doi[:10.13108/2017-9-2-55](http://dx.doi.org/10.13108/2017-9-2-55) UDC 517.5

LOWER BOUNDS FOR THE AREA OF THE IMAGE OF A CIRCLE

B.A. KLISHCHUK, R.R. SALIMOV

Abstract. In the work we consider Q -homeomorphisms w.r.t p-modulus on the complex plane as $p > 2$. We obtain a lower bound for the area of the image of a circle under such mappings. We solve the extremal problem on minimizing the functional of the area of the image of a circle.

Keywords: p -modulus of a family of curves, p -capacity of condenser, quasiconformal mappings, Q -homeomorphisms w.r.t. p -modulus.

Mathematics Subject Classification: 3065

1. INTRODUCTION

The problem on area deformations under quasi-conformal mappings originates from work by B. Bojarskii [\[1\]](#page--1-1). A series of results in this direction were obtained in works [\[2\]](#page--1-2)–[\[4\]](#page--1-3).

First an upper bound for the are of the image of a circle under quasi-conformal mappings was provided in monograph by M.A. Lavrent'ev, see [\[5\]](#page--1-4). In [\[6,](#page--1-5) Prop. 3.7], the Lavrentiev's inequality was specified in terms of the angular dilatation. Also earlier in works [\[7\]](#page--1-6)–[\[8\]](#page--1-7) there were obtained the upper bounds for the area deformation for annular and lower and Q -homeomorphisms. In the present work we obtain lower bounds for the area of the image of a circle under Q-homeomorphisms w.r.t. p-modulus as $p > 2$.

To simplify the presentation, we restrict ourselves by the planar case. We recall some definitions. Assume that we are given a family Γ of curves γ in the complex plane C. A Borel function $\rho : \mathbb{C} \to [0,\infty]$ is called admissible for Γ, which is written as $\rho \in \text{adm} \Gamma$, if

$$
\int_{\gamma} \varrho(z) \, |dz| \geq 1 \qquad \forall \, \gamma \in \Gamma. \tag{1}
$$

Let $p \in (1,\infty)$. Then a *p*-modulus of the family Γ is the quantity

$$
\mathcal{M}_p(\Gamma) = \inf_{\varrho \in \operatorname{adm}\Gamma} \int_{\mathbb{C}} \varrho^p(z) \, dm(z) \,.
$$
 (2)

Assume that D is a domain in the complex plane C, that is, an open connected subset $\mathbb C$ and $Q : D \to [0, \infty]$ is a measurable function. A homeomorphism $f : D \to \mathbb{C}$ is called a Q -homeomorphism w.r.t. p-modulus if

$$
\mathcal{M}_p(f\Gamma) \leqslant \int\limits_D Q(z) \,\varrho^p(z) \, dm(z) \tag{3}
$$

for each family Γ of curves in D and each admissible function ρ for Γ .

B.A. Klishchuk, R.R. Salimov, Lower bounds for the area of the image of a circle.

○c B.A. Klishchuk, R.R. Salimov. 2017.

Submitted June 16, 2016.

The study of the inequalities of type [\(3\)](#page-0-0) as $p = 2$ goes back to L. Ahlfors, see, for instance, [\[9,](#page--1-8) Ch. I, Sect. D, Thm. 3] as well as to O. Lehto and K. Virtanen [\[10,](#page--1-9) Ch. V, Sect. 6.3, Ineq. (6.6)]. In work [\[11\]](#page--1-10) by C.J. Bishop, V.Ya. Gutlaynskii, O. Martio, M. Vuorinen, a multi-dimensional analogue of inequality [\(3\)](#page-0-0) was proved for quasi-conformal mappings.

We also note that if the function Q in [\(3\)](#page-0-0) is bounded almost everywhere by some constant $K \in$ $[1,\infty)$ and $p=2$, then we arrive at classical quasi-conformal mappings introduced originally in works by Grötzsch, Lavrentiev and Morrey.

