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OPERATOR OF INVARIANT DIFFERENTIATION

AND ITS APPLICATION FOR INTEGRATING

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

R.K. GAZIZOV, A.A. GAINETDINOVA

Abstract. We propose an algorithm for integrating 𝑛-th order ordinary differential
equations (ODE) admitting 𝑛-dimensional Lie algebras of operators. The algorithm is
based on invariant representation of the equations by the invariants of the admitted Lie
algebra and application of an operator of invariant differentiation of special type. We show
that in the case of scalar equations this method is equivalent to the known order reduction
methods. We study an applicability of the suggested algorithm to the systems of 𝑚 𝑘-
th order ODEs admitting 𝑘𝑚-dimensional Lie algebras of operators. For the admitted Lie
algebra we obtain a condition ensuring the possibility to construct the operator of invariant
differentiation of a special type and to reduce the order of the considered system of ODEs.
This condition is the implication of the existence of nontrivial solutions to the systems of
linear algebraic equations, where the coefficients are the structural constants of the Lie
algebra. We present an algorithm for constructing the (𝑘𝑚 − 1)-dimensional Lie algebra
for the reduced system. The suggested approach is applied for integrating the systems of
two second order equations.

Keywords: ordinary differential equations, Lie algebras of operators, differential invari-
ants, operator of invariant differentiation.
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1. Introduction

Group analysis provides a wide set of tools for studying symmetry properties of differential
equations, for reducing the orders and for integrating these equations by quadratures, see [1]–[4]
and others.

In integrating ordinary differential equations (ODEs), the most used methods are the method
of successive order reduction involving the introduction of so-called canonical variables or the
introduction of differential invariants, see, for instance, [4, 5]. In the first method, at the first
step the equation is transformed to some canonical form and then it is reduced to an equation
of smaller order. The second method is based on applying differential invariants of the admitted
group and the invariant differentiation operation, that is, the operation of differentiating one
differential invariant w.r.t. another invariant of lower order.

The classical theory of differential invariants was founded by S. Lie [1] and was developed
in works by A. Tresse [6] and L.V. Ovsyannikov [2]. An important notion of this theory is
operator of invariant differentiation (OID), the linear differential operator, the action of which
on an arbitrary differential invariant is again a differential invariant, as a rule, of higher order.
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Various approaches for constructing OIDs were considered in works [2], [7], [8]. In a series of
works OIDs were employed for constructing a basis of differential invariants of the admitted
algebra in the problems on classification of differential equations, see, for instance, [9]–[11].

In work [12] there was proposed a method for integrating a system of two second order ODEs
with four symmetries; that method was a version of method of successive order reduction. The
method employs the result on the classification of systems of two second order ODEs with four
symmetries and it is based on employing OIDs for constructing first integrals for these systems.
At that, the result of the classification of systems of second order ODEs was used for proving
that the considered systems have OID in a form allowing one to employ it for obtaining the
first integral of the system.

In the present work the method proposed in [12] is generalized for differential equations of
arbitrary form. In particular, there was shown that for the scalar equations, this method is
equivalent to the known methods of order reduction. We study the applicability of this method
to the systems of 𝑚 ODEs of 𝑘th order admitting 𝑘𝑚-dimensional Lie algebra of operators. We
obtain a condition for the admitted Lie algebra ensuring the possibility of constructing OIDs
in the form allowing to use it for order reducing of the considered system of ODEs. We also
show that the constructed in this way reduced system admits (𝑘𝑚−1)-dimensional Lie algebra
and the proposed method can be again employed for this method.

2. Constructing of operator of invariant differentiation

We consider the system
𝑢(𝑘) = 𝑓

(︀
𝑡, 𝑢, 𝑢(1), . . . , 𝑢(𝑘−1)

)︀
(1)

of 𝑚 ordinary differential equations of 𝑘th order admitting the 𝑛 = 𝑘𝑚-dimensional Lie algebra
𝐿𝑛 generated by the basis operators

𝑋𝑖 = 𝜏𝑖
𝜕

𝜕𝑡
+

𝑚∑︁
𝛼=1

𝜉𝛼𝑖
𝜕

𝜕𝑢𝛼

, 𝑖 = 1, . . . , 𝑛.

