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Abstract. In the work we prove that the multiple interpolation problem is solvable, and

as a corollary, the same for the Abel — Goncharov problem in the kernel of a convolution

operator, when the zero sequence of the characteristic function of the convolution operator

and the nodes, which are zeros of an entire function, are located in some angles in the

complex plane and the nodes are multiple.
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1. Introduction

The Abel — Goncharov problem belongs to the theory of functions of complex variable and it consists

in finding the set of all functions 𝑓(𝑧) from a given class, which satisfy the relations

𝑓 (𝑛)(𝜆𝑛) = 𝐴𝑛, 𝑛 = 0, 1, 2, . . . ,

where {𝐴𝑛} and {𝜆𝑛} are admissible sequences of complex numbers [1].

As it is shown below, in the kernel of the convolution operator the Abel — Goncharov problem

is a particular case of the multipoint de la Vallée Poussin problem for multiple nodes (or multiple

interpolation problem) in the same space. Originally the de la Vallée Poussin problem was posed for

a homogeneous linear differential equation of order 𝑛 [11]

𝑦(𝑛) + 𝑝1(𝑥)𝑦
(𝑛−1) + . . .+ 𝑝𝑛−1(𝑥)𝑦

′ + 𝑝𝑛(𝑥)𝑦 = 0, (1.1)

the coefficients 𝑝1(𝑥), . . . , 𝑝𝑛−1(𝑥), 𝑝𝑛(𝑥) of which are continuous functions of 𝑥 on the segment [𝑎, 𝑏]

with some additional condition. The existence and uniqueness theorem says that, given a point 𝑥0

in [𝑎, 𝑏] and the values 𝑦0, 𝑦01, . . . , 𝑦
0
𝑛−1, there exists a unique solution 𝑦(𝑥) of Equation (1.1), which

obeys the initial conditions

𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦01, . . . , 𝑦(𝑛−1)(𝑥0) = 𝑦0𝑛−1.

But in problems of mathematical physics and applied mathematics one often needs to find a solution

to Equation (1.1), when not all initial conditions are prescribed at the same point 𝑥0. For instance,

for Equation (1.1) one can need to find a solution 𝑦(𝑥), the graph of which passes 𝑛 given points. In

other words, to construct a solution to (1.1), which satisfies the conditions

𝑦(𝑎𝑘) = 𝐴𝑘, 𝑘 = 1, 2, . . . , 𝑛. (1.2)
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de la Vallée Poussin proved that if 𝑝𝑘(𝑥) ∈ 𝐶[𝑎, 𝑏], 𝑘 = 1, 2, . . . , 𝑛, and the inequality

𝑛∑︁
𝑘=1

𝑙𝑘
(𝑏− 𝑎)𝑘

𝑘!
< 1

holds, where 𝑙𝑘 ⩾ |𝑝𝑘(𝑥)|, 𝑘 = 1, 2, . . . , 𝑛, 𝑥 ∈ [𝑎, 𝑏], then there exists a unique solution of the problem

(1.1), (1.2) for finitely many nodes.

In 2001 in [4], the solvability of the multipoint de la Vallée Poussin problem was proved in the kernel

of a convolution operator for infinitely many nodes, when the nodes belong to the set {0,±1,±2, . . .}.
We note that the multiple interpolation problem was considered in various domains [2], [3], [8], [9].

2. Formulation of problem

Let 𝐻(C) be the space of entire functions with the topology of uniform convergence on compact

sets, 𝐻*(C) be the dual space for 𝐻(C), 𝑃C be the space of entire functions of exponential type. With

a function 𝜙 ∈ 𝑃C we associate a functional 𝐹 ∈ 𝐻*(C) such that ̂︀𝐹 (𝑧) = 𝜙(𝑧), where ̂︀𝐹 (𝑧) = ⟨𝐹𝜆, 𝑒𝜆𝑧⟩
is the Laplace transform of the functional 𝐹 . We write the convolution operator in 𝐻(C) as

𝑀𝜙[𝑓 ](𝑧) = (𝐹𝑡, 𝑓(𝑧 + 𝑡)), 𝑓 ∈ 𝐻(C).

We denote by Ker𝑀𝜙 = {𝑓 ∈ 𝐻(C) :𝑀𝜙[𝑓 ] = 0} the kernel of convolution operator 𝑀𝜙.

We pose the multipoint de la Vallée Poussin problem (or, in other words, the multiple inter-

polation problem) in Ker𝑀𝜙 with the nodes 𝜇𝑗 ∈ C being the zeros of 𝜓 ∈ 𝐻(C), with the

multiplicities 𝑞𝑗 , 𝑗 = 0, 1, 2, . . . , as follows: given an arbitrary sequence of complex numbers 𝑎𝑘𝑗 ,

𝑗 = 0, 1, 2, . . . ; 𝑘 = 0, 1, . . . , 𝑞𝑗 − 1, whether there exists a function 𝑦 ∈ Ker𝑀𝜙 such that

𝑦(𝑘)(𝜇𝑗) = 𝑎𝑘𝑗 , 𝑗 = 0, 1, 2, . . . ; 𝑘 = 0, 1, . . . , 𝑞𝑗 − 1.

