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EXISTENCE OF PROPAGATION CONE

FOR ONE–DIMENSIONAL WAVE

INTEGRO–DIFFERENTIAL OPERATOR WITH

FRACTIONAL–EXPONENTIAL MEMORY FUNCTION

N.A. RAUTIAN

Abstract. We study a linear Volterra integro–differential operator, which is a one–
dimensional wave linear partial differential operator perturbed by an integral operator of the
Volterra convolution. The kernel of integral operator is the sum of fractional–exponential
functions (Rabotnov functions) with positive coefficients. We establish that the support of
fundamental solution of the considered integro–differential operator is localized in the prop-
agation cone of the corresponding one–dimensional wave differential operator. The corre-
sponding Volterra integro–differential equation describes the oscillations of one–dimensional
viscous–elastic rod, the heat propagation in media with memory (Gurtin — Pipkin equation)
and a series of other important applications.
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Laplace transform, fractional–exponential function.

Mathematics Subject Classification: 47G20, 45K05, 35R09

1. Introduction

In this paper we investigate a linear Volterra integro–partial differential operator being a
one–dimensional wave linear partial differential operator perturbed by a Volterra convolution
integral operator. Operators of this type have numerous applications in problems of hereditary
mechanics, the theory of highly inhomogeneous media, heat conduction in media with memory,
the kinetic theory of gases, biology, medicine, and other fields.
Nowadays, there is a rich literature devoted to the study of Volterra integro–differential

equations and related problems arising in numerous applications, see, for example, [3], [4],
[6]–[14] and the references therein.
The studied integro–differential operator studied in this paper is called the one–dimensional

wave integro–differential operator with a fractional–exponential memory function. The kernel
of the integral convolution operator is a sum of fractional–exponential functions (Rabotnov
functions, see [7]) with positive coefficients.
In the paper we establish the existence and uniqueness of a fundamental solution supported

in a cone for the studied integro–differential operator. The proof of the main assertions of the
paper is based on the application of the Paley — Wiener — Vladimirov criterion, see [2], [5],
which establishes an isomorphism between the space of tempered distributions supported in a
cone and the space of functions analytic in a tubular domain.

N.A. Rautian, Existence of propagation cone for one–dimensional wave integro–differential

operator with fractional–exponential memory function.

© Rautian N.A. 2025.

The research is supported by Moscow Center of Fundamental and Applied Mathematics of Lomonosov

Moscow State University under the agreement no. 075-15-2025-345.

Submitted March 3, 2025.

81

https://doi.org/10.13108/2025-17-4-81


82 N.A. RAUTIAN

The paper consists of nine sections. The first section is an introduction. The second section
contains the formulation of the problem. The third and fourth sections are devoted to the
formulation of definitions of cones, tubular domains, the Fourier transform, spaces of general-
ized functions supported in a cone, spaces of functions analytic in a tubular domain, and the
formulation of Paley — Wiener theorem, along with references to the relevant sources. The fifth
section contains the formulations of main results of paper (three theorems and one lemma).
The remaining four sections are devoted to the proofs of main results, as well as to the proofs
of auxiliary lemmas.
The presented results are a continuation and development of the studies published in [3],

[8], [9], [10]–[14]. Using the obtained results, one can establish a finite propagation velocity of
perturbations for the corresponding one–dimensional wave integro–differential equation with a
fractional–exponential memory function.

2. Formulation of problem

We denote by 𝒟 := 𝒟(R𝑛) := 𝐶∞
0 (R𝑛) the space of all compactly supported infinitely

differentiable in R𝑛 functions, 𝒟′ = 𝒟′(R𝑛) is the space of all generalized functions defined on
the space 𝒟(R𝑛), 𝒮 = 𝒮(R𝑛) is the space of fast decaying functions, 𝒮 ′ = 𝒮 ′(R𝑛) is the space
of tempered distributions [1, Ch. 2].
We consider the second order linear Volterra integro–differential equation

ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) :=
𝜕2

𝜕𝑡2
𝑢(𝑡, 𝑥)− 𝑎2

𝜕2

𝜕𝑥2
𝑢(𝑡, 𝑥) +𝐾(𝑡) * 𝜕2

𝜕𝑥2
𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥), (2.1)

where 𝑓 ∈ 𝒟′(R2), 𝑎 > 0, the symbol * stands for the convolution of generalized function in
the variable 𝑡 [1, Ch. 2, Sect. 7.4], the function 𝐾(𝑡) can be represented as the sum

𝐾(𝑡) =
𝑁∑︁
𝑖=1

𝑐𝑖𝐾𝑖(𝑡), 𝑐𝑖 > 0, 𝑖 = 1, . . . , 𝑁, (2.2)

𝐾𝑖 (𝑡) are fractional–exponential functions (Rabotnov functions ) [7, Ch. I], which read

𝐾𝑖(𝑡) =

⎡⎢⎣𝑡−𝛼

∞∑︁
𝑛=0

(−𝛽𝑖)𝑛𝑡𝑛(1−𝛼)

Γ[(𝑛+ 1)(1− 𝛼)]
, 𝑡 > 0,

0, 𝑡 < 0,

(2.3)

where 0 < 𝛼 < 1, Γ(·) is the Euler Gamma function, 𝛽𝑖 > 0, 𝑖 = 1, . . . , 𝑁 .

Remark 2.1. For 𝑡 > 0, the function 𝐾𝑖(𝑡) defined by the formula (2.3) is the generalized

Mittag–Leffler function [7, Ch. I]:

𝐾𝑖(𝑡) = 𝑡−𝛼𝐸1−𝛼,1−𝛼

(︀
−𝛽𝑖𝑡1−𝛼

)︀
, 𝑡 > 0.

Equation (2.1) is the one–dimensional integro–differential equation with a fractional–
exponential memore function (wave equation with memory).
The second order Volterra integro–differential operator

ℒ1(𝐷𝑡, 𝐷𝑥) :=
𝜕2

𝜕𝑡2
− 𝑎2

𝜕2

𝜕𝑥2
+𝐾(𝑡) * 𝜕2

𝜕𝑥2
(2.4)

in the left hand side of Equation (2.1) is called the one–dimensional wave integro–differential
operator with a fractional–exponential memore function (wave operator with memory).

