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EXISTENCE OF PROPAGATION CONE
FOR ONE-DIMENSIONAL WAVE
INTEGRO-DIFFERENTIAL OPERATOR WITH
FRACTIONAL-EXPONENTIAL MEMORY FUNCTION

N.A. RAUTIAN

Abstract. We study a linear Volterra integro—differential operator, which is a one—
dimensional wave linear partial differential operator perturbed by an integral operator of the
Volterra convolution. The kernel of integral operator is the sum of fractional-exponential
functions (Rabotnov functions) with positive coefficients. We establish that the support of
fundamental solution of the considered integro—differential operator is localized in the prop-
agation cone of the corresponding one-dimensional wave differential operator. The corre-
sponding Volterra integro—differential equation describes the oscillations of one-dimensional
viscous—elastic rod, the heat propagation in media with memory (Gurtin — Pipkin equation)
and a series of other important applications.

Keywords: Volterra integro—partial differential operator, fundamental solution, Fourier —
Laplace transform, fractional-exponential function.
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1. INTRODUCTION

In this paper we investigate a linear Volterra integro—partial differential operator being a
one—dimensional wave linear partial differential operator perturbed by a Volterra convolution
integral operator. Operators of this type have numerous applications in problems of hereditary
mechanics, the theory of highly inhomogeneous media, heat conduction in media with memory,
the kinetic theory of gases, biology, medicine, and other fields.

Nowadays, there is a rich literature devoted to the study of Volterra integro-differential
equations and related problems arising in numerous applications, see, for example, [3], [1],
[6]-]14] and the references therein.

The studied integro—differential operator studied in this paper is called the one—dimensional
wave integro—differential operator with a fractional-exponential memory function. The kernel
of the integral convolution operator is a sum of fractional-exponential functions (Rabotnov
functions, see [7]) with positive coefficients.

In the paper we establish the existence and uniqueness of a fundamental solution supported
in a cone for the studied integro—differential operator. The proof of the main assertions of the
paper is based on the application of the Paley — Wiener — Vladimirov criterion, see [2], [5],
which establishes an isomorphism between the space of tempered distributions supported in a
cone and the space of functions analytic in a tubular domain.

N.A. RAUTIAN, EXISTENCE OF PROPAGATION CONE FOR ONE—DIMENSIONAL WAVE INTEGRO—DIFFERENTIAL
OPERATOR WITH FRACTIONAL—EXPONENTIAL MEMORY FUNCTION.

© RavuTiaN N.A. 2025.

The research is supported by Moscow Center of Fundamental and Applied Mathematics of Lomonosov
Moscow State University under the agreement no. 075-15-2025-345.

Submitted March 3, 2025.

81


https://doi.org/10.13108/2025-17-4-81

82 N.A. RAUTIAN

The paper consists of nine sections. The first section is an introduction. The second section
contains the formulation of the problem. The third and fourth sections are devoted to the
formulation of definitions of cones, tubular domains, the Fourier transform, spaces of general-
ized functions supported in a cone, spaces of functions analytic in a tubular domain, and the
formulation of Paley — Wiener theorem, along with references to the relevant sources. The fifth
section contains the formulations of main results of paper (three theorems and one lemma).
The remaining four sections are devoted to the proofs of main results, as well as to the proofs
of auxiliary lemmas.

The presented results are a continuation and development of the studies published in [3],
[8], [9], [LO]-{11]. Using the obtained results, one can establish a finite propagation velocity of
perturbations for the corresponding one—dimensional wave integro—differential equation with a
fractional-exponential memory function.

2. FORMULATION OF PROBLEM

We denote by D := D(R") := C§°(R") the space of all compactly supported infinitely
differentiable in R™ functions, D’ = D'(R™) is the space of all generalized functions defined on
the space D(R™), S = S(R") is the space of fast decaying functions, S’ = §’'(R") is the space
of tempered distributions |1, Ch. 2.

We consider the second order linear Volterra integro—differential equation

2 2 2

t,x) — a’ %u(t, x) + K(t) * %u(t, x) = f(t,x), (2.1)

where f € D'(R?), a > 0, the symbol * stands for the convolution of generalized function in
the variable ¢ [1, Ch. 2, Sect. 7.4], the function K (t) can be represented as the sum

Ly(Dy, Dy)u(t, z) = @u(

N
K(t) =) aKi(t), ¢>0, i=1,... N, (2.2)
i=1
K (t) are fractional-exponential functions (Rabotnov functions ) [7, Ch. I|, which read
B > (_6i)ntn(lfo¢)
= , t >0,
; [i(n+1)(1 = )] (2.3)
0, t <0,
where 0 < a < 1, I'(+) is the Euler Gamma function, 5; > 0,7 =1,..., N.