Let $Q: D \to [0,\infty]$ be a measurable function. For each number $r > 0$ we denote by

$$
q_{z_0}(r) = \frac{1}{2\pi r} \int\limits_{S(z_0,r)} Q(z) \, |dz|
$$

the integral mean of the function Q over the circle $S(z_0, r) = \{z \in \mathbb{C} : |z - z_0| = r\}.$

Theorem 1. Let D and D' be bounded domains in $\mathbb C$ and $f : D \to D'$ be a Q-homeomorphism w.r.t. p-modulus, $p > 2$, $Q \in L^1_{loc}(D \setminus \{z_0\})$. Then for all $r \in (0, d_0)$, $d_0 =$ dist $(z_0, \partial D)$ the esimate

$$
|fB(z_0,r)| \geq \pi \left(\frac{p-2}{p-1}\right)^{\frac{2(p-1)}{p-2}} \left(\int_0^r \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{\frac{1}{p-1}}(t)}\right)^{\frac{2(p-1)}{p-2}} \tag{4}
$$

holds true, where $B(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| \leq r \}$.

We note that as $p > 2$ and $Q(z) \leq K$, by Theorem 1 we arrive to the result for a circle in [\[12,](#page--1-11) Lm. 7].

2. Proof of main theorem

We provide some auxiliary information about the capacity of a condenser. Following work [\[13\]](#page--1-12), the pair $\mathcal{E} = (A, C)$, where $A \subset \mathbb{C}$ is an open set and C is a non-empty compact set contained in A is called condenser. A condenser $\mathcal E$ is called an annular condenser if $\mathfrak{R} = A \setminus C$ is an annulus, that is, if \mathfrak{R} is a domain whose complement $\overline{\mathbb{C}} \setminus \mathfrak{R}$ consists exactly of two components. A condenser $\mathcal E$ is called a bounded condenser if the set A is bounded. We also say that a condenser $\mathcal{E} = (A, C)$ lies in the domain D if $A \subset D$. It is obvious that if $f : D \to \mathbb{C}$ is a continuous open mapping and $\mathcal{E} = (A, C)$ is a condenser in D, then (fA, fC) is also a condenser in fD . We also have $f\mathcal{E} = (fA, fC)$.

Let $\mathcal{E} = (A, C)$ be a condenser. By $\mathcal{C}_0(A)$ we denote the set of continuous compactly supported functions $u: A \to \mathbb{R}^1$, by $\mathcal{W}_0(\mathcal{E}) = \mathcal{W}_0(A, C)$ we denote the family of non-negative functions $u: A \to \mathbb{R}^1$ such that

1)
$$
u \in C_0(A)
$$
,
2) $u(x) \ge 1$ for $x \in C$,
3) u belongs to the class ACL.

As $p \geqslant 1$, the quantity

$$
\operatorname{cap}_p \mathcal{E} = \operatorname{cap}_p (A, C) = \inf_{u \in \mathcal{W}_0(\mathcal{E})} \int_A |\nabla u|^p \, dm(z) , \tag{5}
$$

where

$$
|\nabla u| = \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2} \tag{6}
$$

is called a *p*-capacity of the condenser \mathcal{E} . In what follows we shall make use the identity

$$
\operatorname{cap}_p \mathcal{E} = \mathcal{M}_p(\Delta(\partial A, \partial C; A \setminus C)) \tag{7}
$$

established in work [\[14\]](#page--1-13), where for the sets \mathcal{F}_1 , \mathcal{F}_2 and \mathcal{F} in C, the symbol $\Delta(\mathcal{F}_1, \mathcal{F}_2; \mathcal{F})$ stands for the family of all continuous curves connecting \mathcal{F}_1 and \mathcal{F}_2 in \mathcal{F} .

It is known [\[15,](#page--1-14) Prop. 5] that as $p \geq 1$,

$$
\operatorname{cap}_p \mathcal{E} \ge \frac{[\inf l(\sigma)]^p}{|A \setminus C|^{p-1}}\,. \tag{8}
$$

Here $l(\sigma)$ is the length of a smooth (infinitely differentiable) curve σ being the boundary $\sigma = \partial U$ of a bounded open set U containing C and contained together with its closure \overline{U} in A and the infimum is taken over all such σ .

