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ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS

A.V. BAGAEV, N.I. ZHUKOVA

Abstract. In the present work we develop the degree theory for proper maps between
orbifolds of same dimension. The definition of degree for the mentioned maps was introduced
by Pasquoto and Rot (2020). We propose a new, simpler definition for the degree of proper
maps between smooth oriented orbifolds of the same dimension and show that it is equivalent
to the definition by Pasquotto and Rot. Using this new approach, we establish a connection
between the degree of a map and the integration of exterior forms on orbifolds, which is
important for physical applications. We obtain an integral formula for the degree of a map
between orbifolds, which is a generalization of the corresponding formula for manifolds. We
also reveal the specificity of degree of a map for compact orbifolds.
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1. INTRODUCTION. MAIN RESULTS

In this paper, we develop a degree theory for proper maps between smooth orbifolds of the
same dimension. The concept of the degree of a map between smooth manifolds was introduced
by Brouwer |5]. Brouwer showed that the degree of a map is a homotopy invariant and he applied
this fact to the proof of a fixed point theorem.

The degree of a mapping is widely used in many areas of geometry and topology [10]. In
particular, the degree of a map is used to prove the well-known Gauss theorem on the existence
of a root of an arbitrary complex polynomial. Gauss — Bonnet and Poincaré — Hopf theorems
can be proved by using the concept of the degree of a map [10], [11].

In physics, the degree of a map is considered as a topological charge (a topological quantum
number). This is why the degree theory is used to develop topological methods for analyzing
the structure of solutions to nonlinear equations in mathematical physics [3], 0], [8], [9]. In [14]
there was proposed a new approach to characterization of monopole configurations in the Yang—
Mills — Higgs theory with the gauge group SU(2) by using the degree of map between smooth
manifolds.

Pasquotto and Rot introduced the definition of degree of map between the orbifolds [12].

The orbifold can be treated as a natural generalization of the concept of the manifold. The
concept of the orbifold was introduced by Satake under the name V—manifold [13], and the term
“orbifold” was proposed by Thurston [15], who classified two—dimensional compact orbifolds
and applied it for the classification of closed smooth three-dimensional manifolds. Locally, n—
dimensional orbifolds are homeomorphic to the quotient space of the n—dimensional arithmetic
space R™ by a finite group of diffeomorphisms. This group may change when passing from one
point of the orbifold to another. Rigorous definitions of the category of orbifolds and integration
over them are given in Section 2.
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The orbifolds arise naturally in solving various problems in mathematics and physics [1].
For example, in mathematical physics, the orbifolds are used as string propagation spaces. In
foliation theory, the orbifolds appear as spaces of leaves.

The goal of this paper is to develop the theory of degree of maps between orbifolds. In Section
3.1, we recall the definition of degree due to Pasquotto and Rot. In Section 3.2, we introduce
a new, simpler definition of the degree of a proper map between connected oriented smooth
orbifolds of the same dimension. The novelty of our approach is that to determine the degree
of a map between orbifolds, it suffices to consider only the regular values of this map, which are
regular points of the orbifold. We prove that our definition is equivalent to the corresponding
definition of Pasquotto and Rot.

By using the proposed approach, in Section 3.3 we prove Theorem 1.1, which is a general-
ization to orbifolds of a well-known statement for manifolds.

Theorem 1.1. Let f: N7 — N5 be a proper map between connected oriented smooth orbifolds
of same dimension n € IN. Then for each n—form w with a compact support on N5 the identity

holds
/f*w = deg(f)/w, (1.1)
M

No
where deg(f) is the degree of the map f.

In Section 3.4 we obtain the following integral formula.

Theorem 1.2. Let f: Ny — Ny be a proper map of connected oriented orbifolds of same
dimension n € IN, Q be the volume form on a compact orbifold Ny defined by the Riemannian
metrics g, Vol(N2) be the volume of orbifold N3. Then the degree of map [ satisfies the identity

des(f) = T N/ 6. (1.2)

Moreover, the right hand side of the identity (1.2) is independent of the choice of the Riemann-
ian metrics g on No.

The formula (1.2) allows us to extend the notion of topological charge to vector fields defined
on orbifolds.

In Section 3.5 we recall the definition of the covering and regular covering map for the
orbifolds. The number of sheets of the covering map f: N7 — N, is defined as the number of
pre-images of a regular point in A5.

Theorem 1.2 implies the following statement.