Remark 2.1. Fort > 0, the function K;(t) defined by the formula (2.3) is the generalized
Mittag-Leffler function |7, Ch. I]:

Kl<t> = t_aEl_ajl_a (—ﬁitl_a) , t>0.

Kz(t) =

Equation (2.1) is the one—dimensional integro—differential equation with a fractional—
exponential memore function (wave equation with memory).
The second order Volterra integro-differential operator
0? o 0?
£1(Dt7Dx) = @ - CL2 @ + K(t) * @
in the left hand side of Equation (2.1) is called the one-dimensional wave integro-differential
operator with a fractional-exponential memore function (wave operator with memory).

Definition 2.1. A generalized function & (t,z) € D'(R?) is called the fundamental solution
of operator L1(Dy, D,) if

(2.4)

ﬁl(Dt,Dg:)gl(t7ZE) = (5(t,l’) (25)
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3. FOURIER — LAPLACE TRANSFORM IN TUBULAR DOMAIN

In R? we consider a closed cone

I ={(t,z) eR*t>0,z€R,at > |z|}, (3.1)
where a > 0. Then the cone
I't={(p,q) e R?|pt +qz >0, V(t,x) € T} (3.2)
is called the dual cone of the cone I'y. We denote
Cy:=int ] = {(p, q) € R?|pt +qx >0, V(t,x) € Fl} ) (3.3)
Similarly, we can consider the closed cone
Fo:={teR|t=>0}=T5 (3.4)
in R and we denote
Co:=intI'y ={peR|p>0}. (3.5)
Definition 3.1 (|2, Ch. I, [, Sect. 12]). The set
T :=R*+iCy = {(\,€) € C?] (Re), Re€) € R?, (Im\, Im¢&) € C1 }. (3.6)

is called the tubular domain in C* with the base C,.

Remark 3.1. The definition of tubular domain can be also formulate for the cone Cy defined
by the formula (3.5). In this case

T% =R +iCy={\ € C|ReX € R, Im\ > 0}. (3.7)

Definition 3.2 (|5, Sect. 9, 10]). The set of generalized functions in D', the supports of
which are located in the cone I'y, is denoted by D'(I'y).

By 8'(I'1) we denote the set of generalized functions in S’ with the supports in I'y. By St
we denote the space of tempered distributions in the cone I'y.

The set of generalized functions f(t) € D'(R) vanishing for t < 0 is denoted by D', I, Ch.
7.7].

Statement 3.1 ([5, Sect. 10]). The spaces S'(I'1) and St are isomorphic.

Definition 3.3 (|2, Ch. 1|). Let f € S'(I'1). The Fourier — Laplace transform L[f] of a
generalized function f is the functions of the variables (\,€) € T defined by the formula

LI\ €) = F [f(t,x)e I m9] (Re A Re€), (fa) €Ty, (A& €TD,  (38)
where F' is the Fourier transform of the generalized function.

Remark 3.2 (|5, Sect. 12|). The Fourier — Laplace transform of a generalized function f €
S'(T'1) can be represented as

L[f]()‘ag) = (f(t,f), ei(t)\—i—x{)) ; (t,l’) € Fl' (39)

The formula (3.9) makes sense since A48 € Sy for (N, €) € T
Definition 3.4 (|5, Sect. 12|). Let f(t,x) € §'(I'y) in the variable t for each fized value of
x. The Fourier — Laplace transform Li[f] of the generalized function f(t,x) in the variable t

for a fized value x is the function of variables (\, ), where A € T, x € R, which is defined
by the formula

Li[fl(\z) = Fy [f(t,2)e ""™*] (ReA,z), t€Ty, MNeT® zeR, (3.10)

where Fy is the Fourier transform of a generalized function in the variable t for a fixed value of
x.
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4. SPACE H(T®'). ISOMORPHISM OF SPACES S'(I';) AND H(T)

The definitions and statements of this section are borrowed from [5, §12].
We denote by H@)(T), o > 0, B8 > 0, (o, 3 € Z) the set of functions analytic in the
tubular domain 7", which obey the estimate