Definition 2.1. A generalized function ℰ1(𝑡, 𝑥) ∈ 𝒟′(R2) is called the fundamental solution

of operator ℒ1(𝐷𝑡, 𝐷𝑥) if
ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = 𝛿(𝑡, 𝑥). (2.5)



EXISTENCE OF PROPAGATION CONE 83

3. Fourier — Laplace transform in tubular domain

In R2 we consider a closed cone

Γ1 =
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R , 𝑎𝑡 ⩾ |𝑥|

}︀
, (3.1)

where 𝑎 > 0. Then the cone

Γ*
1 =

{︀
(𝑝, 𝑞) ∈ R2| 𝑝𝑡+ 𝑞𝑥 ⩾ 0, ∀(𝑡, 𝑥) ∈ Γ1

}︀
(3.2)

is called the dual cone of the cone Γ1. We denote

𝐶1 := int Γ*
1 =

{︀
(𝑝, 𝑞) ∈ R2| 𝑝𝑡+ 𝑞𝑥 > 0, ∀(𝑡, 𝑥) ∈ Γ1

}︀
. (3.3)

Similarly, we can consider the closed cone

Γ0 := {𝑡 ∈ R | 𝑡 ⩾ 0} =: Γ*
0 (3.4)

in R and we denote
𝐶0 := int Γ*

0 = {𝑝 ∈ R | 𝑝 > 0}. (3.5)

Definition 3.1 ([2, Ch. II], [5, Sect. 12]). The set

𝑇𝐶1 := R2 + 𝑖𝐶1 =
{︀
(𝜆, 𝜉) ∈ C2| (Re𝜆, Re 𝜉) ∈ R2, (Im𝜆, Im 𝜉) ∈ 𝐶1

}︀
. (3.6)

is called the tubular domain in C2 with the base 𝐶1.

Remark 3.1. The definition of tubular domain can be also formulate for the cone 𝐶0 defined

by the formula (3.5). In this case

𝑇𝐶0 := R+ 𝑖𝐶0 = {𝜆 ∈ C| Re𝜆 ∈ R, Im𝜆 > 0} . (3.7)

Definition 3.2 ([5, Sect. 9, 10]). The set of generalized functions in 𝒟′, the supports of

which are located in the cone Γ1, is denoted by 𝒟′(Γ1).
By 𝒮 ′(Γ1) we denote the set of generalized functions in 𝒮 ′ with the supports in Γ1. By 𝑆 ′

Γ1

we denote the space of tempered distributions in the cone Γ1.

The set of generalized functions 𝑓(𝑡) ∈ 𝒟′(R) vanishing for 𝑡 < 0 is denoted by 𝒟′
+ [1, Ch.

7.7].

Statement 3.1 ([5, Sect. 10]). The spaces 𝒮 ′(Γ1) and 𝑆
′
Γ1

are isomorphic.

Definition 3.3 ([2, Ch. II]). Let 𝑓 ∈ 𝒮 ′(Γ1). The Fourier — Laplace transform 𝐿[𝑓 ] of a
generalized function 𝑓 is the functions of the variables (𝜆, 𝜉) ∈ 𝑇𝐶1 defined by the formula

𝐿[𝑓 ](𝜆, 𝜉) = 𝐹
[︀
𝑓(𝑡, 𝑥)𝑒−(𝑡 Im𝜆+𝑥 Im 𝜉)

]︀
(Re𝜆,Re 𝜉), (𝑡, 𝑥) ∈ Γ1, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (3.8)

where 𝐹 is the Fourier transform of the generalized function.

Remark 3.2 ([5, Sect. 12]). The Fourier — Laplace transform of a generalized function 𝑓 ∈
𝒮 ′(Γ1) can be represented as

𝐿[𝑓 ](𝜆, 𝜉) =
(︀
𝑓(𝑡, 𝑥), 𝑒𝑖(𝑡𝜆+𝑥𝜉)

)︀
, (𝑡, 𝑥) ∈ Γ1. (3.9)

The formula (3.9) makes sense since 𝑒𝑖(𝜆 𝑡+𝑥𝜉) ∈ 𝑆Γ1 for (𝜆, 𝜉) ∈ 𝑇𝐶1.

Definition 3.4 ([5, Sect. 12]). Let 𝑓(𝑡, 𝑥) ∈ 𝒮 ′(Γ0) in the variable 𝑡 for each fixed value of

𝑥. The Fourier — Laplace transform 𝐿1[𝑓 ] of the generalized function 𝑓(𝑡, 𝑥) in the variable 𝑡
for a fixed value 𝑥 is the function of variables (𝜆, 𝑥), where 𝜆 ∈ 𝑇𝐶0, 𝑥 ∈ R, which is defined

by the formula

𝐿1[𝑓 ](𝜆, 𝑥) = 𝐹1

[︀
𝑓(𝑡, 𝑥)𝑒−𝑡 Im𝜆

]︀
(Re𝜆, 𝑥), 𝑡 ∈ Γ0, 𝜆 ∈ 𝑇𝐶0 , 𝑥 ∈ R, (3.10)

where 𝐹1 is the Fourier transform of a generalized function in the variable 𝑡 for a fixed value of

𝑥.
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4. Space 𝐻(𝑇𝐶1). Isomorphism of spaces 𝒮 ′(Γ1) and 𝐻(𝑇𝐶1)

The definitions and statements of this section are borrowed from [5, §12].
We denote by 𝐻(𝛼,𝛽)(𝑇𝐶1), 𝛼 ⩾ 0, 𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z) the set of functions analytic in the

tubular domain 𝑇𝐶1 , which obey the estimate

|𝑓(𝜆, 𝜉)| ⩽𝑀𝑓

(︀
1 + |𝜆|2 + |𝜉|2

)︀𝛼
2
[︀
1 + ∆−𝛽 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (4.1)

where

∆(𝑝, 𝑞) = inf
(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡𝑝+ 𝑥𝑞) ,

(𝑝, 𝑞) ∈ 𝐶1 is the distance from the point (𝑝, 𝑞) ∈ 𝐶1 to the boundary of cone 𝐶1, 𝑀𝑓 is a
positive constant.
Similarly, we denote by 𝐻(𝛼,𝛽)(𝑇𝐶0), 𝛼 ⩾ 0, 𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z) the set of functions analytic

in the tubular domain 𝑇𝐶0 , which satisfy the estimate

|𝑓(𝜆)| ⩽𝑀𝑓

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
, 𝜆 ∈ 𝑇𝐶0 . (4.2)

We equip 𝐻(𝛼,𝛽)(𝐻(𝑇𝐶1)) with the topology in accordance with the estimate (4.1) by means
of the norm