Corollary 1.1. Let N7 and N5 be connected compact oriented orbifolds of same dimension,
f: N1 — Ny be a surjective reqular mapping. Then

1) f: N1 — Ny is a k-sheeted regular covering map, where k = deg(f);
2) the degree of map [ satisfies the identity

N VOl(Nl)

deg(f) = Vol ()

Assumptions. The manifolds, orbifolds, vector fields, forms have the smoothness C**°. The
orbifolds (in particular, manifolds) are supposed to be connected if else is not said. We consider
only open neighbourhoods. We also suppose that all groups of diffeomorphisms act effectively.

Notations. The quotient spaces of X by both left and right action of a group G are denoted
by X/G. The symbol |G| stands for the order of a finite group G. By IN we denote the set of
natural numbers.



ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS 11

2.  ORBIFOLDS

2.1. Categories of orbifolds. Let N be a connect Hausdorff topological space with a count-
able base. Let U be a connected open subspace in the n—dimensional arithmetical space R",
['y be a finite group of diffeomorphisms U, YU U— N bealy— ~invariant map, which 1nduces
the homeomorphism ¢y from U/FU into the open subset U = ¢y (U ) in A/. Then the triple
(U,Ty, ) is called the orbifold chart on N with the coordinate neighbourhood U.

We consider two orbifold charts (U, 'y, ¢y) and (V, 'y, ¢y) with the coordinate neighbour-
hoods U and V, and U C V. The smooth map ¢yy: U — V is called the embedding of the
chart (U, 'y, pu) into the chart (f/, Ly, pv) if oy = @y o dyy. We observe that each map ¢y
induces the monomorphism of groups ¢y : I'y — 'y, for which the identity holds

evu(g(u) = vvu(g)(pvu(u)) YueU, gé€Ty.

The family of charts A = {(Ua, Ta, pa)|a € J} is called the orbifold atlas if the following
two conditions are satisfied:

1) the set of coordinate neighbourhoods {U, = ¢,(U,)| o € J} of the charts in A forms an
open covering of the topological space N;

2) each two charts in the atlas A are compatible in the following sense: if (U,,Ta, vq) € A
and (Ug, T, 05) € A are two charts with the coordinate neighbourhoods U, and Us,
U,NUg # 0, then for each point x € U, NUj there exists a chart (U,, T, p,) € A with the
coordinate neighbourhood U, such that v € U, C U, N Ug, and two embeddings ¢, and
gy of the chart (UW,FW,QO,Y) into the charts (U, Ta, o) and (Uﬁ,rﬁ, ©g), respectively.

The pair (NV,.A), where A is the maximal (by embedding) orbifold atlas A, is called the
smooth n—dimensional orbifold. In what follows we shortly denote the orbifold (A, .A) by N.

We note that for each point x € N of a smooth n—dimensional orbifold (N, .A) there exists
a chart (U,Ty, py) € A such that U is an n-dimensional arithmetical space R", oy (0) = ,
0 € R", and I'y is a finite group of orthogonal transformations of R™. Such chart is called the
linearized chart at x. 3 3

For the orbifold charts (U, 'y, o) and (V,T'yv, ¢y ) in A with the coordinate neighbourhoods
containing z € N, the isotropy subgroups ('), and (I'yv), at the points y € ¢'(z) and
z € ga(,l(x) are isomorphic. Therefore, for each point € N the group I'(,) is defined, which is
unique up to the group isomorphism. The group I'(,) is called the orbifold group at x. The point
v is called regular if its orbifold group I'(,) is trivial; otherwise the point x is called singular.

As it is known |2, Ex. 1], in contrast to the case n = 2, for n > 3 the smooth n—dimensional
orbifold V' is not, generally speaking, locally Euclidean space. The topological space of the
orbifold NV is called the underlying space.

Let A and N be smooth orbifolds with atlases A and A’, respectively. A continuous map
f: N — N is called smooth if for each x € N there exist charts (Vj, Gs,15) € A and
(Us,Ta,00) € A’ such that = € Vi = ¥3(V3), f(V3) C Uy = ¢a(U,), and the smooth map
fap: ‘75 — U, satisfying the identity ©a0fap = forvg. The map f,pis called the representative of
map [ in the charts (f/ﬁ, G, 13) and (Ua, I'a,¢a). The map f,p is defined up to the composition
with the elements in Gz and Iy, respectively.

We denote by Otb the category of orbifolds, the objects of which are smooth orbifolds, and
the morphisms are smooth maps of orbifolds. We note that the category of manifolds is a
complete subcategory of the category Otb.

