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CУЩЕСТВОВАНИЕ КОНУСА РАСПРОСТРАНЕНИЯ

ДЛЯ ОДНОМЕРНОГО ВОЛНОВОГО

ИНТЕГРО—ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА С

ДРОБНО–ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИЕЙ ПАМЯТИ

Н.А. РАУТИАН

Аннотация. Исследуется линейный вольтерров интегро–дифференциальный опера-
тор, который представляет собой одномерный волновой линейный дифференциальный
оператор с частными производными, возмущенный интегральным оператором воль-
теровой свертки. Функция ядра интегрального оператора представляет собой сумму
дробно–экспоненциальных функций (функций Работнова) с положительными коэф-
фициентами. Устанавливается, что носитель фундаментального решения исследуемо-
го интегро–дифференциального оператора локализован в конусе распространения со-
ответствующего одномерного волнового дифференциального оператора. Соответству-
ющее вольтеррово интегро–дифференциальное уравнение описывает колебания одно-
мерного вязкоупргугого стержня, процесс распространения тепла в средах с памятью
(уравнение Гуртина — Пипкина) и имеет ряд других важных приложений.
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изводными, фундаментальное решение, преобразование Фурье — Лапласа, дробно–
экспоненицальная функция.
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1. Введение

Работа посвящена исследованию линейного вольтеррова интегро–дифференциального
оператора с частными производными, представляющего собой одномерный волновой ли-
нейный дифференциальный операратор с частными производными, возмущенный инте-
гральным оператором вольтерровой свертки. Операторы подобного вида имеют много-
численные приложения в задачах наследственной механики, теории сильно неоднородных
сред, теплопроводности в средах с памятью, кинетической теории газов, биологии, меди-
цине и т. д.
В настоящее время существует обширная литература, посвященная исследованию воль-

терровых интегро–дифференциальных уравнений и связанных с ними задач, возникаю-
щих в многочисленных приложениях (см., например, работы [3], [4], [6]–[14] и их библио-
графию).

N.A. Rautian, Existence of propagation cone for one–dimensional wave integro–differential

operator with fractional–exponential memory function.
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Исследуемый в работе интегро–дифференциальный оператор называется одномерным
волновым интегро–дифференциальным оператором с дробно–экспоненциальной функци-
ей памяти. Ядро интегрального оператора свертки представляет собой сумму дробно–
экспоненциальных функций (функций Работнова см. [7]) с положительными коэффици-
ентами.
В статье устанавливается существование и единственность фундаментального решения

с носителем в конусе для исследуемого интегро–дифференциального оператора. Доказа-
тельство основных утверждений работы базируется на применении критерия Пэли — Ви-
нера — Владимирова (см. [2], [5]), устанавливающего изоморфизм пространства обобщен-
ных функций медленного роста с носителем в конусе и пространства функций, аналити-
ческих в трубчатой области.
Статья состоит из девяти параграфов. Первый параграф является введением. Второй

параграф содержит постановку задачи. Третий и четвертый параграфы посвящены фор-
мулировке определений конусов, трубчатых областей, преобразования Фурье — Лапласа,
пространств обобщенных функций с носителем в конусе, пространств функций, анали-
тических в трубчатой области, а также формулировке теоремы Пэли — Винера — Вла-
димирова, со ссылками на соответствующие источники. Пятый параграф содержит фор-
мулировки основных результатов статьи (три теоремы и одна лемма). Остальные четы-
ре параграфа посвящены доказательству основных результатов, а также доказательству
вспомогательных лемм.
Представленные в данной статье результаты являются продолжением и развитием ис-

следований, опубликованных в работах [3], [8], [9], [10]–[14]).
С помощью полученных в статье результатов может быть установлена конечная

скорость распространения возмущений для соответствующего одномерного волнового
интегро–дифференциального уравнения с дробно–экспоненциальной функцией памяти.

2. Постановка задачи

Обозначим 𝒟 := 𝒟(R𝑛) := 𝐶∞
0 (R𝑛) — пространство всех финитных бесконечно диф-

ференцируемых в R𝑛 функций (пространство основных функций), 𝒟′ = 𝒟′(R𝑛) — про-
странство всех обобщенных функций, заданных на пространстве 𝒟(R𝑛), 𝒮 = 𝒮(R𝑛) —
пространство быстро убывающих функций, 𝒮 ′ = 𝒮 ′(R𝑛) — пространство всех обобщенных
функций медленного роста (см. [1, гл. 2]).
Пусть

ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) :=
𝜕2

𝜕𝑡2
𝑢(𝑡, 𝑥)− 𝑎2

𝜕2

𝜕𝑥2
𝑢(𝑡, 𝑥) +𝐾(𝑡) * 𝜕2

𝜕𝑥2
𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥), (2.1)

𝑓 ∈ 𝒟′(R2), линейное вольтеррово интегро–дифференциальное уравнение второго поряд-
ка, где константа 𝑎 > 0, знак * обозначает свертку обобщенных функций по переменной 𝑡
(см. [1, гл. 2, §7.4]), функция 𝐾(𝑡) представима в виде суммы

𝐾(𝑡) =
𝑁∑︁
𝑖=1

𝑐𝑖𝐾𝑖(𝑡), 𝑐𝑖 > 0, 𝑖 = 1, . . . , 𝑁, (2.2)

𝐾𝑖 (𝑡) — дробно–экспоненциальные функции (функции Работнова) (см. [7, гл.I]), которые
имеют следующий вид

𝐾𝑖(𝑡) =

⎡⎢⎣𝑡−𝛼

∞∑︁
𝑛=0

(−𝛽𝑖)𝑛𝑡𝑛(1−𝛼)

Γ[(𝑛+ 1)(1− 𝛼)]
, 𝑡 > 0,

0, 𝑡 < 0,

(2.3)
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где 0 < 𝛼 < 1, Γ(·) — гамма–функция Эйлера, 𝛽𝑖 > 0, 𝑖 = 1, . . . , 𝑁 .

Замечание 2.1. Функция 𝐾𝑖(𝑡), определенная формулой (2.3), при 𝑡 > 0 представляет
собой обобщенную функцию Миттаг–Леффлера (см. [7, гл. I]):

𝐾𝑖(𝑡) = 𝑡−𝛼𝐸1−𝛼,1−𝛼

(︀
−𝛽𝑖𝑡1−𝛼

)︀
, 𝑡 > 0.

Уравнение (2.1) мы будем называть одномерным волновым интегро–дифференциальным
уравнением с дробно–экспоненциальной функцией памяти (волновым уравнением с памя-
тью).
Вольтерров интегро–дифференциальный оператор второго порядка

ℒ1(𝐷𝑡, 𝐷𝑥) :=
𝜕2

𝜕𝑡2
− 𝑎2

𝜕2

𝜕𝑥2
+𝐾(𝑡) * 𝜕2

𝜕𝑥2
, (2.4)

в левой части уравнения (2.1) будем называть одномерным волновым интегро–
дифференциальным оператором с дробно–экспоненциальной функцией памяти (волновым
оператором с памятью).

