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ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS

A.V. BAGAEV, N.I. ZHUKOVA

Abstract. In the present work we develop the degree theory for proper maps between
orbifolds of same dimension. The definition of degree for the mentioned maps was introduced
by Pasquoto and Rot (2020). We propose a new, simpler definition for the degree of proper
maps between smooth oriented orbifolds of the same dimension and show that it is equivalent
to the definition by Pasquotto and Rot. Using this new approach, we establish a connection
between the degree of a map and the integration of exterior forms on orbifolds, which is
important for physical applications. We obtain an integral formula for the degree of a map
between orbifolds, which is a generalization of the corresponding formula for manifolds. We
also reveal the specificity of degree of a map for compact orbifolds.
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1. Introduction. Main results

In this paper, we develop a degree theory for proper maps between smooth orbifolds of the
same dimension. The concept of the degree of a map between smooth manifolds was introduced
by Brouwer [5]. Brouwer showed that the degree of a map is a homotopy invariant and he applied
this fact to the proof of a fixed point theorem.
The degree of a mapping is widely used in many areas of geometry and topology [10]. In

particular, the degree of a map is used to prove the well–known Gauss theorem on the existence
of a root of an arbitrary complex polynomial. Gauss — Bonnet and Poincaré — Hopf theorems
can be proved by using the concept of the degree of a map [10], [14].
In physics, the degree of a map is considered as a topological charge (a topological quantum

number). This is why the degree theory is used to develop topological methods for analyzing
the structure of solutions to nonlinear equations in mathematical physics [3], [6], [8], [9]. In [14]
there was proposed a new approach to characterization of monopole configurations in the Yang—
Mills — Higgs theory with the gauge group 𝑆𝑈(2) by using the degree of map between smooth
manifolds.
Pasquotto and Rot introduced the definition of degree of map between the orbifolds [12].
The orbifold can be treated as a natural generalization of the concept of the manifold. The

concept of the orbifold was introduced by Satake under the name 𝑉 –manifold [13], and the term
“orbifold” was proposed by Thurston [15], who classified two–dimensional compact orbifolds
and applied it for the classification of closed smooth three-dimensional manifolds. Locally, 𝑛–
dimensional orbifolds are homeomorphic to the quotient space of the 𝑛–dimensional arithmetic
space R𝑛 by a finite group of diffeomorphisms. This group may change when passing from one
point of the orbifold to another. Rigorous definitions of the category of orbifolds and integration
over them are given in Section 2.
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The orbifolds arise naturally in solving various problems in mathematics and physics [1].
For example, in mathematical physics, the orbifolds are used as string propagation spaces. In
foliation theory, the orbifolds appear as spaces of leaves.
The goal of this paper is to develop the theory of degree of maps between orbifolds. In Section

3.1, we recall the definition of degree due to Pasquotto and Rot. In Section 3.2, we introduce
a new, simpler definition of the degree of a proper map between connected oriented smooth
orbifolds of the same dimension. The novelty of our approach is that to determine the degree
of a map between orbifolds, it suffices to consider only the regular values of this map, which are
regular points of the orbifold. We prove that our definition is equivalent to the corresponding
definition of Pasquotto and Rot.
By using the proposed approach, in Section 3.3 we prove Theorem 1.1, which is a general-

ization to orbifolds of a well–known statement for manifolds.

Theorem 1.1. Let 𝑓 : 𝒩1 → 𝒩2 be a proper map between connected oriented smooth orbifolds

of same dimension 𝑛 ∈ N. Then for each 𝑛–form 𝜔 with a compact support on 𝒩2 the identity

holds ∫︁
𝒩1

𝑓 *𝜔 = deg(𝑓)

∫︁
𝒩2

𝜔, (1.1)

where deg(𝑓) is the degree of the map 𝑓.

In Section 3.4 we obtain the following integral formula.

Theorem 1.2. Let 𝑓 : 𝒩1 → 𝒩2 be a proper map of connected oriented orbifolds of same

dimension 𝑛 ∈ N, Ω be the volume form on a compact orbifold 𝒩2 defined by the Riemannian

metrics 𝑔, Vol(𝒩2) be the volume of orbifold 𝒩2. Then the degree of map 𝑓 satisfies the identity

deg(𝑓) =
1

Vol(𝒩2)

∫︁
𝒩1

𝑓 *Ω. (1.2)

Moreover, the right hand side of the identity (1.2) is independent of the choice of the Riemann-

ian metrics 𝑔 on 𝒩2.

The formula (1.2) allows us to extend the notion of topological charge to vector fields defined
on orbifolds.
In Section 3.5 we recall the definition of the covering and regular covering map for the

orbifolds. The number of sheets of the covering map 𝑓 : 𝒩1 → 𝒩2 is defined as the number of
pre–images of a regular point in 𝒩2.
Theorem 1.2 implies the following statement.

Corollary 1.1. Let 𝒩1 and 𝒩2 be connected compact oriented orbifolds of same dimension,

𝑓 : 𝒩1 → 𝒩2 be a surjective regular mapping. Then

1) 𝑓 : 𝒩1 → 𝒩2 is a 𝑘–sheeted regular covering map, where 𝑘 = deg(𝑓);
2) the degree of map 𝑓 satisfies the identity

deg(𝑓) =
Vol(𝒩1)

Vol(𝒩2)
.

Assumptions. The manifolds, orbifolds, vector fields, forms have the smoothness 𝐶∞. The
orbifolds (in particular, manifolds) are supposed to be connected if else is not said. We consider
only open neighbourhoods. We also suppose that all groups of diffeomorphisms act effectively.

Notations. The quotient spaces of 𝑋 by both left and right action of a group 𝐺 are denoted
by 𝑋/𝐺. The symbol |𝐺| stands for the order of a finite group 𝐺. By N we denote the set of
natural numbers.
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2. Orbifolds

2.1. Categories of orbifolds. Let𝒩 be a connect Hausdorff topological space with a count-
able base. Let 𝑈̃ be a connected open subspace in the 𝑛–dimensional arithmetical space R𝑛,
Γ𝑈 be a finite group of diffeomorphisms 𝑈̃ , 𝜙𝑈 : 𝑈̃ → 𝒩 be a Γ𝑈–invariant map, which induces
the homeomorphism 𝑞𝑈 from 𝑈̃/Γ𝑈 into the open subset 𝑈 = 𝜙𝑈(𝑈̃) in 𝒩 . Then the triple
(𝑈̃ ,Γ𝑈 , 𝜙𝑈) is called the orbifold chart on 𝒩 with the coordinate neighbourhood 𝑈.
We consider two orbifold charts (𝑈̃ ,Γ𝑈 , 𝜙𝑈) and (𝑉 ,Γ𝑉 , 𝜙𝑉 ) with the coordinate neighbour-

hoods 𝑈 and 𝑉 , and 𝑈 ⊂ 𝑉. The smooth map 𝜑𝑉 𝑈 : 𝑈̃ → 𝑉 is called the embedding of the
chart (𝑈̃ ,Γ𝑈 , 𝜙𝑈) into the chart (𝑉 ,Γ𝑉 , 𝜙𝑉 ) if 𝜙𝑈 = 𝜙𝑉 ∘ 𝜑𝑉 𝑈 . We observe that each map 𝜑𝑉 𝑈

induces the monomorphism of groups 𝜓𝑉 𝑈 : Γ𝑈 → Γ𝑉 , for which the identity holds

𝜙𝑉 𝑈(𝑔(𝑢)) = 𝜓𝑉 𝑈(𝑔)(𝜙𝑉 𝑈(𝑢)) ∀𝑢 ∈ 𝑈̃ , 𝑔 ∈ Γ𝑈 .