In [5] this problem was solved in the case, when the nodes are simple and lie on the real axis. In work

[6] the interpolation problem was solved in the convolution kernel, when the nodes are complex. In this

work we solve the multiple interpolation problem for complex nodes lying in some angle, its particular

case is the problem

𝑦(𝑘)(𝜇𝑗) = 𝑎𝑘𝑗 , 𝑗 = 0, 1, 2, . . . ; 𝑘 = 0, 𝑗.

Hence, in the kernel of the convolution operator there exists a function 𝑦(𝑧), which, for a sequence of

complex numbers 𝑎00, 𝑎
1
1, . . . , 𝑎

𝑛
𝑛, . . . satisfies

𝑦(𝑘)(𝜇𝑘) = 𝑎𝑘𝑘.

We thus obtain the Abel — Goncharov problem in the kernel of convolution operator.

In the case, when the characteristic function of convolution operator is a polynomial, the convolution

operator becomes a linear differential operator of finite order with constant coefficients, and hence, as an

important particular corollary we conclude that for a homogeneous linear differential operator of finite

order with constant coefficients the multiple interpolation problem and Abel — Goncharov problem

are solved. Moreover, a differential–difference operator, integro–differential operator, linear differential

operator of infinite order with constant coefficients are also particular cases of the convolution operator

and hence, the same problems are also solved for homogeneous equations.

3. Preliminary results

We introduce a series of auxiliary notions, which are needed to formulate and prove the main results.

The topology 𝜏C of the space 𝑃C is defined as the inductive limit of normed weight spaces

𝐵𝑛 = {𝜙(𝜆) ∈ 𝑃C : ‖𝜙‖𝑛 = sup
𝜆∈C

|𝜙(𝜆)|𝑒−𝑛|𝜆| <∞}, 𝑛 ∈ N.
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Let 𝑆 ⊂ C be the uniqueness set in 𝑃C. Then in 𝑃C we can introduce the topology 𝜏𝑆 of inductive

limit of spaces

𝐵𝑛,𝑆 = {𝜙(𝜆) ∈ 𝑃C : ‖𝜙‖𝑛,𝑆 = sup
𝜆∈𝑆

|𝜙(𝜆)|𝑒−𝑛|𝜆| <∞}, 𝑛 ∈ N.

In what follows we shall need the convergence to zero in the topology 𝜏C [7]: let 𝑓𝑚 be a countable

sequence of function 𝑃C, then 𝑓𝑚 → 0 as 𝑚→ ∞ in the topology 𝜏C if and only if there exist numbers

𝜎 > 0 and 𝑀 > 0 such that

(a.1) |𝑓𝑚(𝑧)| ⩽𝑀𝑒𝜎|𝑧| ∀𝑚 ∈ N, ∀𝑧 ∈ C;
(b.1) for each compact set 𝐾C ⊂ C: |𝑓𝑚(𝑧)| ⇒ 0 as 𝑚→ ∞, 𝑧 ∈ 𝐾C.

Let us introduce the notion of sufficiency of a set 𝑆 ⊂ C in 𝑈 ⊂ 𝑃C with topology the induced from

𝑃C.

Definition 3.1. We say that 𝑆 is a sufficient set on 𝑈 if the conditions

(a.2) for each sequence of functions 𝑞𝑘(𝑧) ∈ 𝑈 there exist numbers 𝜎 > 0 and 𝑀 > 0 such that

|𝑞𝑘(𝑧)| ⩽𝑀𝑒𝜎|𝑧| ∀𝑘 ∈ N, ∀𝑧 ∈ 𝑆;

(b.2) for each compact set 𝐾𝑆 ⊂ 𝑆 : |𝑞𝑘(𝑧)| ⇒ 0 as 𝑘 → ∞, 𝑧 ∈ 𝐾𝑆

imply the convergence of this sequence on 𝑈 .

The conditions (a.2) and (b.2) define the convergence to zero in the topology 𝜏𝑆 .

The function 𝜓(𝑧) ∈ 𝐻(C) generates a linear continuous operator 𝑀𝜓 : 𝑃C → 𝑃C in the space 𝑃C
[10], which acts by the rule

𝑀𝜓[𝑓 ](𝑧) =
1

2𝜋𝑖

∫︁
𝐶

𝑒𝑧𝜉𝜓(𝜉)𝛾(𝜉)𝑑𝜉,

where 𝛾(𝜉) is a function associated with 𝑓(𝑧) in the Borel sense, 𝐶 is a closed contour enveloping all

singular points 𝛾(𝜉).

We denote by 𝑁𝜙 the zero set of function 𝜙 ∈ 𝑃C. In [5] the next statement was proved.