LSOO < My (1+ AP+ €)% [1+ A7 (ImA,Img)],  (A,€) € T, (4.1)
where

Alp,q) = inf (ip+xq),
(t,x)EFl
t?+a’=1
(p,q) € Cy is the distance from the point (p,q) € C; to the boundary of cone Cy, My is a
positive constant.
Similarly, we denote by H(@#(T%) o >0, 8 > 0, (o, 3 € Z) the set of functions analytic
in the tubular domain 7°°, which satisfy the estimate

POV < My (L4 A2 [T+ ImA) 7], AeT%. (4.2)
We equip H*#(H(T®")) with the topology in accordance with the estimate (4.1) by means

of the norm
1A = sup Lf()vf”
aoerer (T4 A2+ [¢2)2 [T + A7 (Im A, Im §)]

In its turn, we equip H(®% (H(T)) with the topology in accordance with the estimate (4.2)
by means of the norm

(4.3)

o J(A
71 = sup ) (1.4
xer (1+[A)2)2 [1 + (Im A)~7]
Remark 4.1. The spaces HP) (T, i = 0,1, are Banach. Moreover, if
o' > a, 8 =8,
then
LA < A1
and, therefore,
HD(H(TY)) ¢ HP(H(TD)),  i=0,1,
and the embedding is continuous.
We denote
HT%) = | H*YTY), i=01 (4.5)

a0, 520

Theorem 4.1 (Paley — Wiener — Vladimirov). A generalized function f(t,z) belongs to
the space S'(T'y) if and only if its Fourier — Laplace transform L[f](\,§) belongs to the
space H(TC'). The spaces S'(T'y) and H(T") isomorphic and this isomorphism is estab-
lished by the Fourier — Laplace transform. The function L[f](\,€) has a boundary value as
(Im A\, Im &) — (0,0), (Im A\, Im &) € C" in S"(R?), which is equal to F[f](Re X\, Re§), that is, in
S'(R?) the limit

(LIfI(A €), ¢(Re A, Re€)) (oA Ime) (070)> (FIfI(Re A, Re&), p(Re X, Reg))  (4.6)

(Im A\, Im¢) € €]

is well-defined for each o(Re A\, Re &) € S(R?), where F is the Fourier transform of a generalized
function, C| is an arbitrary subcone of the cone Cy with the vertex at zero such that C| C C.
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Remark 4.2. Paley — Wiener — Viadimarov theorem is true also for generalized functions
f(t,x) € 8'(Ty) in the variable t for each fized x, that is, the spaces S'(T'y) and H(TC) are
1somorphic for each fixed x, and this isomorphism is made by the Fourier — Laplace transform
Li-|(\, z) defined the formula (3.10) for each fized x.

5. FORMULATION OF RESULTS

Definition 5.1. The symbol of integro—differential operator (2.4) is the function
L1\ €)= — ()\2 — a2+ K(A)§2) , AeC, €eC, (5.1)
where
1
> SN
is the Fourier — Laplace transform of kernel of the integral operator K;(t), (i = 1,...,N),
given by the formula (2.2).

Theorem 5.1. Let the cone I'y be defined by the formula (3.1), and the cone C; = int '] be
defined by the formula (3.3). Then the integro—differential operator L£1(Dy, D,) defined by the
formula (2.4) has the fundamental solution & (t,x) € D'(I'y), which can be represented as

Ei(t,x) = & (t, x), (5.2)

where Ey(t, x) € S'(T'1), Ao is a sufficiently large positive number.
Theorem 5.2. Let the cone T'y be defined by the formula (3.1), the cone Cy; = intI'} be
defined by the formula (3.3), and &E,(t,z) € D'(I'y) be the fundamental solution of the integro—

differential operator L1(Dy, D). Then the support of the fundamental solution supp & (t,x) is
not contained in any smaller convex cone I'y C I'y with the vertex atl zero.

Theorem 5.3. Let the cone I'y be given by the formula (3.1), and the cone C; = intI']
be given by the formula (3.3). Then the fundamental solution (5.2) of the integro—differential
operator L1(Dy, D,.) defined by the formula (2.4) is unique.