Here 𝑡 is an independent variable, 𝑢 = (𝑢1, . . . , 𝑢𝑚) is a vector of dependent variables, 𝑢(𝑘) is
the vector of the derivatives of 𝑘th order, 𝜏𝑖 𝜉

𝛼
𝑖 are given functions of 𝑡, 𝑢, 𝑓 = (𝑓1, . . . , 𝑓𝑚) is

the vector function of the mentioned variables.
Differential invariants of the algebra 𝐿𝑛 are sought of the system

𝑋
(𝑘)
𝑖 𝐼 = 0, 𝑖 = 1, . . . , 𝑛, (2)

where 𝑋
(𝑘)
𝑖 is obtained from the operator 𝑋𝑖 by extending to all derivatives of 𝑘th order, and

the functions 𝐼 = 𝐼(𝑡, 𝑢, 𝑢(1), . . . , 𝑢(𝑘)) are the unknowns. We introduce the matrix

Ω(𝑘) =

⃦⃦⃦⃦
⃦⃦⃦ 𝜏1 𝜉11 . . . 𝜉𝑚1 𝜁

1(1)
1 . . . 𝜁

𝑚(𝑘)
1

...

𝜏𝑛 𝜉1𝑛 . . . 𝜉𝑚𝑛 𝜁
1(1)
𝑛 . . . 𝜁

𝑚(𝑘)
𝑛

⃦⃦⃦⃦
⃦⃦⃦

formed by the coordinates of the extended operators 𝑋
(𝑘)
𝑖 and let

rank Ω(𝑘) = 𝑛.

Then system (2) has 𝑚 + 1 functional independent solutions. If system (1) defines a regular
manifold w.r.t the transformation group generated by the operators of the algebra 𝐿𝑛, then
it can be represented in the invariant form (see, for instance, [2], [3]). In this case solution

(2) determines 𝑚 independent invariants 𝐼
(𝑘)
𝛼 of order 𝑘 (𝛼 = 1, . . . ,𝑚) and one invariant 𝐼 of

smaller order.
The order of the invariant 𝐼 is defined as follows: if for a 𝑙th extension (𝑙 = 0, . . . , 𝑘− 1) the

rank of the matrix Ω(𝑙) is less than (𝑙+ 1)𝑚+ 1, then the order of 𝐼 is equal to 𝑙. In the general
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case, rank Ω(𝑙) is equal to 𝑚(𝑙 + 1) + 1 and the condition rank Ω(𝑘) = 𝑛 implies that the above
inequality can hold for an only 𝑙.

Assume that equation (1) possesses the following invariant representation:

𝐼(𝑘)𝛼 = 𝐹𝛼(𝐼), 𝛼 = 1, . . . ,𝑚, (3)

where 𝐹𝛼 are some functions. Let us construct OID 𝜆𝐷𝑡, where 𝜆 = 𝜆(𝑡, 𝑢1, . . . , 𝑢𝑚, . . . , 𝑢
(𝑘)
1 , . . . , 𝑢

(𝑘)
𝑚 ).

According [2], the function 𝜆 can be found by the system of equations

𝑋
(𝑘)
𝑖 (𝜆) − 𝜆𝐷𝑡 (𝜏𝑖) = 0. (4)

We apply the constructed OID to an invariant of smaller order:

𝜆𝐷𝑡(𝐼) = Θ(𝐼, 𝐼
(𝑘)
1 , . . . , 𝐼(𝑘)𝑚 ),

where Θ = Θ(𝐼, 𝐼
(𝑘)
1 , . . . , 𝐼

(𝑘)
𝑚 ) is some function. Considering the obtained expression on a

solution of system (3), we get

𝜆𝐷𝑡(𝐼)|(3) = Θ̂(𝐼), (5)

where Θ̂(𝐼) = Θ (𝐼, 𝐹1(𝐼), . . . , 𝐹𝑚(𝐼)) . Equation (5) can be rewritten as

d𝐼

Θ̂(𝐼)
=

d𝑡

𝜆
. (6)

We observe that the left hand side of equation (6) is integrable by quadratures only if the
function 𝜆 can be represented as

𝜆 =
1

𝐷𝑡 (Φ)
(7)

with some function Φ = Φ(𝑡, 𝑢1, . . . , 𝑢𝑚, . . . , 𝑢
(𝑘−1)
1 , . . . , 𝑢

(𝑘−1)
𝑚 ).

Let us show that the function 𝜆 for OID can be constructed in as (7). Substituting expression
(7) into (4), we obtain

− 1(︀
𝐷𝑡Φ

)︀2 (︀𝑋(𝑘)
𝑖 (𝐷𝑡Φ) + 𝐷𝑡Φ𝐷𝑡 (𝜉𝑖)

)︀
= 0,

which implies (see, for instance, [2])

𝐷𝑡

(︀
𝑋

(𝑘−1)
𝑖 Φ

)︀
= 0.