Theorem 3.1. Let 𝜙 ∈ 𝑃C, 𝜓 ∈ 𝐻(C) and 𝑁𝜙 is a sufficient set in Ker𝑀𝜓, then the multipoint de

la Vallée Poussin problem is solvable in Ker𝑀𝜙.

4. Main result

Let 𝑁𝜙 = {𝜆𝑘}+∞
𝑘=1 be the zero set of the function 𝜙 ∈ 𝑃C, in which each zero is repeated according

to its order. In order to avoid cumbersome notation, in what follows by 𝜆𝑘, 𝑘 = 1, 2 . . . , we mean

some subsequence of the sequence {𝜆𝑘}+∞
𝑘=1); by 𝑁𝜓 = {𝜇𝑘}+∞

𝑘=1 we denote the set of zeros of a function

𝜓 ∈ 𝐻(C), where each zero is repeated according to its order, and 𝑞𝑗 stands for the order of zero 𝜇𝑗 ;

and 𝑁̃𝜓 is an infinite set, which consists of all different zeros of the function 𝜓 ∈ 𝐻(C).

According to the result of work [10], the space Ker 𝑀𝜓 consists of quasipolynomials with the

exponents in the set 𝑁𝜓, that is, each element 𝑟(𝑧) ∈ Ker 𝑀𝜓 is written as

𝑟(𝑧) =
𝑁∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

𝐶𝑗𝑖𝑧
𝑖𝑒𝜇𝑗𝑧,

and all coefficients 𝐶𝑗𝑖 are nonzero. We introduce a function 𝑄(𝑛) : N→ N, which is defined as

𝑄(𝑛) =

𝑛∑︁
𝑗=1

𝑞𝑗 , 𝑞𝑗 ∈ N,

the value 𝑄(𝑁) determines the number of terms in 𝑟(𝑧).

Let us mention the properties of a quasipolynomials, which will be needed to prove the main result.
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Lemma 4.1. Let for some fixed 𝛼 ∈ [0,+∞) there exists a number 𝛽 ∈ [0,+∞) such that 𝛼 · 𝛽 < 1

and the conditions hold

(a) 𝑁𝜙 ⊂ 𝐷𝛼 = {𝑧 ∈ C : | Im 𝑧| ⩽ 𝛼Re 𝑧} and there exists a subsequence 𝜆𝑘 such that

Re(𝜆𝑘) < Re(𝜆𝑘+1), 𝑘 ∈ N.

(b) 𝑁𝜓 ⊂ 𝐷𝛽 = {𝑧 ∈ C : | Im 𝑧| ⩽ 𝛽Re 𝑧}, and for the elements of the set 𝑁̃𝜓 we have

Re(𝜇𝑘) <
1− 𝛼𝛽

1 + 𝛼𝛽
Re(𝜇𝑘+1), 𝑘 ∈ N. (4.1)

Then, under the condition

|𝑟(𝜆𝑘)| ⩽𝑀𝑒𝜎|𝜆𝑘|,𝑀, 𝜎 > 0, ∀𝑘 ∈ N, (4.2)

1) the estimate

Re𝜇𝑗 ⩽
(1 + 𝛼)𝜎

1− 𝛼𝛽
, 𝑗 = 1, . . . , 𝑁,

holds;

2) the coefficients of quasipolynomial satisfy the estimate

|𝐶𝑗𝑖| ⩽ 𝐶 := 𝑄(𝑁)!𝑀
⃒⃒⃒
𝜆𝑘𝑄(𝑁)

⃒⃒⃒(𝑄(𝑁)−1)
𝑒
((𝑄(𝑁)−1) 1+𝛼𝛽

1−𝛼𝛽
+1)𝜎(1+𝛼)Re𝜆𝑘̃𝑄(𝑁) , 𝑗 = 1, 𝑁, 𝑖 = 0, 𝑞𝑗 − 1.

Proof. 1) We argue by contradiction. Let all zeros 𝜇𝑗 , 𝑗 = 1, . . . , 𝑁 be taken in the ascending order of

their real parts and suppose that

Re𝜇𝑁 >
(1 + 𝛼)𝜎

1− 𝛼𝛽
.

We consider the quotient⃒⃒⃒
𝜆𝑞𝑙−1
𝑘 𝑒𝜇𝑗𝜆𝑘

⃒⃒⃒
⃒⃒⃒
𝜆𝑞𝑁−1
𝑘 𝑒𝜇𝑁𝜆𝑘

⃒⃒⃒ ⩽ |𝜆𝑘|𝑞𝑙 𝑒(1+𝛼𝛽)Re𝜇𝑗 Re𝜆𝑘

|𝜆𝑘|𝑞𝑁 𝑒(1−𝛼𝛽)Re𝜇𝑁 Re𝜆𝑘
= |𝜆𝑘|𝑞𝑙−𝑞𝑁 𝑒(1+𝛼𝛽)Re𝜇𝑗 Re𝜆𝑘−(1−𝛼𝛽)Re𝜇𝑁 Re𝜆𝑘 .