The family of charts 𝒜 = {(𝑈̃𝛼,Γ𝛼, 𝜙𝛼)|𝛼 ∈ 𝐽} is called the orbifold atlas if the following
two conditions are satisfied:

1) the set of coordinate neighbourhoods {𝑈𝛼 = 𝜙𝛼(𝑈̃𝛼)| 𝛼 ∈ 𝐽} of the charts in 𝒜 forms an
open covering of the topological space 𝒩 ;

2) each two charts in the atlas 𝒜 are compatible in the following sense: if (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜
and (𝑈̃𝛽,Γ𝛽, 𝜙𝛽) ∈ 𝒜 are two charts with the coordinate neighbourhoods 𝑈𝛼 and 𝑈𝛽,

𝑈𝛼∩𝑈𝛽 ̸= ∅, then for each point 𝑥 ∈ 𝑈𝛼∩𝑈𝛽 there exists a chart (𝑈̃𝛾,Γ𝛾, 𝜙𝛾) ∈ 𝒜 with the
coordinate neighbourhood 𝑈𝛾 such that 𝑥 ∈ 𝑈𝛾 ⊂ 𝑈𝛼 ∩ 𝑈𝛽, and two embeddings 𝜙𝛼𝛾 and

𝜙𝛽𝛾 of the chart (𝑈̃𝛾,Γ𝛾, 𝜙𝛾) into the charts (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) and (𝑈̃𝛽,Γ𝛽, 𝜙𝛽), respectively.

The pair (𝒩 ,𝒜), where 𝒜 is the maximal (by embedding) orbifold atlas 𝒜, is called the
smooth 𝑛–dimensional orbifold. In what follows we shortly denote the orbifold (𝒩 ,𝒜) by 𝒩 .
We note that for each point 𝑥 ∈ 𝒩 of a smooth 𝑛–dimensional orbifold (𝒩 ,𝒜) there exists

a chart (𝑈̃ ,Γ𝑈 , 𝜙𝑈) ∈ 𝒜 such that 𝑈̃ is an 𝑛–dimensional arithmetical space R𝑛, 𝜙𝑈(0) = 𝑥,
0 ∈ R𝑛, and Γ𝑈 is a finite group of orthogonal transformations of R𝑛. Such chart is called the
linearized chart at 𝑥.
For the orbifold charts (𝑈̃ ,Γ𝑈 , 𝜙𝑈) and (𝑉 ,Γ𝑉 , 𝜙𝑉 ) in 𝒜 with the coordinate neighbourhoods

containing 𝑥 ∈ 𝒩 , the isotropy subgroups (Γ𝑈)𝑦 and (Γ𝑉 )𝑧 at the points 𝑦 ∈ 𝜙−1
𝑈 (𝑥) and

𝑧 ∈ 𝜙−1
𝑉 (𝑥) are isomorphic. Therefore, for each point 𝑥 ∈ 𝒩 the group Γ(𝑥) is defined, which is

unique up to the group isomorphism. The group Γ(𝑥) is called the orbifold group at 𝑥. The point
𝑥 is called regular if its orbifold group Γ(𝑥) is trivial; otherwise the point 𝑥 is called singular.
As it is known [2, Ex. 1], in contrast to the case 𝑛 = 2, for 𝑛 ⩾ 3 the smooth 𝑛–dimensional

orbifold 𝒩 is not, generally speaking, locally Euclidean space. The topological space of the
orbifold 𝒩 is called the underlying space.
Let 𝒩 and 𝒩 ′ be smooth orbifolds with atlases 𝒜 and 𝒜′, respectively. A continuous map

𝑓 : 𝒩 → 𝒩 ′ is called smooth if for each 𝑥 ∈ 𝒩 there exist charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) ∈ 𝒜 and

(𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜′ such that 𝑥 ∈ 𝑉𝛽 = 𝜓𝛽(𝑉𝛽), 𝑓(𝑉𝛽) ⊂ 𝑈𝛼 = 𝜙𝛼(𝑈̃𝛼), and the smooth map

𝑓𝛼𝛽 : 𝑉𝛽 → 𝑈̃𝛼 satisfying the identity 𝜙𝛼∘𝑓𝛼𝛽 = 𝑓∘𝜓𝛽. The map 𝑓𝛼𝛽 is called the representative of

map 𝑓 in the charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼). The map 𝑓𝛼𝛽 is defined up to the composition
with the elements in 𝐺𝛽 and Γ𝛼, respectively.
We denote by Orb the category of orbifolds, the objects of which are smooth orbifolds, and

the morphisms are smooth maps of orbifolds. We note that the category of manifolds is a
complete subcategory of the category Orb.

2.2. Stratification of orbifolds. We say that two points of a smooth orbifold 𝒩 possess the
same orbifold type if there exist the neighbourhoods of these points isomorphic in the category
Orb. The set of points of the same orbifold type with the induced topology has a natural
structure, generally speaking, of a non–connected smooth manifold [2]. We denote by ∆𝑘 the
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union of such manifolds of the dimension 𝑘. We note that the manifolds of points of different
orbifold type can have the same dimension. We stress that each connected component ∆

𝑐𝑗
𝑘 of

the manifold ∆𝑘 consists of the points of same orbifold type. It is possible that ∆𝑘 = ∅ for
some 𝑘 ∈ {0, . . . , 𝑛− 1}, where 𝑛 is the dimension of the smooth orbifold 𝒩 .
The family ∆(𝒩 ) = {∆𝑐𝑗

𝑘 | 𝑗 ∈ 𝐽𝑘, 𝑘 ∈ {0, . . . , 𝑛}} is called the stratification of the smooth
𝑛–dimensional orbifold 𝒩 , and ∆

𝑐𝑗
𝑘 are called its stratum [7].

The set of regular points defines the strata ∆𝑛, which is a connected open everywhere dense
subset in 𝒩 and with respect to the induced smooth structure it is a smooth 𝑛–dimensional
manifold.

2.3. Integration on orbifolds. We say that on a smooth 𝑛–dimensional orbifold (𝒩 ,𝒜)
an exterior 𝑝–form is defined if for each chart (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜 on 𝑈̃𝛼 an exterior Γ𝛼–invariant
𝑝–form 𝜔𝛼 is defined and for each embedding 𝜑𝛽𝛼 : 𝑈̃𝛼 → 𝑈̃𝛽 of the chart (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) into the

chart (𝑈̃𝛽,Γ𝛽, 𝜙𝛽) the identity 𝜑
*
𝛽𝛼𝜔𝛽 = 𝜔𝛼 holds.