Proof of Theorem 1. Let $\mathcal{E} = (A, C)$ be a condenser, where $A = \{z \in D : |z - z_0| < t + \Delta t\},\$ $C = \{ z \in D : |z - z_0| \leq t \}, t + \Delta t < d_0.$ Then $f\mathcal{E} = (fA, fC)$ is an annular condenser in D' and according to [\(7\)](#page--1-15) we have the identity

$$
\operatorname{cap}_p f \mathcal{E} = \mathcal{M}_p \left(\Delta(\partial f A, \partial f C; f(A \setminus C)) \right). \tag{9}
$$

By inequality [\(8\)](#page--1-16) we obtain

$$
\operatorname{cap}_p f \mathcal{E} \geq \frac{[\inf l(\sigma)]^p}{|f A \setminus f C|^{p-1}}.
$$
\n(10)

Here $l(\sigma)$ is the length of a smooth (infinitely differentiable) curve σ being the boundary $\sigma = \partial U$ of a bounded open set U containing C and contained together with its closure \overline{U} in A and the infimum is taken over all such σ .

On the other hand, by the definition of Q -homemorphism w.r.t. p -modulus we have

$$
\operatorname{cap}_p f \mathcal{E} \leqslant \int_D Q(z) \, \varrho^p(z) \, dm(z) \tag{11}
$$

for each $\rho \in \text{adm } \Delta(\partial A, \partial C; A \setminus C)$.

It is easy to check that the function

$$
\varrho(z) = \begin{cases} \frac{1}{|z - z_0| \ln \frac{t + \Delta t}{t}}, & z \in A \setminus C \\ 0, & z \notin A \setminus C \end{cases}
$$

is admissible for the family $\Delta(\partial A, \partial C; A \setminus C)$ and hence,

$$
\operatorname{cap}_p f \mathcal{E} \leq \frac{1}{\ln^p \left(\frac{t + \Delta t}{t}\right)} \int_R \frac{Q(z)}{|z - z_0|^p} \, dm(z),\tag{12}
$$

where $R = \{ z \in D : t \leq |z - z_0| \leq t + \Delta t \}.$

Combining inequalities [\(10\)](#page--1-17) and [\(12\)](#page--1-18), we get

$$
\frac{\left[\inf l(\sigma)\right]^{p}}{\left|f A \setminus f C\right|^{p-1}} \leqslant \frac{1}{\ln^{p}\left(\frac{t + \Delta t}{t}\right)} \int\limits_{R} \frac{Q(z)}{|z - z_{0}|^{p}} dm(z). \tag{13}
$$

By the Fubini theorem we have

$$
\int\limits_R \frac{Q(z)}{|z-z_0|^p} dm(z) = \int\limits_t^{t+\Delta t} \frac{d\tau}{\tau^p} \int\limits_{S(z_0,\tau)} Q(z) |dz| = 2\pi \int\limits_t^{t+\Delta t} \tau^{1-p} q_{z_0}(\tau) d\tau, \tag{14}
$$

where $q_{z_0}(\tau) = \frac{1}{2\pi\tau}$ \int $S(z_0,\tau)$ $Q(z) |dz|$ and $S(z_0, \tau) = \{ z \in \mathbb{C} : |z - z_0| = \tau \}.$ Thus,

$$
\inf l(\sigma) \leqslant (2\pi)^{\frac{1}{p}} \frac{|f A \setminus f C|^{\frac{p-1}{p}}}{\ln\left(\frac{t+\Delta t}{t}\right)} \left[\int\limits_{t}^{t+\Delta t} \tau^{1-p} \, q_{z_0}(\tau) \, d\tau \right]^{\frac{1}{p}}. \tag{15}
$$

Employing the isoperimetric inequality

$$
\inf l(\sigma) \geqslant 2\sqrt{\pi|fC|},\tag{16}
$$

we obtain

$$
2\sqrt{\pi|fC|} \leqslant (2\pi)^{\frac{1}{p}} \frac{|fA \setminus fC|^{\frac{p-1}{p}}}{\ln\left(\frac{t+\Delta t}{t}\right)} \left[\int\limits_{t}^{t+\Delta t} \tau^{1-p} q_{z_0}(\tau) d\tau\right]^{\frac{1}{p}}.
$$
 (17)

