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EQUIVALENT CONDITIONS OF

STRONG INCOMPLETENESS OF EXPONENTIAL SYSTEM

A.M. GAISIN, R.A. GAISIN

Abstract. We study interpolating sequences in the Pavlov — Korevaar — Dixon sense
(Ω–interpolation sequences) and generalizations, as well as the approximative properties of
exponential systems with corresponding exponents. For instance, the interpolation prob-
lem is of interest in the class of entire functions of exponential type determined by some
growing majorant in the convergent class (non–quasianalytic weight). In a narrower class,
when the majorant possessed the concavity property, a similar problem was completely
solved Berndtsson, but in the case when the interpolation nodes are natural numbers. He
obtained the solvability criterion of this interpolation problem. The corresponding criterion
for an arbitrary increasing sequence of positive nodes was recently obtained by R.A. Gaisin.
In 2021 he also proved the criterion of the interpolation (𝑊–interpolating) in the case of an
arbitrary non–quasianalytic weight. As in works by A.I. Pavlov, J. Korevaar and M. Dixon,
we found a close relation between the interpolation property of sequences and Macintyre
problem. It was also shown that if the sequence of real numbers is Ω–interpolating, then
the corresponding exponential system is strongly incomplete (minimal) with respect to the
rectangles; in the case of the 𝑊–interpolation property the strong incompleteness (mini-
mality) holds with respect to the vertical strips. However the conditions of Ω–interpolation
property proposed by A.M. Gaisin in 1991 were a bit unsatisfactory since there were not
visual enough.

In the present paper in the terms of weight concentration index we obtain the required
conditions for strong incompleteness (minimality) of exponential system with respect to the
rectangles.

Keywords: interpolation sequence, strongly incomplete (minimal) exponential systems,
weight concentration index, Macintyre sequence.
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1. Introduction

The paper is devoted to generalizations of series of results by J. Korevaar and M. Dixon on
interpolation sequences from the survey [18].
Let Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞. If Λ ⊂ N, then instead of Λ we shall employ the notation 𝑃 ,

𝑃 = {𝑝𝑛}, where 𝑝𝑛 ∈ N, 𝑝𝑛 ↑ ∞. In what follows 𝑆(𝑃 ) = {𝑧𝑝𝑛} is the system of exponents.
We introduce the following classes of sequences 𝑃 = {𝑝𝑛}:
𝐶𝐶 is the convergence class. This a class of sequences 𝑃 possessing Fejer lacunas, that is,

∞∑︁
𝑛=1

1

𝑝𝑛
< ∞. (1.1)
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𝑀 (Macintyre sequences) is the class of sequences 𝑃 , for which each transcendental function

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 (1.2)

is unbounded on each curve going to infinity.
Macintyre showed that 𝑀 ⊂ 𝐶𝐶 [21]. In [19] there were studied strongly free (minimal

according to L. Schwartz) and strongly incomplete systems of exponents 𝑆(𝑃 ).
The system of exponents {𝑧𝑝𝑛} is called strongly free (minimal) if for all 𝑎 > 1, 𝑘 = 1, 2, . . . ,

inf
𝛾𝑎

inf
𝑐

⃦⃦⃦⃦
⃦𝑧𝑝𝑘 −∑︁

𝑛̸=𝑘

′
𝑐𝑛𝑧

𝑝𝑛

⃦⃦⃦⃦
⃦
𝛾𝑎

= 𝛿𝑘(𝑎) > 0, (1.3)

where
∑︀
𝑛̸=𝑘

′ is a polynomial, 𝛾𝑎 is a curve connecting the circumferences 𝐶(0, 1) = {𝑧 : |𝑧| = 1}

and 𝐶(0, 𝑎) = {𝑧 : |𝑧| = 𝑎}, ‖𝑔‖𝛾𝑎 = max
𝑧∈𝛾𝑎

|𝑔(𝑧)|, where the internal infimum is taken over all

finite sums
∑︀
𝑛̸=𝑘

′, while the external is taken over all curves 𝛾𝑎 [18].