K(\) = Zcif(i()\), K;(\) =

Lemma 5.1. The generalized function (5.2) is a fundamental solution of the integro-
differential operator (2.4) if and only if the Fourier — Laplace transform L[Ey(t,x)|()\, &) of
the generalized function E(t,z) € S'(I'1) satisfies the equation

where L1(\, &) is the symbol of integro—differential operator (2.4) defined by the formula (5.1)
and the conditions hold

A 1
LA+ — = e H(T%). )
1( +1 0,6) 7é0, 51(/\4_@'/\07@ < ( ) (5 4)

6. PROOF OF LEMMA 5.1 AND THEOREM 5.1

Proof of Lemma 5.1. Let & (t,z) = e*'&y(t, ) be a fundamental solution of the operator (2.4).
Applying the Fourier — Laplace transform to the both sides of identity (2.5), we get

Ly €)L& (L, z)] (N, €) = 1. (6.1)
The properties of Fourier — Laplace transform [2, Ch. T, Sect. 9| yield
L[e™'E(t, 2)](A,€) = LIEo(t, 2)](A = iXo,€), (A =ik, &) € T
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We denote X := X — i)\g. Then Equation (6.1) becomes (5.3). The generalized function (¢, z)
belongs to the space S'(I'y), therefore, by Theorem 4.1, the function L[&(t, x)](), §) belongs to
the space H(T"), that is, the conditions (5.4) hold.

Vice versa, if the function L[&y(t, x)](), ) satisfies Equation (5.3) and the conditions (5.4)
hold, then, in accordance with Theorem 4.1, the generalized function &y(¢,z) belongs to the
space S§'(T'1) and, under the change of variables A := A — i\g, the function

LIEo(t, 2)](A,€) = LI E(t, )] (X, €)
satisfies Equation (6.1). Therefore, the generalized function
E(t,z) = e™&(t,x) € D'(Iy)
is a fundamental solution of the operator (2.4). The proof is complete. ]

We denote \ := \ + iX\g, where )\g is some constant. Then the function ﬁl defined by the
formula (5.1), can be represented as

L9 =~ (=@ -KA)E) =@ - KAO)E-a0NE+a(),  (62)

where ifl(j\) are the roots of equation ﬁl(j\, €) = 0, that is,

6\ = ) S (6.3)

a2 — K(\)

We note that for sufficiently large A\g > 0 the root & () satisfies the asymptotic representation
_ 1- 1 o - -
&(N) = a)\ + TﬁAK(A)O +0(1)), |A| = +o0. (6.4)

Indeed, by the formula (6.3), for sufficiently large \g > 0, we obtain

2 ~

a0 = %x (1 _ %K(X)) _ %X (1 + %K(A)(l + 0(1))) L A = 400,

To prove Theorems 5.1 and 5.2, we shall need auxiliary Lemmas 6.1 and 6.2, which will be
proved in Section 9.

Lemma 6.1. The assertions hold:

1) Let the cone Cy be given by the formula (3.3), (ImA, Im¢) € Cy. Then Im A > 0.
2) Let Im A > 0. Then for sufficiently large Ao > 0 the inequalities hold

~ A~ T ~ A~ ~ A~
Im ()\K()\)) >0, tan (7) Im ()\K()\)) > ‘Re (AK(A)) ] , (6.5)
where 0 < a < 1, X\ := XA+ i)o, and the root 51(5\) defined by the formula (6.3) satisfies

the asymptotic representation

< 1 ~ 1 ~ A~ -
&) = A+ —Im (AK(A)) (1+0(1)), ImX— +oo. (6.6)

Lemma 6.2. Let the cones 'y and Cy be defined by the formulas (3.1) and (3.3), respectively.
Then for all (\,€) € T the following inequalities hold

1
E(Im)\:l:ahng) > A(Im A, Im &), (6.7)
where
A(ImA,Im¢) = inf (¢t ImA+2Imé)
(t,@)el
t2+x?=1
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is the distance from the point (Im A\, Im¢&) € C to the boundary of cone Cy, and the constant
a > 0 s involved in the definition of cone I'y.

Proof of Theorem 5.1. According to Lemma 5.1, the generalized function (5.2) is a fundamental
solution of integro—differential operator (2.4) if and only if the Fourier — Laplace transform
L& (t, x)](N, &) of the generalized function&y(t,z) € S'(I'y) satisfies Equation (5.3) and the
conditions (5.4) hold. Therefore, to prove the theorem, it is sufficient to show that for some
sufficiently large positive number )\ the conditions (5.4) hold.