For 𝑗 = 1, 2, . . . , 𝑁 − 1 by the condition (4.1) the exponent in the exponential is negative and this is

why the quotient of the absolute values tend to zero as Re𝜆𝑘 → +∞. Hence,

lim
𝑘→+∞

⃒⃒⃒
𝑟(𝜆𝑘)𝜆

−𝑞𝑁+1
𝑘 𝑒−𝜇𝑁𝜆𝑘

⃒⃒⃒
= |𝐶𝑁,𝑞𝑁−1| .

This is why the growth of the quasipolynomial is determined by 𝜇𝑁 . On the other hand, the growth

𝑟(𝜆𝑘) is determined by (4.2). Estimating from above and below in (4.2), we obtain the chain of

inequalities⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

𝐶𝑗𝑖𝜆
𝑖−𝑞𝑁+1
𝑘 𝑒(𝜇𝑗−𝜇𝑁 )𝜆𝑘

⃒⃒⃒⃒
⃒⃒ |𝜆𝑘|𝑞𝑁−1𝑒(1−𝛼𝛽)Re𝜇𝑁 Re𝜆𝑘 ⩽ |𝑟(𝜆𝑘)|

⩽𝑀𝑒𝜎|𝜆𝑘| ⩽𝑀𝑒𝜎(1+𝛼)Re𝜆𝑘 .

We then get the inequality⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

𝐶𝑗𝑖𝜆
𝑖−𝑞𝑁+1
𝑘 𝑒(𝜇𝑗−𝜇𝑁 )𝜆𝑘

⃒⃒⃒⃒
⃒⃒ |𝜆𝑘|𝑞𝑁−1𝑒((1−𝛼𝛽)Re𝜇𝑁−𝜎(1+𝛼))Re𝜆𝑘 ⩽𝑀.

The estimate Re𝜇𝑁 > (1+𝛼)𝜎
1−𝛼𝛽 implies that the left hand side of this inequality tend to +∞ as Re𝜆𝑘 →

+∞ (as it has been proved above, the first factor tends to |𝐶𝑁,𝑞
𝑁
−1|). This contradicts the above

inequality. Thus, Re𝜇𝑁 ⩽ (1+𝛼)𝜎
1−𝛼𝛽 . We have shown that the quasipolynomial 𝑟(𝑧) involves only 𝑒𝜇𝑗𝑧

with the exponents 𝜇𝑗 obeying the estimate

Re𝜇𝑗 ⩽
(1 + 𝛼)𝜎

1− 𝛼𝛽
,
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and since 𝜇𝑗 are zeros of an entire function, the quasipolynomial 𝑟(𝑧) involves finitely many exponents.

This proves assertion 1.

2) We employ a simple observation that if the set of 𝑄(𝑁) zeros 𝜆𝑘𝑝 is chosen so that the determinant

of matrix

𝐴 = (𝜆𝑖
𝑘𝑝
𝑒
𝜇𝑗𝜆𝑘̃𝑝 ), 𝑗 = 1, . . . , 𝑁, 𝑖 = 0, . . . , 𝑞𝑗 − 1, 𝑝 = 1, . . . , 𝑄(𝑁),

is non–zero, then the coefficients 𝐶𝑗𝑖 are solutions to the system of linear equations

𝑁∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

𝐶𝑗𝑖𝜆
𝑖
𝑘𝑝
𝑒
𝜇𝑗𝜆𝑘̃𝑝 = 𝑟(𝜆𝑘𝑝), 𝑝 = 1, . . . , 𝑄(𝑁).

Let us prove by induction in the parameter 𝑡 = 1, 2, . . . , that the set of zeros can be chosen so that the

absolute values of determinants

𝐴(𝑡) = (𝜆𝑖
𝑘𝑝
𝑒
𝜇𝑗𝜆𝑘̃𝑝 ), 𝑗 = 1, . . . , 𝑁(𝑡), 𝑖 = 0, . . . , 𝑞𝑗 − 1, 𝑝 = 1, . . . , 𝑡,

exceed 1. We first consider 𝑡 = 1:

| det𝐴(1)| = 𝑒
Re(𝜇1𝜆𝑘̃1

) ⩾ 𝑒
(1−𝛼𝛽)Re𝜇1 Re𝜆𝑘̃1 ⩾ 1.

As 𝜆𝑘1 we can take the first element in the sequence 𝜆𝑘.

Suppose that the zeros 𝜆𝑘𝑝 , 𝑝 = 1, 2, . . . , 𝑡 − 1 are chosen so that the absolute values of principal

minors exceed 1 and Re𝜆𝑘𝑝 increases in 𝑝.We expand the determinant of matrix 𝐴𝑡 along the last row

det𝐴(𝑡) =

𝑁(𝑡)∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

(−1)𝑙(𝑖,𝑗)+𝑡 det𝐴𝑙(𝑖,𝑗),𝑡𝜆
𝑖
𝑘𝑡
𝑒
𝜇𝑗𝜆𝑘̃𝑡 ,

where (−1)𝑙(𝑖,𝑗)+𝑡 det𝐴𝑙(𝑖,𝑗),𝑡 is the cofactor of the entry 𝜆
𝑖
𝑘𝑡
𝑒
𝜇𝑗𝜆𝑘̃𝑡 and

𝑙(𝑖, 𝑗) = 𝑖+ 1 +

𝑗−1∑︁
𝑠=0

𝑞𝑠, 𝑞0 = 0.