2.2. Stratification of orbifolds. We say that two points of a smooth orbifold N possess the
same orbifold type if there exist the neighbourhoods of these points isomorphic in the category
Otb. The set of points of the same orbifold type with the induced topology has a natural
structure, generally speaking, of a non—connected smooth manifold [2]. We denote by Ay the
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union of such manifolds of the dimension k. We note that the manifolds of points of different
orbifold type can have the same dimension. We stress that each connected component Azj of
the manifold A, consists of the points of same orbifold type. It is possible that A; = ) for
some k € {0,...,n — 1}, where n is the dimension of the smooth orbifold N.

The family AN) = {AY|j € Ji, k € {0,...,n}} is called the stratification of the smooth
n—dimensional orbifold N, and A}’ are called its stratum |7].

The set of regular points defines the strata A,,, which is a connected open everywhere dense
subset in N and with respect to the induced smooth structure it is a smooth n—dimensional
manifold.

2.3. Integration on orbifolds. We say that on a smooth n—dimensional orbifold (N, .A)
an exterior p—form is defined if for each chart (Ua, Fa, ©Ya) € A on U, an exterior I',—invariant
p—form w, is defined and for each embedding ¢g,: U, — Ug of the chart (Ua, Lu, 9q) into the
chart (Us, I's, ¢5) the identity Phaws = Wa holds.

Let w = {wq }aes be an exterior p—form on an orbifold (N .A). We note that w =0 at x € N/
if and only if there exists a linearized chart (Ua,Fa, vo) €EAat x € U, = @a(f]a) such that
we = 0 at 0 € U, = R™ The closure of the set of points of the orbifold N, at which w is non—
zero, is called the support of form w and is denoted by suppw. We denote by I'?(N) the set of
all exterior p-forms with a compact support on A. The set T?(N) with pointwise summation
and multiplication by the real numbers is a vector space.

Let f: N'— N’ be a smooth map of orbifolds, w = {wa}aes be an exterior p-form on the
orbifold (N7, A’). For each x € N there exist charts (Vz, Gg,105) € A and (Ua,Fa,gpa) c A,
such that = € Vi = ¢3(V3), f(Vs) C Uy = 9u(Us), and a representative foz: Vs — U, of the
map f in charts (VB7 Glg,13) and (Ua, T, 0a), such that oq, o fap = fo1ps. We denote by f7swa
the preimage of the form w,, under the map fos. Then the set { f3swa }oen generates the p—form
f*w on the orbifold (N, .A), which is called the preimage of the form w under the map f. Thus,
the linear map is defined

TN = TPN): w = ffw.

We recall that the orbifold (N, .A) is called oriented if for each for o € J the manifolds U,
are oriented so that each map v € I', and each embedding ¢qg: (75 — Um a, f € J, preserves
the orientation.

Let (N,.A) be an oriented n—dimensional orbifold, w be an exterior n—form with a compact
support on N. If the support supp w lies inside the coordinate neighbourhood U, of some chart
(Ua, T, pa) € A, then by the definition we let

[o=mr/
w = Wa,
A
Ua

«@

where |I',| is the order of group I',. In the general case the compactness of support suppw
implies the existence of a finite open covering £ = {Uy | k = 1,...,m} of the support suppw
by the coordinate neighbourhoods Uy of charts in A and a finite unity partition relative to &;
that is, of the family {fx | k = 1,...,m} of smooth functions on N such that

(a) 0< fr(z) <lforallz e Nand k € {1,...,m};
(b) supp fr C Uy for all k € {1,...,m};

(c) > fr(x) =1 for all x € suppw.
k=1
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Then the integral of an exterior n—form with a compact support w on the orbifold N is defined

by the following identity
[o=Y [ 21)
N

k=17,
It is known that the number [w defined by the formula (2.1) is independent of the choice

N
of the covering ¢ of the support suppw and the unity partition relative to £. Thus, for each
smooth n—dimensional orbifold A the linear operator is well-defined

/:F?C’(/\/)—HR: wr—>/w.
N N

If N is compact, then the support of each form w on A is a compact set. Therefore, the
integral is well-defined for each external n—form w on a compact n—dimensional orbifold .

Theorem 2.1. Let w be an external n—form with a compact support on an oriented n—
dimensional orbifold N'. Then the identity

o/

holds, where A, is the n—dimensional strata of the orbifold N .