According to the condition (4.1), it is sufficient to show that there exist numbers o > 0,
=0, (a, B € Z), such that the estimate holds

1
ﬁl()\ + Z.>\07 5)

where

<SMOA+P2+EP)? 1+APImAIme)], (L) eTD,  (6.8)

Alp,g) = inf (tp+xq)
(t,x)ely
2 4x2=1
is the distance from the point (p, q) € C} to the boundary of conve Cy, M is a positive constant.
According to the representation (6.2), to prove the condition (6.8), it is sufficient to get lower
bounds for the factors |[a®> — K()\)|, |€ — & (N)] and |€ + & ()] of the function |L(\ + i)g, €.

Let A = r(cos ¢ + isin ), where
r =\l ¢ = Arg \ € (=7 + 27k, 7 + 27k], keZ.

In view of Lemmas 6.1 and 6.2 and the estimate (9.3), for sufficiently large Ay > 0 we get the
following estimates:

)@:51(})‘ ! ’almfl( )ialmf) ‘almfl( )—Im)\+1m)\j:a1m§‘

clt ()\o + % Im(AK (M) (1 +o(1)) +Im A + aImf)

1
> - (ImA+almé) > A(Im A, Im¢)

_i B w‘
= (e (0w (e g)) wism (0 (o= 5)) + o
_ aui((rl “eos (1 =) (¢ = 2)) +8) +r20sin* (1~ a) (so—g)))
> =3 (ocos (1= ) (o= D)) +8) | > &

> —
=1

-1

=

Finally, choosing sufficiently large \g > 0, by the two latter estimates we get the desired

estimate (6.8) for a =0, 3 =2, M = —
a

1
Li(\+ Mo,o' S
The proof is complete. O

SAP(Im A Imé) < M [1+ A7 (ImA, Im&)], (A€ €T
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7. PROOF OF THEOREM 5.2

It follows from Theorem 5.1 that the integro—differential operator L£i(D;, D,) given by the
formula (2.4) has the fundamental solution & (t,z) € D'(I'y), which can be represented in the
form (5.2). We consider the Fourier — Laplace transform L;[Ey(t, z)](A, x) of the generalized
function &(t,x) = e & (¢, x) in the variable ¢:

Eor(\, @) i= Li[&(t, )]\, @) = Fy [Eo(t, x)e ™ (Re,z), t€Ty \eTP

where F} is the Fourier transform of a generalized function in the variable ¢, the cone I'y and
tubular domain T are defined by the formulas (3.4) and (3.7), respectively.

To prove Theorem 5.2, we shall need the following auxiliary Lemma 7.1, which will be proved
in Section 9.

Lemma 7.1. Let A\ := X+ i),
N 1

A(N) = %0 <a2 B f((f\)>’

where & (N\) is the root of the equation ﬁl(x,f) = 0, the function ﬁl(x,ﬁ) is defined by the
formula (6.2). Then

(7.1)

e lmad) -y e R, (7.2)

En(h )| = |A)

Proof of Theorem 5.2. According to Theorem 5.1, & (t,x) € S'(I'1), and therefore, &y(t,z) €
S'(Ty), for each fixed x € R. It follows from Remark 4.2 to Theorem 4.1 that L, [E(t, z)](A, z)
belongs to the space H(T?) for each fixed 2 € R. Since &(t,z) € S'(Ty), the support of
function &y(t, x) is contained in the cone
Iy ={(t,z) eR*t >0,z €R, at > |z]}.
Then the support of function
Eolt,z) =& (t + m,x)
a

belong to the cone I'g = {t € R|t > 0} for each fixed z € R. Therefore, its Fourier — Laplace
transform L [£y(t, 2)](\, x) in the variable ¢ for each fixed z € R belongs to the space H(T),
that is, there exist « > 0 and 5 > 0, (o, 8 € Z), such that for each fixed = € R the estimate
holds .

Ll[go(t,x)](/\,x)‘ <SM@A+AR)?[1+@mA)?],  AeT, (7.3)

where M is a positive constant. Moreover,
~ T m
Ll[SO(tPI)K)\J .I) = Ll[go <t + %7 l’)]()\, CL’) =e e ALI[EO(tJ .I)](/\,I‘)
Therefore,
~ m m
Ll[go(tax)](%w)’ = e« MM Li[& (t,2)](N, 2)]
By (7.3) this gives the estimate

|L1[80 (t,ZL‘)]()\,l‘)l = )Ll[go(t,$)](/\,l‘>‘ 6_%1111)‘
o (7.4)
<M (1L+P)2E [14 (ImA) 7] e e mA

for A € T,
Now we are going to show that the support of fundamental solution supp & (¢, x) is not
contained in any smaller convex cone