‖𝑓‖(𝛼,𝛽)1 = sup
(𝜆,𝜉)∈𝑇𝐶1

|𝑓(𝜆, 𝜉)|
(1 + |𝜆|2 + |𝜉|2)

𝛼
2 [1 + ∆−𝛽 (Im𝜆, Im 𝜉)]

(4.3)

In its turn, we equip 𝐻(𝛼,𝛽)(𝐻(𝑇𝐶0)) with the topology in accordance with the estimate (4.2)
by means of the norm

‖𝑓‖(𝛼,𝛽)0 = sup
𝜆∈𝑇𝐶0

|𝑓(𝜆)|
(1 + |𝜆|2)

𝛼
2 [1 + (Im𝜆)−𝛽]

(4.4)

Remark 4.1. The spaces 𝐻(𝛼,𝛽)(𝑇𝐶𝑖), 𝑖 = 0, 1, are Banach. Moreover, if

𝛼′ ⩾ 𝛼, 𝛽′ ⩾ 𝛽,

then

‖𝑓‖(𝛼
′,𝛽′)

𝑖 ⩽ ‖𝑓‖(𝛼,𝛽)𝑖

and, therefore,

𝐻(𝛼,𝛽)(𝐻(𝑇𝐶𝑖)) ⊂ 𝐻(𝛼′,𝛽′)(𝐻(𝑇𝐶𝑖)), 𝑖 = 0, 1,

and the embedding is continuous.

We denote
𝐻(𝑇𝐶𝑖) :=

⋃︁
𝛼⩾0, 𝛽⩾0

𝐻(𝛼,𝛽)(𝑇𝐶𝑖), 𝑖 = 0, 1 (4.5)

Theorem 4.1 (Paley — Wiener — Vladimirov). A generalized function 𝑓(𝑡, 𝑥) belongs to

the space 𝒮 ′(Γ1) if and only if its Fourier — Laplace transform 𝐿[𝑓 ](𝜆, 𝜉) belongs to the

space 𝐻(𝑇𝐶1). The spaces 𝒮 ′(Γ1) and 𝐻(𝑇𝐶1) isomorphic and this isomorphism is estab-

lished by the Fourier — Laplace transform. The function 𝐿[𝑓 ](𝜆, 𝜉) has a boundary value as

(Im𝜆, Im 𝜉) → (0, 0), (Im𝜆, Im 𝜉) ∈ 𝐶 ′ in 𝑆 ′(R2), which is equal to 𝐹 [𝑓 ](Re𝜆,Re 𝜉), that is, in
𝑆 ′(R2) the limit

(𝐿[𝑓 ](𝜆, 𝜉), 𝜙(Re𝜆,Re 𝜉)) −−−−−−−−−−−−−−−→
(Im𝜆, Im 𝜉) → (0, 0)

(Im𝜆, Im 𝜉) ∈ 𝐶 ′
1

(𝐹 [𝑓 ](Re𝜆,Re 𝜉), 𝜙(Re𝜆,Re 𝜉)) (4.6)

is well–defined for each 𝜙(Re𝜆,Re 𝜉) ∈ 𝑆(R2), where 𝐹 is the Fourier transform of a generalized

function, 𝐶 ′
1 is an arbitrary subcone of the cone 𝐶1 with the vertex at zero such that 𝐶 ′

1 ⊂ 𝐶1.
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Remark 4.2. Paley — Wiener — Vladimirov theorem is true also for generalized functions

𝑓(𝑡, 𝑥) ∈ 𝒮 ′(Γ0) in the variable 𝑡 for each fixed 𝑥, that is, the spaces 𝒮 ′(Γ0) and 𝐻(𝑇𝐶0) are

isomorphic for each fixed 𝑥, and this isomorphism is made by the Fourier — Laplace transform

𝐿𝑡[·](𝜆, 𝑥) defined the formula (3.10) for each fixed 𝑥.

5. Formulation of results

Definition 5.1. The symbol of integro–differential operator (2.4) is the function

ℒ̂1(𝜆, 𝜉) := −
(︁
𝜆2 − 𝑎2𝜉2 + 𝐾̂(𝜆)𝜉2

)︁
, 𝜆 ∈ C, 𝜉 ∈ C, (5.1)

where

𝐾̂(𝜆) :=
𝑁∑︁
𝑖=1

𝑐𝑖𝐾̂𝑖(𝜆), 𝐾̂𝑖(𝜆) :=
1

(−𝑖𝜆)(1−𝛼) + 𝛽𝑖

is the Fourier — Laplace transform of kernel of the integral operator 𝐾𝑖(𝑡), (𝑖 = 1, . . . , 𝑁),
given by the formula (2.2).

Theorem 5.1. Let the cone Γ1 be defined by the formula (3.1), and the cone 𝐶1 = int Γ*
1 be

defined by the formula (3.3). Then the integro–differential operator ℒ1(𝐷𝑡, 𝐷𝑥) defined by the

formula (2.4) has the fundamental solution ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), which can be represented as

ℰ1(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥), (5.2)

where ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), 𝜆0 is a sufficiently large positive number.

Theorem 5.2. Let the cone Γ1 be defined by the formula (3.1), the cone 𝐶1 = int Γ*
1 be

defined by the formula (3.3), and ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1) be the fundamental solution of the integro–

differential operator ℒ1(𝐷𝑡, 𝐷𝑥). Then the support of the fundamental solution supp ℰ1(𝑡, 𝑥) is
not contained in any smaller convex cone Γ̃1 ⊂ Γ1 with the vertex at zero.

Theorem 5.3. Let the cone Γ1 be given by the formula (3.1), and the cone 𝐶1 = int Γ*
1

be given by the formula (3.3). Then the fundamental solution (5.2) of the integro–differential

operator ℒ1(𝐷𝑡, 𝐷𝑥) defined by the formula (2.4) is unique.