We introduce a function $\Phi(t)$ for this homeomorphism f as follows:

$$
\Phi(t) = |fB(z_0, t)|,\tag{18}
$$

where $B(z_0, t) = \{ z \in \mathbb{C} : |z - z_0| \leq t \}.$ Then it follows from [\(17\)](#page--1-19) that

$$
2\sqrt{\pi \Phi(t)} \leqslant (2\pi)^{\frac{1}{p}} \frac{\left[\frac{\Phi(t+\Delta t) - \Phi(t)}{\Delta t}\right]^{\frac{p-1}{p}}}{\frac{\ln(t+\Delta t) - \ln t}{\Delta t}} \left[\frac{1}{\Delta t} \int\limits_{t}^{t+\Delta t} \tau^{1-p} q_{z_0}(\tau) d\tau\right]^{\frac{1}{p}}.
$$
 (19)

Letting $\Delta t \to 0$ in inequality [\(19\)](#page--1-20) and taking into consideration a monotonous increasing of the function Φ in $t \in (0, d_0)$, for almost all t we have:

$$
\frac{2\pi^{\frac{p-2}{2(p-1)}}}{t^{\frac{1}{p-1}}q_{z_0}^{\frac{1}{p-1}}(t)} \leq \frac{\Phi'(t)}{\Phi^{\frac{p}{2(p-1)}}(t)}.\tag{20}
$$

This implies easily the following inequality:

$$
\frac{2\pi^{\frac{p-2}{2(p-1)}}}{t^{\frac{1}{p-1}}q_{z_0}^{\frac{1}{p-1}}(t)} \leqslant \left(\frac{\Phi^{\frac{p-2}{2(p-1)}}(t)}{\frac{p-2}{2(p-1)}}\right)'.
$$
\n(21)

Since $p > 2$, the function

$$
g(t) = \frac{\Phi^{\frac{p-2}{2(p-1)}}(t)}{\frac{p-2}{2(p-1)}}
$$

is non-decreasing on $(0, d_0)$, where $d_0 = \text{dist}(z_0, \partial D)$. Integrating both sides of the inequality in $t \in [\varepsilon, r]$ and taking into consideration that

$$
\int_{\varepsilon}^{r} \left(\frac{\Phi^{\frac{p-2}{2(p-1)}}(t)}{\frac{p-2}{2(p-1)}} \right)' dt = \int_{\varepsilon}^{r} g'(t) dt \leqslant g(r) - g(\varepsilon) \leqslant \frac{\Phi^{\frac{p-2}{2(p-1)}}(r) - \Phi^{\frac{p-2}{2(p-1)}}(\varepsilon)}{\frac{p-2}{2(p-1)}},\tag{22}
$$

see, for instance, [\[16,](#page--1-21) Thm. IV.7.4], we obtain

$$
2\pi^{\frac{p-2}{2(p-1)}}\int\limits_{\varepsilon}^{r}\frac{dt}{t^{\frac{1}{p-1}}q_{z_0}^{\frac{1}{p-1}}(t)} \leqslant \frac{\Phi^{\frac{p-2}{2(p-1)}}(r) - \Phi^{\frac{p-2}{2(p-1)}}(\varepsilon)}{\frac{p-2}{2(p-1)}}.
$$
\n
$$
(23)
$$

Letting $\varepsilon \to 0$ in inequality [\(23\)](#page--1-22), we arrive at the estimate

$$
\Phi(r) \geqslant \pi \left(\frac{p-2}{p-1}\right)^{\frac{2(p-1)}{p-2}} \left(\int\limits_0^r \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{\frac{1}{p-1}}(t)}\right)^{\frac{2(p-1)}{p-2}}.\tag{24}
$$

Finally, denoting $\Phi(r) = |fB(z_0, r)|$ in the latter inequality, we get

$$
|fB(z_0, r)| \ge \pi \left(\frac{p-2}{p-1}\right)^{\frac{2(p-1)}{p-2}} \left(\int_0^r \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{\frac{1}{p-1}}(t)}\right)^{\frac{2(p-1)}{p-2}} \tag{25}
$$

and this completes the proof of Theorem 1.

3. Corollaries of Theorem 1

Theorem 1 implies the following statements.

Employing the condition $q_{z_0}(t) \leq q_0 t^{-\alpha}$, we estimate the right hand side of inequality [\(4\)](#page--1-23) and after elementary transformations we arrive at the following result.