.= {({t,z) eR*|t>0,z€R, (a—e)t >|z|} CTy
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with the vertex at zero, where ¢ € (0, a).
We suppose the opposite, then the Fourier — Laplace transform L; (& (t,x)) (A, x) of the
generalized function &(t, x) in the variable ¢ satisfies the following estimate similar to (7.4):

a
2

L1 (Eolt, 7)) (A )] < Me (14 AP E [T+ (Im0) 0] e ame 2, (7.5)

where M. is a positive constant. Using the identity (7.2), we get the estimate

o =]
2

e M (14 |AP) 2 [L+ (Im )P emame T2,

Letting = # 0 and substituting the asymptotic representation (6.6) instead of Im&;(\), for
sufficiently large Im A > 0 we get the following wrong inequality

Im A\ Im A\
>
a a—¢

(1+0(1)), Im A — +o0.

Thus, we arrive at the contradiction and the support of fundamental solution supp E(t, ) is
not contained in any smaller convex cone I'y C I'; with the vertex at zero. The proof is
complete. O

8. PRrROOF OF THEOREM 5.3

We introduce the notation

0 0 0? 0? 0?
— D, :=— Py(Dy, D) i= = — a* =, P(D,) = —.
at’ g PeDe) =G e {(Dr) = 5

Suppose that there exists another fundamental solution &(t,z) of the operator (2.4). We con-
sider the generalized function

Dt =

u<t7 CU) = 51<t, I) o 8~<t7 1;)7
which solves the equation
L1(Dy, Dy)u(t, z) =0,

where the operator £4(D;, D,) is defined by the formula (2.4). Let us show that Equation (8.1)
has only trivial solution in the class of generalized functions, for which the convolutions

K(t) % P,(Dy, D)E(t,x) and  (u*&)(t, )

are well-defined; hereinafter the convolution with the function K (¢) means the convolution in
the variable ¢ for a fixed value z. Indeed,

u(t,z) = u(t,z) *« 6(t, z) = u(t,x) x L1(Dy, D;)E(t, x)
= u(t,z) * Po(Dy, Dy)Er(t, x) + u(t, z) * (K (t) * P (Dy, D)E (L, x)).
According to the rule of differentiation of convolution of generalized functions |1, Sect. 7.5],
u(t, ) x Py(Dy, Dy)E1(t,x) = Py(Dy, Dy)u(t, z) * & (t, x). (8.2)
Let us show that
u(t,z) * (K(t) * Pi(Dy, Dy)E(t,x)) = (K(t) * P(Dy, Dy)u(t, z)) * E(t, ). (8.3)

Since & (t, z) € D'(I'1), then & (t,x) € D', in the variable ¢ for a fixed value of x, and moreover,
K(t) € D', by the definition. Hence, the assumptions of the theorem from [I, Sect. 7.7] are
satisfied, the convolution K (t)*Py(D;, D, )& (t, x) is well-defined and represented by the formula
(25) in [1, Sect. 7.7|:

(K(t) % PL(Dy, D) (t, x), 0u(t)) = (K(8) X Pr(Dy, D)0 (7, ), 11 (8)772(T) @t + 7))
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for all p.(t) € D(R), where 7;(t) € C*(R) (i = 1,2) are arbitrary functions, which are equal
to 1 in a neighbourhood of the semi-axis [0, +00) and 0 for sufficiently large negative ¢.

We consider the sequence of functions ni(t,7) € D(R?) converging to 1 in R?, which is
employed to define the convolution of generalized functions |1, Sect. 7.4|. According to the
definition of convolution of generalized functions and the theorem in [I, Sect. 7.7|, for all
¢ (t) € D(R) we have

((6:2) # (K1) « (D Do 42,4l
m (u(t, @) x (K(r) % PL(Dy, Do)E (r,0)), (¢, 7) il + 7))
- ,gggo ((F(7) * Pu(Duy D&, ), (ult, ), 0t )t + 7))
= lim ((K(r) % P(De, De)&s(7', ), in(r)i(e’) (ult, ), melt, 7+ 7)) et + 7+ 7))
= lim ((K(r) x P\(Dy, Do) (', 2)) % ult, ), in(r)ii (Tt 7+ )it + 74 7).

Here we have used the lemma from in |1, Sect. 7.7|, according to which
(ut, z),mx(t, T)pa(t + 7)) € D'(R).

