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ABEL — GONCHAROV PROBLEM IN KERNEL OF
CONVOLUTION OPERATOR

V.V. NAPALKOV JR., A.A. NUYATOV

Abstract. In the work we prove that the multiple interpolation problem is solvable, and
as a corollary, the same for the Abel — Goncharov problem in the kernel of a convolution
operator, when the zero sequence of the characteristic function of the convolution operator
and the nodes, which are zeros of an entire function, are located in some angles in the
complex plane and the nodes are multiple.
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1. INTRODUCTION

The Abel — Goncharov problem belongs to the theory of functions of complex variable and it consists
in finding the set of all functions f(z) from a given class, which satisfy the relations

FO0) = A, n=0,1,2,...,

where {A,} and {\,} are admissible sequences of complex numbers [1].

As it is shown below, in the kernel of the convolution operator the Abel — Goncharov problem
is a particular case of the multipoint de la Vallée Poussin problem for multiple nodes (or multiple
interpolation problem) in the same space. Originally the de la Vallée Poussin problem was posed for
a homogeneous linear differential equation of order n [11]

g™ 4 p1(2)y™ Y 4 pasi (@)Y pa(x)y =0, (L.1)

the coefficients pi(z), ..., pn—1(z), pn(z) of which are continuous functions of x on the segment [a, b]
with some additional condition. The existence and uniqueness theorem says that, given a point 2"
in [a,b] and the values y°, v{, ..., y9_,, there exists a unique solution y(z) of Equation (1.1), which
obeys the initial conditions

y@®) =9 @) =9, . yEY) =0
But in problems of mathematical physics and applied mathematics one often needs to find a solution
to Equation (1.1), when not all initial conditions are prescribed at the same point xz°. For instance,

for Equation (1.1) one can need to find a solution y(z), the graph of which passes n given points. In
other words, to construct a solution to (1.1), which satisfies the conditions

y(ag) = Ag, k=1,2,...,n. (1.2)
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de la Vallée Poussin proved that if py(z) € Cla,b], k = 1,2,...,n, and the inequality

~ (-
Sul oy
k=1

holds, where I, > |pr(x)|, k =1,2,...,n, x € [a,b], then there exists a unique solution of the problem
(1.1), (1.2) for finitely many nodes.

In 2001 in [4], the solvability of the multipoint de la Vallée Poussin problem was proved in the kernel
of a convolution operator for infinitely many nodes, when the nodes belong to the set {0, +1,+2,...}.
We note that the multiple interpolation problem was considered in various domains [2], [3], [8], [9]-

2. FORMULATION OF PROBLEM

Let H(C) be the space of entire functions with the topology of uniform convergence on compact
sets, H*(C) be the dual space for H(C), Pc be the space of entire functions of exponential type. With
a function ¢ € P¢ we associate a functional F' € H*(C) such that F(z) = ¢(z), where F(z) = (Fy, e?)
is the Laplace transform of the functional F. We write the convolution operator in H(C) as

My[fl(z) = (Fi, f(z+1)),  feH(C).

We denote by Ker M, = {f € H(C) : M,[f] = 0} the kernel of convolution operator M.,,.

We pose the multipoint de la Vallée Poussin problem (or, in other words, the multiple inter-
polation problem) in Ker M, with the nodes p; € C being the zeros of ¢ € H(C), with the
multiplicities ¢;, j = 0,1,2,..., as follows: given an arbitrary sequence of complex numbers aé‘?,
J=0,1,2,...; k=0,1,...,¢g; — 1, whether there exists a function y € Ker M, such that

v () =aj, §=012..5 k=01,...¢-1

In [5] this problem was solved in the case, when the nodes are simple and lie on the real axis. In work
[6] the interpolation problem was solved in the convolution kernel, when the nodes are complex. In this
work we solve the multiple interpolation problem for complex nodes lying in some angle, its particular
case is the problem

y P () =ak, j=0,1,2,...; k=0,

Hence, in the kernel of the convolution operator there exists a function y(z), which, for a sequence of

complex numbers al, ai, ..., a, ... satisfies

y® (ux) = af.

We thus obtain the Abel — Goncharov problem in the kernel of convolution operator.