Thus, the function Φ should satisfy the system

𝑋
(𝑘−1)
𝑖 Φ = 𝐶𝑖, 𝑖 = 1, . . . , 𝑛 (8)

with some constants 𝐶𝑖. System (8) is a system of first order linear inhomogeneous partial
differential equations. It is solvable if and only if it is compatible and complete.

We study the compatibility of system (8) constructed for the operators admitted by system

of ODEs (1). We consider the matrix Ω(𝑘−1) formed by the coordinates of the operators 𝑋
(𝑘−1)
𝑖 .

This is a matrix of size 𝑛 × (𝑛 + 1) and its rank is equal 𝑛. Otherwise, if rank Ω(𝑘−1) < 𝑛,
system (1) has no invariant representation since the admitted group has more than one invariant
of lower order and therefore less than 𝑚 invariants of 𝑘th order. Therefore, system (8) is
compatible for all 𝐶𝑖.

In order to study the completeness of system (8), we introduce the operators

𝑌𝑖 = 𝑋
(𝑘−1)
𝑖 + 𝐶𝑖

𝜕

𝜕Φ
.
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According the general method of studying linear inhomogeneous equations, see, for instance,
[13], the completeness of system (8) is equivalent to the closedness of the operators {𝑌𝑖} w.r.t.
the commutator. We have

[𝑌𝑖, 𝑌𝑗] =

[︂
𝑋

(𝑘−1)
𝑖 + 𝐶𝑖

𝜕

𝜕Φ
, 𝑋

(𝑘−1)
𝑗 + 𝐶𝑗

𝜕

𝜕Φ

]︂
= [𝑋

(𝑘−1)
𝑖 , 𝑋

(𝑘−1)
𝑗 ]

=
𝑛∑︁

𝑠=1

𝑐𝑠𝑖𝑗𝑋
(𝑘−1)
𝑠 =

𝑛∑︁
𝑠=1

𝑐𝑠𝑖𝑗

(︂
𝑌𝑠 − 𝐶𝑠

𝜕

𝜕Φ

)︂
.

This implies that the system of the operators {𝑌𝑖} is closed provided the constants 𝐶𝑠 satisfy
the system of algebraic equations

𝑛∑︁
𝑠=1

𝑐𝑠𝑖𝑗𝐶𝑠 = 0. (9)

System (9) has the trivial solution 𝐶𝑠 ≡ 0, 𝑠 = 1, . . . , 𝑛, only if 𝑛 > 3 and the rank of system (9)
is equal 𝑛. In this case the function Φ obtained from system (8) is an invariant of the admitted
Lie algebra, that is, Φ = Φ(𝐼), and this is why the obtained operator is not OID and the action
on the invariant 𝐼 does not lead to new invariants; the order of the differential invariant is not
increased.

If 𝑛 < 3 or 𝑛 > 3 and the rank of system (9) is less than 𝑛, then equation (9) has a non-zero
solution (𝐶0

1 , . . . , 𝐶
0
𝑛)𝑇 , where at least one constant 𝐶0

𝑖 ̸= 0. As the function Φ for OID, we can
choose each particular solution of system (9) with 𝐶𝑖 = 𝐶0

𝑖 . Such function Φ is invariant w.r.t.
linear combinations of form 𝐶0

𝑗𝑋𝑖 − 𝐶0
𝑖 𝑋𝑗 :(︀

𝐶0
𝑗𝑋𝑖 − 𝐶0

𝑖 𝑋𝑗

)︀
(Φ) = 𝐶0

𝑗𝑋𝑖 (Φ) − 𝐶0
𝑖 𝑋𝑗 (Φ) = 𝐶0

𝑗𝐶
0
𝑖 − 𝐶0

𝑖 𝐶
0
𝑗 = 0.

We are going to show that among these linear combinations, there exist 𝑛−1 linear independent
ones forming a Lie algebra.

Let 𝐶0
1 ̸= 0 and consider the operators 𝑋̂𝑖 = 𝐶0

𝑖 𝑋1 − 𝐶0
1𝑋𝑖, 𝑖 = 2, . . . , 𝑛.