Proof. Owing to the identity (2.1) it is sufficient to show that
/fkw = / Jrw (2.2)
Uy UpNAp

for all k € {1,...,m}. Let (Uy, Tk, ¢x) be an orbifold chart such that ¢, (Uy) = U,. We observe

that
1 .
/fkw = _/fkwka (2.3)
T
Us 0,

where fk = fr o px. Since A, is an open and everywhere dense subset in N, the set Vj, :=
(or) 1 (Ur N A,) is open and everywhere dense in Uy. Taking this into consideration as well as
the formula (2.3), we obtain the following identities

/fk-w: ﬁ/ﬁ-wk: ﬁ/fkwh (2.4)
Uk Uy Vi

Since Vk is a I',—invariant set and I';, acts on Vk freely, the restriction
Pkl : Vi = U N A,
is a k—sheeted regular covering. This is why
1 ~
m/fkwk = / w. (2:5)
Vi UpNA,

The identities (2.4) and (2.5) imply (2.2). The proof is complete. O
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2.4. Volume form of oriented Riemannian orbifold. Let on an oriented orbifold A with
an atlas A = {(U,,Ta,¢a)|o € J} a Riemannian metrics g be defined. Then for each chart
(Ua, Lu, ), @ € J, of the orbifold N a T',—invariant Riemannian metrics g, is defined on U,.
Let (y*) be local coordinates on U,. The Riemannian metrics g, defines the volume form .
In the local coordinates (y*) the form ), is defined by the identity

Q, = \/detgadyi A Ay,

where det g, is the determinant of the matrix of metric tensor g, in the local coordinates (y*).
Since ~/\/ is an oriented orbifold, all isometries in the group I'y, as well as each embedding
dap: Usg — U,, o, 8 € J, preserves the orientation. Therefore, the volume form €, is I'y—
invariant, and for each embedding ¢,z: Ug — U, the forms €, and (25 defined on U, and (75
respectively are compatible: Qg = ¢73Q,. Thus, the family Q = {€,} defines an n—form on
N. This form is called the volume form on the orbifold A of the given Riemannian metrics g.
We note that the n—form Q = {Q,} is non—zero on N
The quantity

Vol(A) = / Q
N
is called the volume of the orbifold N. If the orbifold N is compact, then Vol(N) < oc.

3. DEGREE OF PROPER MAPS OF ORBIFOLDS: VARIOUS APPROACHES

Let AV and N’ be smooth orbifolds. A smooth map f: N' — N’ of the orbifolds A" and N’
is called proper if for each compact subset K C N’ the preimage f~!(K) is compact in N. For
a compact orbifold N each smooth map f is proper.

3.1. Approach by Pasquotto and Rot. We recall the definition of the degree of proper
maps of orbifolds given in [12].

Let f: N'— N’ be a smooth map of orbifolds N and N'. We take an arbitrary point z € N.
Let fos: Vs — U, be a representative of the map f in the charts (Vs, G, vg) and (Uy, Ta, 00),
x € Vg =1p(Vs), f(Vs) C Ua = pa(Us)

The point € N is called f-regular if the differential df.s of the map f,s at the point & €
(Y)Y (x) C ‘75 is a surjective linear map. It can be shown that the definition of the f-regular
point is independent of the choice of charts (f//g, Gp,1s) and (Ua,Fa, ©a), the representative
fap of the map f in these charts and the point Z € (¢3) ' (z). The points f-singular if they
are not f-regular.

If all points of the orbifold N are f-regular, then the map f: N — N is called regular.

A point y € N is called the regular value if each x € f~!(y) is a f-regular point. We denote
by Reg(f) the set of all regular values of the mapping f.

The following analogue of Sard theorem was proved in |1, Thm. 4.1].

Theorem 3.1. Let f: N — N’ be a smooth map of orbifolds. Then the set Reg(f) of reqular
values of the map f is everywhere dense in N.

Let f: N — N’ be a smooth proper map of n-dimensional oriented orbifolds (N, .A) and
(N, A)). Let y € Reg(f) and = € f~'(y). We consider linearized charts (Vz, Gg,105) and
(ﬁa,Fa,goa) at = and y, respectively. Let f,5 be the representative of the map f in these
charts. Since the orbifolds N and N’ are oriented, we can suppose that the Jacobians of the
matrices of passage from one coordinates to the others at the points x and y are positive. If

(Z') and (7,) are local coordinates in these charts, then the sign of the Jacobian det <5§%>
B/ x

of the map g, = 7.(Z%) in 0 € V3 = R" is independent of the choice of charts (Vj, G4, ¥5) and
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(Ua, [w, ¢a), and therefore, the sign sgn (det (53%) ) is completely determined by the point
B/

x.