Let 𝜔 = {𝜔𝛼}𝛼∈𝐽 be an exterior 𝑝–form on an orbifold (𝒩 ,𝒜). We note that 𝜔 = 0 at 𝑥 ∈ 𝒩
if and only if there exists a linearized chart (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜 at 𝑥 ∈ 𝑈𝛼 = 𝜙𝛼(𝑈̃𝛼) such that
𝜔𝛼 = 0 at 0 ∈ 𝑈̃𝛼 = R𝑛. The closure of the set of points of the orbifold 𝒩 , at which 𝜔 is non–
zero, is called the support of form 𝜔 and is denoted by supp𝜔. We denote by Γ𝑝

𝑐(𝒩 ) the set of
all exterior 𝑝–forms with a compact support on 𝒩 . The set Γ𝑝

𝑐(𝒩 ) with pointwise summation
and multiplication by the real numbers is a vector space.
Let 𝑓 : 𝒩 → 𝒩 ′ be a smooth map of orbifolds, 𝜔 = {𝜔𝛼}𝛼∈𝐽 be an exterior 𝑝–form on the

orbifold (𝒩 ′,𝒜′). For each 𝑥 ∈ 𝒩 there exist charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) ∈ 𝒜 and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜′,

such that 𝑥 ∈ 𝑉𝛽 = 𝜓𝛽(𝑉𝛽), 𝑓(𝑉𝛽) ⊂ 𝑈𝛼 = 𝜙𝛼(𝑈̃𝛼), and a representative 𝑓𝛼𝛽 : 𝑉𝛽 → 𝑈̃𝛼 of the

map 𝑓 in charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼), such that 𝜙𝛼 ∘𝑓𝛼𝛽 = 𝑓 ∘𝜓𝛽.We denote by 𝑓 *
𝛼𝛽𝜔𝛼

the preimage of the form 𝜔𝛼 under the map 𝑓𝛼𝛽. Then the set {𝑓 *
𝛼𝛽𝜔𝛼}𝑥∈𝒩 generates the 𝑝–form

𝑓 *𝜔 on the orbifold (𝒩 ,𝒜), which is called the preimage of the form 𝜔 under the map 𝑓. Thus,
the linear map is defined

𝑓 * : Γ𝑝
𝑐(𝒩 ′) → Γ𝑝

𝑐(𝒩 ) : 𝜔 ↦→ 𝑓 *𝜔.

We recall that the orbifold (𝒩 ,𝒜) is called oriented if for each for 𝛼 ∈ 𝐽 the manifolds 𝑈̃𝛼

are oriented so that each map 𝛾 ∈ Γ𝛼 and each embedding 𝜑𝛼𝛽 : 𝑈̃𝛽 → 𝑈̃𝛼, 𝛼, 𝛽 ∈ 𝐽, preserves
the orientation.
Let (𝒩 ,𝒜) be an oriented 𝑛–dimensional orbifold, 𝜔 be an exterior 𝑛–form with a compact

support on 𝒩 . If the support supp𝜔 lies inside the coordinate neighbourhood 𝑈𝛼 of some chart
(𝑈̃𝛼,Γ𝛼, 𝜙𝛼) ∈ 𝒜, then by the definition we let∫︁

𝑈𝛼

𝜔 =
1

|Γ𝛼|

∫︁
𝑈̃𝛼

𝜔𝛼,

where |Γ𝛼| is the order of group Γ𝛼. In the general case the compactness of support supp𝜔
implies the existence of a finite open covering 𝜉 = {𝑈𝑘 | 𝑘 = 1, . . . ,𝑚} of the support supp𝜔
by the coordinate neighbourhoods 𝑈𝑘 of charts in 𝒜 and a finite unity partition relative to 𝜉;
that is, of the family {𝑓𝑘 | 𝑘 = 1, . . . ,𝑚} of smooth functions on 𝒩 such that

(a) 0 ⩽ 𝑓𝑘(𝑥) ⩽ 1 for all 𝑥 ∈ 𝒩 and 𝑘 ∈ {1, . . . ,𝑚};
(b) supp 𝑓𝑘 ⊂ 𝑈𝑘 for all 𝑘 ∈ {1, . . . ,𝑚};
(c)

𝑚∑︀
𝑘=1

𝑓𝑘(𝑥) = 1 for all 𝑥 ∈ supp𝜔.
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Then the integral of an exterior 𝑛–form with a compact support 𝜔 on the orbifold 𝒩 is defined
by the following identity ∫︁

𝒩

𝜔 =
𝑚∑︁
𝑘=1

∫︁
𝑈𝑘

𝑓𝑘𝜔. (2.1)

It is known that the number
∫︀
𝒩
𝜔 defined by the formula (2.1) is independent of the choice

of the covering 𝜉 of the support supp𝜔 and the unity partition relative to 𝜉. Thus, for each
smooth 𝑛–dimensional orbifold 𝒩 the linear operator is well–defined∫︁

𝒩

: Γ𝑝
𝑐(𝒩 ) → R : 𝜔 ↦→

∫︁
𝒩

𝜔.

If 𝒩 is compact, then the support of each form 𝜔 on 𝒩 is a compact set. Therefore, the
integral is well–defined for each external 𝑛–form 𝜔 on a compact 𝑛–dimensional orbifold 𝒩 .

Theorem 2.1. Let 𝜔 be an external 𝑛–form with a compact support on an oriented 𝑛–
dimensional orbifold 𝒩 . Then the identity∫︁

𝒩

𝜔 =

∫︁
Δ𝑛

𝜔

holds, where ∆𝑛 is the 𝑛–dimensional strata of the orbifold 𝒩 .

Proof. Owing to the identity (2.1) it is sufficient to show that∫︁
𝑈𝑘

𝑓𝑘𝜔 =

∫︁
𝑈𝑘∩Δ𝑛

𝑓𝑘𝜔 (2.2)

for all 𝑘 ∈ {1, . . . ,𝑚}. Let (𝑈̃𝑘,Γ𝑘, 𝜙𝑘) be an orbifold chart such that 𝜙𝑘(𝑈̃𝑘) = 𝑈𝑘. We observe
that ∫︁

𝑈𝑘

𝑓𝑘𝜔 =
1

|Γ𝑘|

∫︁
𝑈̃𝑘

𝑓𝑘𝜔𝑘, (2.3)

where 𝑓𝑘 := 𝑓𝑘 ∘ 𝜙𝑘. Since ∆𝑛 is an open and everywhere dense subset in 𝒩 , the set 𝑉𝑘 :=
(𝜙𝑘)

−1(𝑈𝑘 ∩∆𝑛) is open and everywhere dense in 𝑈𝑘. Taking this into consideration as well as
the formula (2.3), we obtain the following identities∫︁

𝑈𝑘

𝑓𝑘𝜔 =
1

|Γ𝑘|

∫︁
𝑈̃𝑘

𝑓𝑘𝜔𝑘 =
1

|Γ𝑘|

∫︁
𝑉𝑘

𝑓𝑘𝜔𝑘. (2.4)

Since 𝑉𝑘 is a Γ𝑘–invariant set and Γ𝑘 acts on 𝑉𝑘 freely, the restriction

𝜙𝑘|𝑉𝑘
: 𝑉𝑘 → 𝑈𝑘 ∩∆𝑛

is a 𝑘–sheeted regular covering. This is why

1

|Γ𝑘|

∫︁
𝑉𝑘

𝑓𝑘𝜔𝑘 =

∫︁
𝑈𝑘∩Δ𝑛

𝜔. (2.5)