In the case, when the characteristic function of convolution operator is a polynomial, the convolution
operator becomes a linear differential operator of finite order with constant coefficients, and hence, as an
important particular corollary we conclude that for a homogeneous linear differential operator of finite
order with constant coefficients the multiple interpolation problem and Abel — Goncharov problem
are solved. Moreover, a differential-difference operator, integro—differential operator, linear differential
operator of infinite order with constant coefficients are also particular cases of the convolution operator
and hence, the same problems are also solved for homogeneous equations.

3. PRELIMINARY RESULTS

We introduce a series of auxiliary notions, which are needed to formulate and prove the main results.
The topology 7¢ of the space Pg is defined as the inductive limit of normed weight spaces

By = {p(V) € Po: [l = sup lp(\)[e™ < 0}, neNN.
c
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Let S C C be the uniqueness set in Pg. Then in Pg we can introduce the topology 7g of inductive
limit of spaces

Bus = {p(N) € Po : |l = sup lp(A)|e™H < o0}, neN.
S

In what follows we shall need the convergence to zero in the topology 7¢ [7]: let fn, be a countable
sequence of function Pg, then f,,, — 0 as m — oo in the topology 7¢ if and only if there exist numbers
o> 0and M > 0 such that

(a.1) |fm(2)| < Me?l?l Vvm e N, Vze C;

(b.1) for each compact set K¢ C C: |fn(2)] =2 0 as m — o0, z € K.

Let us introduce the notion of sufficiency of a set S C Cin U C Pg¢ with topology the induced from
Pe.

Definition 3.1. We say that S is o sufficient set on U if the conditions
(a.2) for each sequence of functions qi(z) € U there exist numbers o >0 and M > 0 such that
lge(2)| < Me?l vk eN, vzes;
(b.2) for each compact set Kg C S : |qp(z)] =20 as k — o0, z € Kg
smply the convergence of this sequence on U.

The conditions (a.2) and (b.2) define the convergence to zero in the topology 7g.
The function 1 (2) € H(C) generates a linear continuous operator M, : Pc — Pg in the space P¢

[10], which acts by the rule

1 Z
My = o [ EEwOn©)ds
i
C
where v(§) is a function associated with f(z) in the Borel sense, C' is a closed contour enveloping all
singular points (§).

We denote by N, the zero set of function ¢ € Pg. In [5] the next statement was proved.

Theorem 3.1. Let ¢ € Pg, v € H(C) and N, is a sufficient set in Ker My, then the multipoint de
la Vallée Poussin problem is solvable in Ker M.

4. MAIN RESULT

Let N, = {/\k};:? be the zero set of the function ¢ € Pg, in which each zero is repeated according
to its order. In order to avoid cumbersome notation, in what follows by Az, k=1,2..., we mean
some subsequence of the sequence {\;}{>9); by Ny = {ux}/>5 we denote the set of zeros of a function
Y € H(C), where each zero is repeated according to its order, and ¢; stands for the order of zero pj;
and Nw is an infinite set, which consists of all different zeros of the function ¢» € H(C).

According to the result of work [10]|, the space Ker My consists of quasipolynomials with the
exponents in the set Ny, that is, each element 7(z) € Ker M, is written as

N g;j—1

r(z) = Z Z Cjizleti®,

j=1 i=0

and all coefficients C}; are nonzero. We introduce a function @Q(n) : IN — IN, which is defined as
n
Q)= q¢, ¢EeN,
j=1

the value Q(N) determines the number of terms in r(z).
Let us mention the properties of a quasipolynomials, which will be needed to prove the main result.
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Lemma 4.1. Let for some fized o € [0,400) there exists a number € [0, +00) such that o < 1
and the conditions hold

(a) Np C Dy ={z€ C:|Imz| < aRez} and there exists a subsequence A such that
Re(\;) < Re(A\p,,), keNN.
(b) Ny C Dg={z€ C:|Imz| < BRez}, and for the elements of the set Ny we have

1—ap
— k € IN. 4.1
Re(pr) < b Re(pk+1), k€ (4.1)
Then, under the condition
Ir(\e)| < Me?™ | M. o >0, Vkel, (4.2)
1) the estimate
1+a)e .
P =1,...,N,
Re lu’] 1 _ Oéﬁ J

holds;
2) the coefficients of quasipolynomial satisfy the estimate

‘ (QIN)=-1) ((Q(N)-1):22 1 1)o(14a) Re \;
e

Cil < C = Q(N)IM | 1es o, j=T,N, i=0,¢—1.

ko(n)