Определение 2.1. Обобщенная функция ℰ1(𝑡, 𝑥) ∈ 𝒟′(R2) называется фундаменталь-
ным решением оператора ℒ1(𝐷𝑡, 𝐷𝑥), если

ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = 𝛿(𝑡, 𝑥). (2.5)

3. Преобразование Фурье — Лапласа в трубчатой области

Рассмотрим в R2 замкнутый конус

Γ1 =
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R , 𝑎𝑡 ⩾ |𝑥|

}︀
, (3.1)

где константа 𝑎 > 0. Тогда конус

Γ*
1 =

{︀
(𝑝, 𝑞) ∈ R2| 𝑝𝑡+ 𝑞𝑥 ⩾ 0, ∀(𝑡, 𝑥) ∈ Γ1

}︀
, (3.2)

будем называть сопряженным конусом к конусу Γ1. Обозначим

𝐶1 := int Γ*
1 =

{︀
(𝑝, 𝑞) ∈ R2| 𝑝𝑡+ 𝑞𝑥 > 0, ∀(𝑡, 𝑥) ∈ Γ1

}︀
. (3.3)

Аналогично, можно рассмотреть замкнутый конус

Γ0 := {𝑡 ∈ R | 𝑡 ⩾ 0} =: Γ*
0 (3.4)

в R и обозначим
𝐶0 := int Γ*

0 = {𝑝 ∈ R | 𝑝 > 0}. (3.5)

Определение 3.1 ([2, гл. II], [5, §12]). Множество

𝑇𝐶1 := R2 + 𝑖𝐶1 =
{︀
(𝜆, 𝜉) ∈ C2| (Re𝜆, Re 𝜉) ∈ R2, (Im𝜆, Im 𝜉) ∈ 𝐶1

}︀
. (3.6)

будем называть трубчатой областью в C2 с основанием 𝐶1.

Замечание 3.1. Определение трубчатой области можно сформулировать и для ко-
нуса 𝐶0, определенного формулой (3.5). В этом случае

𝑇𝐶0 := R+ 𝑖𝐶0 = {𝜆 ∈ C| Re𝜆 ∈ R, Im𝜆 > 0} . (3.7)

Определение 3.2 ([5, §9–10]). Совокупность обобщенных функций из 𝒟′, носители
которых лежат в конусе Γ1, обозначим через 𝒟′(Γ1).
Обозначим через 𝒮 ′(Γ1) совокупность обобщенных функций из 𝒮 ′ с носителем в Γ1.

Обозначим 𝑆 ′
Γ1

пространство обобщенных функций медленного роста в конусе Γ1.
Совокупность обобщенных функций 𝑓(𝑡) ∈ 𝒟′(R), обращающихся в нуль при 𝑡 < 0,

обозначим через 𝒟′
+ (см. [1, §7.7]).
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Утверждение 3.1 ([5, §10]). Пространства 𝒮 ′(Γ1) и 𝑆
′
Γ1

изоморфны.

Определение 3.3 ([2, гл. II]). Пусть 𝑓 ∈ 𝒮 ′(Γ1). Преобразованием Фурье — Лапласа
𝐿[𝑓 ] обобщенной функции 𝑓 будем называть функцию переменных (𝜆, 𝜉) ∈ 𝑇𝐶1, задавае-
мую формулой

𝐿[𝑓 ](𝜆, 𝜉) = 𝐹
[︀
𝑓(𝑡, 𝑥)𝑒−(𝑡 Im𝜆+𝑥 Im 𝜉)

]︀
(Re𝜆,Re 𝜉), (𝑡, 𝑥) ∈ Γ1, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (3.8)

где 𝐹 — преобразование Фурье обобщенной функции .

Замечание 3.2 ([5, §12]). Преобразование Фурье — Лапласа обобщенной функции
𝑓 ∈ 𝒮 ′(Γ1) можно представить в виде

𝐿[𝑓 ](𝜆, 𝜉) =
(︀
𝑓(𝑡, 𝑥), 𝑒𝑖(𝑡𝜆+𝑥𝜉)

)︀
, (𝑡, 𝑥) ∈ Γ1. (3.9)

Формула (3.9) имеет смысл, т.к. 𝑒𝑖(𝜆 𝑡+𝑥𝜉) ∈ 𝑆Γ1 при (𝜆, 𝜉) ∈ 𝑇𝐶1.

Определение 3.4 ([5, §12]). Пусть 𝑓(𝑡, 𝑥) ∈ 𝒮 ′(Γ0) по переменной 𝑡 при каждом фик-
сированном значении 𝑥. Преобразованием Фурье — Лапласа 𝐿1[𝑓 ] обобщенной функции
𝑓(𝑡, 𝑥) по переменной 𝑡 при фиксированном значении 𝑥 будем называть функцию пере-
менных (𝜆, 𝑥), где 𝜆 ∈ 𝑇𝐶0, 𝑥 ∈ R, задаваемую формулой

𝐿1[𝑓 ](𝜆, 𝑥) = 𝐹1

[︀
𝑓(𝑡, 𝑥)𝑒−𝑡 Im𝜆

]︀
(Re𝜆, 𝑥), 𝑡 ∈ Γ0, 𝜆 ∈ 𝑇𝐶0 , 𝑥 ∈ R, (3.10)

где 𝐹1 — преобразование Фурье обобщенной функции по переменной 𝑡 при фиксированном
значении 𝑥.

4. Пространство 𝐻(𝑇𝐶1). Изоморфизм пространств 𝒮 ′(Γ1) и 𝐻(𝑇𝐶1)

Определения и утверждения этого параграфа содержатся в [5, §12].
Обозначим через 𝐻(𝛼,𝛽)(𝑇𝐶1), 𝛼 ⩾ 0, 𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z) совокупность функций, аналити-

ческих в трубчатой области 𝑇𝐶1 и удовлетворяющих оценке

|𝑓(𝜆, 𝜉)| ⩽𝑀𝑓

(︀
1 + |𝜆|2 + |𝜉|2

)︀𝛼
2
[︀
1 + ∆−𝛽 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (4.1)

где

∆(𝑝, 𝑞) = inf
(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡𝑝+ 𝑥𝑞) ,

(𝑝, 𝑞) ∈ 𝐶1 — расстояние от точки (𝑝, 𝑞) ∈ 𝐶1 до границы конуса 𝐶1, 𝑀𝑓 — положительная
константа.
Аналогично, обозначим через 𝐻(𝛼,𝛽)(𝑇𝐶0), 𝛼 ⩾ 0, 𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z) совокупность функ-

ций, аналитических в трубчатой области 𝑇𝐶0 и удовлетворяющих оценке

|𝑓(𝜆)| ⩽𝑀𝑓

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
, 𝜆 ∈ 𝑇𝐶0 . (4.2)

Введем в 𝐻(𝛼,𝛽)(𝐻(𝑇𝐶1)) топологию в соответствии с оценкой (4.1) с помощью нормы

‖𝑓‖(𝛼,𝛽)1 = sup
(𝜆,𝜉)∈𝑇𝐶1

|𝑓(𝜆, 𝜉)|
(1 + |𝜆|2 + |𝜉|2)

𝛼
2 [1 + ∆−𝛽 (Im𝜆, Im 𝜉)]

(4.3)

В свою очередь, в 𝐻(𝛼,𝛽)(𝐻(𝑇𝐶0)) введем топологию в соответствии с оценкой (4.2) с по-
мощью нормы

‖𝑓‖(𝛼,𝛽)0 = sup
𝜆∈𝑇𝐶0

|𝑓(𝜆)|
(1 + |𝜆|2)

𝛼
2 [1 + (Im𝜆)−𝛽]

(4.4)
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Замечание 4.1. Пространства 𝐻(𝛼,𝛽)(𝑇𝐶𝑖), 𝑖 = 0, 1 банаховы. Кроме того, если

𝛼′ ⩾ 𝛼, 𝛽′ ⩾ 𝛽,

то
‖𝑓‖(𝛼

′,𝛽′)
𝑖 ⩽ ‖𝑓‖(𝛼,𝛽)𝑖

и, следовательно,

𝐻(𝛼,𝛽)(𝐻(𝑇𝐶𝑖)) ⊂ 𝐻(𝛼′,𝛽′)(𝐻(𝑇𝐶𝑖)), 𝑖 = 0, 1,

причем вложение непрерывно.