Let (I'y), and (Gg), be stationary subgroups of the groups I'y, and G at the points y and

x, respectively. The number

! I,
deg(f;y) :== Z sgn | det gg [(Ta)y| (3.1)
2 77y ) ) 1Go]
is called the degree of map f at the map y.

In [12] the product N x [0,1] is treated as an orbifold with the (n + 1)-dimensional strata
A, x [0,1], where A, is the set of regular points in A. Then the orbifold group I'(, ;) of a point
(x,t) € N x [0,1] is isomorphic to T',. Let f, g: N'— N’ be two proper maps of orbifolds. If
there exist a proper map of orbifolds F': N x [0,1] — N such that

Flnrxqoy(2,0) = f(=), Flyxpy(z,1) = g(x) VzeN,

then f and g are called smoothly homotopic.

According to [12, Thm. 3.10], for a proper map of orbifolds f: N — N’ the number deg(f;y)
is independent of the choice of y € Reg(f), and deg(f;y) is a homotopic invariant. Thus, the
degree of proper map f: N — N’ of oriented orbifolds of same dimension is the number defined
by the formula

deg(f) = deg(f;y),
where y is a regular value of the map f.

3.2. New approach. Let f: N; — N, be a proper map of oriented n—dimensional orbifolds
Nl and NQ.

We recall that the subset S C X is everywhere dense in the topological space X if and only
if UN S # () for each open subset U C X.

For the sake of completeness, we provide a proof of the next statement, which is used in what
follows.

Lemma 3.1. If f: N1 — Ny is a proper map of oriented n—dimensional orbifolds, then the
intersection Reg(f) N AN is an open everywhere dense subset in N.

Proof. According to |11, Cor.|, each continuous proper map f: X — Y of a topological space
X into a metrizable space Y is closed. Since each orbifold is metrizable, the proper smooth
map between orbifolds f: N; — N, is closed. Since the set of f-regular points of smooth map
of orbifolds is open in A, the set Sing of all f-singular points of the map f is closed in Nj.
Therefore, the image f(Sing) is a closed subset in N3. We observe that

N; = f(Sing)| | Reg(f),

and this is why Reg(f) is an open subset in N;. According to the Sard theorem for orbifolds
(Theorem 3.1), the set Reg(f) is everywhere dense in N5. Since AM2 is open and everywhere
dense in N3, we obtain that Reg(f) N AMN2 is also open and everywhere dense in Aj. O

We take y € Reg(f) N ANz, Since y € Reg(f), each point z € f~'(y) is f-regular. Moreover,
since y € AN2 according to [4, Thm. 4.2] (see also [12, Cor. 2.7]), each point = € f~'(y) is
a regular point of the orbifold Ay, that is z € AN (in [12] such points z are called smooth).
Let f~'(y) = {21, 29,...,2%}. Then f(z;) =y, 1 < i < k, where 2, € AM and y € ANz,
Therefore, at each point x; there exists a neighbourhood U; C Aﬁfl such that the restriction
flo.: Ui = f(U;) € Reg(f) N ANz is a diffeomorphism. Let (#7*) and (y') be local coordinates

)

in neighbourhoods U; and f(U;) of the points x; and y, respectively. We denote by det (aami;)

T
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the Jacobian of the map f|y, at the point x;. We note that det <£c—yfn> # 0. We define the
degree of the proper map f at an arbitrary point y € Reg(f) N AQ/Z by the formula

) . (3.2)

Deg(f) := Deg(f;y). (3.3)

The identities (3.1) and (3.2) imply that for each point y € Reg(f) N AN2 the identity

Deg(f;y) = deg(f;y) holds. According to [12, Thm. 3.10], the quantity deg(f) = deg(f;y) is

independent neither of the choice of the point y € Reg(f), no of the homotopic class of the
map f. By the identity Deg(f;y) = deg(f;y) we have

Deg(f) = deg(f).- (3.4)

Therefore, the proposed definition of the degree is well-defined, that is, Deg(f) is independent
of the choice of the point y € Reg(f) N ANz, moreover, the value Deg(f) is invariant with
respect to the homotopic equivalence. Owing to the identity Deg(f) = deg(f) in what follows
we denote Deg(f) by deg(f).