1. By construction, these operators are linearly independent, since the operators 𝑋1, . . . , 𝑋𝑛

form the basis of the Lie algebra 𝐿𝑛.
2. All other combinations can be expressed in terms of the chosen ones:

1

𝐶0
1

(︀
𝐶0

𝑗𝑋𝑘 − 𝐶0
𝑘𝑋𝑗

)︀
=

𝐶0
𝑗

𝐶0
1

(︁
𝐶0

𝑘𝑋1 − 𝑋̂𝑘

)︁
− 𝐶0

𝑘

𝐶0
1

(︁
𝐶0

𝑗𝑋1 − 𝑋̂𝑗

)︁
=

𝐶0
𝑘

𝐶0
1

𝑋̂𝑗 −
𝐶0

𝑗

𝐶0
1

𝑋̂𝑘.

3. Let us show that the set of the operators {𝑋̂𝑖} is closed w.r.t. the commutation. We have

[𝑋̂𝑖, 𝑋̂𝑗] =[𝐶0
𝑖 𝑋1 − 𝐶0

1𝑋𝑖, 𝐶
0
𝑗𝑋1 − 𝐶0

1𝑋𝑗] = 𝐶0
1

(︀
𝐶0

𝑗 [𝑋1, 𝑋𝑖] − 𝐶0
𝑖 [𝑋1, 𝑋𝑗] + 𝐶0

1 [𝑋𝑖, 𝑋𝑗]
)︀

=𝐶0
1

𝑛∑︁
𝑟=1

(︀
𝐶0

𝑗 𝑐
𝑟
1𝑖 − 𝐶0

𝑖 𝑐
𝑟
1𝑗 + 𝐶0

1𝑐
𝑟
𝑖𝑗

)︀
𝑋𝑟

=𝐶0
1

(︀
𝐶0

𝑗 𝑐
1
1𝑖 − 𝐶0

𝑖 𝑐
1
1𝑗 + 𝐶0

1𝑐
1
𝑖𝑗

)︀
𝑋1 +

𝑛∑︁
𝑟=2

(︀
𝐶0

𝑗 𝑐
𝑟
1𝑖 − 𝐶0

𝑖 𝑐
𝑟
1𝑗 + 𝐶0

1𝑐
𝑟
𝑖𝑗

)︀ (︁
𝐶0

𝑟𝑋1 − 𝑋̂𝑟

)︁
=

𝑛∑︁
𝑟=1

(︀
𝐶0

𝑗 𝑐
𝑟
1𝑖 − 𝐶0

𝑖 𝑐
𝑟
1𝑗 + 𝐶0

1𝑐
𝑟
𝑖𝑗

)︀
𝐶0

𝑟𝑋1 −
𝑛∑︁

𝑟=2

(︀
𝐶0

𝑗 𝑐
𝑟
1𝑖 − 𝐶0

𝑖 𝑐
𝑟
1𝑗 + 𝐶0

1𝑐
𝑟
𝑖𝑗

)︀
𝑋̂𝑟

= −
𝑛∑︁

𝑟=2

(︀
𝐶0

𝑗 𝑐
𝑟
1𝑖 − 𝐶0

𝑖 𝑐1𝑗𝑟 + 𝐶0
1𝑐

𝑟
𝑖𝑗

)︀
𝑋̂𝑟,
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where the first sum in the pre-last line vanishes due to (9). Then

[𝑋̂𝑖, 𝑋̂𝑗] =
𝑛∑︁

𝑠=1

𝑐𝑠𝑖𝑗𝑋̂𝑠, where 𝑐𝑠𝑖𝑗 = 𝐶0
𝑗 𝑐

𝑠
1𝑖 − 𝐶0

𝑖 𝑐
𝑠
1𝑗 + 𝐶0

1𝑐
𝑠
𝑖𝑗.

Thus, the operators 𝑋̂𝑖 generate (𝑛−1)-dimensional Lie algebra 𝐿𝑛−1. Apart of the invariants
of the algebra 𝐿𝑛, the reduced algebra 𝐿𝑛−1 has an additional invariant, the function Φ.

We return back to integrating equation (6). It can be rewritten in the integrable form

𝐷𝑡(𝐼)

Θ̂(𝐼)
= 𝐷𝑡(Φ)

and its solution
𝐻(Φ, 𝐼) = 0

with some function 𝐻 is the first integral for system of equations (3). Adding this equation to
system (3) and removing the differential implications, we arrive at a system of order 𝑘𝑚 − 1
admitting the above constructed Lie algebra 𝐿𝑛−1.

Thus, we have proved the following theorem.