The identities (2.4) and (2.5) imply (2.2). The proof is complete.
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2.4. Volume form of oriented Riemannian orbifold. Let on an oriented orbifold 𝒩 with
an atlas 𝒜 = {(𝑈̃𝛼,Γ𝛼, 𝜙𝛼)|𝛼 ∈ 𝐽} a Riemannian metrics 𝑔 be defined. Then for each chart
(𝑈̃𝛼,Γ𝛼, 𝜙𝛼), 𝛼 ∈ 𝐽 , of the orbifold 𝒩 a Γ𝛼–invariant Riemannian metrics 𝑔𝛼 is defined on 𝑈̃𝛼.
Let (𝑦𝑘𝛼) be local coordinates on 𝑈̃𝛼. The Riemannian metrics 𝑔𝛼 defines the volume form Ω𝛼.
In the local coordinates (𝑦𝑘𝛼) the form Ω𝛼 is defined by the identity

Ω𝛼 =
√︀

det 𝑔𝛼𝑑𝑦
1
𝛼 ∧ . . . ∧ 𝑑𝑦𝑛𝛼,

where det 𝑔𝛼 is the determinant of the matrix of metric tensor 𝑔𝛼 in the local coordinates (𝑦𝑘𝛼).
Since 𝒩 is an oriented orbifold, all isometries in the group Γ𝛼, as well as each embedding
𝜑𝛼𝛽 : 𝑈̃𝛽 → 𝑈̃𝛼, 𝛼, 𝛽 ∈ 𝐽 , preserves the orientation. Therefore, the volume form Ω𝛼 is Γ𝛼–

invariant, and for each embedding 𝜑𝛼𝛽 : 𝑈̃𝛽 → 𝑈̃𝛼 the forms Ω𝛼 and Ω𝛽 defined on 𝑈̃𝛼 and 𝑈̃𝛽

respectively are compatible: Ω𝛽 = 𝜑*
𝛼𝛽Ω𝛼. Thus, the family Ω = {Ω𝛼} defines an 𝑛–form on

𝒩 . This form is called the volume form on the orbifold 𝒩 of the given Riemannian metrics 𝑔.
We note that the 𝑛–form Ω = {Ω𝛼} is non–zero on 𝒩 .
The quantity

Vol(𝒩 ) :=

∫︁
𝒩

Ω

is called the volume of the orbifold 𝒩 . If the orbifold 𝒩 is compact, then Vol(𝒩 ) <∞.

3. Degree of proper maps of orbifolds: various approaches

Let 𝒩 and 𝒩 ′ be smooth orbifolds. A smooth map 𝑓 : 𝒩 → 𝒩 ′ of the orbifolds 𝒩 and 𝒩 ′

is called proper if for each compact subset 𝐾 ⊂ 𝒩 ′ the preimage 𝑓−1(𝐾) is compact in 𝒩 . For
a compact orbifold 𝒩 each smooth map 𝑓 is proper.

3.1. Approach by Pasquotto and Rot. We recall the definition of the degree of proper
maps of orbifolds given in [12].
Let 𝑓 : 𝒩 → 𝒩 ′ be a smooth map of orbifolds 𝒩 and 𝒩 ′.We take an arbitrary point 𝑥 ∈ 𝒩 .

Let 𝑓𝛼𝛽 : 𝑉𝛽 → 𝑈̃𝛼 be a representative of the map 𝑓 in the charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼),

𝑥 ∈ 𝑉𝛽 = 𝜓𝛽(𝑉𝛽), 𝑓(𝑉𝛽) ⊂ 𝑈𝛼 = 𝜙𝛼(𝑈̃𝛼).
The point 𝑥 ∈ 𝒩 is called 𝑓–regular if the differential 𝑑𝑓𝛼𝛽 of the map 𝑓𝛼𝛽 at the point 𝑥̃ ∈

(𝜓𝛽)
−1(𝑥) ⊂ 𝑉𝛽 is a surjective linear map. It can be shown that the definition of the 𝑓–regular

point is independent of the choice of charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼), the representative
𝑓𝛼𝛽 of the map 𝑓 in these charts and the point 𝑥̃ ∈ (𝜓𝛽)

−1(𝑥). The points 𝑓–singular if they
are not 𝑓–regular.
If all points of the orbifold 𝒩 are 𝑓–regular, then the map 𝑓 : 𝒩 → 𝒩 ′ is called regular.
A point 𝑦 ∈ 𝒩 ′ is called the regular value if each 𝑥 ∈ 𝑓−1(𝑦) is a 𝑓–regular point. We denote

by Reg(𝑓) the set of all regular values of the mapping 𝑓 .
The following analogue of Sard theorem was proved in [4, Thm. 4.1].

Theorem 3.1. Let 𝑓 : 𝒩 → 𝒩 ′ be a smooth map of orbifolds. Then the set Reg(𝑓) of regular
values of the map 𝑓 is everywhere dense in 𝒩 ′.

Let 𝑓 : 𝒩 → 𝒩 ′ be a smooth proper map of 𝑛–dimensional oriented orbifolds (𝒩 ,𝒜) and
(𝒩 ′,𝒜′). Let 𝑦 ∈ Reg(𝑓) and 𝑥 ∈ 𝑓−1(𝑦). We consider linearized charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and

(𝑈̃𝛼,Γ𝛼, 𝜙𝛼) at 𝑥 and 𝑦, respectively. Let 𝑓𝛼𝛽 be the representative of the map 𝑓 in these
charts. Since the orbifolds 𝒩 and 𝒩 ′ are oriented, we can suppose that the Jacobians of the
matrices of passage from one coordinates to the others at the points 𝑥 and 𝑦 are positive. If

(̃︀𝑥𝑚𝛽 ) and (̃︀𝑦𝑙𝛼) are local coordinates in these charts, then the sign of the Jacobian det
(︁

𝜕̃︀𝑦𝑙𝛼
𝜕̃︀𝑥𝑚

𝛽

)︁
𝑥

of the map ̃︀𝑦𝑙𝛼 = ̃︀𝑦𝑙𝛼(̃︀𝑥𝑚𝛽 ) in 0 ∈ 𝑉𝛽 = R𝑛 is independent of the choice of charts (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and



ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS 15

(𝑈̃𝛼,Γ𝛼, 𝜙𝛼), and therefore, the sign sgn
(︁
det
(︁

𝜕̃︀𝑦𝑙𝛼
𝜕̃︀𝑥𝑚

𝛽

)︁
𝑥

)︁
is completely determined by the point

𝑥.
Let (Γ𝛼)𝑦 and (𝐺𝛽)𝑥 be stationary subgroups of the groups Γ𝛼 and 𝐺𝛽 at the points 𝑦 and

𝑥, respectively. The number

deg(𝑓 ; 𝑦) :=
∑︁

𝑥∈𝑓−1(𝑦)

sgn

(︃
det

(︃
𝜕̃︀𝑦𝑙𝛼
𝜕̃︀𝑥𝑚𝛽

)︃
𝑥

)︃
|(Γ𝛼)𝑦|
|(𝐺𝛽)𝑥|

(3.1)

is called the degree of map 𝑓 at the map 𝑦.
In [12] the product 𝒩 × [0, 1] is treated as an orbifold with the (𝑛 + 1)–dimensional strata