The proposed definition of the degree of a mapping, defined by the formulas (3.2) and (3.3), is
simpler than the definition by Pasquotto and Rot since it does not involve the orbifold groups.
At the same time, our definition is equivalent to the definition by Pasquotto and Rot.

Thus, we have the following statement.

k
oy!
Deg(f;y) := ;sgn det (ax;n

By the definition we let

Proposition 3.1. Let f: N7 — Ny be a proper map of orbifolds of dimensions n, My :=
Reg(f) N ANz My == f~'(M,) and F := f|p,. Then F: My — M, is a proper map of open
submanifolds into N1 and N3, respectively, which can be non—connected, and the degrees deg(f)
and deg(F) are equal

deg(f) = deg(F). (3.5)

3.3. Proof of Theorem 1.1. Let M, := Reg(f) N AN, My := f~Y(M,) and F := fly;,.
According to Proposition 3.1, deg(F) = deg(f). By Lemma 3.1, M, is an open everywhere
dense submanifold in A5. We observe that M, is open everywhere dense manifold in A{z\&.
Therefore, as it is known from the integration theory on manifolds, the following identity holds:

/w:/w
AQ/Q M2
On the other hand, Theorem 2.1 implies

fon [

N2 A:{’YQ

Taking this into consideration as well as the identity deg(F') = deg(f), we obtain

deg(1) [ 0= deg(F) [ w (3.6)

No Mo

/f*w= /f*w- (3.7)

N

We are going to prove that
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According to Theorem 2.1, we have

N1 Aﬁ/‘l
Let us confirm the identity
[fw = [fw. (3.8)
AN M,y

We note that the points in Ajnvl can be both f-singular and f-regular.

Let a point z € AM be a f-singular point of the map f. Let (V3, G, 105) and (U, Ty, @0
be linearized charts in « and f(z) with the coordinate neighbourhoods Vj and U,, respectively.
Without loss of generality we suppose that f(V3) C U,. We denote by fus: f/ﬁ — U, the
representative of f in these charts. We observe that G = {idf/ﬁ} and the n—form w defines

the n—form w, on U,. Therefore, the n—form (fap) wq is the representative of the n—form f*w
on Vg. Since the point x = 3(0) is f-singular, the differential df,s: Tof/ﬁ — TyU, of the
map f,s at 0 is not an isomorphism of vector spaces. This means that the images df,s(X1),
dfap(X2), ..., dfap(X,) of arbitrary n vectors Xy, Xo,..., X, € Tof/g are linearly dependent
and this is why the n—form (f,s)*w, vanishes at the point 0 € ‘75. Therefore, the n—form f*w
vanishes at the point x. Thus, at each f-singular point x € AQ/ 1 the n—form f*w vanishes and
we can neglect the f-singular point while integrating over A L

Let 2 € ANt bea J-regular point of the map f. Since the set of f-regular point is open in N7,
there exists a chart (V, Ty, py) at & € V with a coordinate neighbourhood V ¢ AN such that
each point in V is f-regular. We denote by f: V — U the representative of the map f in the
charts (V,T'v, ov) and (U, Ty, ¢y ), where (U, Ty, pp) is the chart at the point f(z) with the
coordinate neighbourhood U. Without loss of generality we can suppose that f(V) = U. Then
f is a diffeomorphism of V onto the image f(V) = U. According to Lemma 3.1, the intersection
Mj = Reg(f) N ANz is open and everywhere dense in Ay. Therefore, the intersection U N M, is
open and everywhere dense in U, and it is sufficient to calculate the integral

/-

only over the set of points z € V, for which f(z) € U N M,, that is, € M;. Thus,

/fw—t/fw (3.9)

VNM;

Since x € AM is an arbitrary f-regular point, the identity (3.9) implies the identity (3.8).
Owing to the identities deg(f) = deg(F’), (3.6) and (3.7), the proof of Theorem 1.1 is reduced

to confirmation of the identity
[ Fro=des(s) [ (3.10)
Ml M2

where the support supp w of the form w lies in M.