We observe that 71 (7)o (7 ) (¢, 7 + 7 )pu(t + 7+ 7') € D(R?), use the commutativity and
associativity of direct product of generalized functions |1, Sect. 7.2-7.3] and note that

(K(1) x P/(Dy¢, Dy)u(t,z)) =0, E(r'yx)=0 for 7<0, 7 <O.
Then we apply the theorem from [1, Sect. 7.7] and pass to the limit in the chain of identities
(u(t, z) * (K(t) % Pi(Dy, D2)&1(t, 7)), ¢2(1))
= lim (K (7) x Py(Dp DJu(t, 7)) x E4(, ). ()il (.7 + 7)(t + 74 7)
= ((K(t) * PL(Dy, Dy )u(t, z)) * E1(t, ), 0a (1))

We note that the convolution (K (t)* Py(Dy, D, )u(t, z))*&(t, z) in the variable z is well-defined
since & (t,x) € D'(I'1), that is, the generalized function & (¢, x) is compactly supported in the
variable x for each fixed t [1, Sect. 7.6].

By the formulas (8.2) and (8.3) we obtain the following chain of identities

u(t,z) = u(t,z) x 0(t,x) = u(t,x) * L1(Dy, Dy)E1(t,x) = L1(Dy, Dy)u(t, x) * E(t,x) = 0.

The proof is complete.

9. PROOF OF LEMMAS 6.1, 6.2 AND 7.1
Proof of Lemma 6.1. 1) The definitions of cones I'; and Cy imply that the inequality
tImA+2Imé >0

holds if and only if (ImA, Im¢) € Cy and (¢,x) € T'y. Therefore, if (¢;,2) ¢ T'1, that is,
at; < |z|, then for all (Im A\, Im¢) € C the inequality holds ¢; Im A + zIm & < 0, that is,

tImA+2zImé>0<at > |z|, —tiImA—2zImé >0 —aty > —|x|.

Thus, (t —t1)ImA > 0 and ¢t —#; > 0, hence, Im A > 0.
2) Let A = r(cosp +isinp), where

r =\, 0 =Arg\ € (=7 + 2nk, 7w + 27k], k€ Z.

(-3) "= (s (@ (o= 5) +osm (0 (- )

Then
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NP r(cos ¢ + isin p)

(i) (10 G R A

This yields

1=1,...

Y

sm( (go——))—l—ﬁircosgo
(r(lfa)cos<(1—a ( —g ) ) + 7r2(-a) gin? ((1—04) (go—g>>’

)
Im (AR, = oo g)) i |
( ( )> >) @) + r2(1—a) gjp?2 ((1—@) (w—g))

(7"(1*"‘) oS ((1 -« ( — g

Since Im A > 0, choosing Ay > 0, we get Im A > 0 and © € (2rk, m + 27k), k € Z.. Therefore,

o(r- ) (o (Grom) o Gam)) € (GG oam) ke

Re (X&(X)) -

n

for o € (0,1) and
cos <a (ap - g)) >0, «a€(0,1). (9.3)
Thus, for sufficiently large Ay > 0 the inequality holds Im (S\f(’l(;\)> >0,i7=1,..,,N, and hence
Im (Xf((})) > 0.

Let us show that for sufficiently large Ag > 0 and 0 < o < 1 the second inequality in (6.5)
holds. Using the representations (9.1), (9.2), we obtain that the expression in the numerator

of the difference
(tan (%) Im (S\f(,(;\)>>2 - (Re (Z\KAX)))Q ,
reads

tan? <%> (7“2_0“ cosS (a (90 - g)) + B;rsin 90>2 - <T2_a sin (04 <90 - g)) + Bir cos 90>2
=Aq(r, @) + As(r, ) + As(r, ),

where

i =7 o () o) - o5 )-
1= () o (5 ) s o - )) ).
As(r, @) = 122 (tan2 (%) sin? o — cos? 90) .

We note that for 0 < a < 1 the estimate holds

Ay (r, @) > r?29) [sin2 (O;l) — sin? (a <g - go))] = 122~ gin(a(m — ¢)) sing > 0

Moreover,

=VReAN)?2+ (ImA+X)2, ImA>0, 0O0<a<l
and
22-a)=(1-a)+3—-a>3—-a=(1—-a)+2>2.
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Thus, we find that Ai(r,¢) + Az(r, @) + As(r,) > 0 for sufficiently large Ao > 0 and this
implies the second inequality in (6.5).