We note that in this definition instead of 𝐶(0, 1) we can consider an arbitrary circumference
𝐶(0, 𝑎′), 0 < 𝑎′ < 𝑎.
The system of exponents {𝑧𝑝𝑛} is called strongly incomplete if for each 𝜈 ∈ N ∖ 𝑃

inf
𝛾𝑎

inf
𝑐

⃦⃦⃦⃦
⃦𝑧𝜈 −∑︁

𝑛

′
𝑐𝑛𝑧

𝑝𝑛

⃦⃦⃦⃦
⃦
𝛾𝑎

= 𝜀𝜈(𝑎) > 0. (1.4)

Here
∑︀
𝑛

′ is also a linear combination of exponents.

The class of sequences 𝑃 obeying the relation (1.3) is denoted by 𝑃𝑆𝐹 (we use the same
notation as in [18]). If the condition (1.4) holds, then the corresponding class of sequences 𝑃
is denoted by 𝑃𝑆𝑁 . As it was shown in [19], 𝑃𝑆𝐹 ⊂ 𝑀 , 𝑃𝑆𝑁 ⊂ 𝑀 .
Let 𝑊 be the class of positive unboundedly growing and continuous on R+ functions 𝑤 such

that
∞∫︁
1

𝑤(𝑥)

𝑥2
𝑑𝑥 < ∞. (1.5)

The convergence of series (1.1) is equivalent to the fact that the function 𝑛𝑃 (𝑡)𝑡
−2 belongs to

𝐿1(R+), where 𝑛𝑃 (𝑡) =
∑︀
𝑝𝑛⩽𝑡

1. Hence, 𝑃 ∈ 𝐶𝐶 if and only if there exists a function 𝑤 ∈ 𝑊

such that 𝑛𝑃 (𝑡) ⩽ 𝑤(𝑡). The set 𝑊 is usually called the convergence class.
We introduce extra two classes of functions:

Ω = {𝜔 ∈ 𝑊 : 𝜔 is concave}, Ω0 =

{︂
𝜔 ∈ 𝑊 :

𝜔(𝑡)

𝑡
↓ as 𝑡 ↑ ∞

}︂
.

It is clear that Ω ⊂ Ω0. On the other hand, for each function 𝜔 ∈ Ω0 the estimates hold

𝜔(𝑡) ⩽ 𝑚𝜔(𝑡) ⩽ 2𝜔(𝑡).

Here 𝑚𝜔(𝑡) is the minimal concave majorant of the function 𝜔(𝑡) see [17, Ch. VII, Sect. 2].
From this point of view the classes Ω and Ω0 can be treated as in fact coinciding; we shall make
sure later.
We provide one more important definition, which was introduced in [19].
A sequence 𝑃 is called interpolating (in the sense of Pavlov — Korevaar — Dixon or Ω0–

interpolating) if there exists a function 𝜔𝑃 = 𝜔𝑃 (𝑟), 0 < 𝜔𝑃 (𝑟) ↑ ∞ as 𝑟 → ∞, belonging to



EQUIVALENT CONDITIONS OF STRONG INCOMPLETENESS 25

the class Ω0, such that for each sequence {𝑏𝑛}, 𝑏𝑛 ∈ C, |𝑏𝑛| ⩽ 1, there exists an entire function
𝑔(𝑧) with the properties:

1) 𝑔(𝑝𝑛) = 𝑏𝑛, 𝑛 = 1, 2, . . . ;

2) 𝑀𝑔(𝑟) = max
|𝑧|=𝑟

|𝑔(𝑧)| ⩽ 𝑒𝜔𝑃 (𝑟). (1.6)

Following [18], we denote the class of interpolating sequences by 𝐼. It was shown in [18] that
𝐼 ⊂ 𝑃𝑆𝐹 and 𝐼 ⊂ 𝑃𝑆𝑁 . Thus,

𝐼 ⊂ 𝑃𝑆𝐹 ⊂ 𝑀 ⊂ 𝐶𝐶.

Open question (Macintyre problem). Whether the identity 𝑀 = 𝐶𝐶 is valid [21]?