Proof. 1) We argue by contradiction. Let all zeros p1;, j =1,..., N be taken in the ascending order of

their real parts and suppose that

14+ a)o

Re >
UN 1—ap

We consider the quotient

ATt

|)\k’(1l e(1+ap) Re pj Re Ay
S ‘)\k|qN 6(1—045) RQ/LN RE)\k

— |Ak‘QZ7qN e(1+aﬁ) Re I Re )\kf(lfaﬁ) Re pun Re Ak '
‘)\%NﬁleﬂN)\k

For j =1,2,..., N — 1 by the condition (4.1) the exponent in the exponential is negative and this is
why the quotient of the absolute values tend to zero as Re Ay — +00. Hence,

i r(A) A, e AR = |Cy gl

This is why the growth of the quasipolynomial is determined by py. On the other hand, the growth
r(Ag) is determined by (4.2). Estimating from above and below in (4.2), we obtain the chain of
inequalities

N g;—1

Z Z CjiAZ_QN""le(Nj*MN))\k ‘)\k’qwfle(lfaﬁ) Reun Redr Ir(e)]

j=1 i=0

< Mea\)\k| < Mea(l-l—oz)Re)\k‘

We then get the inequality

N ¢;—1
Z Z Cji)\z_qN'i'le(Mj_MN))\k |)\k_‘QN_1€((1_O¢ﬁ) Re pny—o(1+a)) Re Ak < M.
J=1 i=0

The estimate Re uy > % implies that the left hand side of this inequality tend to +o00 as Re A\ —

+00 (as it has been proved above, the first factor tends to [Cng —1|). This contradicts the above

inequality. Thus, Reuy < (}J_rzzgg We have shown that the quasipolynomial r(z) involves only eti?

with the exponents ; obeying the estimate

(1+a)o

Rews < 55
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and since y; are zeros of an entire function, the quasipolynomial r(z) involves finitely many exponents.
This proves assertion 1.

2) We employ a simple observation that if the set of Q(N) zeros )\,;p is chosen so that the determinant
of matrix

A=(AL M) j=1,... N, i=0,...,¢;—1, p=1...,QN),

P

is non-zero, then the coefficients C}; are solutions to the system of linear equations

N ¢—1 \
.
>N Ciixg 7 =r(Np), p=1,...,QWN).
j=1 i=0
Let us prove by induction in the parameter t = 1,2, ..., that the set of zeros can be chosen so that the

absolute values of determinants

Alt) = (AL ™), =1, N(t), i=0,....qj—1, p=1,...1

P

exceed 1. We first consider ¢t = 1:

]det A(l)’ _ eRe(ltl)\kl) >e (1—aB) Re p1 Re)\kl > 1.

As Ay, we can take the first element in the sequence Aj.
Suppose that the zeros )\;Cp, p=1,2,...,t — 1 are chosen so that the absolute values of principal
minors exceed 1 and Re )\,;p increases in p. We expand the determinant of matrix A; along the last row

N(t) qj—
Bt () = 3 S (1) et Ay e,
7j=1 =0
where (—1)1)+ det Ay jy+ is the cofactor of the entry )\%te“j)“;t and
j—1
6,5)=i+1+> ¢,  q=0.
s=0
This implies
QN(t) 1
et At)] > | > (=N det Ay ) A eV ON
=0
N(t)— 1q]—1
Z HEDTE et Al(z 7), t)\Z i |
j=1 2:0

We denote the first term in the right hand side of inequality by Bj, the second term is denoted Bj
and we are going to estimate them from below and above, respectively. But first let us estimate from
above |det Al(m),t‘. This determinant is the sum of (Q(N(t)) — 1)! terms, each term is the product of
Q(N(t)) — 1 factors of form

AL MG =1 N(t), i=0,...,qj—1, p=1...,-1

P

Taking into consideration the monotonicity of sets p; and )\;cp, we obtain

\det Al(z’,j),t’ < (QIN@)) — 1)!|)\]~€t71|(Q(N(t))—1)e(Q(N( ))=1)(1+aB) Repuy ) Red, . (4.3)
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We estimate B;

qn—1
q _1 —_ ~ . - _1
B > ‘/\kt NOTE (1—aB)Repun @ ReAg, Z (1) ENE+E gy Al(i,N(t)),t)‘;t (an(—1)
=0
qN(t)_l (lfa,B)ReuNt Re \; o - qN(t) 1)
>(A,;t e OFM 1= N |det Ay vy t\’,\kt
i=0