Theorem 1. Suppose that system of 𝑚 ODEs of 𝑘th order (1) admits the 𝑛-dimensional
(𝑛 = 𝑘𝑚) Lie algebra 𝐿𝑛 of the operators 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, and is represented in terms of

the differential invariants 𝐼(𝑙), 𝐼
(𝑘)
1 , . . . , 𝐼

(𝑘)
𝑚 of this algebra as (3); 𝑙 and 𝑘 are the orders of the

differential invariants. Assume that system of linear algebraic equations (9)
𝑛∑︁

𝑠=1

𝑐𝑠𝑖𝑗𝐶𝑠 = 0,

where 𝑐𝑠𝑖𝑗 are the structural constants of Lie algebra 𝐿𝑛, has a non-trivial solution. Then there
exists a OID of form

1

𝐷𝑡 (Φ)
𝐷𝑡

satisfying the relation
1

𝐷𝑡 (Φ)
𝐷𝑡(𝐼

(𝑙))|(3) = Θ̂(𝐼(𝑙)),

which is integrable and generates the first integral of system (1). The system of order 𝑛 − 1
obtained by system (3) by adding the first integral admits (𝑛− 1)-dimensional Lie algebra 𝐿𝑛−1

with basis operators constructed as linear combinations of the operators 𝑋𝑖 with the coefficients
determined by the solution of system (9).

Remark. This theorem can be generalized to an arbitrary system of ODEs of 𝑛th order
admitting 𝑛 operators. As a demonstration, see Example 3.

3. Integration of scalar ODEs

3.1. First order equation. We consider the applying OID for integrating the first order
equation

𝑥̇ = 𝑓(𝑡, 𝑥) (10)

admitting one operator

𝑋 = 𝜏(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜉(𝑡, 𝑥)

𝜕

𝜕𝑥
.

Such operator has one independent invariant 𝐼(0)(𝑡, 𝑥) of zero order and one invariant 𝐼(1)(𝑡, 𝑥, 𝑥̇)
of first order, while equation (10) has an invariant representation:

𝐼(1) = 𝐹 (𝐼(0)). (11)
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Let us calculated OID. Let 𝜆 = (𝐷𝑡Φ)−1 , where Φ = Φ(𝑡, 𝑥) is determined by the equation

𝑋 (Φ) ≡ 𝜏Φ𝑡 + 𝜉Φ𝑥 = 1. (12)

Applying OID to the invariant 𝐼(0) and taking into consideration (11), we arrive at the relation:

𝐷𝑡(𝐼
(0))

𝐷𝑡(Φ)

⃒⃒⃒⃒
(11)

= 𝛼(𝐼(0)) (13)

with some function 𝛼. Integration this equation leads to the solution of equation (11).
We consider equation (10) in an equivalent form

𝑀(𝑡, 𝑥)d𝑡 + 𝑁(𝑡, 𝑥)d𝑥 = 0. (14)

By system of the characteristic equations

d𝑡

𝜏
=

d𝑥

𝜉
=

dΦ

1
,

for (12) and by (14) we have

𝑀(𝑥, 𝑦)

𝜏𝑀 + 𝜉𝑁
d𝑡 +

𝑁(𝑥, 𝑦)

𝜏𝑀 + 𝜉𝑁
d𝑥 = dΦ,

which is equivalent to multiplying equation (14) by the integrating factor 𝜇 = 1
𝜏𝑀+𝜉𝑁

, see, for

instance, [4].
Thus, the function Φ is the total differential obtained for equation (14).
On the other hand, the constructed Φ and 𝐼(0) can be interpreted as new variables. Then

equation (13) admits the translation operator 𝜕
𝜕Φ

. Therefore, seeking Φ is equivalent to con-
structing a new dependent variable while transformation the admitted operator to the transla-
tion operator.

Example 1. We consider the equation

𝑥̇ + 𝑥2 =
2

𝑡2
(15)

admitting the operator 𝑋 = 𝑡 𝜕
𝜕𝑡
− 𝑥 𝜕

𝜕𝑥
. We rewrite equation (15) in the equivalent form

d𝑥 +

(︂
𝑥2 − 2

𝑡2

)︂
d𝑡 = 0. (16)

The invariants of the operator 𝑋 are of the form 𝐼(0) = 𝑡𝑥, 𝐼(1) = 𝑡2𝑥̇. The function Φ of OID
OID (𝐷𝑡Φ)−1𝐷𝑡 is determined by the equation 𝑋Φ = 1 and hence, Φ = ln 𝑡 + 𝜑(𝑡𝑥), where
𝜑(𝑡𝑥) is an arbitrary function of the invariant of the operator 𝑋. We choose Φ = ln 𝑡. Then
OID is of the form 𝑡𝐷𝑡.