Lemma 5.1. The generalized function (5.2) is a fundamental solution of the integro–

differential operator (2.4) if and only if the Fourier — Laplace transform 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) of

the generalized function ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1) satisfies the equation

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) = 1, (5.3)

where ℒ̂1(𝜆, 𝜉) is the symbol of integro–differential operator (2.4) defined by the formula (5.1)
and the conditions hold

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉) ̸= 0,
1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
∈ 𝐻(𝑇𝐶1). (5.4)

6. Proof of Lemma 5.1 and Theorem 5.1

Proof of Lemma 5.1. Let ℰ1(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥) be a fundamental solution of the operator (2.4).
Applying the Fourier — Laplace transform to the both sides of identity (2.5), we get

ℒ̂1(𝜆̃, 𝜉)𝐿[𝑒
𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉) = 1. (6.1)

The properties of Fourier — Laplace transform [2, Ch. II, Sect. 9] yield

𝐿[𝑒𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉) = 𝐿[ℰ0(𝑡, 𝑥)](𝜆̃− 𝑖𝜆0, 𝜉), (𝜆̃− 𝑖𝜆0, 𝜉) ∈ 𝑇𝐶1 .
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We denote 𝜆 := 𝜆̃− 𝑖𝜆0. Then Equation (6.1) becomes (5.3). The generalized function ℰ0(𝑡, 𝑥)
belongs to the space 𝒮 ′(Γ1), therefore, by Theorem 4.1, the function 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) belongs to
the space 𝐻(𝑇𝐶1), that is, the conditions (5.4) hold.
Vice versa, if the function 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) satisfies Equation (5.3) and the conditions (5.4)

hold, then, in accordance with Theorem 4.1, the generalized function ℰ0(𝑡, 𝑥) belongs to the

space 𝒮 ′(Γ1) and, under the change of variables 𝜆 := 𝜆̃− 𝑖𝜆0, the function

𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) = 𝐿[𝑒𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉)
satisfies Equation (6.1). Therefore, the generalized function

ℰ(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥) ∈ 𝒟′(Γ1)

is a fundamental solution of the operator (2.4). The proof is complete.

We denote 𝜆̃ := 𝜆 + 𝑖𝜆0, where 𝜆0 is some constant. Then the function ℒ̂1 defined by the
formula (5.1), can be represented as

ℒ̂1(𝜆̃, 𝜉) = −
(︁
𝜆̃2 − (𝑎2 − 𝐾̂(𝜆̃))𝜉2

)︁
= (𝑎2 − 𝐾̂(𝜆̃))(𝜉 − 𝜉1(𝜆̃))(𝜉 + 𝜉1(𝜆̃)), (6.2)

where ±𝜉1(𝜆̃) are the roots of equation ℒ̂1(𝜆̃, 𝜉) = 0, that is,

𝜉1(𝜆̃) =
𝜆̃√︁

𝑎2 − 𝐾̂(𝜆̃)
. (6.3)

We note that for sufficiently large 𝜆0 > 0 the root 𝜉1(𝜆̃) satisfies the asymptotic representation

𝜉1(𝜆̃) =
1

𝑎
𝜆̃+

1

2𝑎3
𝜆̃𝐾̂(𝜆̃)(1 + 𝑜(1)), |𝜆̃| → +∞. (6.4)

Indeed, by the formula (6.3), for sufficiently large 𝜆0 > 0, we obtain

𝜉1(𝜆̃) =
1

𝑎
𝜆̃

(︂
1− 1

𝑎2
𝐾̂(𝜆̃)

)︂− 1
2

=
1

𝑎
𝜆̃

(︂
1 +

1

2𝑎2
𝐾̂(𝜆̃)(1 + 𝑜(1))

)︂
, |𝜆̃| → +∞.

To prove Theorems 5.1 and 5.2, we shall need auxiliary Lemmas 6.1 and 6.2, which will be
proved in Section 9.

Lemma 6.1. The assertions hold:

1) Let the cone 𝐶1 be given by the formula (3.3), (Im𝜆, Im 𝜉) ∈ 𝐶1. Then Im𝜆 > 0.
2) Let Im𝜆 > 0. Then for sufficiently large 𝜆0 > 0 the inequalities hold

Im
(︁
𝜆̃𝐾̂(𝜆̃)

)︁
> 0, tan

(︁𝛼𝜋
2

)︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
>

⃒⃒⃒
Re

(︁
𝜆̃𝐾̂(𝜆̃)

)︁⃒⃒⃒
, (6.5)

where 0 < 𝛼 < 1, 𝜆̃ := 𝜆 + 𝑖𝜆0, and the root 𝜉1(𝜆̃) defined by the formula (6.3) satisfies
the asymptotic representation

Im 𝜉1(𝜆̃) =
1

𝑎
Im 𝜆̃+

1

2𝑎3
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
(1 + 𝑜(1)), Im 𝜆̃→ +∞. (6.6)

Lemma 6.2. Let the cones Γ1 and 𝐶1 be defined by the formulas (3.1) and (3.3), respectively.
Then for all (𝜆, 𝜉) ∈ 𝑇𝐶1 the following inequalities hold

1

𝑎
(Im𝜆± 𝑎 Im 𝜉) > ∆(Im𝜆, Im 𝜉), (6.7)

where

∆(Im𝜆, Im 𝜉) = inf
(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡 Im𝜆+ 𝑥 Im 𝜉)
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is the distance from the point (Im𝜆, Im 𝜉) ∈ 𝐶1 to the boundary of cone 𝐶1, and the constant

𝑎 > 0 is involved in the definition of cone Γ1.

Proof of Theorem 5.1. According to Lemma 5.1, the generalized function (5.2) is a fundamental
solution of integro–differential operator (2.4) if and only if the Fourier — Laplace transform
𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) of the generalized functionℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1) satisfies Equation (5.3) and the
conditions (5.4) hold. Therefore, to prove the theorem, it is sufficient to show that for some
sufficiently large positive number 𝜆0 the conditions (5.4) hold.
According to the condition (4.1), it is sufficient to show that there exist numbers 𝛼 ⩾ 0,

𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z), such that the estimate holds⃒⃒⃒⃒
⃒ 1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)

⃒⃒⃒⃒
⃒ ⩽𝑀

(︀
1 + |𝜆|2 + |𝜉|2

)︀𝛼
2
[︀
1 + ∆−𝛽 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (6.8)

where
∆(𝑝, 𝑞) = inf

(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡 𝑝+ 𝑥 𝑞)

is the distance from the point (𝑝, 𝑞) ∈ 𝐶1 to the boundary of conve 𝐶1,𝑀 is a positive constant.
According to the representation (6.2), to prove the condition (6.8), it is sufficient to get lower

bounds for the factors |𝑎2 − 𝐾̂(𝜆̃)|, |𝜉 − 𝜉1(𝜆̃)| and |𝜉 + 𝜉1(𝜆̃)| of the function |ℒ̂1(𝜆 + 𝑖𝜆0, 𝜉)|.
Let 𝜆̃ = 𝑟(cos𝜙+ 𝑖 sin𝜙), where

