𝑖R𝑛 = {𝑥𝑗 = 0, 𝑗 = 1, . . . , 𝑛}. Denote by 𝑊 the wedge

𝑊 = {𝑧 = 𝑥+ 𝑖𝑦 : 𝑥𝑗 < 0, 𝑗 = 1, . . . ., 𝑛}.

Let

𝑃0𝜑 =
1

2𝜋𝑖

∫︁
𝑏D
𝜑(𝜔)

𝑑𝜔

𝜔

denotes the average of a real function 𝜑 over 𝑏D, and let also

𝑆𝜑(𝜁) =
1

2𝜋𝑖

∫︁
𝑏D

𝜔 + 𝜁

𝜔 − 𝜁
𝜑(𝜔)

𝑑𝜔

𝜔

be the Schwarz integral. In terms of the Cauchy transform

𝐾𝑓(𝜁) =
1

2𝜋𝑖

∫︁
𝑏D

𝑓(𝜔)𝑑𝜔

𝜔 − 𝜁

we have the following relation: 𝑆 = 2𝐾−𝑃0. As a consequence, the boundary properties of the
Schwarz integral are the same as the classical properties of the Cauchy integral.
For a non-integer 𝑟 > 1 consider the Banach spaces 𝐶𝑟(𝑏D) and 𝐶𝑟(D) (with the usual Hölder

norm). This is classical that 𝐾 and 𝑆 are bounded linear mappings in these classes of functions.
For real function 𝜑 ∈ 𝐶𝑟(𝑏D) the Schwarz integral 𝑆𝜑 is a function of class 𝐶𝑟(D) holomorphic
in D; the trace of its real part on the boundary coincides with 𝜑 and its imaginary part vanishes
at the origin. In particular, every holomorphic function 𝑓 ∈ 𝐶𝑟(D) satisfies the Schwarz formula
𝑓 = 𝑆Re 𝑓 + 𝑖𝑃0𝑓 .
We are going to fill 𝑊 by complex discs glued to 𝑖R𝑛 along the (closed) upper semi-circle

𝑏D+ = {𝑒𝑖𝜃 : 𝜃 ∈ [0, 𝜋]}; let also 𝑏D− := 𝑏D ∖ 𝑏D+.
Fix a smooth real function 𝜑 : 𝑏D → R such that 𝜑|𝑏D+ = 0 and 𝜑|𝑏D− < 0.
Consider now a real 2𝑛-parameter family of holomorphic discs 𝑧0 = (𝑧01 , . . . , 𝑧

0
𝑛) : D → C𝑛

with components

𝑧0𝑗 (𝑐, 𝑡)(𝜁) = 𝑥𝑗(𝜁) + 𝑖𝑦𝑗(𝜁) = 𝑡𝑗𝑆𝜑(𝜁) + 𝑖𝑐𝑗, 𝑗 = 1, . . . , 𝑛 (8)

Here 𝑡𝑗 > 0 and 𝑐𝑗 ∈ R are parameters, 𝑡 = (𝑡1, . . . , 𝑡,), 𝑐 = (𝑐1, . . . , 𝑐𝑛). The following properties
of this family are obvious:

(i) for every 𝑗 one has 𝑥𝑗|𝑏D+ = 0 and 𝑥𝑗(𝜁) < 0 when 𝜁 ∈ D (by the maximum principle for
harmonic functions).

(ii) the evaluation map 𝐸𝑣0 : (𝑡, 𝑐) ↦→ 𝑧0(𝑐, 𝑡)(0) is one-to-one from {(𝑐, 𝑡) : 𝑐𝑗 > 0, 𝑡𝑗 ∈ R} on
𝑊 .

Our goal is to construct a local analog of this family in the general case.

3.2. General case. In order to write an integral equation defining a required family of discs,
we need to employ an analog of the Schwarz formula and to choose suitable local coordinates.
We proceed in several steps.
Step 1. Recall that for any complex function 𝑓 ∈ 𝐶𝑟(D) the Cauchy-Green transform is

defined by



DISCS AND BOUNDARY UNIQUENESS . . . 135

𝑇𝑓(𝜁) =
1

2𝜋𝑖

∫︁ ∫︁
D

𝑓(𝜔)𝑑𝜔 ∧ 𝑑𝜔
𝜔 − 𝜁

This is a classical fact that 𝑇 : 𝐶𝑟(D) → 𝐶𝑟+1(D) is a bounded linear operator for every non-
integer 𝑟 > 0. Furthermore, (𝑇𝑓)𝜁 = 𝑓 , i.e., 𝑇 solves the 𝜕-equation in the unit disc. Recall

also that the function 𝑇𝑓 is holomorphic on C ∖ D.
We have the following Green-Schwarz formula (see the proof, for example, in [7], although,

of course, it can be found in the vaste list of classical works). Let 𝑓 = 𝜑 + 𝑖𝜓 : D → C be a
function in the class 𝐶𝑟(D). Then for each 𝜁 ∈ D one has