∆𝑛× [0, 1], where ∆𝑛 is the set of regular points in 𝒩 . Then the orbifold group Γ(𝑥,𝑡) of a point
(𝑥, 𝑡) ∈ 𝒩 × [0, 1] is isomorphic to Γ𝑥. Let 𝑓, 𝑔 : 𝒩 → 𝒩 ′ be two proper maps of orbifolds. If
there exist a proper map of orbifolds 𝐹 : 𝒩 × [0, 1] → 𝒩 ′ such that

𝐹 |𝒩×{0}(𝑥, 0) = 𝑓(𝑥), 𝐹 |𝒩×{1}(𝑥, 1) = 𝑔(𝑥) ∀𝑥 ∈ 𝒩 ,

then 𝑓 and 𝑔 are called smoothly homotopic.
According to [12, Thm. 3.10], for a proper map of orbifolds 𝑓 : 𝒩 → 𝒩 ′ the number deg(𝑓 ; 𝑦)

is independent of the choice of 𝑦 ∈ Reg(𝑓), and deg(𝑓 ; 𝑦) is a homotopic invariant. Thus, the
degree of proper map 𝑓 : 𝒩 → 𝒩 ′ of oriented orbifolds of same dimension is the number defined
by the formula

deg(𝑓) = deg(𝑓 ; 𝑦),

where 𝑦 is a regular value of the map 𝑓.

3.2. New approach. Let 𝑓 : 𝒩1 → 𝒩2 be a proper map of oriented 𝑛–dimensional orbifolds
𝒩1 and 𝒩2.
We recall that the subset 𝑆 ⊂ 𝑋 is everywhere dense in the topological space 𝑋 if and only

if 𝑈 ∩ 𝑆 ̸= ∅ for each open subset 𝑈 ⊂ 𝑋.
For the sake of completeness, we provide a proof of the next statement, which is used in what

follows.

Lemma 3.1. If 𝑓 : 𝒩1 → 𝒩2 is a proper map of oriented 𝑛–dimensional orbifolds, then the

intersection Reg(𝑓) ∩∆𝒩2
𝑛 is an open everywhere dense subset in 𝒩2.

Proof. According to [11, Cor.], each continuous proper map 𝑓 : 𝑋 → 𝑌 of a topological space
𝑋 into a metrizable space 𝑌 is closed. Since each orbifold is metrizable, the proper smooth
map between orbifolds 𝑓 : 𝒩1 → 𝒩2 is closed. Since the set of 𝑓–regular points of smooth map
of orbifolds is open in 𝒩1, the set Sing of all 𝑓–singular points of the map 𝑓 is closed in 𝒩1.
Therefore, the image 𝑓(Sing) is a closed subset in 𝒩2. We observe that

𝒩2 = 𝑓(Sing)
⨆︁

Reg(𝑓),

and this is why Reg(𝑓) is an open subset in 𝒩2. According to the Sard theorem for orbifolds
(Theorem 3.1), the set Reg(𝑓) is everywhere dense in 𝒩2. Since ∆𝒩2

𝑛 is open and everywhere
dense in 𝒩2, we obtain that Reg(𝑓) ∩∆𝒩2

𝑛 is also open and everywhere dense in 𝒩2.

We take 𝑦 ∈ Reg(𝑓)∩∆𝒩2
𝑛 . Since 𝑦 ∈ Reg(𝑓), each point 𝑥 ∈ 𝑓−1(𝑦) is 𝑓–regular. Moreover,

since 𝑦 ∈ ∆𝒩2
𝑛 , according to [4, Thm. 4.2] (see also [12, Cor. 2.7]), each point 𝑥 ∈ 𝑓−1(𝑦) is

a regular point of the orbifold 𝒩1, that is 𝑥 ∈ ∆𝒩1
𝑛 (in [12] such points 𝑥 are called smooth).

Let 𝑓−1(𝑦) = {𝑥1, 𝑥2, . . . , 𝑥𝑘}. Then 𝑓(𝑥𝑖) = 𝑦, 1 ⩽ 𝑖 ⩽ 𝑘, where 𝑥𝑖 ∈ ∆𝒩1
𝑛 and 𝑦 ∈ ∆𝒩2

𝑛 .
Therefore, at each point 𝑥𝑖 there exists a neighbourhood 𝑈𝑖 ⊂ ∆𝒩1

𝑛 such that the restriction
𝑓 |𝑈𝑖

: 𝑈𝑖 → 𝑓(𝑈𝑖) ⊂ Reg(𝑓) ∩∆𝒩2
𝑛 is a diffeomorphism. Let (𝑥𝑚𝑖 ) and (𝑦𝑙) be local coordinates

in neighbourhoods 𝑈𝑖 and 𝑓(𝑈𝑖) of the points 𝑥𝑖 and 𝑦, respectively. We denote by det
(︁

𝜕𝑦𝑙

𝜕𝑥𝑚
𝑖

)︁
𝑥𝑖



16 A.V. BAGAEV, N.I. ZHUKOVA

the Jacobian of the map 𝑓 |𝑈𝑖
at the point 𝑥𝑖. We note that det

(︁
𝜕𝑦𝑙

𝜕𝑥𝑚
𝑖

)︁
𝑥𝑖

̸= 0. We define the

degree of the proper map 𝑓 at an arbitrary point 𝑦 ∈ Reg(𝑓) ∩∆𝒩2
𝑛 by the formula

Deg(𝑓 ; 𝑦) :=
𝑘∑︁

𝑖=1

sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂
𝑥𝑖

. (3.2)

By the definition we let

Deg(𝑓) := Deg(𝑓 ; 𝑦). (3.3)

The identities (3.1) and (3.2) imply that for each point 𝑦 ∈ Reg(𝑓) ∩ ∆𝒩2
𝑛 the identity

Deg(𝑓 ; 𝑦) = deg(𝑓 ; 𝑦) holds. According to [12, Thm. 3.10], the quantity deg(𝑓) = deg(𝑓 ; 𝑦) is
independent neither of the choice of the point 𝑦 ∈ Reg(𝑓), no of the homotopic class of the
map 𝑓. By the identity Deg(𝑓 ; 𝑦) = deg(𝑓 ; 𝑦) we have

Deg(𝑓) = deg(𝑓). (3.4)

Therefore, the proposed definition of the degree is well–defined, that is, Deg(𝑓) is independent
of the choice of the point 𝑦 ∈ Reg(𝑓) ∩ ∆𝒩2

𝑛 , moreover, the value Deg(𝑓) is invariant with
respect to the homotopic equivalence. Owing to the identity Deg(𝑓) = deg(𝑓) in what follows
we denote Deg(𝑓) by deg(𝑓).
The proposed definition of the degree of a mapping, defined by the formulas (3.2) and (3.3), is

simpler than the definition by Pasquotto and Rot since it does not involve the orbifold groups.
At the same time, our definition is equivalent to the definition by Pasquotto and Rot.
Thus, we have the following statement.