This implies

| det𝐴(𝑡)| ⩾

⃒⃒⃒⃒
⃒⃒𝑞𝑁(𝑡)−1∑︁

𝑖=0

(−1)𝑙(𝑖,𝑁(𝑡))+𝑡 det𝐴𝑙(𝑖,𝑁(𝑡)),𝑡𝜆
𝑖
𝑘𝑡
𝑒
𝜇𝑁(𝑡)𝜆𝑘̃𝑡

⃒⃒⃒⃒
⃒⃒

−

⃒⃒⃒⃒
⃒⃒𝑁(𝑡)−1∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

(−1)𝑙(𝑖,𝑗)+𝑡 det𝐴𝑙(𝑖,𝑗),𝑡𝜆
𝑖
𝑘𝑡
𝑒
𝜇𝑗𝜆𝑘̃𝑡

⃒⃒⃒⃒
⃒⃒ .

We denote the first term in the right hand side of inequality by 𝐵1, the second term is denoted 𝐵2

and we are going to estimate them from below and above, respectively. But first let us estimate from

above
⃒⃒
det𝐴𝑙(𝑖,𝑗),𝑡

⃒⃒
. This determinant is the sum of (𝑄(𝑁(𝑡))− 1)! terms, each term is the product of

𝑄(𝑁(𝑡))− 1 factors of form

𝜆𝑖
𝑘𝑝
𝑒
𝜇𝑗𝜆𝑘̃𝑝 , 𝑗 = 1, . . . , 𝑁(𝑡), 𝑖 = 0, . . . , 𝑞𝑗 − 1, 𝑝 = 1, . . . , 𝑡− 1.

Taking into consideration the monotonicity of sets 𝜇𝑗 and 𝜆𝑘𝑝 , we obtain⃒⃒
det𝐴𝑙(𝑖,𝑗),𝑡

⃒⃒
⩽ (𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇

𝑁(𝑡)
Re𝜆𝑘̃𝑡−1 . (4.3)



76 V.V. NAPALKOV JR., A.A. NUYATOV

We estimate 𝐵1

𝐵1 ⩾
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)−1
𝑒
(1−𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡

⃒⃒⃒⃒
⃒⃒𝑞𝑁(𝑡)−1∑︁

𝑖=0

(−1)𝑙(𝑖,𝑁(𝑡))+𝑡 det𝐴𝑙(𝑖,𝑁(𝑡)),𝑡𝜆
𝑖−(𝑞𝑁(𝑡)−1)

𝑘𝑡

⃒⃒⃒⃒
⃒⃒

⩾
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)−1
𝑒
(1−𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡

⎛⎝1−
𝑞𝑁(𝑡)−2∑︁
𝑖=0

⃒⃒
det𝐴𝑙(𝑖,𝑁(𝑡)),𝑡

⃒⃒ ⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑖−(𝑞𝑁(𝑡)−1)

⎞⎠ .

In the latter inequality we have employed the fact that at the last element in the last row we have the

principal minor, which coincides with det𝐴𝑡,𝑡, by the induction assumption, its absolute value is not

less than 1. Using the inequality (4.3), we obtain the final estimate for 𝐵1

𝐵1 ⩾
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)−1
𝑒
(1−𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡

·
(︂
1−

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒−1
(𝑞𝑁(𝑡) − 1)(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

)︂
,

since now 𝜆𝑘𝑡−1
and 𝜇𝑁(𝑡) are fixed and, as it has been proved above,

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒−1
tends to zero as Re𝜆𝑘𝑡 →

+∞, the second term in the brackets also tends to zero.

We denote 𝑞𝑚𝑎𝑥 = max
𝑠=1,...,𝑁(𝑡)−1

𝑞𝑠 estimate 𝐵2 from above

𝐵2 ⩽(𝑄(𝑁(𝑡)− 1))|det𝐴𝑙(𝑖,𝑗),𝑡|
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑚𝑎𝑥−1
𝑒
(1+𝛼𝛽)Re𝜇

𝑁(𝑡)−1
Re𝜆𝑘̃𝑡

⩽(𝑄(𝑁(𝑡)− 1))(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1
|(𝑄(𝑁(𝑡))−1)𝑒

(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

·
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑚𝑎𝑥−1
𝑒
(1+𝛼𝛽)Re𝜇

𝑁(𝑡)−1
Re𝜆𝑘̃𝑡 .