𝑓(𝜁) = 𝑆𝜑(𝜁) + 𝑖𝑃0𝜓 + 𝑇𝑓𝜁(𝜁) − 𝑇𝑓𝜁(1/𝜁) (9)

Note that because of the “symmetrization” the real part of the sum of two terms containing 𝑇
vanishes on the unit circle. We also notice that the last term is holomorphic on D.
Step 2. Now let (𝑀,𝐽) be an almost complex manifold of complex dimension 𝑛 and 𝐸 be a

totally real 𝑛-dimensional submanifold of 𝑀 . We assume that 𝐸 and 𝑊 are given by (3) and
(4), respectively.
First, according to Section 2 we choose local coordinates 𝑧 such that 𝑝 = 0 and the complex

matrix 𝐴 of 𝐽 satisfies (7). For every 𝜏 > 0 small enough and 𝐶 > 0 big enough the functions

𝜌𝑗 := 𝜌𝑗 − 𝜏
∑︁
𝑘 ̸=𝑗

𝜌𝑘 + 𝐶
𝑛∑︁

𝑘=1

𝜌2𝑘

are strictly 𝐽-psh in a neighborhood of the origin and the “truncated” wedge
𝑊𝜏 = {𝜌𝑗 < 0, 𝑗 = 1, . . . , 𝑛} is contained in 𝑊 . After a C-linear (with respect to 𝐽𝑠𝑡) change of
coordinates one can assume that 𝜌𝑗 = 𝑥𝑗 + 𝑜(|𝑧|). Consider now a local diffeomorphism

Φ : 𝑧 = 𝑥𝑗 + 𝑖𝑦𝑗 ↦→ 𝑧′ = 𝑥′𝑗 + 𝑖𝑦′𝑗 = 𝜌𝑗 + 𝑖𝑦𝑗

Then Φ(0) = 0, 𝑑Φ(0) = 0 and in the new coordinates 𝜌𝑗 = 𝑥𝑗 (we drop the primes), 𝐸 = 𝑖R𝑛

and 𝑊𝜏 = {𝑥𝑗 < 0, 𝑗 = 1, . . . , 𝑛}. We keep the notation 𝐽 for the direct image Φ*(𝐽). Then in
the chosen coordinates the complex matrix still satisfies 𝐴(0) = 0. Note also that the coordinate
functions 𝑥𝑗 are strictly psh for 𝐽 .
Finally, similarly to the proof of Lemma 2.1, for 𝜆 > 0, we consider the isotropic dilations

𝑑𝜆 : 𝑧 ↦→ 𝜆−1𝑧 and the direct images 𝐽𝜆 := (𝑑𝜆)*(𝐽). Denote by 𝐴(𝑧, 𝜆) the complex matrix of
𝐽𝜆.
Step 3. For 𝜆 > 0 small enough, we are looking for the solutions 𝑧 : D → C𝑛 to a Bishop’s

type integral equation
𝑧(𝜁) = ℎ(𝑧(𝜁), 𝑡, 𝑐, 𝜆) (10)

with
ℎ(𝑧(𝜁), 𝑡, 𝑐, 𝜆) = 𝑡𝑆𝜑(𝜁) + 𝑖𝑐+ 𝑇𝐴(𝑧, 𝜆)𝑧𝜁(𝜁) − 𝑇𝐴(𝑧, 𝜆)𝑧𝜁(1/𝜁)

where 𝑡 = (𝑡1, . . . , 𝑡𝑛), 𝑡𝑗 > 0 and 𝑐 ∈ R𝑛 are real parameters. Note that the first and the
last terms in the right hand are holomorphic on D. Therefore, any solution of (10) satisfies
the Cauchy-Riemann equations (5) i.e. is a 𝐽-complex disc. Furthemore, 𝑥𝑗(𝜁) vanishes on 𝑏D+

(that is, 𝑧(𝑏D+) ⊂ 𝐸) and is negative on 𝑏D−. Since the function 𝑧 ↦→ 𝑥𝑗 is strictly 𝐽-psh, by
the maximum principle the image 𝑧(D) is contained in 𝑊 𝜏 .
The existence of solutions follows the implicit function theorem. Note that for 𝜆 = 0, equation