Corollary 1. Let D and D' be bounded domains in C and $f : D \rightarrow D'$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$. Assume that the function Q satisfies the condition

$$
q_{z_0}(t) \le q_0 t^{-\alpha}, q_0 \in (0, \infty), \alpha \in [0, \infty)
$$
 (26)

for $z_0 \in D$ and almost all $t \in (0, d_0)$, $d_0 = dist(z_0, \partial D)$. Then for each $r \in (0, d_0)$ the estimate

$$
|fB(z_0,r)| \geq \pi^{-\frac{\alpha}{p-2}} \left(\frac{p-2}{\alpha+p-2}\right)^{\frac{2(p-1)}{p-2}} q_0^{\frac{2}{2-p}} |B(z_0,r)|^{1+\frac{\alpha}{p-2}} \tag{27}
$$

holds true.

In particular, letting here $\alpha = 0$, we obtain the following conclusion.

Corollary 2. Let D and D' be bounded domains in C and $f : D \to D'$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$ and $q_{z_0}(t) \leq q_0 < \infty$ for almost each $t \in (0, d_0)$, $d_0 = \text{dist}(z_0, \partial D)$. Then the estimate

$$
|fB(z_0, r)| \geqslant q_0^{\frac{2}{2-p}} |B(z_0, r)| \tag{28}
$$

holds true for each $r \in (0, d_0)$.

Corollary 3. Suppose that the assumptions of Theorem 1 are satisfied and $Q(z) \leq K < \infty$ for almost each $z \in D$. Then the estimate

$$
|fB(z_0, r)| \ge K^{\frac{2}{2-p}} |B(z_0, r)| \tag{29}
$$

holds true for each $r \in (0, d_0)$.

Remark 1. Corollary 3 is a particular result by Gehring for $E = B(z_0, r)$, see [\[12,](#page--1-11) Lm. 7].

Corollary 4. Let $f : \mathbb{B} \to \mathbb{B}$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$. Assume that the function $Q(z)$ satisfies the condition

$$
q(t) \leq \frac{q_0}{t \ln^{p-1} \frac{1}{t}}, \ q_0 \in (0, \infty), \tag{30}
$$

for almost each $t \in (0,1)$, where $q(t) = \frac{1}{2\pi t}$ \int S_t $Q(z)$ |dz| is the integral mean over the circumference $S_t = \{z \in \mathbb{C} : |z| = t\}$. Then for each $r \in (0,1)$ the estimate

$$
|fB_r| \ge \pi \left(\frac{p-2}{p-1}\right)^{\frac{2(p-1)}{p-2}} q_0^{\frac{2}{2-p}} \left(r \ln \frac{e}{r}\right)^{\frac{2(p-1)}{p-2}} \tag{31}
$$

holds true, where $B_r = \{ z \in \mathbb{C} : |z| \leq r \}.$

 \Box

4. Extremal problems for area functional

Let $Q : \mathbb{B} \to [0, \infty]$ be a measurable function satisfying the condition

$$
q(t) \leqslant q_0, \, q_0 \in (0, \infty) \tag{32}
$$

for almost each $t \in (0, 1)$, where $q(t) = \frac{1}{2\pi t} \int$ S_t $Q(z)|dz|$ is the integral mean over the circumfer-

ence $S_t = \{ z \in \mathbb{C} : |z| = t \}.$

Let $\mathcal{H} = \mathcal{H}(q_0, p, \mathbb{B})$ be the set of all Q-homeomorphisms $f : \mathbb{B} \to \mathbb{C}$ w.r.t. p-modulus as $p > 2$ obeying condition [\(32\)](#page--1-24). On the class H we consider the area functional

$$
\mathbf{S}_r(f) = |f B_r| \,. \tag{33}
$$

Theorem 2. For each $r \in [0,1]$ the identity

$$
\min_{f \in \mathcal{H}} \mathbf{S}_r(f) = \pi \, q_0^{\frac{2}{2-p}} \, r^2 \tag{34}
$$

holds true.