𝑟 = |𝜆̃|, 𝜙 = Arg 𝜆̃ ∈ (−𝜋 + 2𝜋𝑘, 𝜋 + 2𝜋𝑘], 𝑘 ∈ Z.
In view of Lemmas 6.1 and 6.2 and the estimate (9.3), for sufficiently large 𝜆0 > 0 we get the
following estimates:⃒⃒⃒

𝜉 ± 𝜉1(𝜆̃)
⃒⃒⃒
⩾

1

𝑎

⃒⃒⃒
𝑎 Im 𝜉1(𝜆̃)± 𝑎 Im 𝜉

⃒⃒⃒
=

1

𝑎

⃒⃒⃒
𝑎 Im 𝜉1(𝜆̃)− Im𝜆+ Im𝜆± 𝑎 Im 𝜉

⃒⃒⃒
=

1

𝑎

(︂
𝜆0 +

1

2𝑎2
Im(𝜆̃𝐾̂(𝜆̃))(1 + 𝑜(1)) + Im𝜆± 𝑎 Im 𝜉

)︂
>

1

𝑎
(Im𝜆± 𝑎 Im 𝜉) > ∆(Im𝜆, Im 𝜉)

and⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
⩾

⃒⃒⃒
𝑎2 − |𝐾̂(𝜆̃)|

⃒⃒⃒
⩾

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

1

|(−𝑖𝜆̃)1−𝛼 + 𝛽𝑖|

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑟1−𝛼

(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
+ 𝛽𝑖

⃒⃒⃒−1

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

(︂(︁
𝑟1−𝛼 cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︂− 1
2

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

(︁
𝑟1−𝛼 cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁−1

⃒⃒⃒⃒
⃒ > 𝑎2

2

Finally, choosing sufficiently large 𝜆0 > 0, by the two latter estimates we get the desired

estimate (6.8) for 𝛼 = 0, 𝛽 = 2, 𝑀 =
2

𝑎2
:⃒⃒⃒⃒

⃒ 1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)

⃒⃒⃒⃒
⃒ ⩽ 2

𝑎2
∆−2(Im𝜆, Im 𝜉) < 𝑀

[︀
1 + ∆−2 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 .

The proof is complete.
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7. Proof of Theorem 5.2

It follows from Theorem 5.1 that the integro–differential operator ℒ1(𝐷𝑡, 𝐷𝑥) given by the
formula (2.4) has the fundamental solution ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), which can be represented in the
form (5.2). We consider the Fourier — Laplace transform 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) of the generalized
function ℰ0(𝑡, 𝑥) = 𝑒−𝜆0𝑡ℰ1(𝑡, 𝑥) in the variable 𝑡:

ℰ̂01(𝜆, 𝑥) := 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) = 𝐹1

[︀
ℰ0(𝑡, 𝑥)𝑒−𝑡 Im𝜆

]︀
(Re𝜆, 𝑥), 𝑡 ∈ Γ0, 𝜆 ∈ 𝑇𝐶0 ,

where 𝐹𝑡 is the Fourier transform of a generalized function in the variable 𝑡, the cone Γ0 and
tubular domain 𝑇𝐶0 are defined by the formulas (3.4) and (3.7), respectively.
To prove Theorem 5.2, we shall need the following auxiliary Lemma 7.1, which will be proved

in Section 9.

Lemma 7.1. Let 𝜆̃ := 𝜆+ 𝑖𝜆0,

𝐴(𝜆̃) :=
1

2𝜉1(𝜆̃)
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁ , (7.1)

where 𝜉1(𝜆̃) is the root of the equation ℒ̂1(𝜆̃, 𝜉) = 0, the function ℒ̂1(𝜆̃, 𝜉) is defined by the

formula (6.2). Then ⃒⃒⃒
ℰ̂01(𝜆, 𝑥)

⃒⃒⃒
=

⃒⃒⃒
𝐴(𝜆̃)

⃒⃒⃒
𝑒−|𝑥| Im 𝜉1(𝜆̃), 𝑥 ∈ R. (7.2)

Proof of Theorem 5.2. According to Theorem 5.1, ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), and therefore, ℰ0(𝑡, 𝑥) ∈
𝒮 ′(Γ0), for each fixed 𝑥 ∈ R. It follows from Remark 4.2 to Theorem 4.1 that 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥)
belongs to the space 𝐻(𝑇𝐶0) for each fixed 𝑥 ∈ R. Since ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), the support of
function ℰ0(𝑡, 𝑥) is contained in the cone

Γ1 =
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R, 𝑎𝑡 ⩾ |𝑥|

}︀
.

Then the support of function

ℰ̃0(𝑡, 𝑥) := ℰ0
(︁
𝑡+

|𝑥|
𝑎
, 𝑥
)︁

belong to the cone Γ0 = {𝑡 ∈ R | 𝑡 ⩾ 0} for each fixed 𝑥 ∈ R. Therefore, its Fourier — Laplace
transform 𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥) in the variable 𝑡 for each fixed 𝑥 ∈ R belongs to the space 𝐻(𝑇𝐶0),
that is, there exist 𝛼 ⩾ 0 and 𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z), such that for each fixed 𝑥 ∈ R the estimate
holds ⃒⃒⃒

𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)
⃒⃒⃒
⩽𝑀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
, 𝜆 ∈ 𝑇𝐶0 , (7.3)

where 𝑀 is a positive constant. Moreover,

𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥) = 𝐿1[ℰ0
(︂
𝑡+

|𝑥|
𝑎
, 𝑥

)︂
](𝜆, 𝑥) = 𝑒−𝑖

|𝑥|
𝑎
𝜆𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥).

Therefore, ⃒⃒⃒
𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)

⃒⃒⃒
= 𝑒

|𝑥|
𝑎

Im𝜆 |𝐿1[ℰ0 (𝑡, 𝑥)](𝜆, 𝑥)|

By (7.3) this gives the estimate

|𝐿1[ℰ0 (𝑡, 𝑥)](𝜆, 𝑥)| =
⃒⃒⃒
𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)

⃒⃒⃒
𝑒−

|𝑥|
𝑎

Im𝜆

⩽𝑀
(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎

Im𝜆
(7.4)

for 𝜆 ∈ 𝑇𝐶0 .
Now we are going to show that the support of fundamental solution supp ℰ1(𝑡, 𝑥) is not

contained in any smaller convex cone

Γ1𝜀 :=
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R, (𝑎− 𝜀)𝑡 ⩾ |𝑥|

}︀
⊂ Γ1
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with the vertex at zero, where 𝜀 ∈ (0, 𝑎).
We suppose the opposite, then the Fourier — Laplace transform 𝐿1 (ℰ0(𝑡, 𝑥)) (𝜆, 𝑥) of the

generalized function ℰ0(𝑡, 𝑥) in the variable 𝑡 satisfies the following estimate similar to (7.4):

|𝐿1 (ℰ0(𝑡, 𝑥)) (𝜆, 𝑥)| ⩽𝑀𝜀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎−𝜀

Im𝜆, (7.5)

where 𝑀𝜀 is a positive constant. Using the identity (7.2), we get the estimate

𝑒−|𝑥| Im 𝜉1(𝜆̃) ⩽𝑀1𝜀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎−𝜀

Im𝜆.