In the latter inequality we have employed the fact that at the last element in the last row we have the
principal minor, which coincides with det A;;, by the induction assumption, its absolute value is not
less than 1. Using the inequality (4.3), we obtain the final estimate for By

an@)—1 (q_ _

: (1 - }A;;t

(v — QN (L)) — DI, @V E=De (QIN(£)—=1)(1+aB) Re iy (s Re Ay, 1)
t—1 9

-1
since now )\];?tfl and pp () are fixed and, as it has been proved above, )‘7%‘ tends to zero as Re )\,;t —
400, the second term in the brackets also tends to zero.
We denote ¢pmar = max gs estimate By from above
s=1,...,N(t)—1
Gmaz—1 -
By <(Q(N(t) — 1))| det Ay 1), ‘)\ ‘ eHaB) Ry )y Redg,

<(Q(N(t) . 1))(Q(N(t)) . 1)!|>\];t_1|(Q(N(t))—1)e(Q(N(t)) 1)(14+ap) Re pn e ReAkt )
I

In the latter inequality only two last factors are varying quantities depending on Re )\;ﬂ, while other
factors are fixed. The estimate for the absolute value of determinant is written as

Gmaz—1 6(1+OLB) Re”N(t)—l Re >\I~€t )

any—1 (q_ -
| det A(¢) ‘)\ ‘ eImaP) Repng ReAy,

’ <1 o ‘)\fct
— (QIN(t) = D) QN (1) = )|y, _, AN =DCRDTIETan e rvio fe Ay,
t—1

-1
an(t) 6(1_a,8) Re pn(p) Re)\fct [(1_

1
(v = DIQUN(E) =~ iy, [QOO-D QO femm e, , )

maz_l ~
RE pIteB) Repy  Redg, ‘)%

—1
(a0 = DIQUN(E) ~ iy, [ DA fenm e, , )

— (QIN(1) = ))(QN (1) — D]y, , QN0 QIO TaR Reie Redy,,

((1+aB) Re sy, ~(1-aB) Repn ) Re Ay,

In the latter identity, as ReAj — o0, the expression in the round brackets tends to 1 (by the
above facts), while the last factor in the square brackets tends to zero since by the condition (4.1) the
exponent of exponential is negative. Thus, if we choose the zero A with a sufficiently large Re A; ,
then A = |det A(t)| exceeds 1

By the Cramer’s rule
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where Ay(; ;) is the determinant of the matrix obtained from Ay by replacing I(i, j)th column by the
column of right hand sides. To estimate Ay(; ;) from above, the expand the corresponding matrix along
the I(7, j)th column

Q)

Al(i,j) = Z (—1)l(i’j)+p det AZ(i,j),pT()\;;p)7
p=1

As the relation (4.3), we obtain the estimate

|(Q(N)—1)6(Q(N)*1)(1+a,3) Repny Re g
(N)

’det Al(i,j),p’ < (Q(N) - 1)‘|>\]~gQ kQ(N)?

while by the condition (4.4) we get

(14+a)o Re A;,

()l < M a0,
Thus,
(Q(N)-1) N)— aff) Re Re Az a)o Re Az
A | < Q(N)!M‘AIEQ(N)‘ AN rad Reun oAz ) (H@T R ARG v,
N)-1 —1) B L 1)o(14a) Re A
< Q(N)!M‘)\" ‘(Q( 7D QDS+ Do (o) Rediy
kq(n)
and
(QN)-1) N)—1)1E28 L 1)o(14a) Re A;
1Cji| < C = Q(N)!M‘)‘%Qm)‘ LQM-D o (ta)Redgy
The proof is complete. O
Let the sequence
N g¢;j—1 ‘
() = 32 37 Cylm)sten
j=1 i=0

tend to zero in the topology Tn,. By means of the conditions (a.2) and (b.2) and in view of the
discreteness of set N, the convergence to zero in the topology 7n,, can be written as follows: for some
constants o, M > 0 the relations hold

rm(AR)] < MeP™ 0 ym e N, VkeN, (4.4)
and for each k£ € IN the sequence converges uniformly on compact subsets N, that is,
Irm(Ag)] — 0, m — oo. (4.5)

By Theorem 3.1, to prove the solvability of multiple interpolation problem in the kernel of convolution
operator, we need to show that r,,(2) — 0 in Ker My, 2 € C. We are in position to formulate the main
result.