Proof. Corollary 2 implies immediately the estimate

$$
\mathbf{S}_r(f) \geqslant \pi q_0^{\frac{2}{2-p}} r^2 \,. \tag{35}
$$

Let us specify a homeomorphism $f \in \mathcal{H}$, at which the minimum of the functional $\mathbf{S}_r(f)$ is attained. Let $f_0 : \mathbb{B} \to \mathbb{C}$, where

$$
f_0(z) = q_0^{\frac{1}{2-p}} z.
$$
 (36)

It is obvious that [\(35\)](#page--1-25) becomes the identity at the mapping f_0 . It remains to show that the mapping defined in such way is a Q-homemorphism w.r.t. p-modulus with $Q(z) = q_0$. Indeed,

$$
l(z, f_0) = L(z, f_0) = q_0^{\frac{1}{2-p}}, \quad J(z, f_0) = q_0^{\frac{2}{2-p}}
$$
\n(37)

and

$$
K_{I,p}(z,f_0) = \frac{J(z,f_0)}{l^p(z,f_0)} = q_0.
$$
\n(38)

By Theorem 1.1 in work [\[17\]](#page--1-26), the mapping f_0 is a Q-homeomorphism w.r.t. p-modulus with $Q(z) = K_{I,\, p}(z, f_0) = q_0.$ \Box

BIBLIOGRAPHY

- 1. B.V. Bojarski. Homeomorhpic solutions to Beltrami systems // Dokl. Akad. Nauk SSSR. 102, 661–664 (1955). (in Russian).
- 2. F.W. Gehring, E. Reich. Area distortion under quasiconformal mappings // Ann. Acad. Sci. Fenn. Ser. A I Math. 388, 15 pp. (1966).
- 3. K. Astala. Area dislortron of quasrconformal mapprngs // Acta Math. 173:1, 37–60 (1994).
- 4. A. Eremenko, D.H. Hamilton. On the area distortion by quasiconformal mappings // Proc. Amer. Math. Soc. **123**:9, 2793-2797 (1995).
- 5. M.A. Lavrent'ev. Variational methods for boundary value problems for systems of elliptic equations. Nauka, Moscow (1962). [P. Noordhoff Ltd, Groningen (1963).]
- 6. B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov. Infinitesimal geometry of quasiconformal and $bi-Lipschitz$ mappings in the plane. EMS Tracts in Math. 19. EMS Publishing House, Zürich (2013).
- 7. T.V. Lomako, R.R. Salimov. To the theory of extremal problems // in Collection of the Inst. Math. NAS Ukraine. 7:2, 264–269 (2010). (in Russian).
- 8. R.R. Salimov. Lower estimates of p-modulus and mappings of Sobolev's class $//$ Algeb. Anal. 26:6, 143–171 (2014). [St. Petersburg Math. J. 26:6, 965–984 (2015).]
- 9. L.V. Ahlfors. Lectures on quasiconformal mappings. D. Van Nostrand Company, Princeton (1966).
- 10. O. Lehto, K. Virtanen. Quasiconformal mappings in the plane Springer, New York (1973).
- 11. C.J. Bishop, V.Ya. Gutlyanskii, O. Martio, M. Vuorinen On conformal dilatation in space // Intern. J. Math. Math. Sci. 2003:22, 1397–1420 (2003).
- 12. F.W. Gehring. Lipschitz mappings and the p-capacity of ring in n-space $//$ in "Advances in the theory of Riemann surfaces", Proc. Conf. Stonybrook, N.Y. 175–193 (1971).
- 13. O. Martio, S. Rickman, J. Väisälä. Definitions for quasiregular mappings // Ann. Acad. Sci. Fenn. Ser. A1. Math. 448, 40 pp. (1969).
- 14. V.A. Shlyk. The equality between p-capacity and p-modulus // Sibir. Matem. Zhurn. 34:56, 216–221 (1993). [Siber. Math. J. 34:56, 1196–1120 (1993).]
- 15. V.I. Kruglikov. Capacity of condensers and spatial mappings quasiconformal in the mean // Matem. Sborn. 130:2, 185–206 (1986). [Math. USSR-Sb. 58:1, 185–205 (1987).]
- 16. S. Saks. Theory of the integral. G. E. Stechert & Co., New York (1937).
- 17. R. Salimov, E. Sevost'yanov. The Poletskii and Vaisala inequalities for the mappings with (p,q) $distortion$ // Compl. Variab. Ellip. Equat. $59:2$, $217-231$ (2014).

Bogdan Anatol'evich Klishchuk, Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska str. 3, 01601, Kiev, Ukraine E-mail: bogdanklishchuk@mail.ru

Ruslan Radikovich Salimov, Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska str. 3, 01601, Kiev, Ukraine E-mail: ruslan623@yandex.ru