Обозначим
𝐻(𝑇𝐶𝑖) :=

⋃︁
𝛼⩾0, 𝛽⩾0

𝐻(𝛼,𝛽)(𝑇𝐶𝑖), 𝑖 = 0, 1 (4.5)

Теорема 4.1 (Пэли — Винера — Владимирова). Для того, чтобы обобщенная функ-
ция 𝑓(𝑡, 𝑥) принадлежала пространству 𝒮 ′(Γ1) необходимо и достаточно, чтобы ее
преобразование Фурье — Лапласа 𝐿[𝑓 ](𝜆, 𝜉) принадлежало пространству 𝐻(𝑇𝐶1). Про-
странства 𝒮 ′(Γ1) и 𝐻(𝑇𝐶1) изоморфны, и этот изоморфизм осуществляется преобра-
зованием Фурье — Лапласа. Функция 𝐿[𝑓 ](𝜆, 𝜉) имеет в 𝑆 ′(R2) граничное значение при
(Im𝜆, Im 𝜉) → (0, 0), (Im𝜆, Im 𝜉) ∈ 𝐶 ′, равное 𝐹 [𝑓 ](Re𝜆,Re 𝜉), т.е. в 𝑆 ′(R2) существует
предел

(𝐿[𝑓 ](𝜆, 𝜉), 𝜙(Re𝜆,Re 𝜉)) −−−−−−−−−−−−−−−→
(Im𝜆, Im 𝜉) → (0, 0)

(Im𝜆, Im 𝜉) ∈ 𝐶 ′
1

(𝐹 [𝑓 ](Re𝜆,Re 𝜉), 𝜙(Re𝜆,Re 𝜉)) (4.6)

для любого 𝜙(Re𝜆,Re 𝜉) ∈ 𝑆(R2), где 𝐹 — преобразование Фурье обобщенной функции,
𝐶 ′

1 — любой подконус конуса 𝐶1 с вершиной в нуле, такой, что 𝐶 ′
1 ⊂ 𝐶1.

Замечание 4.2. Теорема Пэли — Винера — Владимирова справедлива также для обоб-
щенных функций 𝑓(𝑡, 𝑥) ∈ 𝒮 ′(Γ0) по переменной 𝑡 при каждом фиксированном значении
𝑥, т.е. пространства 𝒮 ′(Γ0) и 𝐻(𝑇𝐶0) изоморфны при каждом фиксированном значении
𝑥, и этот изоморфизм осуществляется преобразованием Фурье — Лапласа 𝐿𝑡[·](𝜆, 𝑥),
определенным формулой (3.10), при каждом фиксированном значении 𝑥.

5. Формулировка результатов

Определение 5.1. Будем называть символом интегро–дифференциального оператора
(2.4) функцию

ℒ̂1(𝜆, 𝜉) := −
(︁
𝜆2 − 𝑎2𝜉2 + 𝐾̂(𝜆)𝜉2

)︁
, 𝜆 ∈ C, 𝜉 ∈ C, (5.1)

где

𝐾̂(𝜆) :=
𝑁∑︁
𝑖=1

𝑐𝑖𝐾̂𝑖(𝜆), 𝐾̂𝑖(𝜆) :=
1

(−𝑖𝜆)(1−𝛼) + 𝛽𝑖

— преобразование Фурье — Лапласа функции ядра интегрального оператора 𝐾𝑖(𝑡),
(𝑖 = 1, . . . , 𝑁), заданного формулой (2.2).

Теорема 5.1. Пусть конус Γ1 задан формулой (3.1), а конус 𝐶1 = int Γ*
1 задан форму-

лой (3.3). Тогда интегро–дифференциальный оператор ℒ1(𝐷𝑡, 𝐷𝑥), определенный форму-
лой (2.4), имеет фундаментальное решение ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), представимое в виде

ℰ1(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥), (5.2)
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где обобщенная функция ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), 𝜆0 — достаточно большое положительное чис-
ло.

Теорема 5.2. Пусть конус Γ1 задан формулой (3.1), конус 𝐶1 = int Γ*
1 задан формулой

(3.3) и ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1) — фундаментальное решение интегро–дифференциального опера-
тора ℒ1(𝐷𝑡, 𝐷𝑥). Тогда носитель фундаментального решения supp ℰ1(𝑡, 𝑥) не содержится
ни в каком меньшем выпуклом конусе Γ̃1 ⊂ Γ1 с вершиной в нуле.

Теорема 5.3. Пусть конус Γ1 задан формулой (3.1), а конус 𝐶1 = int Γ*
1 задан форму-

лой (3.3). Тогда фундаментальное решение (5.2) интегро–дифференциального оператора
ℒ1(𝐷𝑡, 𝐷𝑥), определенного формулой (2.4), единственно.

Лемма 5.1. Для того, чтобы обобщенная функция (5.2) была фундаментальным ре-
шением интегро–дифференциального оператора (2.4), необходимо и достаточно, чтобы
преобразование Фурье — Лапласа 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) обобщенной функции ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1)
удовлетворяло уравнению

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) = 1, (5.3)

где ℒ̂1(𝜆, 𝜉) символ интегро–дифференциального оператора (2.4), определенный формулой
(5.1), и были выполнены следующие условия:

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉) ̸= 0,
1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
∈ 𝐻(𝑇𝐶1). (5.4)

6. Доказательство леммы 5.1 и теоремы 5.1

Доказательство леммы 5.1. Пусть ℰ1(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥) фундаментальное решение опе-
ратора (2.4). Применяя преобразование Фурье — Лапласа к обеим частям равенства (2.5),
получим равенство

ℒ̂1(𝜆̃, 𝜉)𝐿[𝑒
𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉) = 1. (6.1)

Из свойств преобразования Фурье — Лапласа (см. [2, гл. II, §9]) следует, что

𝐿[𝑒𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉) = 𝐿[ℰ0(𝑡, 𝑥)](𝜆̃− 𝑖𝜆0, 𝜉), (𝜆̃− 𝑖𝜆0, 𝜉) ∈ 𝑇𝐶1 .