Proposition 3.1. Let 𝑓 : 𝒩1 → 𝒩2 be a proper map of orbifolds of dimensions 𝑛, 𝑀2 :=
Reg(𝑓) ∩ ∆𝒩2

𝑛 , 𝑀1 := 𝑓−1(𝑀2) and 𝐹 := 𝑓 |𝑀1 . Then 𝐹 : 𝑀1 → 𝑀2 is a proper map of open

submanifolds into 𝒩1 and 𝒩2, respectively, which can be non–connected, and the degrees deg(𝑓)
and deg(𝐹 ) are equal

deg(𝑓) = deg(𝐹 ). (3.5)

3.3. Proof of Theorem 1.1. Let 𝑀2 := Reg(𝑓) ∩ ∆𝒩2
𝑛 , 𝑀1 := 𝑓−1(𝑀2) and 𝐹 := 𝑓 |𝑀1 .

According to Proposition 3.1, deg(𝐹 ) = deg(𝑓). By Lemma 3.1, 𝑀2 is an open everywhere
dense submanifold in 𝒩2. We observe that 𝑀2 is open everywhere dense manifold in ∆𝒩2

𝑛 .
Therefore, as it is known from the integration theory on manifolds, the following identity holds:∫︁

Δ
𝒩2
𝑛

𝜔 =

∫︁
𝑀2

𝜔.

On the other hand, Theorem 2.1 implies∫︁
𝒩2

𝜔 =

∫︁
Δ

𝒩2
𝑛

𝜔.

Taking this into consideration as well as the identity deg(𝐹 ) = deg(𝑓), we obtain

deg(𝑓)

∫︁
𝒩2

𝜔 = deg(𝐹 )

∫︁
𝑀2

𝜔. (3.6)

We are going to prove that ∫︁
𝒩1

𝑓 *𝜔 =

∫︁
𝑀1

𝑓 *𝜔. (3.7)
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According to Theorem 2.1, we have ∫︁
𝒩1

𝑓 *𝜔 =

∫︁
Δ

𝒩1
𝑛

𝑓 *𝜔.

Let us confirm the identity ∫︁
Δ

𝒩1
𝑛

𝑓 *𝜔 =

∫︁
𝑀1

𝑓 *𝜔. (3.8)

We note that the points in ∆𝒩1
𝑛 can be both 𝑓–singular and 𝑓–regular.

Let a point 𝑥 ∈ ∆𝒩1
𝑛 be a 𝑓–singular point of the map 𝑓. Let (𝑉𝛽, 𝐺𝛽, 𝜓𝛽) and (𝑈̃𝛼,Γ𝛼, 𝜙𝛼)

be linearized charts in 𝑥 and 𝑓(𝑥) with the coordinate neighbourhoods 𝑉𝛽 and 𝑈𝛼, respectively.

Without loss of generality we suppose that 𝑓(𝑉𝛽) ⊂ 𝑈𝛼. We denote by 𝑓𝛼𝛽 : 𝑉𝛽 → 𝑈̃𝛼 the
representative of 𝑓 in these charts. We observe that 𝐺𝛽 = {id𝑉𝛽

} and the 𝑛–form 𝜔 defines

the 𝑛–form 𝜔𝛼 on 𝑈̃𝛼. Therefore, the 𝑛–form (𝑓𝛼𝛽)
*𝜔𝛼 is the representative of the 𝑛–form 𝑓 *𝜔

on 𝑉𝛽. Since the point 𝑥 = 𝜓𝛽(0) is 𝑓–singular, the differential 𝑑𝑓𝛼𝛽 : 𝑇0𝑉𝛽 → 𝑇0𝑈̃𝛼 of the
map 𝑓𝛼𝛽 at 0 is not an isomorphism of vector spaces. This means that the images 𝑑𝑓𝛼𝛽(𝑋1),

𝑑𝑓𝛼𝛽(𝑋2), . . . , 𝑑𝑓𝛼𝛽(𝑋𝑛) of arbitrary 𝑛 vectors 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∈ 𝑇0𝑉𝛽 are linearly dependent

and this is why the 𝑛–form (𝑓𝛼𝛽)
*𝜔𝛼 vanishes at the point 0 ∈ 𝑉𝛽. Therefore, the 𝑛–form 𝑓 *𝜔

vanishes at the point 𝑥. Thus, at each 𝑓–singular point 𝑥 ∈ ∆𝒩1
𝑛 the 𝑛–form 𝑓 *𝜔 vanishes and

we can neglect the 𝑓–singular point while integrating over ∆𝒩1
𝑛 .

Let 𝑥 ∈ ∆𝒩1
𝑛 be a 𝑓–regular point of the map 𝑓. Since the set of 𝑓–regular point is open in 𝒩1,

there exists a chart (𝑉 ,Γ𝑉 , 𝜙𝑉 ) at 𝑥 ∈ 𝑉 with a coordinate neighbourhood 𝑉 ⊂ ∆𝒩1
𝑛 such that

each point in 𝑉 is 𝑓–regular. We denote by 𝑓 : 𝑉 → 𝑈̃ the representative of the map 𝑓 in the
charts (𝑉 ,Γ𝑉 , 𝜙𝑉 ) and (𝑈̃ ,Γ𝑈 , 𝜙𝑈), where (𝑈̃ ,Γ𝑈 , 𝜙𝑈) is the chart at the point 𝑓(𝑥) with the
coordinate neighbourhood 𝑈 . Without loss of generality we can suppose that 𝑓(𝑉 ) = 𝑈. Then

𝑓 is a diffeomorphism of 𝑉 onto the image 𝑓(𝑉 ) = 𝑈̃ . According to Lemma 3.1, the intersection
𝑀2 = Reg(𝑓)∩∆𝒩2

𝑛 is open and everywhere dense in 𝒩2. Therefore, the intersection 𝑈 ∩𝑀2 is
open and everywhere dense in 𝑈, and it is sufficient to calculate the integral∫︁

𝑉

𝑓 *𝜔

only over the set of points 𝑥 ∈ 𝑉 , for which 𝑓(𝑥) ∈ 𝑈 ∩𝑀2, that is, 𝑥 ∈𝑀1. Thus,∫︁
𝑉

𝑓 *𝜔 =

∫︁
𝑉 ∩𝑀1

𝑓 *𝜔. (3.9)

Since 𝑥 ∈ ∆𝒩1
𝑛 is an arbitrary 𝑓–regular point, the identity (3.9) implies the identity (3.8).

Owing to the identities deg(𝑓) = deg(𝐹 ), (3.6) and (3.7), the proof of Theorem 1.1 is reduced
to confirmation of the identity ∫︁

𝑀1

𝑓 *𝜔 = deg(𝑓)

∫︁
𝑀2

𝜔, (3.10)

where the support supp𝜔 of the form 𝜔 lies in 𝑀2.
Since the support supp𝜔 of the form 𝜔 is a compact subset in𝑀2, there exists a finite covering

𝜉 = {𝑈𝑘}𝑘=1,...,𝑚 of the support supp𝜔 by the coordinate neighbourhoods 𝑈𝑘. Let {𝑓𝑘}𝑘=1,...,𝑚

be the family of functions on 𝑀2 defining a finite unity partition relative to the covering 𝜉. By
the defintion, ∫︁

𝑀2

𝜔 =
𝑚∑︁
𝑘=1

∫︁
𝑈𝑘

𝑓𝑘𝜔,
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where supp 𝑓𝑘𝜔 ⊂ 𝑈𝑘.
By Proposition 3.1, the map 𝐹 = 𝑓 |𝑀1 is proper, therefore, the support supp 𝑓 *𝜔 is also

compact. Moreover, 𝜂 = {𝑉𝑘 = 𝑓−1(𝑈𝑘)}𝑘=1,...,𝑚 is a finite covering of supp 𝑓 *𝜔.
It is easy to see that the family {𝑔𝑘 := 𝑓𝑘 ∘ 𝑓}𝑘=1,...,𝑚 is a finite unity partition relative to the

covering 𝜂, and supp(𝑔𝑘𝑓
*𝜔) ⊂ 𝑉𝑘 ∀𝑘 = 1, . . . ,𝑚. This is why∫︁

𝑀1

𝑓 *𝜔 =
𝑚∑︁
𝑘=1

∫︁
𝑉𝑘

𝑔𝑘𝑓
*𝜔.