Letting 𝑥 ̸= 0 and substituting the asymptotic representation (6.6) instead of Im 𝜉1(𝜆̃), for
sufficiently large Im𝜆 > 0 we get the following wrong inequality

Im𝜆

𝑎
>

Im𝜆

𝑎− 𝜀
(1 + 𝑜(1)), Im𝜆→ +∞.

Thus, we arrive at the contradiction and the support of fundamental solution supp ℰ(𝑡, 𝑥) is
not contained in any smaller convex cone Γ̃1 ⊂ Γ1 with the vertex at zero. The proof is
complete.

8. Proof of Theorem 5.3

We introduce the notation

𝐷𝑡 :=
𝜕

𝜕𝑡
, 𝐷𝑥 :=

𝜕

𝜕𝑥
, 𝑃0(𝐷𝑡, 𝐷𝑥) :=

𝜕2

𝜕𝑡2
− 𝑎2

𝜕2

𝜕𝑥2
, 𝑃1(𝐷𝑥) :=

𝜕2

𝜕𝑥2
.

Suppose that there exists another fundamental solution ℰ̃(𝑡, 𝑥) of the operator (2.4). We con-
sider the generalized function

𝑢(𝑡, 𝑥) := ℰ1(𝑡, 𝑥)− ℰ̃(𝑡, 𝑥),
which solves the equation

ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) = 0, (8.1)

where the operator ℒ1(𝐷𝑡, 𝐷𝑥) is defined by the formula (2.4). Let us show that Equation (8.1)
has only trivial solution in the class of generalized functions, for which the convolutions

𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ̃(𝑡, 𝑥) and (𝑢 * ℰ1)(𝑡, 𝑥)
are well–defined; hereinafter the convolution with the function 𝐾(𝑡) means the convolution in
the variable 𝑡 for a fixed value 𝑥. Indeed,

𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * 𝛿(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)
= 𝑢(𝑡, 𝑥) * 𝑃0(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)).

According to the rule of differentiation of convolution of generalized functions [1, Sect. 7.5],

𝑢(𝑡, 𝑥) * 𝑃0(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = 𝑃0(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) * ℰ1(𝑡, 𝑥). (8.2)

Let us show that

𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)) = (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) * ℰ1(𝑡, 𝑥). (8.3)

Since ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), then ℰ1(𝑡, 𝑥) ∈ 𝒟′
+ in the variable 𝑡 for a fixed value of 𝑥, and moreover,

𝐾(𝑡) ∈ 𝒟′
+, by the definition. Hence, the assumptions of the theorem from [1, Sect. 7.7] are

satisfied, the convolution𝐾(𝑡)*𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) is well–defined and represented by the formula
(25) in [1, Sect. 7.7]:

(𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥), 𝜙𝑥(𝑡)) = (𝐾(𝑡)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥), 𝜂1(𝑡)𝜂2(𝜏)𝜙𝑥(𝑡+ 𝜏))
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for all 𝜙𝑥(𝑡) ∈ 𝒟(R), where 𝜂𝑖(𝑡) ∈ 𝐶∞(R) (𝑖 = 1, 2) are arbitrary functions, which are equal
to 1 in a neighbourhood of the semi–axis [0,+∞) and 0 for sufficiently large negative 𝑡.
We consider the sequence of functions 𝜂𝑘(𝑡, 𝜏) ∈ 𝒟(R2) converging to 1 in R2, which is

employed to define the convolution of generalized functions [1, Sect. 7.4]. According to the
definition of convolution of generalized functions and the theorem in [1, Sect. 7.7], for all
𝜙𝑥(𝑡) ∈ 𝒟(R) we have

(𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)), 𝜙𝑥(𝑡))

= lim
𝑘→∞

(𝑢(𝑡, 𝑥)× (𝐾(𝜏) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥)), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏))

= lim
𝑘→∞

((𝐾(𝜏) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥)), (𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏)))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏 ′, 𝑥)), 𝜂1(𝜏)𝜂2(𝜏 ′) (𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′)))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏 ′, 𝑥))× 𝑢(𝑡, 𝑥), 𝜂1(𝜏)𝜂2(𝜏
′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′)) .

Here we have used the lemma from in [1, Sect. 7.7], according to which

(𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏)) ∈ 𝒟′(R).

We observe that 𝜂1(𝜏)𝜂2(𝜏
′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡 + 𝜏 + 𝜏 ′) ∈ 𝒟(R3), use the commutativity and

associativity of direct product of generalized functions [1, Sect. 7.2–7.3] and note that

(𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) = 0, ℰ1(𝜏 ′, 𝑥) = 0 for 𝜏 < 0, 𝜏 ′ < 0.

Then we apply the theorem from [1, Sect. 7.7] and pass to the limit in the chain of identities

(𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)), 𝜙𝑥(𝑡))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥))× ℰ1(𝜏 ′, 𝑥), 𝜂1(𝜏)𝜂2(𝜏 ′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′))

= ((𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) * ℰ1(𝑡, 𝑥), 𝜙𝑥(𝑡)) .

We note that the convolution (𝐾(𝑡)*𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥))*ℰ1(𝑡, 𝑥) in the variable 𝑥 is well–defined
since ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), that is, the generalized function ℰ1(𝑡, 𝑥) is compactly supported in the
variable 𝑥 for each fixed 𝑡 [1, Sect. 7.6].
By the formulas (8.2) and (8.3) we obtain the following chain of identities

𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * 𝛿(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) * ℰ1(𝑡, 𝑥) = 0.

The proof is complete.