We note that in the above chain of inclusions this problem has a special place, for more detail
see [2, Ch. I, Sect. 1], where the regular growth of series (1.2) is studied as well.
The interpolation issues for the sequence 𝑃0 = {𝑝𝑛} (𝑝0 = 0, 𝑝𝑛 ∈ N, 𝑛 ⩾ 1), and for the

sequence {±𝑝𝑛} where somehow studied in [18], [19], [20] by Korevaar and Dixon. Howerver,
these authors did not describe the class 𝐼, and the interpolation was proved only for the Pavlov
and Kovari sequences [19]. The matter is that they succeeded to construct the interpolating
function as a series of Lagrange type [19]

𝑔(𝑧) =
∞∑︁

|𝑘|=0

𝑏𝑘
𝑄(𝑧)

𝑄′(𝑝𝑘)(𝑧 − 𝑝𝑘)

(︂
𝑧

𝑝𝑘

)︂2𝑘𝑚𝑘

, 𝑝−𝑘 = −𝑝𝑘,

where

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧2

𝑝2𝑛

)︂
,

and the natural numbers 𝑚𝑘 are to be chosen in a special way. In the general case, a series of
Lagrange type is not suitable. Because of this, the authors of [18], [19], [20] limited themselves
to studying specific examples. Somewhat later, in [16], Berndson obtained an interpolation
criterion for the sequence 𝑃 = {𝑝𝑛}. We present this result in the next section.
The concept of interpolation sequences is easily extended to arbitrary sequences Λ = {𝜆𝑛},

0 < 𝜆𝑛 ↑ ∞ [1]. In what follows we shall show that the interpolation criterion for this sequence
coincides with the Berndson’s interpolation criterion for 𝑃 = {𝑝𝑛}. A further generalization of
the interpolation property of the sequence Λ = {𝜆𝑛} was obtained in [8], and for symmetric
sequences in [9]. Unlike the Pavlov — Korevar — Dixon type interpolation problem, in [8], [9]
the majorant 𝜔Λ for ln𝑀𝑔(𝑟) for the interpolating function 𝑔(𝜆) in a problem of the type (1.6)
need not be, say, concave; it belongs only to the convergence class 𝑊 . In other words, 𝜔Λ(𝑟) is
simply a non–quasianalytic weight.
In [10] the concept of so–called generalized interpolation was introduced. This will be dis-

cussed in more detail in the next section.

2. Results on interpolating sequences

In [16] Berndtsson proved the following criterion.

Theorem 2.1. The sequence 𝑃 = {𝑝𝑛} is interpolating in the sense of Pavlov — Korevaar —
Dixon if and only if there exists a function 𝜔𝑃 ∈ Ω0 such that

a) 𝑛𝑃 (𝑝𝑛) ⩽ 𝜔𝑃 (𝑝𝑛), 𝑛 = 1, 2, . . . , 𝑛𝑃 (𝑡) =
∑︁
𝑝𝑛⩽𝑡

1;

b) − ln
∏︁
𝑘 ̸=𝑛

𝑝𝑛
2 ⩽𝑝𝑘⩽2𝑝𝑛

⃒⃒⃒⃒
1− 𝑝𝑛

𝑝𝑘

⃒⃒⃒⃒
⩽ 𝜔𝑃 (𝑝𝑛), 𝑛 = 1, 2, . . . .

(2.1)
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As it has been said already, this theorem is completely extended to arbitrary real sequences
of numbers 𝜆𝑛, 0 < 𝜆𝑛 ↑ ∞. This fact (see Theorem 2.3 below) will be employed in Section 3,
where we shall discuss the strong incompleteness of exponential system. Now we briefly recall
other generalizations of the Berndtsson theorem.
The sequence Λ = {𝜆𝑛} is called interpolating (𝑊–interpolating) if there exists a function

𝑤Λ ∈ 𝑊 depending only on Λ such that for each sequence {𝑏𝑛}, |𝑏𝑛| ⩽ 1, there exists an entire
function 𝑓(𝜆) with the properties

1) 𝑓(𝜆𝑛) = 𝑏𝑛, 𝑛 = 1, 2, . . . ;

2) 𝑀𝑓 (𝑟) ⩽ 𝑒𝑤Λ(𝑟).
(2.2)

Thus, if a sequence Λ is interpolating in the sense of Pavlov — Korevaar — Dixon, then it is
𝑊–interpolating.
The criterion of 𝑊–interpolation was proved [8], where a modified Berndtsson method was

employed, which was based on an idea by Hörmander for solving a 𝜕–problem in the multidi-
mensional complex analysis. We note that almost simultaneously this method was also used in
[15].
Taking into consideration the estimate [8, Lm. 3]⃒⃒⃒⃒