We consider the asymptotic representation (6.4). Let 1)(A) = o(1) as |\| — +oco. We are
going to show that the asymptotic representation (6.6) is true for sufficiently large Ay > 0.
Indeed,

Im @mmm) — Tm (¢(i)) Re (ik@)) + Re (w)) Im <5\f((5\)> .

Then, in view of the second inequality in (6.5), we get the estimate

6.
1 (VAR | < m (A (V) (|Re )yﬂan( ) o (v0) )
which implies
m1@MMAK' ) @ (AK’ )) as  Im\ — -+oo.
)

Thus, by the asymptotic representation (6.4) we obtain the asymptotic representation (6.6).
The proof is complete. O

Proof of Lemma 6.2. Taking into consideration assertion 1) of Lemma 6.1, for all (A, &) € T
we obtain

A(ImA, Im¢&) = inf (¢t Im A+ 2xIm¢)

at>|z|
t2+22=1

= inf Im\+ —— Im§>
at>|z| \ \/t2 _|_ v/ 12 +JZ‘2

( z?

= inf ( Im\ — —— \:c] | m§|)

atzlz| \ /12 + 22 V2

= inf (
at>|x\ 2

VET A W‘ )
1
- 1+a2(ImA—a]Imf|)<E(Im/\—aumﬂ)

1 (Im/\+a|1m§|)

where the latter identity holds since

t t 1
V2 + 22 \/t2 @)? Vita
We thus obtain the estimates (6.7) and complete the proof. O

Proof of Lemma 7.1. By the identity (5.3) we obtain the following representation for the gen-
eralized function L[&y(t, z)](A, &):

B 1 B 1 o
L[gO(t>$)]()‘vf) - ﬁl()\—l-i/\g,g) - 21(;\,5)’ ()‘75) er. (94)

By representation (6.2) we get the expansion

1 1 < 1 1

< : = ———=A(\) — — — 1, (9.5)
Li(A+iro, &) Li(A€) (-4 £+aM)

where \ == X\ + iAo, £1()) is the root of equation £1(), &) = 0, which is determined by the

formula (6.3), A()) is determined by the formula (7.1).
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The above Fourier — Laplace transform €y (X, x) = L1[E(t, 2)](\, &) of the generalized func-
tion & (t,x) in the variable ¢ can be represented as the inversion in the variable ¢ of the
Fourier — Laplace transform L;'[E (), €)](\, x) of the function

SO(Aa 5) = L[g()(ta £L‘)] ()‘7 é)a
that is,
501()‘737) =L [50(t, x)] (>‘7 :L‘) = Lgl [L [€O(t>x)] ()‘75)] (>‘7m)
= R LG 2] (L O] (@) = e [£7 0, 6)] (A ).

Using the representation (9.4), the analyticity of function ﬁfl(jx,f) in the tubular domain
T, the expansion (9.5) and applying the Cauchy theorem on residues for z < 0, Im¢ > 0,
(X, &) € T, we obtain the following chain of identities

Eon(A @) =" L [E(t 0)] (A, ©)] (A @) = ™Ry [£71(3,9)] (A )

+o0 R

1 exlmf—ixRef 1 - 1 1 .

———dReé=— 1i AN — — — | e R
") LN ot 27TR3300/ (){5—51@) £+51<A>}6 °¢
R+iR  —R+iR —R 1 1

— _ _ —szdR

2m3?oo / / / ( L—&(A) £+£1<A)}6 eg)
R+iR  —R+iR

+ z'A(A)e’”gl(A) = zA(A)e’”gl(’\).

The latter identity is implied by the following estimates for the integrals as z < 0, Im& > 0,
(\, &) € T

+R+iR

R
e—iz§ df B / e—ix(:l:R—i—iImf)dImg
Li(A¢) J X2 <a2 - qu)) (£R +ilmé)?
R
</ _ e?MEdIm ¢ ]
D ||ar = ROV (R2 + ey - 1A
R
< — — R — +o00,
Ha2 . K()\)‘ R - |/\|2‘
—R+iR -R ) )
/ e~ B / e—lx(Re§+1R)d Re§ .
Wl Ll N2+ (a2 = (V) (Re + iR)?
< deRe{ ]
+ (Re&)?) — [A]?
R — +o0.

Ha2 . f(()\)‘ R? — )2 ‘
Similarly, for z > 0, Im& < 0, (), €) € T we can establish the identity
En(N 1) = —iA(N)e ),
The proof is complete. O
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