Theorem 4.1. Let for some fized o € [0, +00) there exist a number B € [0, +00) such that o < 1
and the conditions be satisfied

(a) Np C Dy ={2€ C:|Imz| < aRez} and there exists a subsequence \j such that
Re();) < Re(Aj,,), k€N
(b) Ny C Dg={z€ C:|Imz| < BRez}, and the elements of set Ny satisfy

1—ap
1+ ap
Then under the conditions (4.4) and ({.5) the set N is sufficient in Ker My,

Re(ur) < Re(pg+1), k€N,
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Proof. As it has been proved in Lemma 4.1, the absolute value of determinant of the homogeneous
system

rm(/\];p) =0 VmelN
exceeds 1, and this is why all coefficients of the system vanish, that is,
rm(2) = 0.

This means that N, is the uniqueness set in Ker My,
Let us prove that

lim Cﬂ(m) = 0,

m— 00

J=1
Since it follows from Lemma 4.1 that, for |C};(m)| by (
|Csi(m)| < |A 5]

N, i=0,q—1.
4.5),

oc(l+a)
< Q(N)")\ch ’Q(N)fle(Q(N)—l)(l_;'_aﬁ) 1iﬁ, Rex

asm — oo and VN € IN, we have

ko) . B
Q(N) ‘Tm()‘kQ(N))’ —0

lim Cﬂ(m):(), jzl,N, iZO,Qj—l.

m—r0o0
We are going to complete the proof of sufficiency of the set N,. We have shown in Lemma 4.1 that
o(l+a)
1—ap
form=1,2,...,5=1,...,N,i=0,...,¢q; — 1. We estimate rp,(z) from above under the condition
that z #0

Rep; < and |Cji(m)] < C

max g | max_g;In|z|+ 525 (146)]
[rm(2)] < Q(N)C|z[i=tN "Nl  Q(N)Cei=t ,

Therefore,

max gy,

2max<
rm(2)] S Q(N)Ce  \=1N

We estimate for the case z = 0:

1—ap

0(1+a)(1+ﬂ)>|z

N
7 (0)] = [Cjo(m)| < N-C < Q(N) - C.
j=1

Hence, the estimate (4.6) holds also for z = 0, therefore, (4.6) is true for z € C.
In the beginning we have shown that Cj;(m) — 0, m — oo for all j, i, hence,

macx |y (m)| — 0.
J,?
This is why for each compact set K¢, for z € K,

0<1J{a>a(tl3+ﬁ>> max |z|

max q;
N 7 z€EKQ

Qmax(_
Irm(2)| < QN)  _max__ |Cji(m)l|e =
J:17N77':O7QJ

— 0.

This implies that 7,,(2) — 0 in Ker My, z € C. The proof is complete. O

Remark 4.1. For 3 = 0 we obtain that the nodes are real and the coefficient in the condition (4.1)
1s equal to 1, that is, the nodes can be taken in the ascending order. Therefore, Theorem 4.1 can be
regarded as the generalization of results of |5].

Remark 4.2. For a = 0 the zeros of characteristic function are located on the real axis and the
coefficient in the condition (4.1) is equal to 1. Hence, the nodes are located in the ascending order of
their real parts and no additional conditions are needed for the mutual distances.
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5. ILLUSTRATIVE EXAMPLE

We consider the case when the zeros of functions ¢ and 9 are located on the upper boundary of the
angle

1
z€C:|Imz|<—=Rez,.
{ [ V3 }
Then the constants in Theorem 4.1 have the following values: o = 3 = &. The ordering coefficient of

the zeros of ¥(z) is equal to
1—aB 1

1+aB8 2

Let us construct the sequence p;, ¢ = 1,2, ... for this coefficient. We take Re 1 > 0, and as Re uo we

can take 2Re p1 + 1 since

2R 1 1
Lﬁ_ — 2_|_
Re u1 Re pq

> 2.

Similarly, as Re us we can take 2 Re us 4+ 1, then
Reps =2(2Repu; +1)+1=4Repu; + 3.
The real part of nth term in the sequence reads

Repn, =27 'Repy + 2771 — 1.

™

Since the argument of all zeros is §, the general term of the zero sequence of (z) reads

1
2" lRepu +2" 1 -1 (1 + z>
( M1 ) \/3

or, in the exponential form,

2 i T
Hn = ﬁ@n_l Rep1 + P L)e's, Repr >0, nelN. (5.1)

As )\, we can take
Ap = nei%, n € IN.