9. Proof of Lemmas 6.1, 6.2 and 7.1

Proof of Lemma 6.1. 1) The definitions of cones Γ1 and 𝐶1 imply that the inequality

𝑡 Im𝜆+ 𝑥 Im 𝜉 > 0

holds if and only if (Im𝜆, Im 𝜉) ∈ 𝐶1 and (𝑡, 𝑥) ∈ Γ1. Therefore, if (𝑡1, 𝑥) /∈ Γ1, that is,
𝑎𝑡1 < |𝑥|, then for all (Im𝜆, Im 𝜉) ∈ 𝐶1 the inequality holds 𝑡1 Im𝜆+ 𝑥 Im 𝜉 ⩽ 0, that is,

𝑡 Im𝜆+ 𝑥 Im 𝜉 > 0 ⇔ 𝑎𝑡 ⩾ |𝑥|, −𝑡1 Im𝜆− 𝑥 Im 𝜉 ⩾ 0 ⇔ −𝑎𝑡1 > −|𝑥|.
Thus, (𝑡− 𝑡1) Im𝜆 > 0 and 𝑡− 𝑡1 > 0, hence, Im𝜆 > 0.

2) Let 𝜆̃ = 𝑟(cos𝜙+ 𝑖 sin𝜙), where

𝑟 = |𝜆̃|, 𝜙 = Arg 𝜆̃ ∈ (−𝜋 + 2𝜋𝑘, 𝜋 + 2𝜋𝑘], 𝑘 ∈ Z.
Then (︁

−𝑖𝜆̃
)︁1−𝛼

= 𝑟1−𝛼
(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
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and

𝜆̃𝐾̂𝑖(𝜆̃) =
𝑟(cos𝜙+ 𝑖 sin𝜙)

𝑟1−𝛼
(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
+ 𝛽𝑖

, 𝑖 = 1, . . . , 𝑁.

This yields

Re
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
=

𝑟2−𝛼 sin
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 cos𝜙(︁

𝑟(1−𝛼) cos
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁ ,
(9.1)

Im
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
=

𝑟2−𝛼 cos
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 sin𝜙(︁

𝑟(1−𝛼) cos
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁ .
(9.2)

Since Im𝜆 > 0, choosing 𝜆0 > 0, we get Im 𝜆̃ > 0 and 𝜙 ∈ (2𝜋𝑘, 𝜋 + 2𝜋𝑘), 𝑘 ∈ Z. Therefore,

𝛼
(︁
𝜙− 𝜋

2

)︁
⊂

(︁
𝛼
(︁
−𝜋
2
+ 2𝜋𝑘

)︁
, 𝛼

(︁𝜋
2
+ 2𝜋𝑘

)︁)︁
⊂

(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, 𝑘 ∈ Z,

for 𝛼 ∈ (0, 1) and

cos
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
> 0, 𝛼 ∈ (0, 1). (9.3)

Thus, for sufficiently large 𝜆0 > 0 the inequality holds Im
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
> 0, 𝑖 = 1, .., 𝑁 , and hence

Im
(︁
𝜆̃𝐾̂(𝜆̃)

)︁
> 0.

Let us show that for sufficiently large 𝜆0 > 0 and 0 < 𝛼 < 1 the second inequality in (6.5)
holds. Using the representations (9.1), (9.2), we obtain that the expression in the numerator
of the difference (︁

tan
(︁𝛼𝜋

2

)︁
Im

(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁)︁2

−
(︁
Re

(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁)︁2

,

reads

tan2
(︁𝛼𝜋

2

)︁(︁
𝑟2−𝛼 cos

(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 sin𝜙

)︁2

−
(︁
𝑟2−𝛼 sin

(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 cos𝜙

)︁2

:=𝐴1(𝑟, 𝜙) + 𝐴2(𝑟, 𝜙) + 𝐴3(𝑟, 𝜙),

where

𝐴1(𝑟, 𝜙) := 𝑟2(2−𝛼)
[︁
tan2

(︁𝛼𝜋
2

)︁
cos2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
− sin2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁]︁
,

𝐴2(𝑟, 𝜙) := 2𝑟3−𝛼𝛽𝑖

(︁
tan2

(︁𝛼𝜋
2

)︁
cos

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
sin𝜙− sin

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
cos𝜙

)︁
,

𝐴3(𝑟, 𝜙) := 𝑟2𝛽2
𝑖

(︁
tan2

(︁𝛼𝜋
2

)︁
sin2 𝜙− cos2 𝜙

)︁
.

We note that for 0 < 𝛼 < 1 the estimate holds

𝐴1(𝑟, 𝜙) > 𝑟2(2−𝛼)
[︁
sin2

(︁𝛼𝜋
2

)︁
− sin2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁]︁
= 𝑟2(2−𝛼) sin(𝛼(𝜋 − 𝜙)) sin𝜙 > 0

Moreover,

𝑟 =
√︀
(Re𝜆)2 + (Im𝜆+ 𝜆0)2, Im𝜆 > 0, 0 < 𝛼 < 1

and

2(2− 𝛼) = (1− 𝛼) + 3− 𝛼 > 3− 𝛼 = (1− 𝛼) + 2 > 2.
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Thus, we find that 𝐴1(𝑟, 𝜙) + 𝐴2(𝑟, 𝜙) + 𝐴3(𝑟, 𝜙) > 0 for sufficiently large 𝜆0 > 0 and this
implies the second inequality in (6.5).

We consider the asymptotic representation (6.4). Let 𝜓(𝜆̃) = 𝑜(1) as |𝜆̃| → +∞. We are
going to show that the asymptotic representation (6.6) is true for sufficiently large 𝜆0 > 0.
Indeed,

Im
(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁
= Im

(︁
𝜓(𝜆̃)

)︁
Re

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
+Re

(︁
𝜓(𝜆̃)

)︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
.

Then, in view of the second inequality in (6.5), we get the estimate⃒⃒⃒
Im

(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁⃒⃒⃒
< Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁(︁⃒⃒⃒
Re

(︁
𝜓(𝜆̃)

)︁⃒⃒⃒
+ tan

(︁𝛼𝜋
2

)︁ ⃒⃒⃒
Im

(︁
𝜓(𝜆̃)

)︁⃒⃒⃒)︁
which implies

Im
(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁
= 𝑜

(︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁)︁
as Im 𝜆̃→ +∞.

Thus, by the asymptotic representation (6.4) we obtain the asymptotic representation (6.6).
The proof is complete.