In the latter inequality only two last factors are varying quantities depending on Re𝜆𝑘𝑡 , while other

factors are fixed. The estimate for the absolute value of determinant is written as

|det𝐴(𝑡)| ⩾
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)−1
𝑒
(1−𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡

·
(︂
1−

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒−1
(𝑞𝑁(𝑡) − 1)(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

)︂
− (𝑄(𝑁(𝑡)− 1))(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

·
⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑚𝑎𝑥−1
𝑒
(1+𝛼𝛽)Re𝜇

𝑁(𝑡)−1
Re𝜆𝑘̃𝑡 =

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)−1
𝑒
(1−𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡 [(1−⃒⃒⃒

𝜆𝑘𝑡

⃒⃒⃒−1
(𝑞𝑁(𝑡) − 1)(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

)︂
− (𝑄(𝑁(𝑡)− 1))(𝑄(𝑁(𝑡))− 1)!|𝜆𝑘𝑡−1

|(𝑄(𝑁(𝑡))−1)𝑒
(𝑄(𝑁(𝑡))−1)(1+𝛼𝛽)Re𝜇𝑁(𝑡) Re𝜆𝑘̃𝑡−1

·

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑚𝑎𝑥

⃒⃒⃒
𝜆𝑘𝑡

⃒⃒⃒𝑞𝑁(𝑡)
𝑒

(︁
(1+𝛼𝛽)Re𝜇

𝑁(𝑡)−1
−(1−𝛼𝛽)Re𝜇𝑁(𝑡)

)︁
Re𝜆𝑘̃𝑡

⎤⎥⎦
In the latter identity, as Re𝜆𝑘𝑡 → +∞, the expression in the round brackets tends to 1 (by the

above facts), while the last factor in the square brackets tends to zero since by the condition (4.1) the

exponent of exponential is negative. Thus, if we choose the zero 𝜆𝑘𝑡 with a sufficiently large Re𝜆𝑘𝑡 ,

then ∆ = | det𝐴(𝑡)| exceeds 1.
By the Cramer’s rule

𝐶𝑗𝑖 =
∆𝑙(𝑖,𝑗)

∆
,
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where ∆𝑙(𝑖,𝑗) is the determinant of the matrix obtained from 𝐴𝑁 by replacing 𝑙(𝑖, 𝑗)th column by the

column of right hand sides. To estimate ∆𝑙(𝑖,𝑗) from above, the expand the corresponding matrix along

the 𝑙(𝑖, 𝑗)th column

∆𝑙(𝑖,𝑗) =

𝑄(𝑁)∑︁
𝑝=1

(−1)𝑙(𝑖,𝑗)+𝑝 det𝐴𝑙(𝑖,𝑗),𝑝𝑟(𝜆𝑘𝑝),

As the relation (4.3), we obtain the estimate⃒⃒
det𝐴𝑙(𝑖,𝑗),𝑝

⃒⃒
⩽ (𝑄(𝑁)− 1)!|𝜆𝑘𝑄(𝑁)

|(𝑄(𝑁)−1)𝑒
(𝑄(𝑁)−1)(1+𝛼𝛽)Re𝜇𝑁 Re𝜆𝑘̃𝑄(𝑁) ,

while by the condition (4.4) we get

|𝑟(𝜆𝑘𝑝)| ⩽𝑀𝑒
(1+𝛼)𝜎Re𝜆𝑘̃𝑄(𝑁) .

Thus, ⃒⃒
∆𝑙(𝑖,𝑗)

⃒⃒
⩽ 𝑄(𝑁)!𝑀

⃒⃒⃒
𝜆𝑘𝑄(𝑁)

⃒⃒⃒(𝑄(𝑁)−1)
𝑒
(𝑄(𝑁)−1)(1+𝛼𝛽)Re𝜇𝑁 Re𝜆𝑘̃𝑄(𝑁)𝑒

(1+𝛼)𝜎Re𝜆𝑘̃𝑄(𝑁)

⩽ 𝑄(𝑁)!𝑀
⃒⃒⃒
𝜆𝑘𝑄(𝑁)

⃒⃒⃒(𝑄(𝑁)−1)
𝑒
((𝑄(𝑁)−1) 1+𝛼𝛽

1−𝛼𝛽
+1)𝜎(1+𝛼)Re𝜆𝑘̃𝑄(𝑁)

and

|𝐶𝑗𝑖| ⩽ 𝐶 := 𝑄(𝑁)!𝑀
⃒⃒⃒
𝜆𝑘𝑄(𝑁)

⃒⃒⃒(𝑄(𝑁)−1)
𝑒
((𝑄(𝑁)−1) 1+𝛼𝛽

1−𝛼𝛽
+1)𝜎(1+𝛼)Re𝜆𝑘̃𝑄(𝑁) .

The proof is complete.