Since the support supp w of the form w is a compact subset in Ms, there exists a finite covering
€ = {Uyx}k=1,..m of the support suppw by the coordinate neighbourhoods Uy. Let { fi}r=1. m
be the family of functions on M, defining a finite unity partition relative to the covering £. By

the defintion,
[o-5

k= lUk
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where supp frw C Uy.
By Proposition 3.1, the map F' = f|y; is proper, therefore, the support supp f*w is also
compact. Moreover, n = {V;, = f~1(U;,) b=t

77777

.....

covering 7, and supp(gxf*w) C Vi Yk = 1,...,m. This is why

/fw—}j/%fw

k= 1Vk

Thus, to prove the identity (3.10), it is sufficient to confirm the identity

/%ﬂwzwaqlﬁu

Vi

We consider an arbitrary chart (U, 'y, ¢y) with the coordinate neighbourhood U = ¢y (U)
such that suppw C U. In this case supp f*w C W = f~1(U). Let us confirm the identity

[ ro=desth) [w (3.11)
w U

Generally speaking, the manifold W is non-—connected. We denote by W;, i = , s, the
connected components of the manifold W. For each 7 = 1, ..., s the restriction f]W W —Uisa
diffeomorphism of simply—connected manifolds. Without loss of generahty we can suppose that
W; is the coordinate neighbourhood of the manifold M;. Let (27) and (y') be local coordinates
in W; and U, respectively. We write the diffeomorphism f|y,: W — U in the local coordinates

Y=yl (@) =yl (af, 22, . al), Im=1,...,n. (3.12)
In the coordinates (z") and (y') the forms w and f*w read

w=p)dy' Ndy* A .. A dy",

l
ffw = oy (z™)) det (g ) dx} Ndx? A ... Adal,
"

where det (8—m) is the Jacobian of change of variables (3.12). We write the formula of change
of variables in a multiple integral
/so(z/)dyl Ny* A N dy" = /so(yl( )

oy
det ( D )
U W;

We note that l z
o\ dy 0y’
det (w) sgn det (axi ) ’d t (8x )‘ (3.14)

It follows from (3.13) and (3.14) that

Y.
/f*w:/go Nt ))det(aé;7 )da: ANdz? A .. A dTl
W W
_ oy’ l oy’
= sgn det (w) /go(y( ™)) |det ((‘31;
W;

! !
= sgn det a_y /gp(yl)dyl Ady? A ... Ady™ = sgndet 8_y /w.
Oz oxl"
U U

dr} Adxi A ...\ dzl. (3.13)

1

dr} Adx? A ... Adal

(2




ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS 19

/f*w — sgn det (%) /w. (3.15)
U

i

Therefore,

Summing up the identities (3.15) over ¢ € {1,...,s} and using the definition of degree of
proper map between the smooth manifolds, we obtain the following chain of identities

RN N~ '
/fw-Z/W.fw—ngndet(W)/w
w =1 t =1 U

- (isgndet (%)) /w =deg(f)/w~

i=1
Thus, the formula (3.11) is valid and this completes the proof of Theorem 1.1.

3.4. Proof of Theorem 1.2. Let f: N7 — N5 be a proper mapping of connected oriented
smooth orbifolds of the same dimension n, Q be the volume form on a compact orbifold N,
defined by the Riemannian metrics g, Vol(N2) be the volume of the orbifold N3, see Section 2.4.
Since the orbifold N> is compact, we have Vol(N;) < .

According to the proof of Theorem 1.1, the n—form f*(2 vanishes at each f-singular point.
Therefore, generally speaking, f*€) is not the volume form on N, see Example 3.1.

Replacing the integral in the right hand side of the identity (1.1) by Vol(N3), we obtain the
identity from Theorem 1.2.

1 *
des() = o N/ 1.

Owing to Theorem 1.1, the right hand side of this identity is independent on the choice of
the Riemannian metrics g on N,. This completes the proof of Theorem 1.2.

3.5. Proof of Corollary 1.1. We recall the notion of covering map for orbifolds |15, Ch.
13]. A smooth map of orbifolds f: N7 — N5 is called the covering if for each point = € N3 there
exists a chart ((7, ', ¢) with the coordinate neighbourhood U > x such that for each connected
component U’ of the preimage f~!(U) there exists a homeomorphism ¢: U /T" — U’ such that
flur o ¢ = ¢, where I is some subgroup of the group I', and ¢': U — U’ is the composition
of the map ¢ with the quotient map U — U/I”. The chart (U,T, ) in this definition is called
regularly covered.

Let f: Ni — N, be a covering map. The covering transformation is an automorphism
h: Ni — N of the covering orbifold A7 such that foh = f. The set G(f) of all covering
transformations of the covering f: N7 — N3 defines a group. The covering f: N7 — N, is
called regular if Ny = N7/G(f).