Thus, to prove the identity (3.10), it is sufficient to confirm the identity∫︁
𝑉𝑘

𝑔𝑘𝑓
*𝜔 = deg(𝑓)

∫︁
𝑈𝑘

𝑓𝑘𝜔.

We consider an arbitrary chart (𝑈̃ ,Γ𝑈 , 𝜙𝑈) with the coordinate neighbourhood 𝑈 = 𝜙𝑈(𝑈̃)
such that supp𝜔 ⊂ 𝑈. In this case supp 𝑓 *𝜔 ⊂ 𝑊 = 𝑓−1(𝑈). Let us confirm the identity∫︁

𝑊

𝑓 *𝜔 = deg(𝑓)

∫︁
𝑈

𝜔. (3.11)

Generally speaking, the manifold 𝑊 is non–connected. We denote by 𝑊𝑖, 𝑖 = 1, . . . , 𝑠, the
connected components of the manifold𝑊. For each 𝑖 = 1, . . . , 𝑠 the restriction 𝑓 |𝑊𝑖

: 𝑊𝑖 → 𝑈 is a
diffeomorphism of simply–connected manifolds. Without loss of generality we can suppose that
𝑊𝑖 is the coordinate neighbourhood of the manifold 𝑀1. Let (𝑥

𝑚
𝑖 ) and (𝑦𝑙) be local coordinates

in 𝑊𝑖 and 𝑈, respectively. We write the diffeomorphism 𝑓 |𝑊𝑖
: 𝑊𝑖 → 𝑈 in the local coordinates

𝑦𝑙 = 𝑦𝑙(𝑥𝑚𝑖 ) = 𝑦𝑙(𝑥1𝑖 , 𝑥
2
𝑖 , . . . , 𝑥

𝑛
𝑖 ), 𝑙,𝑚 = 1, . . . , 𝑛. (3.12)

In the coordinates (𝑥𝑚𝑖 ) and (𝑦𝑙) the forms 𝜔 and 𝑓 *𝜔 read

𝜔 = 𝜙(𝑦𝑙)𝑑𝑦1 ∧ 𝑑𝑦2 ∧ . . . ∧ 𝑑𝑦𝑛,

𝑓 *𝜔 = 𝜙(𝑦𝑙(𝑥𝑚𝑖 )) det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂
𝑑𝑥1𝑖 ∧ 𝑑𝑥2𝑖 ∧ . . . ∧ 𝑑𝑥𝑛𝑖 ,

where det
(︁

𝜕𝑦𝑙

𝜕𝑥𝑚
𝑖

)︁
is the Jacobian of change of variables (3.12). We write the formula of change

of variables in a multiple integral∫︁
𝑈

𝜙(𝑦𝑙)𝑑𝑦1 ∧ 𝑑𝑦2 ∧ . . . ∧ 𝑑𝑦𝑛 =

∫︁
𝑊𝑖

𝜙(𝑦𝑙(𝑥𝑚𝑖 ))

⃒⃒⃒⃒
det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂⃒⃒⃒⃒
𝑑𝑥1𝑖 ∧ 𝑑𝑥2𝑖 ∧ . . . ∧ 𝑑𝑥𝑛𝑖 . (3.13)

We note that

det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂
= sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂ ⃒⃒⃒⃒
det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂⃒⃒⃒⃒
. (3.14)

It follows from (3.13) and (3.14) that∫︁
𝑊𝑖

𝑓 *𝜔 =

∫︁
𝑊𝑖

𝜙(𝑦𝑙(𝑥𝑚𝑖 )) det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂
𝑑𝑥1𝑖 ∧ 𝑑𝑥2𝑖 ∧ . . . ∧ 𝑑𝑥𝑛𝑖

= sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂∫︁
𝑊𝑖

𝜙(𝑦𝑙(𝑥𝑚𝑖 ))

⃒⃒⃒⃒
det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂⃒⃒⃒⃒
𝑑𝑥1𝑖 ∧ 𝑑𝑥2𝑖 ∧ . . . ∧ 𝑑𝑥𝑛𝑖

= sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂∫︁
𝑈

𝜙(𝑦𝑙)𝑑𝑦1 ∧ 𝑑𝑦2 ∧ . . . ∧ 𝑑𝑦𝑛 = sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂∫︁
𝑈

𝜔.
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Therefore, ∫︁
𝑊𝑖

𝑓 *𝜔 = sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂∫︁
𝑈

𝜔. (3.15)

Summing up the identities (3.15) over 𝑖 ∈ {1, . . . , 𝑠} and using the definition of degree of
proper map between the smooth manifolds, we obtain the following chain of identities∫︁

𝑊

𝑓 *𝜔 =
𝑠∑︁

𝑖=1

∫︁
𝑊𝑖

𝑓 *𝜔 =
𝑠∑︁

𝑖=1

sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂∫︁
𝑈

𝜔

=

(︃
𝑠∑︁

𝑖=1

sgn det

(︂
𝜕𝑦𝑙

𝜕𝑥𝑚𝑖

)︂)︃∫︁
𝑈

𝜔 = deg(𝑓)

∫︁
𝑈

𝜔.

Thus, the formula (3.11) is valid and this completes the proof of Theorem 1.1.

3.4. Proof of Theorem 1.2. Let 𝑓 : 𝒩1 → 𝒩2 be a proper mapping of connected oriented
smooth orbifolds of the same dimension 𝑛, Ω be the volume form on a compact orbifold 𝒩2

defined by the Riemannian metrics 𝑔, Vol(𝒩2) be the volume of the orbifold 𝒩2, see Section 2.4.
Since the orbifold 𝒩2 is compact, we have Vol(𝒩2) <∞.
According to the proof of Theorem 1.1, the 𝑛–form 𝑓 *Ω vanishes at each 𝑓–singular point.

Therefore, generally speaking, 𝑓 *Ω is not the volume form on 𝒩1, see Example 3.1.
Replacing the integral in the right hand side of the identity (1.1) by Vol(𝒩2), we obtain the

identity from Theorem 1.2.

deg(𝑓) =
1

Vol(𝒩2)

∫︁
𝒩1

𝑓 *Ω.

Owing to Theorem 1.1, the right hand side of this identity is independent on the choice of
the Riemannian metrics 𝑔 on 𝒩2. This completes the proof of Theorem 1.2.