(10) admits solution (8). We consider the smooth map of Banach spaces

𝐻 : 𝐶𝑟(D) ×R𝑛 ×R𝑛 ×R −→ 𝐶𝑟(D),

𝐻 : (𝑧, 𝑐, 𝑡, 𝜆) ↦→ ℎ(𝑧(𝜁), 𝑡, 𝑐, 𝜆).
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Obviously the partial derivative of 𝐻 in 𝑧 vanishes: (𝐷𝑧𝐻)(𝑧0, 𝑐, 𝑡, 0) = 0, where 𝑧0 is a disc
given by ( 8). By the implicit function theorem, for every (𝑐, 𝑡, 𝜆) close enough to the origin
the equation ( 10) admits a unique solution 𝑧(𝑐, 𝑡)(𝜁) of class 𝐶𝑟(D) depending smoothly on
parameters (𝑐, 𝑡) (as well as 𝜆, of course).
Fixing 𝜆 > 0, we consider the smooth evaluation map

𝐸𝑣𝜆 : (𝑐, 𝑡) ↦→ 𝑧(𝑐, 𝑡)(0)

which associates to each parameter the centre of the corresponding disc. Note that for 𝜆 = 0
we obtain the linear mapping 𝐸𝑣0(𝑐, 𝑡) = (𝑡𝑆𝜑(0) + 𝑖𝑐) appeared already in the model case
of the standard structure. More precisely, for every 𝜆 > 0 and every 𝑐 ∈ R𝑛, the equation
(10) has the unique constant solution 𝑧 = 𝑖𝑐 when 𝑡 = 0. Hence, 𝐸𝑣𝜆 admits the expansion
𝐸𝑣𝜆(𝑐, 𝑡) = 𝐸𝑣0(𝑐, 𝑡) + 𝑜(|(𝑐, 𝑡, 𝜆)|).
Denote by 𝑉 the wedge 𝑉 = {(𝑐, 𝑡) : 𝑐 ∈ R𝑛, 𝑡𝑗 > 0, 𝑗 = 1, . . . , 𝑛} with the

edge 𝐿 = {(𝑐, 0) : 𝑐 ∈ R𝑛}. Then 𝐸𝑣0(𝑉 ) coincides with 𝑊𝜏 in a neighborhood of the
origin. Furthermore, 𝐸𝑣𝜆(𝐿) = 𝐸 for 𝜆 > 0. Also, for 𝛼 > 0 the “truncated” wedge
𝑊𝛼 = {𝑥𝑗 − 𝛼

∑︀
𝑘 ̸=𝑗 𝑥𝑘 < 0} with the edge 𝐸 is contained in 𝑊𝜏 . The faces of the boundary of

𝑊𝛼 are transverse to the face of 𝑊𝜏 . Since this property is stable under small perturbations, we
conclude that 𝑊𝛼 ⊂ 𝐸𝑣𝜆(𝑉 ) for all 𝜆 small enough. In terms of the initial defining functions
𝜌𝑗 we have {𝑧 : 𝜌𝑗 − 𝛿

∑︀
𝑘 ̸=𝑗 𝜌𝑘 < 0} ⊂ 𝑊𝜀 when 𝜏 + 𝜀 < 𝛿.

We summarize the said above in the following theorem.

Theorem 3.1. Let 𝐸 be a totally real submanifold (3) of an almost complex manifold (𝑀,𝐽)
and 𝑊 be a wedge (4). For every 𝛿 > 0 there exists a family of 𝐽-complex discs smoothly
depending on 2𝑛 real parameters with the following properties:

(i) the boundary of every disc is glued along 𝑏D+ to 𝐸 and every disc is contained in 𝑊 ;
(ii) every point of the truncated wedge {𝑧 : 𝜌𝑗 − 𝛿

∑︀
𝑘 ̸=𝑗 𝜌𝑘 < 0} belongs to some disc.

Although we do not need this in the paper, note that every point of the wedge 𝐸 belongs to
the boundary of some disc. Concerning regularity of manifolds and almost complex structures,
it suffices to require the class 𝐶𝛼 with real 𝛼 > 2. We skip the details.

4. Boundary uniqueness

Now we can prove easily the main result of the present paper.

Theorem 4.1. Let 𝐸 be a totally real submanifold (3) of an almost complex manifold (𝑀,𝐽)
and 𝑊 be a wedge (4). Assume that 𝑢 is a plurisubharmonic function in 𝑊 such that

lim sup
𝑊∋𝑧→𝐸

𝑢(𝑧) = −∞ (11)

Then 𝑢 ≡ −∞.

Indeed, for every disc 𝑓 constructed in Theorem 3.1 the function (𝑢∘𝑓)(𝜁) is subharmonic on
D and tends to −∞ as 𝜁 → 𝑏D+; therefore, 𝑢∘𝑓 ≡ −∞ (by classical properties of subharmonic
functions, see [4]). Now by (ii) Theorem 3.1 we conclude that 𝑢 ≡ −∞.

Corollary 4.2. Let 𝐸 be a closed subset of an almost complex 𝑛-dimensional manifold
(𝑀,𝐽). Suppose that 𝐸 contains a germ of a totally real manifold of dimension 𝑛. Then 𝐸
is not a pluripolar set.
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