Let the sequence

𝑟𝑚(𝑧) =
𝑁∑︁
𝑗=1

𝑞𝑗−1∑︁
𝑖=0

𝐶𝑗𝑖(𝑚)𝑧𝑖𝑒𝜇𝑗𝑧

tend to zero in the topology 𝜏𝑁𝜙 . By means of the conditions (a.2) and (b.2) and in view of the

discreteness of set 𝑁𝜙, the convergence to zero in the topology 𝜏𝑁𝜙 can be written as follows: for some

constants 𝜎, 𝑀 > 0 the relations hold

|𝑟𝑚(𝜆𝑘)| ⩽𝑀𝑒𝜎|𝜆𝑘|, ∀𝑚 ∈ N, ∀𝑘 ∈ N, (4.4)

and for each 𝑘 ∈ N the sequence converges uniformly on compact subsets 𝑁𝜙, that is,

|𝑟𝑚(𝜆𝑘)| → 0, 𝑚→ ∞. (4.5)

By Theorem 3.1, to prove the solvability of multiple interpolation problem in the kernel of convolution

operator, we need to show that 𝑟𝑚(𝑧) → 0 in Ker𝑀𝜓, 𝑧 ∈ C. We are in position to formulate the main

result.

Theorem 4.1. Let for some fixed 𝛼 ∈ [0,+∞) there exist a number 𝛽 ∈ [0,+∞) such that 𝛼 ·𝛽 < 1

and the conditions be satisfied

(a) 𝑁𝜙 ⊂ 𝐷𝛼 = {𝑧 ∈ C : | Im 𝑧| ⩽ 𝛼Re 𝑧} and there exists a subsequence 𝜆𝑘 such that

Re(𝜆𝑘) < Re(𝜆𝑘+1), 𝑘 ∈ N.

(b) 𝑁𝜓 ⊂ 𝐷𝛽 = {𝑧 ∈ C : | Im 𝑧| ⩽ 𝛽Re 𝑧}, and the elements of set 𝑁̃𝜓 satisfy

Re(𝜇𝑘) <
1− 𝛼𝛽

1 + 𝛼𝛽
Re(𝜇𝑘+1), 𝑘 ∈ N.

Then under the conditions (4.4) and (4.5) the set 𝑁𝜙 is sufficient in Ker𝑀𝜓.
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Proof. As it has been proved in Lemma 4.1, the absolute value of determinant of the homogeneous

system

𝑟𝑚(𝜆𝑘𝑝) = 0 ∀𝑚 ∈ N
exceeds 1, and this is why all coefficients of the system vanish, that is,

𝑟𝑚(𝑧) ≡ 0.

This means that 𝑁𝜙 is the uniqueness set in Ker𝑀𝜓.

Let us prove that

lim
𝑚→∞

𝐶𝑗𝑖(𝑚) = 0, 𝑗 = 1, 𝑁, 𝑖 = 0, 𝑞𝑗 − 1.

Since it follows from Lemma 4.1 that, for |𝐶𝑗𝑖(𝑚)| by (4.5),

|𝐶𝑗𝑖(𝑚)| ⩽ |∆𝑙(𝑖,𝑗)|

⩽ 𝑄(𝑁)!|𝜆𝑘𝑄(𝑁)
|𝑄(𝑁)−1𝑒

(𝑄(𝑁)−1)(1+𝛼𝛽)
𝜎(1+𝛼)
1−𝛼𝛽

Re𝜆𝑘̃𝑄(𝑁) · |𝑟𝑚(𝜆𝑘𝑄(𝑁)
)| → 0

as 𝑚→ ∞ and ∀𝑁 ∈ N, we have

lim
𝑚→∞

𝐶𝑗𝑖(𝑚) = 0, 𝑗 = 1, 𝑁, 𝑖 = 0, 𝑞𝑗 − 1.

We are going to complete the proof of sufficiency of the set 𝑁𝜙. We have shown in Lemma 4.1 that

Re𝜇𝑗 ⩽
𝜎(1 + 𝛼)

1− 𝛼𝛽
and |𝐶𝑗𝑖(𝑚)| ⩽ 𝐶

for 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁, 𝑖 = 0, . . . , 𝑞𝑗 − 1. We estimate 𝑟𝑚(𝑧) from above under the condition

that 𝑧 ̸= 0

|𝑟𝑚(𝑧)| ⩽ 𝑄(𝑁)𝐶|𝑧|
max
𝑗=1,𝑁

𝑞𝑗
𝑒|𝜇𝑁‖𝑧| ⩽ 𝑄(𝑁)𝐶𝑒

max
𝑗=1,𝑁

𝑞𝑗 ln |𝑧|+𝜎(1+𝛼)
1−𝛼𝛽

(1+𝛽)|𝑧|
.

Therefore,

|𝑟𝑚(𝑧)| ⩽ 𝑄(𝑁)𝐶𝑒
2max

(︃
max
𝑗=1,𝑁

𝑞𝑗 ,
𝜎(1+𝛼)(1+𝛽)

1−𝛼𝛽

)︃
|𝑧|
. (4.6)

We estimate for the case 𝑧 = 0:

|𝑟𝑚(0)| =
𝑁∑︁
𝑗=1

|𝐶𝑗0(𝑚)| ⩽ 𝑁 · 𝐶 ⩽ 𝑄(𝑁) · 𝐶.