⃒⃒⃒⃒− ln
∏︁
𝑘 ̸=𝑛

𝜆𝑛
2 ⩽𝜆𝑘⩽2𝜆𝑛

⃒⃒⃒⃒
1− 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒

⩽ 𝑛Λ(2𝜆𝑛) +𝑁(2𝜆𝑛) + ln𝑀𝐿(𝜆𝑛), 𝑛 = 1, 2, . . . ,

(2.3)

where 𝜈(𝜆𝑛; 𝑡) is the number of points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {ℎ : |ℎ− 𝜆𝑛| ⩽ 𝑡},

𝑛Λ(𝑡) =
∑︁
𝜆𝑛⩽𝑡

1, 𝑡 > 0,

𝑁(𝑡) =

𝑡∫︁
0

𝑛Λ(𝑥)

𝑥
𝑑𝑥, 𝐿(𝜆) =

∞∏︁
𝑛=1

(︂
1− 𝜆2

𝜆2
𝑛

)︂
, (2.4)

we rewrite the interpolation criterion for the sequence Λ from [8] as follows; for the symmetric
sequence {±𝜆𝑛} the criterion is the same, see [9].

Theorem 2.2. The sequence Λ is 𝑊–interpolating if and only if there exists a function
𝑤Λ ∈ 𝑊 such that

𝐴.
∞∑︁
𝑛=1

1

𝜆𝑛

< ∞; 𝐵.

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 ⩽ 𝑤Λ(𝜆𝑛), 𝑛 = 1, 2, . . . .

Here we have taken into consideration that under the condition 𝐴
∞∫︁
1

𝑛Λ(𝑡)

𝑡2
𝑑𝑡 < ∞,

and the functions 𝑁(𝑡) and ln𝑀𝐿(𝑡), 𝑡 > 0, belong to the class 𝑊 , see [13, Ch. I, Sect. 1,
Subsect. 3], [5, Sect. 2, Subsect. 2.4].
We note that the estimates (2.3) and the conditions 𝐴, 𝐵 imply

ln
1

ℎ𝑛

⩽ 𝑤0(𝜆𝑛), 𝑛 = 1, 2, . . . , (2.5)
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where ℎ𝑛 = min

(︂
min
𝑘 ̸=𝑛

|𝜆𝑛 − 𝜆𝑘|, 1
)︂
, 𝑤0 is some function in 𝑊 .

Thus, for a 𝑊–interpolating sequence Λ we necessarily have

ℎ𝑛 ⩾ 𝑒−𝑤0(𝜆𝑛), 𝑛 = 1, 2, . . . , 𝑤0 ∈ 𝑊.

We shortly dwell on one more extension of 𝑊–interpolation.
Let 𝛽 = 𝛽(𝑡) be some fixed function in the class 𝑊 . The sequence Λ = {𝜆𝑛} is called 𝑊–

interpolating in the wide sense if there exists a function 𝑤Λ ∈ 𝑊 depending on the function
𝛽(𝑡) and the sequence Λ such that for each sequence of complex numbers 𝑏𝑛, |𝑏𝑛| ⩽ 𝑒𝛽(𝜆𝑛),
𝑛 = 1, 2, . . . , there exists an entire function 𝑓(𝜆), which possesses the properties (2.2).
The corresponding problem (2.2) is called the generalized interpolation problem. The crite-

rion of generalized interpolation is the same as in Theorem 2.2, see [10].
Berndtsson Theorem 2.1 admits a generalization for the case of arbitrary nodes 𝜆𝑛 > 01. We

formulate this result in more convenient terms.

Theorem 2.3. A sequence Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, is interpolating in the sense of Pavlov —
Korevaar — Dixon if and only if there exists a function 𝜔Λ ∈ Ω0 such that

𝐶. 𝑛Λ(𝑡) ⩽ 𝜔Λ(𝑡);

𝐷.

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 ⩽ 𝜔Λ(𝜆𝑛), 𝑛 = 1, 2, . . . .