The constructed sequences A, and u, satisfy all assumptions of Theorem 4.1. Therefore, for the
functions ¢ € Pp and ¢ € H(C), the zero sets of which coincide with the constructed sequence, the
interpolation problem is solvable in the kernel of convolution operator. It should be noted that the
sequence p, is constructed by means of real part of the first zero, which can be chosen by the only
nonnegativity condition. Thus, if we take an arbitrary nonnegative number, by the formula (5.1) we
can obtain the general term of sequence pu, for the ordering coefficient 0.5. If it is needed, a similar
procedure of constructing the zeros of function ¢ can be made for other angles under the condition
that the coefficient

1—ap
1+ap

is less than one.

The function 7 can have multiple zeros, then we can suppose that we have made the procedure of
constructing the elements of set Nw (Ny is easily obtained from Nw). The zeros of the function ¢
not necessarily to be on a single ray, some of them can be located below the ray argz = %, the main
condition is that in this case the real parts should strongly increase with the coefficient taken into
consideration. Moreover, the function ¢(z) can have multiple roots, but there should exist a sequence,
the terms of which strictly increase.



80

V.V. NAPALKOV JR., A.A. NUYATOV

BIBLIOGRAPHY

. Mathematical Encyclopedy. Vol. 1. Soviet Encyclopedy, Moscow (1977). (in Russian).

2. A.M. Kotochigov. Free multiple interpolation // J. Math. Sci. 194:6, 656-666 (2013).

10.

11.

https://doi.org/10.1007/s10958-013-1555-7

. K.G. Malyutin. The problem of multiple interpolation in the half-plane in the class of analytic

functions of finite order and normal type // Russ. Acad. Sci., Sb., Math. 78:1, 253-266 (1994).
https://doi.org/10.1070/SM1994v078n01 ABEH003468

. V.V. Napalkov. Complex analysis and the Cauchy problem for convolution operators // Proc.

Steklov Inst. Math. 235, 158-161 (2001).

. V.V. Napalkov, A.A. Nuyatov. The multipoint de la Vallée Poussin problem for a convolution

operator // Sb. Math. 203:2, 224-233 (2012).
https: //doi.org/10.1070 /SM2012v203n02A BEH004220

. V.V. Napalkov, A.A. Nuyatov. Multipoint Vallée Poussin problem for convolution operators with

nodes defined inside an angle // Theor. Math. Phys. 180:2, 983-989 (2014).
https://doi.org/10.1007/s11232-014-0193-7

. L. Sebastiao e Silva. Su certe classi di spazi localmente convessi importanti per le applicazioni //

Rend. Mat. Appl. 14, 388-410 (1955).

. M. Krosky, A. Schuster. Multiple interpolation and extremal functions in the Bergman spaces // J.

Anal. Math. 85:1, 141-156 (2001). https://doi.org/10.1007/BF02788077

. G.G. Lorentz, K.L. Zeller. Birkhoff Interpolation // SIAM J. numer. Anal. 8:1, 43-48 (1971).

https://doi.org/10.1137/0708006

H. Muggli. Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten // Com-
ment. Math. Helv. 11:1, 151-179 (1938). https://doi.org/10.1007/BF01199696

Ch. J. De La Vallee Poussin. Sur l’équation différentielle linéaire du second ordre. Détermination
d’une intégrale par deux valeurs assignées. Extension aux équations d’ordre n // J. Math. Pures

Appl. 9:8, 125-144 (1929).

Valerii Valentinovich Napalkov,
Institute of Mathematics,

Ufa Federal Research Center, RAS
Chernyshevsky str. 112,

450008, Ufa, Russia

E-mail: vnap@mail.ru

Andrey Alexandrovich Nuyatov,

Nizhny Novgorod State Technical University
named after R.E. Alekseev,

Minin str. 24,

603155, Nizhny Novgorod, Russia

E-mail: nuyatovlaa@rambler.ru


https://doi.org/10.1007/s10958-013-1555-7
https://doi.org/10.1070/SM1994v078n01ABEH003468
https://doi.org/10.1070/SM2012v203n02ABEH004220
https://doi.org/10.1007/s11232-014-0193-7
https://doi.org/10.1007/BF02788077
https://doi.org/10.1137/0708006
https://doi.org/10.1007/BF01199696

	to1. Introduction
	to2. Formulation of problem
	to3. Preliminary results
	to4. Main result
	to5. Illustrative example
	 References