Обозначим 𝜆 := 𝜆̃ − 𝑖𝜆0. Тогда уравнение (6.1) принимает вид (5.3). Обобщенная функ-
ция ℰ0(𝑡, 𝑥) принадлежит пространству 𝒮 ′(Γ1), следовательно, по теореме 4.1, функция
𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) принадлежит пространству 𝐻(𝑇𝐶1), т.е. выполнены условия (5.4).
Обратно, если функция 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) удовлетворяет уравнению (5.3) и выполнены

условия (5.4) то, согласно теореме 4.1, обобщенная функция ℰ0(𝑡, 𝑥) принадлежит про-

странству 𝒮 ′(Γ1) и, при замене переменных 𝜆 := 𝜆̃− 𝑖𝜆0, функция

𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) = 𝐿[𝑒𝜆0𝑡ℰ0(𝑡, 𝑥)](𝜆̃, 𝜉)

удовлетворяет уравнению (6.1). Следовательно, обобщенная функция

ℰ(𝑡, 𝑥) = 𝑒𝜆0𝑡ℰ0(𝑡, 𝑥) ∈ 𝒟′(Γ1)

является фундаментальным решением оператора (2.4). Лемма 5.1 доказана.

Обозначим 𝜆̃ := 𝜆+ 𝑖𝜆0, где 𝜆0 — некоторая константа. Тогда для функции ℒ̂1, заданной
формулой (5.1), справедливо следующее представление:

ℒ̂1(𝜆̃, 𝜉) = −
(︁
𝜆̃2 − (𝑎2 − 𝐾̂(𝜆̃))𝜉2

)︁
= (𝑎2 − 𝐾̂(𝜆̃))(𝜉 − 𝜉1(𝜆̃))(𝜉 + 𝜉1(𝜆̃)), (6.2)
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где ±𝜉1(𝜆̃) — корни уравнения ℒ̂1(𝜆̃, 𝜉) = 0, т.е.

𝜉1(𝜆̃) =
𝜆̃√︁

𝑎2 − 𝐾̂(𝜆̃)
. (6.3)

Заметим, что для корня 𝜉1(𝜆̃) при достаточно больших 𝜆0 > 0 справедливо следующее
асимптотическое представление

𝜉1(𝜆̃) =
1

𝑎
𝜆̃+

1

2𝑎3
𝜆̃𝐾̂(𝜆̃)(1 + 𝑜(1)), |𝜆̃| → +∞. (6.4)

Действительно, из формулы (6.3), при достаточно больших 𝜆0 > 0, получаем

𝜉1(𝜆̃) =
1

𝑎
𝜆̃

(︂
1− 1

𝑎2
𝐾̂(𝜆̃)

)︂− 1
2

=
1

𝑎
𝜆̃

(︂
1 +

1

2𝑎2
𝐾̂(𝜆̃)(1 + 𝑜(1))

)︂
, |𝜆̃| → +∞.

Для доказательства теоремы 5.1 и теоремы 5.2 понадобятся следующие вспомогательные
леммы 6.1 и 6.2, доказательства которых будут приведены в параграфе 9.

Лемма 6.1. Выполнены условия:

1) Пусть конус 𝐶1 задан формулой (3.3), (Im𝜆, Im 𝜉) ∈ 𝐶1. Тогда Im𝜆 > 0.
2) Пусть Im𝜆 > 0. Тогда, при достаточно больших 𝜆0 > 0, справедливы неравенства

Im
(︁
𝜆̃𝐾̂(𝜆̃)

)︁
> 0, tg

(︁𝛼𝜋
2

)︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
>

⃒⃒⃒
Re

(︁
𝜆̃𝐾̂(𝜆̃)

)︁⃒⃒⃒
, (6.5)

где 0 < 𝛼 < 1, 𝜆̃ := 𝜆+ 𝑖𝜆0, и для корня 𝜉1(𝜆̃), определенного формулой (6.3), справед-
ливо асимптотическое представление

Im 𝜉1(𝜆̃) =
1

𝑎
Im 𝜆̃+

1

2𝑎3
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
(1 + 𝑜(1)), Im 𝜆̃→ +∞. (6.6)

Лемма 6.2. Пусть конусы Γ1 и 𝐶1 определяются формулами (3.1)и (3.3), соответ-
ственно. Тогда для любых (𝜆, 𝜉) ∈ 𝑇𝐶1 справедливы следующие неравенства:

1

𝑎
(Im𝜆± 𝑎 Im 𝜉) > ∆(Im𝜆, Im 𝜉), (6.7)

где
∆(Im𝜆, Im 𝜉) = inf

(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡 Im𝜆+ 𝑥 Im 𝜉)

— расстояние от точки (Im𝜆, Im 𝜉) ∈ 𝐶1 до границы конуса 𝐶1, константа 𝑎 > 0 входит
в определение конуса Γ1.

Доказательство теоремы 5.1. Согласно лемме 5.1, обобщенная функция (5.2) является
фундаментальным решением интегро–дифференциального оператора (2.4), тогда и толь-
ко тогда, когда преобразование Фурье — Лапласа 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) обобщенной функции
ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1) удовлетворяет уравнению (5.3) и выполнены условия (5.4). Следователь-
но, для доказательства теоремы 5.1 достаточно показать, что для некоторого достаточно
большого положительного числа 𝜆0 выполнены условия (5.4).
Согласно условию (4.1), для этого достаточно показать, что найдутся такие числа 𝛼 ⩾ 0,

𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z), при которых имеет место оценка⃒⃒⃒⃒
⃒ 1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)

⃒⃒⃒⃒
⃒ ⩽𝑀

(︀
1 + |𝜆|2 + |𝜉|2

)︀𝛼
2
[︀
1 + ∆−𝛽 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 , (6.8)

где
∆(𝑝, 𝑞) = inf

(𝑡,𝑥)∈Γ1

𝑡2+𝑥2=1

(𝑡 𝑝+ 𝑥 𝑞)
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— расстояние от точки (𝑝, 𝑞) ∈ 𝐶1 до границы конуса 𝐶1, 𝑀 — положительная константа.
Согласно представлению (6.2), для доказательства выполнения условия (6.8), достаточ-

но получить оценки снизу для сомножителей |𝑎2 − 𝐾̂(𝜆̃)|, |𝜉 − 𝜉1(𝜆̃)| и |𝜉 + 𝜉1(𝜆̃)| функции
|ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)|. Пусть 𝜆̃ = 𝑟(cos𝜙+ 𝑖 sin𝜙), где

𝑟 = |𝜆̃|, 𝜙 = Arg 𝜆̃ ∈ (−𝜋 + 2𝜋𝑘, 𝜋 + 2𝜋𝑘], 𝑘 ∈ Z.