We apply the obtained OID to the invariant 𝐼(0):

𝑡𝐷𝑡(𝐼
(0))|(15) = 𝐼(0) + 2 − (𝐼(0))2

to obtain
d𝐼(0)

2 + 𝐼(0) − (𝐼(0))2
=

d𝑡

𝑡
. (17)

In the initial variables this reads as

d (𝑡𝑥)

2 + 𝑡𝑥− (𝑡𝑥)2
= d (ln 𝑡) . (18)

It is easy to see that constructing of this equation is equivalent to multiplying equation (16)
by the integrating factor 𝜇 = 𝑡

𝑡2𝑥2−𝑡𝑥−2
.
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3.2. Second order equation. We apply the considered algorithm for integrating the second
order differential equation

𝑥̈ = 𝑓(𝑡, 𝑥, 𝑥̇) (19)

admitting the Lie algebra 𝐿2 with the basis operators

𝑋𝑖 = 𝜏𝑖(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜉𝑖(𝑡, 𝑥)

𝜕

𝜕𝑥
, 𝑖 = 1, 2.

For example, we consider the case, when the commutator of the admitted operators [𝑋1, 𝑋2] =
𝑋1 and the operators 𝑋1 and 𝑋2 are not linearly connected, that is,

𝑋1 ∨𝑋2 ≡ 𝜏1𝜉2 − 𝜏2𝜉1 ̸= 0,

see, for instance, [4]. Then the algebra 𝐿2 has two differential invariants 𝐼(1)(𝑡, 𝑥, 𝑥̇) and
𝐼(2)(𝑡, 𝑥, 𝑥̇, 𝑥̈) and this allows us to rewrite equation (19) as

𝐼(2) = 𝐹 (𝐼(1)) (20)

with some function 𝐹 .
We construct OID as (𝐷𝑡Φ)−1𝐷𝑡. The completeness of corresponding system (8) implies

that the function Φ(𝑡, 𝑥) can be found by the system of equations

𝑋1 (Φ) ≡ 𝜏1Φ𝑡 + 𝜉1Φ𝑥 = 0,

𝑋2 (Φ) ≡ 𝜏2Φ𝑡 + 𝜉2Φ𝑥 = 1.

If 𝐼0 is an algebraic invariant of the operator 𝑋1, the general solution to first equation in the
above system is written as Φ = 𝜑(𝐼0), while by the condition [𝑋1, 𝑋2] = 𝑋1 the second equation
determines the function 𝜑. Thus, the function Φ is an algebraic invariant of the operator 𝑋1.
Then the equation for the first integral is written as

𝐷𝑡(𝐼
(1))

𝐷𝑡(Φ)

⃒⃒⃒⃒
(20)

= Θ̂(𝐼(1)) (21)

with some function Θ̂. The integration of this equation provides the first integral of the initial
equation 𝐻̂(𝐼(1),Φ) = 0. The obtained equation admits the operator 𝑋1, therefore, it can be
integrated by quadratures.

On the other hand, by the classical method of order reducing, at the first step we choose the
operator 𝑋1 forming an ideal of the admitted algebra 𝐿2. Then choosing the function 𝜑(𝐼0) as
the algebraic invariant for 𝑋1 and the invariant 𝐼(1) of the algebra 𝐿2 as the first order invariant,
we obtain a similar reduced first order equation (21). Therefore, we have shown that under an
appropriate choice of differential invariants, the classical method of successive order reducing
and the method of order reducing by OID lead to the same reduced equation.

The feature of the method of order reducing by OID is that the reduced equation is written in
the initial variables and its symmetry is obtained as a linear combination of the initial operators.

Example 2. Consider the equation

𝑥̈ =
𝑥̇

𝑥2
− 1

𝑡𝑥
(22)

admitting the operators

𝑋1 = 𝑡2
𝜕

𝜕𝑡
+ 𝑡𝑥

𝜕

𝜕𝑥
, 𝑋2 = 𝑡

𝜕

𝜕𝑡
+

𝑥

2

𝜕

𝜕𝑥

satisfying the commutation relation [𝑋1, 𝑋2] = −𝑋1.