Hence, the estimate (4.6) holds also for 𝑧 = 0, therefore, (4.6) is true for 𝑧 ∈ C.
In the beginning we have shown that 𝐶𝑗𝑖(𝑚) → 0, 𝑚→ ∞ for all 𝑗, 𝑖, hence,

max
𝑗,𝑖

|𝐶𝑗𝑖(𝑚)| → 0.

This is why for each compact set 𝐾C, for 𝑧 ∈ 𝐾C,

|𝑟𝑚(𝑧)| ⩽ 𝑄(𝑁) max
𝑗=1,𝑁,𝑖=0,𝑞𝑗

|𝐶𝑗𝑖(𝑚)|𝑒
2max

(︃
max
𝑗=1,𝑁

𝑞𝑗 ,
𝜎(1+𝛼)(1+𝛽)

1−𝛼𝛽

)︃
max
𝑧∈𝐾C

|𝑧|
→ 0.

This implies that 𝑟𝑚(𝑧) → 0 in Ker𝑀𝜓, 𝑧 ∈ C. The proof is complete.

Remark 4.1. For 𝛽 = 0 we obtain that the nodes are real and the coefficient in the condition (4.1)

is equal to 1, that is, the nodes can be taken in the ascending order. Therefore, Theorem 4.1 can be

regarded as the generalization of results of [5].

Remark 4.2. For 𝛼 = 0 the zeros of characteristic function are located on the real axis and the

coefficient in the condition (4.1) is equal to 1. Hence, the nodes are located in the ascending order of

their real parts and no additional conditions are needed for the mutual distances.
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5. Illustrative example

We consider the case when the zeros of functions 𝜙 and 𝜓 are located on the upper boundary of the

angle {︂
𝑧 ∈ C : | Im 𝑧| ⩽ 1√

3
Re 𝑧

}︂
.

Then the constants in Theorem 4.1 have the following values: 𝛼 = 𝛽 = 𝜋
6 . The ordering coefficient of

the zeros of 𝜓(𝑧) is equal to

1− 𝛼𝛽

1 + 𝛼𝛽
=

1

2
.

Let us construct the sequence 𝜇𝑖, 𝑖 = 1, 2, . . . for this coefficient. We take Re𝜇1 > 0, and as Re𝜇2 we

can take 2Re𝜇1 + 1 since

2Re𝜇1 + 1

Re𝜇1
= 2 +

1

Re𝜇1
> 2.

Similarly, as Re𝜇3 we can take 2Re𝜇2 + 1, then

Re𝜇3 = 2(2Re𝜇1 + 1) + 1 = 4Re𝜇1 + 3.

The real part of 𝑛th term in the sequence reads

Re𝜇𝑛 = 2𝑛−1Re𝜇1 + 2𝑛−1 − 1.

Since the argument of all zeros is 𝜋
6 , the general term of the zero sequence of 𝜓(𝑧) reads

(2𝑛−1Re𝜇1 + 2𝑛−1 − 1)

(︂
1 +

1√
3
𝑖

)︂
or, in the exponential form,

𝜇𝑛 =
2√
3
(2𝑛−1Re𝜇1 + 2𝑛−1 − 1)𝑒𝑖

𝜋
6 , Re𝜇1 > 0, 𝑛 ∈ N. (5.1)

As 𝜆𝑛 we can take

𝜆𝑛 = 𝑛𝑒𝑖
𝜋
6 , 𝑛 ∈ N.

The constructed sequences 𝜆𝑛 and 𝜇𝑛 satisfy all assumptions of Theorem 4.1. Therefore, for the

functions 𝜙 ∈ 𝑃C and 𝜓 ∈ 𝐻(C), the zero sets of which coincide with the constructed sequence, the

interpolation problem is solvable in the kernel of convolution operator. It should be noted that the

sequence 𝜇𝑛 is constructed by means of real part of the first zero, which can be chosen by the only

nonnegativity condition. Thus, if we take an arbitrary nonnegative number, by the formula (5.1) we

can obtain the general term of sequence 𝜇𝑛 for the ordering coefficient 0.5. If it is needed, a similar

procedure of constructing the zeros of function 𝜓 can be made for other angles under the condition

that the coefficient
1− 𝛼𝛽

1 + 𝛼𝛽

is less than one.

The function 𝜓 can have multiple zeros, then we can suppose that we have made the procedure of

constructing the elements of set 𝑁̃𝜓 (𝑁𝜓 is easily obtained from 𝑁̃𝜓). The zeros of the function 𝜙

not necessarily to be on a single ray, some of them can be located below the ray arg 𝑧 = 𝜋
6 , the main

condition is that in this case the real parts should strongly increase with the coefficient taken into

consideration. Moreover, the function 𝜙(𝑧) can have multiple roots, but there should exist a sequence,

the terms of which strictly increase.
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