3.5. Proof of Corollary 1.1. We recall the notion of covering map for orbifolds [15, Ch.
13]. A smooth map of orbifolds 𝑓 : 𝒩1 → 𝒩2 is called the covering if for each point 𝑥 ∈ 𝒩2 there
exists a chart (𝑈̃ ,Γ, 𝜙) with the coordinate neighbourhood 𝑈 ∋ 𝑥 such that for each connected
component 𝑈 ′ of the preimage 𝑓−1(𝑈) there exists a homeomorphism 𝑞′ : 𝑈̃/Γ′ → 𝑈 ′ such that
𝑓 |𝑈 ′ ∘ 𝜙′ = 𝜙, where Γ′ is some subgroup of the group Γ, and 𝜙′ : 𝑈̃ → 𝑈 ′ is the composition
of the map 𝑞′ with the quotient map 𝑈̃ → 𝑈̃/Γ′. The chart (𝑈̃ ,Γ, 𝜙) in this definition is called
regularly covered.
Let 𝑓 : 𝒩1 → 𝒩2 be a covering map. The covering transformation is an automorphism

ℎ : 𝒩1 → 𝒩1 of the covering orbifold 𝒩1 such that 𝑓 ∘ ℎ = 𝑓. The set 𝐺(𝑓) of all covering
transformations of the covering 𝑓 : 𝒩1 → 𝒩2 defines a group. The covering 𝑓 : 𝒩1 → 𝒩2 is
called regular if 𝒩2 = 𝒩1/𝐺(𝑓).
The number of sheets of the covering map 𝑓 : 𝒩1 → 𝒩2 is defined as the number of preimages

of a point in ∆𝒩2
𝑛 .

We proceed to the proof of Corollary 1.1. Let 𝑓 : 𝒩1 → 𝒩2 be a surjective map between
compact orbifolds 𝒩1 and 𝒩2. By the compactness of the orbifold 𝒩1 the map 𝑓 is proper.
Let Ω be the volume form on the compact orbifold 𝒩2 defined by the Riemannian metrics 𝑔.
Since 𝑓 : 𝒩1 → 𝒩2 is a regular map, 𝑓 *Ω is the volume form on 𝒩1. We denote by Vol(𝒩1)
the volume of the compact orbifold 𝒩1. Then the formula (1.2) can be written in the following
form

deg(𝑓) =
Vol(𝒩1)

Vol(𝒩2)

that completes the proof of Statement 2) in Corollary 1.1.
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Since 𝑓 : 𝒩1 → 𝒩2 is a surjective regular map, all points of the orbifold 𝒩2 are regular values
of the map 𝑓 , that is, Reg(𝑓) = 𝒩2, that is, 𝑀2 = ∆𝒩2

𝑛 . Thus, 𝑓 |𝑀1 : 𝑀1 → 𝑀2 is a finite–
sheeted regular covering. We denote by 𝑘 the number of sheets of this covering. By (3.10) we
obtain 𝑘 = deg(𝑓). This proves Statement 1) of Corollary 1.1.

3.6. Examples.

Example 3.1. Let 𝑓 : S1 → S1 be a map of the circumference S1 onto itself as it is shown
in Figure 1. The map 𝑓 is a surjective proper map. We note that the preimages of the points
𝑧1 and 𝑧2 are compact subsets in S1 and are segments: 𝑓−1(𝑧𝑖) = [𝑥𝑖, 𝑦𝑖], 𝑖 = 1, 2. The points of
these segments are 𝑓–singular, while other points of the circumference S1 are 𝑓–regular.

f

1

1 2

1 2

1 2

1

S

x x

y y

z z

S

Figure 1. The form 𝑓 *Ω is not a volume form.

Let on S1 a volume form Ω be defined. According to the proof of Theorem 1.1, the form 𝑓 *Ω
vanishes at each point of the segments [𝑥1, 𝑦1] and [𝑥2, 𝑦2]. Thus, 𝑓

*Ω is not the volume form
on S1. It is obvious that the degree of map 𝑓 is equal to 1.

Example 3.2. Let 𝒩1 be a two–dimensional sphere S2, 𝛾 be a rotation of the sphere S2 by
the angle 2𝜋

𝑘
, 𝑘 ∈ N, 𝑘 ⩾ 2, around the straight line 𝑙 passing the center 𝑂 of the sphere S2.

The group Γ generated by the map 𝛾 is isomorphic to the group Z𝑘 of residues classes modulo
𝑘. The quotient space 𝒩2 = S2/Γ is homemorphic to the sphere S2 and is a two–dimensional
orbifold, see Figure 2.
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Figure 2. 𝑘–sheeted covering 𝑓 : S2 → S2/Γ.
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The quotient map 𝑓 : 𝒩1 → 𝒩2 is a 𝑘–sheeted covering. Since the group Γ preserves only two
points 𝐴1, 𝐴2 ∈ 𝑙 ∩ S2, the orbifold 𝒩2 has only two singular points 𝐵1 = 𝑓(𝐴1), 𝐵2 = 𝑓(𝐴2),
while other points of the orbifold 𝒩2 are regular. Thus, 𝒩2 has the stratification {∆𝒩2

0 ,∆𝒩2
2 },

where ∆𝒩2
0 = {𝐵1, 𝐵2}, ∆𝒩2

2 = 𝒩2 ∖∆𝒩2
0 .

We note that all points of the orbifold 𝒩2 are regular values: Reg(𝑓) = 𝒩2. Therefore,
𝑀2 = ∆𝒩2

2 , 𝑀1 = 𝑓−1(𝑀2) = S2 ∖ {𝐴1, 𝐴2}. According to Corollary 1.1, the degree of map 𝑓 is
equal to 𝑘.

Example 3.3. Let 𝒩1 = T𝑛 = {(𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 | |𝑧𝑘| = 1, 𝑘 = 1, . . . , 𝑛} be a 𝑛–
dimensional torus. We defined the map 𝛾 : T𝑛 → T𝑛 by the formula 𝛾(𝑧1, . . . , 𝑧𝑛) = (𝑧1, . . . , 𝑧𝑛),
where (𝑧1, . . . , 𝑧𝑛) ∈ T𝑛, and 𝑧𝑘 is a complex number conjugate with 𝑧𝑘, 𝑘 = 1, . . . , 𝑛. The group
Γ generated by the map 𝛾 is isomorphic to the group Z2 of residues classes modulo 2. The quo-
tient space 𝒩2 = T𝑛/Γ is a 𝑛–dimensional compact oriented orbifold. The group Γ preserves 2𝑛

points (𝑧1, . . . , 𝑧𝑛) ∈ T𝑛, where 𝑧𝑘 ∈ {1,−1}, 𝑘 = 1, . . . , 𝑛. This is why the orbifold 𝒩2 has 2
𝑛

singular points, the orbifold group of which is isomorphic to Z2. In total, these singular points
form the zero–dimensional strata ∆𝒩2

0 , other points of the orbifold 𝒩2 are regular. Thus, 𝒩2

has a the stratification {∆𝒩2
0 ,∆𝒩2

𝑛 }.
The quotient space 𝑓 : 𝒩1 → 𝒩2 is a 2–sheeted regular covering. All points of the orbifold

𝒩2 are regular values of the map 𝑓 , that is, Reg(𝑓) = 𝒩2. It follows from Corollary 1.1 that
the degree of the map 𝑓 is equal to 2 and Vol(𝒩1) = 2Vol(𝒩2).
For 𝑛 = 4, the orbifold 𝒩2 has 16 singular points and is called the Kummer surface [1, Ex.

1.9].
For 𝑛 = 2 the orbifold 𝒩2 has 4 singular points, is homemorphic to the 2–dimensional sphere

S2 and is called “Pillow”, see Figure 3.
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Figure 3. 2–sheeted covering of the orbifold 𝒩2 by the torus T2.
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