3. Strong incompleteness of exponential system

The notion of strong incompleteness of system of exponents 𝑆(𝑃 ) = {𝑧𝑝𝑛}∞𝑛=1 was first
introduced by Korevaar and Dixon in [19]; in [3] this notion was extended to the system of
exponents 𝑒Λ = {𝑒𝜆𝑛𝑧}, 0 < 𝜆𝑛 ↑ ∞, and later in [9] to the system {𝑒±𝜆𝑛𝑧}.
The system of exponents {𝑒±𝜆𝑛𝑧} is called strongly incomplete (with respect to rectangles)

if for all 𝑎, 𝑏 (0 < 𝑎 < ∞, 0 < 𝑏 < ∞) and 𝛽, 𝛽 ̸= ±𝜆𝑛, 𝑛 = 1, 2, . . . ,

inf
𝛾(−𝑎,𝑎)

inf
𝑐𝑛

⃦⃦⃦⃦
⃦⃦𝑒𝛽𝑧 − ∑︁

𝑛∈Z∖{0}

𝑐𝑛𝑒
𝜇𝑛𝑧

⃦⃦⃦⃦
⃦⃦
𝛾(−𝑎,𝑎)

= 𝜀𝛽(𝑎, 𝑏) > 0.

Here ‖𝑔‖𝛾 = max
𝑧∈𝛾

|𝑔(𝑧)|, the internal infimum is taken over all quasipolynomials∑︁
𝑛∈Z∖{0}

𝑐𝑛𝑒
𝜇𝑛𝑧, 𝜇𝑛 = 𝜆𝑛, 𝜇−𝑛 = −𝜆𝑛, 𝑛 ∈ N;

the external infimum is taken over all rectified curves 𝛾 = 𝛾(−𝑎, 𝑎) in the rectangle

𝑃 (𝑎, 𝑏) = {𝑧 = 𝑥+ 𝑖𝑦 : |𝑥| ⩽ 𝑎, |𝑦| < 𝑏},
connecting its vertical sides.
For the system {𝑒𝜆𝑛𝑧} a similar notion was considered in [3].
In [9] the following theorem was proved.

Theorem 3.1. Let the conditions be satisfied:

1)
∞∑︁
𝑛=1

1

𝜆𝑛

< ∞; 2)

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 ⩽ 𝑤(𝜆𝑛), 𝑛 = 1, 2, . . . , (3.1)

1The proof of this result will be published in a separate paper.
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where 𝜈(𝜆𝑛; 𝑡) is the number of points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {ℎ : |ℎ − 𝜆𝑛| ⩽ 𝑡}, and 𝑤 is
some function in the convergence class 𝑊 .
Then the system of exponents {𝑒±𝜆𝑛𝑧} is strongly incomplete with respect to the vertical strips

𝑃 (𝑎,∞)1.

As it is known, the pair of conditions 1) and 2) in (3.1) is equivalent to conditions 1) and 3)
or 1) and 4), where

3) − ln
∏︁
𝑘 ̸=𝑛

𝜆𝑛
2 ⩽𝜆𝑘⩽2𝜆𝑛

⃒⃒⃒⃒
1− 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
⩽ 𝑤(𝜆𝑛), 𝑛 = 1, 2, . . . , 𝑤 ∈ 𝑊 ;

4) − ln |𝐿′(𝜆𝑛)| ⩽ 𝑤(𝜆𝑛), 𝑛 = 1, 2, . . . , 𝑤 ∈ 𝑊.

This is why each of three equivalent pairs of conditions 1) and 2), 1) and 3), 1) and 4) is
necessary and sufficient for the sequence 𝑀 = {𝜇±𝑛}, 𝜇𝑛 = 𝜆𝑛, 𝜇−𝑛 = −𝜆𝑛, 𝑛 ∈ N to be
𝑊–interpolating, see [9].
Thus, for each interpolating sequence 𝑀 = {±𝜆𝑛} the corresponding system of exponentials

{𝑒±𝜆𝑛𝑧} is strongly incomplete on the family of rectified curves 𝛾(−𝑎, 𝑎) in 𝑃 (𝑎,∞) with respect
to the uniform norm. In particular, under the assumptions of Theorem 3.1, the system of
exponentials {𝑒±𝜆𝑛𝑧} is incomplete on each rectified curve 𝛾, that is, it is incomplete in the
space of continuous functions 𝐶(𝛾). This means that there exists a non–zero complex Borel
measure 𝜇 on 𝛾, the Laplace transform of which