The invariants of the admitted algebra are 𝐼(1) = 𝑥𝑥̇− 𝑥2

𝑡
, 𝐼(2) = 𝑥3𝑥̈. The coefficient OID is

found the by the system of equations

𝑋1 (Φ) = 0, 𝑋
(1)
2 (Φ) = 1,
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where Φ = Φ(𝑡, 𝑥). We obtain

Φ = 2 ln
𝑡

𝑥
, 𝜆𝐷𝑡 =

𝑡𝑥

2(𝑥− 𝑡𝑥̇)
𝐷𝑡

and applying OID to the invariant 𝐼1, in view of (22) we get the expression

d𝐼(1)

𝐼(1) + 1
= −1

2
dΦ. (23)

The integration of this relation leads us to the reduced equation

𝑥(𝑡𝑥̇− 𝑥)

𝑡
= 𝐶1

𝑥

𝑡
− 1

admitting the operator 𝑋1. It is easy to show that a similar reduced equation is obtained by
using the classical method if as the invariants of the operator 𝑋1 we choose 𝐼0 = −2 ln 𝑥

𝑡
and

𝐼1 = 𝑥𝑥̇− 𝑥2

𝑡
.

4. System of two second order ODEs

We consider the systems {︂
𝑥̈ = 𝑓(𝑡, 𝑥, 𝑦, 𝑥̇, 𝑦̇),

𝑦 = 𝑔(𝑡, 𝑥, 𝑦, 𝑥̇, 𝑦̇)
(24)

admitting four-dimensional Lie algebras of the operators with the basis

𝑋𝑖 = 𝜏𝑖(𝑡, 𝑥, 𝑦)
𝜕

𝜕𝑡
+ 𝜉𝑖(𝑡, 𝑥, 𝑦)

𝜕

𝜕𝑥
+ 𝜂𝑖(𝑡, 𝑥, 𝑦)

𝜕

𝜕𝑦
, 𝑖 = 1, . . . , 4.

Suppose that system (24) has the following invariant representation

𝐼
(2)
1 = 𝐹 (𝐼), 𝐼

(2)
2 = 𝐺(𝐼), (25)

with some functions 𝐹 and 𝐺, where 𝐼 is a first order differential invariant or an algebraic

invariant, and 𝐼
(2)
𝑘 , 𝑘 = 1, 2, are second order differential invariants.

It was shown in work [12] that if system (24) has invariant representation (25), then system (9)
always has a non-trivial solution. This seems to be related to the fact that all four-dimensional
Lie algebras can be expanded into the direct sum of subalgebras of smaller dimensions, one of
which is solvable. This is why for all systems of two second order ODEs with four symmetries
admitting invariant representation (25), the reduction to a third order system is possible. If
system (9) for the reduced algebra 𝐿3 has a non-trivial solution, the order of the reduced system
can be also reduced. One can show that for all solvable algebras 𝐿3, system (9) has a non-trivial
solution, while for non-solvable algebras it does not. In the latter case the order of the reduced
system can not be reduced anymore.

Example 3. Assume that system (24) admits the operators

𝑡
𝜕

𝜕𝑡
, 𝑥

𝜕

𝜕𝑥
, 𝑦

𝜕

𝜕𝑦
,

𝜕

𝜕𝑦
.

Then the invariant representation of the system is of form (25), where

𝐼 =
𝑡𝑥̇

𝑥
, 𝐼

(2)
1 =

𝑡2𝑥̈

𝑥
, 𝐼

(2)
2 =

𝑡𝑦

𝑦̇
.
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The function Φ(𝑡, 𝑥, 𝑦, 𝑥̇, 𝑦̇) in OID of form (𝐷𝑡Φ)−1𝐷𝑡 is determined by the following system
of equations

𝑡Φ𝑡 − 𝑥̇Φ𝑥̇ − 𝑦̇Φ𝑦̇ = 𝐶1,

𝑥Φ𝑥 + 𝑥̇Φ𝑥̇ = 𝐶2,

𝑦Φ𝑦 + 𝑦̇Φ𝑦̇ = 𝐶3,

Φ𝑦 = 𝐶4.

The completeness of this system implies that 𝐶4 = 0, while other constants can be arbitrary.
Let 𝐶1 = −1, 𝐶2 = 1, 𝐶3 = 1. Then Φ = ln𝑥𝑦̇, and the reduced system is

ln𝑥𝑦̇ = 𝐻(𝐼,𝐾1), 𝐼
(2)
1 = 𝐹 (𝐼)

with some functions 𝐻 and 𝐹 , and 𝐾1 is the integration constant. The reduced system admits
the operators

𝑡
𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑥
, 𝑥

𝜕

𝜕𝑥
− 𝑦

𝜕

𝜕𝑦
,

𝜕

𝜕𝑦
.