Учитывая утверждения лемм 6.1 и 6.2, а также оценку (9.3), при достаточно больших
𝜆0 > 0, получаем следующие оценки:⃒⃒⃒

𝜉 ± 𝜉1(𝜆̃)
⃒⃒⃒
⩾

1

𝑎

⃒⃒⃒
𝑎 Im 𝜉1(𝜆̃)± 𝑎 Im 𝜉

⃒⃒⃒
=

1

𝑎

⃒⃒⃒
𝑎 Im 𝜉1(𝜆̃)− Im𝜆+ Im𝜆± 𝑎 Im 𝜉

⃒⃒⃒
=

1

𝑎

(︂
𝜆0 +

1

2𝑎2
Im(𝜆̃𝐾̂(𝜆̃))(1 + 𝑜(1)) + Im𝜆± 𝑎 Im 𝜉

)︂
>

1

𝑎
(Im𝜆± 𝑎 Im 𝜉) > ∆(Im𝜆, Im 𝜉)

и ⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
⩾

⃒⃒⃒
𝑎2 − |𝐾̂(𝜆̃)|

⃒⃒⃒
⩾

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

1

|(−𝑖𝜆̃)1−𝛼 + 𝛽𝑖|

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑟1−𝛼

(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
+ 𝛽𝑖

⃒⃒⃒−1

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

(︂(︁
𝑟1−𝛼 cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︂− 1
2

⃒⃒⃒⃒
⃒

⩾

⃒⃒⃒⃒
⃒𝑎2 −

𝑁∑︁
𝑖=1

(︁
𝑟1−𝛼 cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁−1

⃒⃒⃒⃒
⃒ > 𝑎2

2

Наконец, выбирая достаточно большое 𝜆0 > 0, из последних двух оценок получаем иско-

мую оценку (6.8) при 𝛼 = 0, 𝛽 = 2, 𝑀 =
2

𝑎2
:⃒⃒⃒⃒

⃒ 1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)

⃒⃒⃒⃒
⃒ ⩽ 2

𝑎2
∆−2(Im𝜆, Im 𝜉) < 𝑀

[︀
1 + ∆−2 (Im𝜆, Im 𝜉)

]︀
, (𝜆, 𝜉) ∈ 𝑇𝐶1 .

Теорема 5.1 доказана.

7. Доказательство теоремы 5.2

Из теоремы 5.1 следует, что интегро–дифференциальный оператор ℒ1(𝐷𝑡, 𝐷𝑥), заданный
формулой (2.4), имеет фундаментальное решение ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), представимое в виде
(5.2). Рассмотрим преобразование Фурье — Лапласа 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) обобщенной функции
ℰ0(𝑡, 𝑥) = 𝑒−𝜆0𝑡ℰ1(𝑡, 𝑥) по переменной 𝑡:

ℰ̂01(𝜆, 𝑥) := 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) = 𝐹1

[︀
ℰ0(𝑡, 𝑥)𝑒−𝑡 Im𝜆

]︀
(Re𝜆, 𝑥), 𝑡 ∈ Γ0, 𝜆 ∈ 𝑇𝐶0 ,

где 𝐹𝑡 — преобразование Фурье обобщенной функции по переменной 𝑡, конус Γ0 и трубча-
тая область 𝑇𝐶0 определены формулами (3.4) и (3.7), соответственно.
Для доказательства теоремы 5.2 понадобится следующая вспомогательная лемма 7.1,

доказательство которой будет приведено в параграфе 9.
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Лемма 7.1. Пусть 𝜆̃ := 𝜆+ 𝑖𝜆0,

𝐴(𝜆̃) :=
1

2𝜉1(𝜆̃)
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁ , (7.1)

где 𝜉1(𝜆̃) — корень уравнения ℒ̂1(𝜆̃, 𝜉) = 0, функция ℒ̂1(𝜆̃, 𝜉) определяется формулой (6.2).
Тогда ⃒⃒⃒

ℰ̂01(𝜆, 𝑥)
⃒⃒⃒
=

⃒⃒⃒
𝐴(𝜆̃)

⃒⃒⃒
𝑒−|𝑥| Im 𝜉1(𝜆̃), 𝑥 ∈ R. (7.2)

Доказательство теоремы 5.2. Согласно теореме 5.1, ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), следовательно,
ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ0), для любого фиксированного 𝑥 ∈ R. Из замечания 4.2 к теореме 4.1 сле-
дует, что 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) принадлежит пространству 𝐻(𝑇𝐶0) для любого фиксированного
𝑥 ∈ R. Поскольку ℰ0(𝑡, 𝑥) ∈ 𝒮 ′(Γ1), носитель функции ℰ0(𝑡, 𝑥) содержится в конусе

Γ1 =
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R, 𝑎𝑡 ⩾ |𝑥|

}︀
.

Тогда носитель функции

ℰ̃0(𝑡, 𝑥) := ℰ0
(︁
𝑡+

|𝑥|
𝑎
, 𝑥
)︁

принадлежит конусу Γ0 = {𝑡 ∈ R | 𝑡 ⩾ 0} для любого фиксированного 𝑥 ∈ R. Следова-
тельно, ее преобразование Фурье — Лапласа 𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥) по переменной 𝑡 для любого
фиксированного 𝑥 ∈ R принадлежит пространству 𝐻(𝑇𝐶0), т.е. существуют такие 𝛼 ⩾ 0 и
𝛽 ⩾ 0, (𝛼, 𝛽 ∈ Z), что для любого фиксированного 𝑥 ∈ R справедлива оценка⃒⃒⃒

𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)
⃒⃒⃒
⩽𝑀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
, 𝜆 ∈ 𝑇𝐶0 , (7.3)

где 𝑀 — положительная константа. Кроме того,

𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥) = 𝐿1[ℰ0
(︂
𝑡+

|𝑥|
𝑎
, 𝑥

)︂
](𝜆, 𝑥) = 𝑒−𝑖

|𝑥|
𝑎
𝜆𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥).

Следовательно, ⃒⃒⃒
𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)

⃒⃒⃒
= 𝑒

|𝑥|
𝑎

Im𝜆 |𝐿1[ℰ0 (𝑡, 𝑥)](𝜆, 𝑥)|

Отсюда и из оценки (7.3) получаем оценку

|𝐿1[ℰ0 (𝑡, 𝑥)](𝜆, 𝑥)| =
⃒⃒⃒
𝐿1[ℰ̃0(𝑡, 𝑥)](𝜆, 𝑥)

⃒⃒⃒
𝑒−

|𝑥|
𝑎

Im𝜆

⩽𝑀
(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎

Im𝜆
(7.4)

при 𝜆 ∈ 𝑇𝐶0 .
Покажем, теперь, что носитель фундаментального решения suppℰ1(𝑡, 𝑥) не содержится

ни в каком меньшем выпуклом конусе

Γ1𝜀 :=
{︀
(𝑡, 𝑥) ∈ R2| 𝑡 ⩾ 0, 𝑥 ∈ R, (𝑎− 𝜀)𝑡 ⩾ |𝑥|

}︀
⊂ Γ1

с вершиной в нуле, где 𝜀 ∈ (0, 𝑎).
Допустим противное, тогда для преобразования Фурье — Лапласа 𝐿1 (ℰ0(𝑡, 𝑥)) (𝜆, 𝑥)

обобщенной функции ℰ0(𝑡, 𝑥) по переменной 𝑡 справедлива следующая оценка (аналогич-
ная оценке (7.4)):

|𝐿1 (ℰ0(𝑡, 𝑥)) (𝜆, 𝑥)| ⩽𝑀𝜀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎−𝜀

Im𝜆, (7.5)

где 𝑀𝜀 — положительная константа. Используя равенство (7.2), получаем следующую
оценку

𝑒−|𝑥| Im 𝜉1(𝜆̃) ⩽𝑀1𝜀

(︀
1 + |𝜆|2

)︀𝛼
2
[︀
1 + (Im𝜆)−𝛽

]︀
𝑒−

|𝑥|
𝑎−𝜀

Im𝜆.
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Далее, полагая 𝑥 ̸= 0 и подставляя вместо Im 𝜉1(𝜆̃), соответствующее асимптотическое
представление (6.6), получаем, при достаточно больших Im𝜆 > 0, следующее неверное
неравенство:

Im𝜆

𝑎
>

Im𝜆

𝑎− 𝜀
(1 + 𝑜(1)), Im𝜆→ +∞.