The number of sheets of the covering map f: N; — N is defined as the number of preimages
of a point in ANz,

We proceed to the proof of Corollary 1.1. Let f: N7 — N5 be a surjective map between
compact orbifolds N7 and A,. By the compactness of the orbifold N; the map f is proper.
Let © be the volume form on the compact orbifold Ns defined by the Riemannian metrics g.
Since f: N7 — N3 is a regular map, f*Q is the volume form on N;. We denote by Vol(N))
the volume of the compact orbifold N;. Then the formula (1.2) can be written in the following

form Vol
o 1
d pu—
eg(f) VOI(NQ)
that completes the proof of Statement 2) in Corollary 1.1.
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Since f: N7 — N5 is a surjective regular map, all points of the orbifold N5 are regular values
of the map f, that is, Reg(f) = N, that is, My = AN2. Thus, f|a,: My — M, is a finite-
sheeted regular covering. We denote by k the number of sheets of this covering. By (3.10) we
obtain k = deg(f). This proves Statement 1) of Corollary 1.1.

3.6. Examples.

Example 3.1. Let f: S! — S! be a map of the circumference S! onto itself as it is shown
in Figure 1. The map f is a surjective proper map. We note that the preimages of the points
z1 and z are compact subsets in S! and are segments: f~!(z;) = [z, 5], i = 1, 2. The points of
these segments are f-singular, while other points of the circumference S! are f-regular.

FI1GURE 1. The form f*) is not a volume form.

Let on S! a volume form © be defined. According to the proof of Theorem 1.1, the form f*Q
vanishes at each point of the segments [x1,y1] and [za, y2]. Thus, f*Q is not the volume form
on S'. It is obvious that the degree of map f is equal to 1.

Example 3.2. Let A be a two—dimensional sphere S?, v be a rotation of the sphere $2 by
the angle Zf, k € N, k > 2, around the straight line [ passing the center O of the sphere S%.
The group I' generated by the map ~y is isomorphic to the group Z; of residues classes modulo
k. The quotient space Ny = S?/I" is homemorphic to the sphere S? and is a two—dimensional

orbifold, see Figure 2.

FIGURE 2. k-sheeted covering f: S? — S?/T.



ON DEGREE OF SMOOTH MAPS BETWEEN ORBIFOLDS 21

The quotient map f: N; — N> is a k—sheeted covering. Since the group I' preserves only two
points A;, Ay € N S?, the orbifold N5 has only two singular points By = f(A;), By = f(As),
while other points of the orbifold Ny are regular. Thus, A3 has the stratification {A)?, AY2},
where AN = {By, By}, A2 = Ny \ A)2.

We note that all points of the orbifold N5 are regular values: Reg(f) = N3. Therefore,
My = AY2 My = f~1(My) = S*\ {Ay, Ay}, According to Corollary 1.1, the degree of map f is
equal to k.

Example 3.3. Let N7 = T" = {(z1,...,2,) € C" | |zx|] = 1,k = 1,...,n} be a n—
dimensional torus. We defined the map ~v: T™ — T™ by the formula v(z1,...,2,) = (Z1,...,%n),
where (z1,...,2,) € T, and Z is a complex number conjugate with z;, k = 1,..., n. The group
I' generated by the map + is isomorphic to the group Z, of residues classes modulo 2. The quo-
tient space Ny = T /T is a n—dimensional compact oriented orbifold. The group I" preserves 2"
points (21,...,2,) € T" where z; € {1,—1}, k = 1,...,n. This is why the orbifold N5 has 2"
singular points, the orbifold group of which is isomorphic to Zs. In total, these singular points
form the zero-dimensional strata A{)\[Q, other points of the orbifold Ny are regular. Thus, N,
has a the stratification {A)? AN},

The quotient space f: N7 — N3 is a 2-sheeted regular covering. All points of the orbifold
N are regular values of the map f, that is, Reg(f) = Ns. It follows from Corollary 1.1 that
the degree of the map f is equal to 2 and Vol(N;) = 2 Vol(N53).

For n = 4, the orbifold N5 has 16 singular points and is called the Kummer surface [, Ex.
1.9].

For n = 2 the orbifold N5 has 4 singular points, is homemorphic to the 2-dimensional sphere
S? and is called “Pillow”, see Figure 3.

7’ 124
7

=]

FIGURE 3. 2-sheeted covering of the orbifold N5 by the torus T2.
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