𝜇̂(𝑠) =

∫︁
𝛾

𝑒𝑠𝑧𝑑𝜇(𝑧)

vanishes at the points ±𝜆𝑛, 𝑛 = 1, 2, . . . . It is important to note that the assumptions of The-
orem 3.1 are formulated in terms of main distribution characteristics of the points of sequence
{±𝜆𝑛}.
In this regard, we pay an attention to the corresponding result in [3] on strong incompleteness

with respect to rectangles 𝑃 (𝑎, 𝑏), 𝑏 ̸= ∞. In this result, the dependence of the conditions for
strong incompleteness of the exponentials system of known distribution characteristics of the
points 𝜆𝑛, 𝑛 = 1, 2, . . . , is not at all obvious. Indeed, the following statement was proved in [3].

Theorem 3.2. Let 𝑛 = 𝑜(𝜆𝑛) as 𝑛 → ∞, ℎ(𝛿) = ℎ−(𝛿)ℎ+(𝛿), where

ℎ+(𝛿) =

∞∫︁
0

|𝐿(𝑖𝑟)|𝑒−𝛿𝑟𝑑𝑟, ℎ−(𝛿) =

∞∫︁
0

|𝐿(𝑟𝑒𝑖𝛿)|−1𝑒−𝛿𝑟𝑑𝑟, 𝛿 > 0.

If the function ℎ(𝛿) satisfies the Levinson bilogarithmic condition

𝑑∫︁
0

ln lnℎ(𝛿)𝑑𝛿 < ∞, ℎ(𝑑) = 𝑒, (3.2)

then the exponential system {𝑒𝜆𝑛𝑧} is strongly incomplete with respect to the rectangles.

The functions ℎ+(𝛿) and ℎ−(𝛿) decrease on (0,∞), ℎ+(𝛿) ↑ ∞, ℎ−(𝛿) ↑ ∞ as 𝛿 ↓ 0 [3]. It is
also well–known that the condition (3.2) is equivalent to the Levinson condition for each of the

1The strong incompleteness of the system {𝑒±𝜆𝑛𝑧} with respect to the strip 𝑃 (𝑎,∞) is formally understood
as the strong incompleteness with respect the rectangle 𝑃 (𝑎, 𝑏), for which 𝑏 = ∞.
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functions ℎ+(𝛿) and ℎ−(𝛿); in what follows, the condition

𝑑+∫︁
0

ln lnℎ+(𝛿)𝑑𝛿 < ∞, ℎ+(𝑑+) ⩾ 𝑒, (3.3)

is equivalent to the condition 𝐶 of Theorem 2.3, see [3], [4]1.
Our goal is to decipher the condition

𝑑−∫︁
0

ln lnℎ−(𝛿)𝑑𝛿 < ∞, ℎ−(𝑑−) ⩾ 𝑒, (3.4)

and transform it in a more understandable and natural form, taking into account the explicit
dependence on the sequence Λ. To do this, we first find out under what conditions the sequence
Λ = {𝜆𝑛} obeys

sup
𝜃 ̸=0,𝜋

lim
𝑟→∞

1

𝜔(𝑟)
ln

⃒⃒⃒⃒
1

𝐿(𝑟𝑒𝑖𝜃)

⃒⃒⃒⃒
< ∞,

where 𝜔(𝑟) is some majorant of the function ln𝑀𝐿(𝑟), which belongs to the class Ω and satisfies

0 < lim
𝑟→∞

ln𝑀𝐿(𝑟)

𝜔(𝑟)
< ∞.

For the case 𝜔(𝑟) ≡ 𝑟 this question was posed by A.F. Leontiev in 1956 in relation with the
problem on continuation of convergence of an arbitrary sequence of Dirichlet polynomials

𝑃𝑛(𝑧) =

𝑞𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 𝑒𝜆𝑘𝑧, 𝑛 = 1, 2, . . . ,

which converges uniformly in some domain, where the exponential system {𝑒𝜆𝑘𝑧} is incomplete,
into the half–plane {𝑧 : Re 𝑧 < 𝑐} (the same for all sequences {𝑃𝑛(𝑧)}) [12].
In [11] Krasichkov gave an answer to the question by A.F. Leontiev. Krasichkov considered

the case

𝜔(𝑟) = 𝑉 (𝑟),

where 𝑉 (𝑟) = 𝑟𝜌(𝑟), 𝜌(𝑟) is the proximate order, 𝜌(𝑟) → 𝜌, 𝜌 > 0 (in our case 0 < 𝜌 ⩽ 1), such
that

0 < lim
𝑟→∞

ln𝑀𝐿(𝑟)

𝑉 (𝑟)
< ∞.