Таким образом, пришли к противоречию, следовательно, носитель фундаментального ре-
шения supp ℰ(𝑡, 𝑥) не содержится ни в каком меньшем выпуклом конусе Γ̃1 ⊂ Γ1 с верши-
ной в нуле. Теорема 5.2 доказана.

8. Доказательство теоремы 5.3

Введем обозначения

𝐷𝑡 :=
𝜕

𝜕𝑡
, 𝐷𝑥 :=

𝜕

𝜕𝑥
, 𝑃0(𝐷𝑡, 𝐷𝑥) :=

𝜕2

𝜕𝑡2
− 𝑎2

𝜕2

𝜕𝑥2
, 𝑃1(𝐷𝑥) :=

𝜕2

𝜕𝑥2
.

Допустим, что существует другое фундаментальное решение ℰ̃(𝑡, 𝑥) оператора (2.4). Рас-
смотрим обобщенную функцию

𝑢(𝑡, 𝑥) := ℰ1(𝑡, 𝑥)− ℰ̃(𝑡, 𝑥),

которая является решением уравнения

ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) = 0, (8.1)

где оператор ℒ1(𝐷𝑡, 𝐷𝑥) задан формулой (2.4). Покажем, что уравнение (8.1) имеет только
нулевое решение в классе обобщенных функций, для которых существуют свертки

𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ̃(𝑡, 𝑥) и (𝑢 * ℰ1)(𝑡, 𝑥)

(здесь и далее свертка с функцией 𝐾(𝑡) означает свертку по переменной 𝑡 при фиксиро-
ванном значении 𝑥). Действительно,

𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * 𝛿(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)
= 𝑢(𝑡, 𝑥) * 𝑃0(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)).

Согласно правилу дифференцирования свертки обобщенных функций (см. [1, §7.5]),

𝑢(𝑡, 𝑥) * 𝑃0(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = 𝑃0(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) * ℰ1(𝑡, 𝑥). (8.2)

Покажем, что

𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)) = (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) * ℰ1(𝑡, 𝑥). (8.3)

Поскольку ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), тогда ℰ1(𝑡, 𝑥) ∈ 𝒟′
+ по переменной 𝑡 при фиксированном зна-

чении 𝑥, кроме того, 𝐾(𝑡) ∈ 𝒟′
+, по определению. Следовательно, выполнены условия

теоремы из монографии [1, §7.7], свертка 𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) cуществует и представ-
ляется в виде формулы (25) из [1, §7.7]:

(𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥), 𝜙𝑥(𝑡)) = (𝐾(𝑡)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥), 𝜂1(𝑡)𝜂2(𝜏)𝜙𝑥(𝑡+ 𝜏))

при всех 𝜙𝑥(𝑡) ∈ 𝒟(R), где 𝜂𝑖(𝑡) ∈ 𝐶∞(R) (𝑖 = 1, 2) любые функции, равные 1 в окрестности
полуоси [0,+∞) и 0 при достаточно больших отрицательных 𝑡.
Рассмотрим последовательность функций 𝜂𝑘(𝑡, 𝜏) ∈ 𝒟(R2), сходящихся к 1 в R2, кото-

рая используется для определения свертки обобщенных функций (см. [1, §7.4]). Согласно
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определению свертки обобщенных функций и теореме из монографии [1, §7.7], при всех
𝜙𝑥(𝑡) ∈ 𝒟(R), будем иметь

(𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)), 𝜙𝑥(𝑡))

= lim
𝑘→∞

(𝑢(𝑡, 𝑥)× (𝐾(𝜏) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥)), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏))

= lim
𝑘→∞

((𝐾(𝜏) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏, 𝑥)), (𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏)))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏 ′, 𝑥)), 𝜂1(𝜏)𝜂2(𝜏 ′) (𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′)))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝜏 ′, 𝑥))× 𝑢(𝑡, 𝑥), 𝜂1(𝜏)𝜂2(𝜏
′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′)) .

Здесь мы воспользовались леммой из [1, §7.7], согласно которой

(𝑢(𝑡, 𝑥), 𝜂𝑘(𝑡, 𝜏)𝜙𝑥(𝑡+ 𝜏)) ∈ 𝒟′(R).

Замечая, что 𝜂1(𝜏)𝜂2(𝜏
′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡 + 𝜏 + 𝜏 ′) ∈ 𝒟(R3), пользуясь коммутативностью

и ассоциативностью прямого произведения обобщенных функций [1, §7.2-7.3], и замечая,
что

(𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) = 0, ℰ1(𝜏 ′, 𝑥) = 0 при 𝜏 < 0, 𝜏 ′ < 0,

применяем теорему из [1, §7.7] и совершаем предельный переход в цепочке равенств:

(𝑢(𝑡, 𝑥) * (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥)), 𝜙𝑥(𝑡))

= lim
𝑘→∞

((𝐾(𝜏)× 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥))× ℰ1(𝜏 ′, 𝑥), 𝜂1(𝜏)𝜂2(𝜏 ′)𝜂𝑘(𝑡, 𝜏 + 𝜏 ′)𝜙𝑥(𝑡+ 𝜏 + 𝜏 ′))

= ((𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) * ℰ1(𝑡, 𝑥), 𝜙𝑥(𝑡)) .

Заметим, что свертка (𝐾(𝑡) * 𝑃1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥)) * ℰ1(𝑡, 𝑥) по переменной 𝑥 существует, т.к.
ℰ1(𝑡, 𝑥) ∈ 𝒟′(Γ1), т.е. обобщенная функция ℰ1(𝑡, 𝑥) является финитной по переменной 𝑥
при каждом фиксированном значении 𝑡 (см. [1, §7.6]).
Из формул (8.2) и (8.3) получаем следующую цепочку равенств:

𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * 𝛿(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) * ℒ1(𝐷𝑡, 𝐷𝑥)ℰ1(𝑡, 𝑥) = ℒ1(𝐷𝑡, 𝐷𝑥)𝑢(𝑡, 𝑥) * ℰ1(𝑡, 𝑥) = 0.

Теорема 5.3 доказана.

9. Доказательство леммы 6.1, леммы 6.2 и леммы 7.1

Доказательство леммы 6.1. 1) Из определения конусов Γ1 и 𝐶1 следует, что неравенство

𝑡 Im𝜆+ 𝑥 Im 𝜉 > 0

выполняется тогда и только тогда, когда (Im𝜆, Im 𝜉) ∈ 𝐶1 и (𝑡, 𝑥) ∈ Γ1. Следовательно,
если точка (𝑡1, 𝑥) /∈ Γ1, т.е. 𝑎𝑡1 < |𝑥|, то для всех (Im𝜆, Im 𝜉) ∈ 𝐶1 справедливо неравенство
𝑡1 Im𝜆+ 𝑥 Im 𝜉 ⩽ 0, т.е.