For a new OID the function Φ is determined by the system

𝑡Φ𝑡 + 𝑥Φ𝑥 − 𝑦̇Φ𝑦̇ = 𝐶1,

𝑥Φ𝑥 − 𝑦Φ𝑦 + 𝑥̇Φ𝑥̇ − 𝑦̇Φ𝑦̇ = 𝐶2,

Φ𝑦 = 𝐶3,

and the completeness condition gives 𝐶3 = 0, and 𝐶1 and 𝐶2 are arbitrary. For instance,
𝐶1 = 𝐶2 = 1. Then Φ = ln𝑥, the new reduced system is

𝑡𝑥̇

𝑥
= 𝐻1(ln𝑥,𝐾1, 𝐾2), 𝑥𝑦̇ = 𝐻2(ln𝑥,𝐾1, 𝐾2), (26)

where 𝐻1, 𝐻2 are some functions, 𝐾𝑖, 𝑖 = 1, 2, are integration constants and admit the operators

𝑡
𝜕

𝜕𝑡
+ 𝑦

𝜕

𝜕𝑦
,

𝜕

𝜕𝑦
.

For these operators the function Φ in OID is found by the system

𝑡Φ𝑡 + 𝑦Φ𝑦 = 𝐶1, Φ𝑦 = 𝐶2,

where the completeness condition implies that 𝐶2 = 0. Let 𝐶1 = 1, then Φ = ln 𝑡, and system
(26) is reduced to

𝑥 = 𝑄1(ln 𝑡,𝐾1, 𝐾2, 𝐾3), 𝑦̇ = 𝑄2(ln 𝑡,𝐾1, 𝐾2, 𝐾3), (27)

where 𝑄1, 𝑄2 are some functions and 𝐾𝑖, 𝑖 = 1, 2, 3, are integration constants. This system
admits the operator

𝜕

𝜕𝑦
.

The function Φ of a new OID is found by the equation

Φ𝑦 = 𝐶1.

Let 𝐶1 = 1, then Φ = 𝑦 and we obtain the solution to the initial system:

𝑥 = 𝑄1(ln 𝑡,𝐾1, 𝐾2, 𝐾3), 𝑦 = 𝑄̂2(ln 𝑡,𝐾1, 𝐾2, 𝐾3, 𝐾4),

where 𝑄1, 𝑄̂2 are some functions and 𝐾𝑖, 𝑖 = 1, 2, 3, 4, are the integration constants.
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6. Ar. Tresse. Sur les invariants différentiels des groupes continus de transformations // Acta Math.
18:1,1–3 (1894).

7. I.V. Shirokov. Differential invariants of the transformation group of a homogeneous space // Sibir.
Matem. Zhurn. 48:6, 1405–1421 (2007). [Siberian Math. J. 48:6, 1127–1140 (2007).]

8. M. M. Goncharovskiy, I. V. Shirokov. Differential invariants and operators of invariant differ-
entiation of the projectable action of Lie groups // Theor. Matem. Fiz. 183:2, 202–221 (2015).
[Theor. Math. Phys. 183:2, 619–636 (2015).]

9. R.E. Popovich, V.N. Bojko. Differential invariants of one-parametric group of local transforms
and integrable Riccatti equations // Vestnik SamGU. 4(18), 49–56 (2001). (in Russian).

10. O.V. Gaponova, M.O. Nesterenko. Systems of second-order ODEs invariant with respect to low-
dimensional Lie algebras // Zb. Pr. Inst. Mat. NAN Ukr. 3:2, 71–91 (2006). (in Ukrainian).

11. M. Ayub, F.M. Mahomed, M. Khan, M.N. Qureshi. Symmetries of second-order systems of ODEs
and integrability // Nonlinear Dyn. 74:4, 969–989 (2013).

12. A.A. Gainetdinova, R.K. Gazizov. Integrability of systems of two second-order ordinary differential
equations admitting four-dimensional Lie algebras // Proc. Royl. Soc. A. 473:2197, id 20160461
(2017).

13. N.M. Günter. Integration of first order partial differential equations. ONTI, Leningrad-Moscow
(1934) (in Russian).

Rafail Kavyevich Gazizov,
Scientific research laboratory
Group analysis of mathematical models
in natural sciences, techniques and technologies
Ufa State Aviation Technical University,
K. Marx str. 12,
450008, Ufa, Russia
E-mail: gazizovrk@gmail.com

Aliya Aidarovna Gainetdinova,
Scientific research laboratory
Group analysis of mathematical models
in natural sciences, techniques and technologies
Ufa State Aviation Technical University,
K. Marx str. 12,
450008, Ufa, Russia
E-mail: gainetdinova.alia@gmail.com