In [11] a necessary and sufficient condition for the sequence Λ = {𝜆𝑛} was obtained, which
ensured sup

𝜃 ̸=0,𝜋
𝐻𝐿(𝜃) < ∞, where

𝐻𝐿(𝜃) = lim
𝑟→∞

1

𝑉 (𝑟)
ln

⃒⃒⃒⃒
1

𝐿(𝑟𝑒𝑖𝜃)

⃒⃒⃒⃒
, 𝑉 (𝑟) = 𝑟𝜌(𝑟),

is the indicator of the function |𝐿(𝜆)|−1 at the proximate order 𝜌(𝑟). Our aim is to replace,
in this result, the function of exact growth 𝑉 (𝑟) = 𝑟𝜌(𝑟) by an appropriate function 𝜔(𝑟),
𝜔 ∈ Ω0. As we can guess, this would given an opportunity to formulate the convergence the
integral (3.4) of the iterated logarithm of the function ℎ−(𝛿) in terms of the so–called weight
concentration index (𝜔–concentration) of the sequence Λ. As we see, such formulation of the
problem is topical, especially since the answer cannot be obtained as a simple consequence of
Krasichkov’s result mentioned in [11]. The point is that the function 𝜔(𝑟), 𝜔 ∈ Ω0, unlike 𝑉 (𝑟),

1In the condition 𝐶 as the function 𝜔Λ(𝑡) we can take the smallest concave majorant of the function 𝑛Λ(𝑡)
[4].
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is not required to be regularly varying at infinity [14]. And in [11] this fact is essentially used,
namely the properties of proximate order in evaluating integrals, see [11].
In [6] the following theorem on the finiteness of the weight indicator for the function |𝐿(𝜆)|−1,

where 𝐿(𝜆) is the entire function of exponential type in (2.4).

Theorem 3.3 ([6]). Let the smallest concave majorant 𝜔 of the function ln𝑀𝐿(𝑟) belong to
the convergence class1 𝑊 ,

𝐻𝜔(𝜃) = lim
𝑟→∞

1

𝜔(𝑟)
ln

⃒⃒⃒⃒
1

𝐿(𝑟𝑒𝑖𝜃)

⃒⃒⃒⃒
(3.5)

be the weight indicator of the function |𝐿(𝜆)|−1, 𝜆 = 𝑟𝑒𝑖𝜃.
Then

sup
𝜃 ̸=0,𝜋

𝐻𝜔(𝜃) < ∞, (3.6)

if and only if the weight concentration index

𝐼Λ(𝜔,R+) = lim
𝜀→0

lim
𝑥→+∞

1

𝜔(𝑥)

1∫︁
𝜀

𝑛𝜎(𝑥)

𝜎
𝑑𝜎, (3.7)

is finite, where 𝑛𝜎(𝑥) is the number of points 𝜆𝑛 in the circle ∆𝜎(𝑥) = {𝑡 : |𝑡 − 𝑥| ⩽ 𝜎|𝑥|},
𝑥 ∈ R.

As it has been said, the case 𝜔(𝑟) = 𝑉 (𝑟), 𝑉 (𝑟) = 𝑟𝜌(𝑟), 𝜌(𝑟) is the proximate order 𝜌(𝑟) →
𝜌 > 0, was studied in [11].
This result is based on the following fact, which was also essentially employed in [11] for

arbitrary entire functions of proximate order 𝜌(𝑟), 𝜌(𝑟) → 𝜌, 0 < 𝜌 < ∞.
Under the assumptions of Theorem 3.3 the representation holds [6]: for all 𝜆 ̸= 0

ln |𝐿(𝜆)| = −
1∫︁

0

𝑛𝜎(𝜆)

𝜎
𝑑𝜎 +𝑅(|𝜆|), (3.8)

where 𝑅(|𝜆|) = 𝑂(1)𝜔(|𝜆|), and 𝑂(1) is some function bounded outside each circle {𝑧 : |𝑧| ⩽ 𝜌},
𝜌 > 0; the function 𝑛𝜎(𝜆) for complex 𝜆 is defined in the same way.
As it was shown in [6],

|𝑅(|𝜆|)| ⩽ 𝐴0 + 𝐴1𝜔(|𝜆|), |𝜆| ⩾ 0.