Proof of Lemma 6.2. Taking into consideration assertion 1) of Lemma 6.1, for all (𝜆, 𝜉) ∈ 𝑇𝐶1

we obtain

∆(Im𝜆, Im 𝜉) = inf
𝑎𝑡⩾|𝑥|

𝑡2+𝑥2=1

(𝑡 Im𝜆+ 𝑥 Im 𝜉)

= inf
𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆+

𝑥√
𝑡2 + 𝑥2

Im 𝜉

)︂
= inf

𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆− |𝑥|√

𝑡2 + 𝑥2
| Im 𝜉|

)︂
= inf

𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆− 𝑎𝑡√

𝑡2 + 𝑥2
| Im 𝜉|

)︂
=

1√
1 + 𝑎2

(Im𝜆− 𝑎| Im 𝜉|) < 1

𝑎
(Im𝜆− 𝑎| Im 𝜉|)

⩽
1

𝑎
(Im𝜆+ 𝑎| Im 𝜉|) ,

where the latter identity holds since

𝑡√
𝑡2 + 𝑥2

⩾
𝑡√︀

𝑡2 + (𝑎𝑡)2
=

1√
1 + 𝑎2

.

We thus obtain the estimates (6.7) and complete the proof.

Proof of Lemma 7.1. By the identity (5.3) we obtain the following representation for the gen-
eralized function 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉):

𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) =
1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
=

1

ℒ̂1(𝜆̃, 𝜉)
, (𝜆, 𝜉) ∈ 𝑇𝐶1 . (9.4)

By representation (6.2) we get the expansion

1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
=

1

ℒ̂1(𝜆̃, 𝜉)
= 𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
, (9.5)

where 𝜆̃ := 𝜆 + 𝑖𝜆0, 𝜉1(𝜆̃) is the root of equation ℒ̂1(𝜆̃, 𝜉) = 0, which is determined by the

formula (6.3), 𝐴(𝜆̃) is determined by the formula (7.1).
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The above Fourier — Laplace transform ℰ̂01(𝜆, 𝑥) = 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) of the generalized func-
tion ℰ0(𝑡, 𝑥) in the variable 𝑡 can be represented as the inversion in the variable 𝜉 of the

Fourier — Laplace transform 𝐿−1
2 [ℰ̂0(𝜆, 𝜉)](𝜆, 𝑥) of the function

ℰ̂0(𝜆, 𝜉) := 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉),
that is,

ℰ̂01(𝜆, 𝑥) = 𝐿1 [ℰ0(𝑡, 𝑥)] (𝜆, 𝑥) = 𝐿−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥)

= 𝑒𝑥 Im 𝜉𝐹−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥) = 𝑒𝑥 Im 𝜉𝐹−1

2

[︁
ℒ̂−1

1 (𝜆̃, 𝜉)
]︁
(𝜆, 𝑥).

Using the representation (9.4), the analyticity of function ℒ̂−1
1 (𝜆̃, 𝜉) in the tubular domain

𝑇𝐶1 , the expansion (9.5) and applying the Cauchy theorem on residues for 𝑥 ⩽ 0, Im 𝜉 > 0,
(𝜆, 𝜉) ∈ 𝑇𝐶1 , we obtain the following chain of identities

ℰ̂01(𝜆, 𝑥) =𝑒𝑥 Im 𝜉𝐹−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥) = 𝑒𝑥 Im 𝜉𝐹−1

2

[︁
ℒ̂−1

1 (𝜆̃, 𝜉)
]︁
(𝜆, 𝑥)

=
1

2𝜋

+∞∫︁
−∞

𝑒𝑥 Im 𝜉−𝑖𝑥Re 𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑Re 𝜉 =

1

2𝜋
lim

𝑅→+∞

𝑅∫︁
−𝑅

𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
𝑒−𝑖𝑥𝜉𝑑Re 𝜉

=
1

2𝜋
lim

𝑅→+∞

⎡⎣ 𝑅+𝑖𝑅∫︁
𝑅

+

−𝑅+𝑖𝑅∫︁
𝑅+𝑖𝑅

+

−𝑅∫︁
−𝑅+𝑖𝑅

⎤⎦(︂
𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
𝑒−𝑖𝑥𝜉𝑑Re 𝜉

)︂
+ 𝑖𝐴(𝜆̃)𝑒−𝑖𝑥𝜉1(𝜆̃) = 𝑖𝐴(𝜆̃)𝑒−𝑖𝑥𝜉1(𝜆̃).

The latter identity is implied by the following estimates for the integrals as 𝑥 ⩽ 0, Im 𝜉 > 0,
(𝜆, 𝜉) ∈ 𝑇𝐶1 : ⃒⃒⃒⃒

⃒⃒
±𝑅+𝑖𝑅∫︁
±𝑅

𝑒−𝑖𝑥𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑𝜉

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒

𝑅∫︁
0

𝑒−𝑖𝑥(±𝑅+𝑖 Im 𝜉)𝑑 Im 𝜉

𝜆̃2 +
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁
(±𝑅 + 𝑖 Im 𝜉)2

⃒⃒⃒⃒
⃒⃒

⩽

𝑅∫︁
0

𝑒𝑥 Im 𝜉𝑑 Im 𝜉⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
(𝑅2 + (Im 𝜉)2)− |𝜆̃|2

⃒⃒⃒
⩽

𝑅⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
𝑅2 − |𝜆̃|2

⃒⃒⃒ → 0, 𝑅 → +∞,

⃒⃒⃒⃒
⃒⃒
−𝑅+𝑖𝑅∫︁
𝑅+𝑖𝑅

𝑒−𝑖𝑥𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑𝜉

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒
−𝑅∫︁
𝑅

𝑒−𝑖𝑥(Re 𝜉+𝑖𝑅)𝑑Re 𝜉

𝜆̃2 +
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁
(Re 𝜉 + 𝑖𝑅)2

⃒⃒⃒⃒
⃒⃒ ⩽

⩽

𝑅∫︁
−𝑅

𝑒𝑥𝑅𝑑Re 𝜉⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
(𝑅2 + (Re 𝜉)2)− |𝜆̃|2

⃒⃒⃒
⩽

2𝑅⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
𝑅2 − |𝜆̃|2

⃒⃒⃒ → 0, 𝑅 → +∞.

Similarly, for 𝑥 > 0, Im 𝜉 < 0, (𝜆, 𝜉) ∈ 𝑇𝐶1 we can establish the identity

ℰ̂01(𝜆, 𝑥) = −𝑖𝐴(𝜆̃)𝑒𝑖𝑥𝜉1(𝜆̃).
The proof is complete.
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