𝑡 Im𝜆+ 𝑥 Im 𝜉 > 0 ⇔ 𝑎𝑡 ⩾ |𝑥|, −𝑡1 Im𝜆− 𝑥 Im 𝜉 ⩾ 0 ⇔ −𝑎𝑡1 > −|𝑥|.

Таким образом, (𝑡− 𝑡1) Im𝜆 > 0 и 𝑡− 𝑡1 > 0, следовательно, Im𝜆 > 0.

2) Пусть 𝜆̃ = 𝑟(cos𝜙+ 𝑖 sin𝜙), где

𝑟 = |𝜆̃|, 𝜙 = Arg 𝜆̃ ∈ (−𝜋 + 2𝜋𝑘, 𝜋 + 2𝜋𝑘], 𝑘 ∈ Z.

Тогда (︁
−𝑖𝜆̃

)︁1−𝛼

= 𝑟1−𝛼
(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
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и

𝜆̃𝐾̂𝑖(𝜆̃) =
𝑟(cos𝜙+ 𝑖 sin𝜙)

𝑟1−𝛼
(︁
cos

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝑖 sin

(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁)︁
+ 𝛽𝑖

, 𝑖 = 1, . . . , 𝑁.

Отсюда получаем

Re
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
=

𝑟2−𝛼 sin
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 cos𝜙(︁

𝑟(1−𝛼) cos
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁ , (9.1)

Im
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
=

𝑟2−𝛼 cos
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 sin𝜙(︁

𝑟(1−𝛼) cos
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖

)︁2

+ 𝑟2(1−𝛼) sin2
(︁
(1− 𝛼)

(︁
𝜙− 𝜋

2

)︁)︁ . (9.2)

Т.к. Im𝜆 > 0, выбирая 𝜆0 > 0, получаем, что Im 𝜆̃ > 0 и 𝜙 ∈ (2𝜋𝑘, 𝜋 + 2𝜋𝑘), 𝑘 ∈ Z.
Следовательно,

𝛼
(︁
𝜙− 𝜋

2

)︁
⊂

(︁
𝛼
(︁
−𝜋
2
+ 2𝜋𝑘

)︁
, 𝛼

(︁𝜋
2
+ 2𝜋𝑘

)︁)︁
⊂

(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, 𝑘 ∈ Z

при 𝛼 ∈ (0, 1) и

cos
(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
> 0, 𝛼 ∈ (0, 1). (9.3)

Таким образом, при достаточно больших 𝜆0 > 0 справедливо неравенство Im
(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁
> 0,

𝑖 = 1, .., 𝑁 и, следовательно,

Im
(︁
𝜆̃𝐾̂(𝜆̃)

)︁
> 0.

Покажем, что при достаточно больших 𝜆0 > 0 и 0 < 𝛼 < 1 выполняется второе из
неравенств (6.5). Используя представления (9.1), (9.2), получаем, что выражение, которое
стоит в числителе разности(︁

tg
(︁𝛼𝜋

2

)︁
Im

(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁)︁2

−
(︁
Re

(︁
𝜆̃𝐾̂𝑖(𝜆̃)

)︁)︁2

,

имеет вид

tg2
(︁𝛼𝜋

2

)︁(︁
𝑟2−𝛼 cos

(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 sin𝜙

)︁2

−
(︁
𝑟2−𝛼 sin

(︁
𝛼
(︁
𝜙− 𝜋

2

)︁)︁
+ 𝛽𝑖𝑟 cos𝜙

)︁2

:=𝐴1(𝑟, 𝜙) + 𝐴2(𝑟, 𝜙) + 𝐴3(𝑟, 𝜙),

где

𝐴1(𝑟, 𝜙) := 𝑟2(2−𝛼)
[︁
tg2

(︁𝛼𝜋
2

)︁
cos2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
− sin2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁]︁
,

𝐴2(𝑟, 𝜙) := 2𝑟3−𝛼𝛽𝑖

(︁
tg2

(︁𝛼𝜋
2

)︁
cos

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
sin𝜙− sin

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁
cos𝜙

)︁
,

𝐴3(𝑟, 𝜙) := 𝑟2𝛽2
𝑖

(︁
tg2

(︁𝛼𝜋
2

)︁
sin2 𝜙− cos2 𝜙

)︁
.

Заметим, что при 0 < 𝛼 < 1 справедлива оценка

𝐴1(𝑟, 𝜙) > 𝑟2(2−𝛼)
[︁
sin2

(︁𝛼𝜋
2

)︁
− sin2

(︁
𝛼
(︁𝜋
2
− 𝜙

)︁)︁]︁
= 𝑟2(2−𝛼) sin(𝛼(𝜋 − 𝜙)) sin𝜙 > 0

Кроме того,

𝑟 =
√︀
(Re𝜆)2 + (Im𝜆+ 𝜆0)2, Im𝜆 > 0, 0 < 𝛼 < 1

и

2(2− 𝛼) = (1− 𝛼) + 3− 𝛼 > 3− 𝛼 = (1− 𝛼) + 2 > 2.
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Таким образом, получаем, что при достаточно больших 𝜆0 > 0 сумма 𝐴1(𝑟, 𝜙) +𝐴2(𝑟, 𝜙) +
𝐴3(𝑟, 𝜙) > 0, откуда вытекает справедливость второго из неравенств (6.5).

Рассмотрим асимптотическое представление (6.4). Пусть 𝜓(𝜆̃) = 𝑜(1) при |𝜆̃| → +∞. По-
кажем, что при достаточно больших 𝜆0 > 0, справедливо асимптотическое представление
(6.6). Действительно,

Im
(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁
= Im

(︁
𝜓(𝜆̃)

)︁
Re

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
+Re

(︁
𝜓(𝜆̃)

)︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁
.

Тогда, учитывая второе неравенство (6.5), получаем оценку⃒⃒⃒
Im

(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁⃒⃒⃒
< Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁(︁⃒⃒⃒
Re

(︁
𝜓(𝜆̃)

)︁⃒⃒⃒
+ tg

(︁𝛼𝜋
2

)︁ ⃒⃒⃒
Im

(︁
𝜓(𝜆̃)

)︁⃒⃒⃒)︁
из которой следует, что

Im
(︁
𝜓(𝜆̃)𝜆̃𝐾̂(𝜆̃)

)︁
= 𝑜

(︁
Im

(︁
𝜆̃𝐾̂(𝜆̃)

)︁)︁
при Im 𝜆̃→ +∞.

Таким образом, из асимптотического представления (6.4) получаем асимптотическое пред-
ставление (6.6). Лемма 6.1 доказана.

Доказательство леммы 6.2. Учитывая п. 1) леммы 6.1, для любых (𝜆, 𝜉) ∈ 𝑇𝐶1 получаем

∆(Im𝜆, Im 𝜉) = inf
𝑎𝑡⩾|𝑥|

𝑡2+𝑥2=1

(𝑡 Im𝜆+ 𝑥 Im 𝜉)

= inf
𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆+

𝑥√
𝑡2 + 𝑥2

Im 𝜉

)︂
= inf

𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆− |𝑥|√

𝑡2 + 𝑥2
| Im 𝜉|

)︂
= inf

𝑎𝑡⩾|𝑥|

(︂
𝑡√

𝑡2 + 𝑥2
Im𝜆− 𝑎𝑡√

𝑡2 + 𝑥2
| Im 𝜉|

)︂
=

1√
1 + 𝑎2

(Im𝜆− 𝑎| Im 𝜉|) < 1

𝑎
(Im𝜆− 𝑎| Im 𝜉|)

⩽
1

𝑎
(Im𝜆+ 𝑎| Im 𝜉|) ,

где последнее равенство справедливо, т.к.

𝑡√
𝑡2 + 𝑥2

⩾
𝑡√︀

𝑡2 + (𝑎𝑡)2
=

1√
1 + 𝑎2

.

Таким образом, получаем оценки (6.7). Лемма 6.2 доказана.

Доказательство леммы 7.1. Из равенства (5.3) получаем следующее представление для
обобщенной функции 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉):

𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉) =
1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
=

1

ℒ̂1(𝜆̃, 𝜉)
, (𝜆, 𝜉) ∈ 𝑇𝐶1 . (9.4)

Используя представление (6.2), получим следующее разложение

1

ℒ̂1(𝜆+ 𝑖𝜆0, 𝜉)
=

1

ℒ̂1(𝜆̃, 𝜉)
= 𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
, (9.5)

где 𝜆̃ := 𝜆 + 𝑖𝜆0, 𝜉1(𝜆̃) — корень уравнения ℒ̂1(𝜆̃, 𝜉) = 0, который определяется формулой

(6.3), 𝐴(𝜆̃) определяется формулой (7.1).
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Определенное выше преобразование Фурье — Лапласа ℰ̂01(𝜆, 𝑥) = 𝐿1[ℰ0(𝑡, 𝑥)](𝜆, 𝑥) обоб-
щенной функции ℰ0(𝑡, 𝑥) по переменной 𝑡 можно представить, как обращение по перемен-

ной 𝜉 преобразования Фурье — Лапласа 𝐿−1
2 [ℰ̂0(𝜆, 𝜉)](𝜆, 𝑥) функции

ℰ̂0(𝜆, 𝜉) := 𝐿[ℰ0(𝑡, 𝑥)](𝜆, 𝜉),
т.е.

ℰ̂01(𝜆, 𝑥) = 𝐿1 [ℰ0(𝑡, 𝑥)] (𝜆, 𝑥) = 𝐿−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥)

= 𝑒𝑥 Im 𝜉𝐹−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥) = 𝑒𝑥 Im 𝜉𝐹−1

2

[︁
ℒ̂−1

1 (𝜆̃, 𝜉)
]︁
(𝜆, 𝑥).

Далее, учитывая представление (9.4), аналитичность функции ℒ̂−1
1 (𝜆̃, 𝜉) в трубчатой об-

ласти 𝑇𝐶1 , разложение (9.5) и применяя теорему Коши о вычетах при 𝑥 ⩽ 0, Im 𝜉 > 0,
(𝜆, 𝜉) ∈ 𝑇𝐶1 получаем следующую цепочку равенств:

ℰ̂01(𝜆, 𝑥) =𝑒𝑥 Im 𝜉𝐹−1
2 [𝐿 [ℰ0(𝑡, 𝑥)] (𝜆, 𝜉)] (𝜆, 𝑥) = 𝑒𝑥 Im 𝜉𝐹−1

2

[︁
ℒ̂−1

1 (𝜆̃, 𝜉)
]︁
(𝜆, 𝑥)

=
1

2𝜋

+∞∫︁
−∞

𝑒𝑥 Im 𝜉−𝑖𝑥Re 𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑Re 𝜉 =

1

2𝜋
lim

𝑅→+∞

𝑅∫︁
−𝑅

𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
𝑒−𝑖𝑥𝜉𝑑Re 𝜉

=
1

2𝜋
lim

𝑅→+∞

⎡⎣ 𝑅+𝑖𝑅∫︁
𝑅

+

−𝑅+𝑖𝑅∫︁
𝑅+𝑖𝑅

+

−𝑅∫︁
−𝑅+𝑖𝑅

⎤⎦(︂
𝐴(𝜆̃)

[︂
1

𝜉 − 𝜉1(𝜆̃)
− 1

𝜉 + 𝜉1(𝜆̃)

]︂
𝑒−𝑖𝑥𝜉𝑑Re 𝜉

)︂
+ 𝑖𝐴(𝜆̃)𝑒−𝑖𝑥𝜉1(𝜆̃) = 𝑖𝐴(𝜆̃)𝑒−𝑖𝑥𝜉1(𝜆̃).

Последнее равенство вытекает из следующих оценок для интегралов при 𝑥 ⩽ 0, Im 𝜉 > 0,
(𝜆, 𝜉) ∈ 𝑇𝐶1 : ⃒⃒⃒⃒

⃒⃒
±𝑅+𝑖𝑅∫︁
±𝑅

𝑒−𝑖𝑥𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑𝜉

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒

𝑅∫︁
0

𝑒−𝑖𝑥(±𝑅+𝑖 Im 𝜉)𝑑 Im 𝜉

𝜆̃2 +
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁
(±𝑅 + 𝑖 Im 𝜉)2

⃒⃒⃒⃒
⃒⃒

⩽

𝑅∫︁
0

𝑒𝑥 Im 𝜉𝑑 Im 𝜉⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
(𝑅2 + (Im 𝜉)2)− |𝜆̃|2

⃒⃒⃒
⩽

𝑅⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
𝑅2 − |𝜆̃|2

⃒⃒⃒ → 0, 𝑅 → +∞,

⃒⃒⃒⃒
⃒⃒
−𝑅+𝑖𝑅∫︁
𝑅+𝑖𝑅

𝑒−𝑖𝑥𝜉

ℒ̂1(𝜆̃, 𝜉)
𝑑𝜉

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒
−𝑅∫︁
𝑅

𝑒−𝑖𝑥(Re 𝜉+𝑖𝑅)𝑑Re 𝜉

𝜆̃2 +
(︁
𝑎2 − 𝐾̂(𝜆̃)

)︁
(Re 𝜉 + 𝑖𝑅)2

⃒⃒⃒⃒
⃒⃒

⩽

𝑅∫︁
−𝑅

𝑒𝑥𝑅𝑑Re 𝜉⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
(𝑅2 + (Re 𝜉)2)− |𝜆̃|2

⃒⃒⃒
⩽

2𝑅⃒⃒⃒⃒⃒⃒
𝑎2 − 𝐾̂(𝜆̃)

⃒⃒⃒
𝑅2 − |𝜆̃|2

⃒⃒⃒ → 0, 𝑅 → +∞.

Аналогично, при 𝑥 > 0, Im 𝜉 < 0, (𝜆, 𝜉) ∈ 𝑇𝐶1 можно установить равенство

ℰ̂01(𝜆, 𝑥) = −𝑖𝐴(𝜆̃)𝑒𝑖𝑥𝜉1(𝜆̃).
Лемма 7.1 доказана.
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