This is why, Theorem 3.3 and the representation (3.8) imply the statement: if 𝜔(𝑟) is the
smallest concave majorant of the function ln𝑀𝐿(𝑟), then the condition (3.6) is equivalent to
the condition

sup
𝜃 ̸=0,𝜋

lim
𝑟→∞

1

𝜔(𝑟)

1∫︁
0

𝑛𝜎(𝑟𝑒
𝑖𝜃)

𝜎
𝑑𝜎 < ∞. (3.9)

As in Theorem 3.3, we suppose that 𝜔 ∈ Ω.
Let us estimate the function ℎ−(𝛿) from above and below. We denote

𝐼(𝜆) =

1∫︁
0

𝑛𝜎(𝜆)

𝜎
𝑑𝜎, 𝜆 = 𝑟𝑒𝑖𝛿.

Then, using the identity (3.8), we get

ℎ−(𝛿) ⩽ ℎ*
(︂
𝛿

2

)︂
𝑒𝐴0+𝑚( 𝛿

2), (3.10)

1This is obviouslyt equivalent to the condition (3.3), that is, the condition 𝐶 of Theorem 2.3.
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where

𝑚(𝜉) = sup
𝑟>0

(𝐴1𝜔(𝑟)− 𝜉𝑟), 𝜉 > 0,

ℎ*(𝜉) =

∞∫︁
0

exp(𝐼(𝜆)− 𝜉𝑟)𝑑𝑟, 𝜆 = 𝑟𝑒𝑖𝛿.

By (3.10) for 𝛿 ⩽ 𝛿0 we obtain the inequality

lnℎ−(𝛿) ⩽ lnℎ*
(︂
𝛿

2

)︂
+ 2𝑚

(︂
𝛿

2

)︂
.

Using the elementary inequality

ln+(𝑎+ 𝑏) ⩽ ln+ 𝑎+ ln+ 𝑏+ ln 2, 𝑎 > 0, 𝑏 > 0,

we find

ln lnℎ−(𝛿) ⩽ ln lnℎ*
(︂
𝛿

2

)︂
+ 2 ln 2 + ln𝑚

(︂
𝛿

2

)︂
, 0 < 𝛿 ⩽ 𝛿1 < 𝛿0.

Since 𝜔 ∈ Ω, we have [19]
𝑑0∫︁
0

ln𝑚(𝜉)𝑑𝜉 < ∞, 𝑚(𝑑0) ⩾ 1.

This is why the convergence of integral (3.4) for the function ℎ*(𝜉) implies the convergence of
the same integral for ℎ−(𝜉).
On the other hand, as it is easy to confirm,

ℎ−(𝛿) ⩾ ℎ*(2𝛿)𝑒−𝐴0−𝑚(𝛿),

that is,

ℎ−(𝛿)𝑒
𝐴0+𝑚(𝛿) ⩾ ℎ*(2𝛿).

The same arguing shows that if ℎ−(𝜉) satisfies the Levinson condition (3.4), then the function
ℎ*(𝜉) does the same condition.
Thus, we obtain the following statement.

Theorem 3.4. Let the smallest concave majorant of the function ln𝑀𝐿(𝑟) belong to the class
𝑊 . Then the following statements hold:

I. The integrals
𝑑−∫︁
0

ln lnℎ−(𝛿)𝑑𝛿,

𝑑*∫︁
0

ln lnℎ*(𝛿)𝑑𝛿

are equiconvergent; the functions ℎ−(𝛿) and ℎ*(𝛿) were defined above.
II. The equivalent conditions (3.6) and (3.9) hold if and only if 𝐼Λ(𝜔,R+) < ∞; here

𝐼Λ(𝜔,R+) is the weight concentration index of sequence Λ defined by the formula.

Remark 3.1. We note that

1∫︁
0

𝑛𝜎(𝑧)

𝜎
𝑑𝜎 =

|𝑧|∫︁
0

𝜇(𝑧; 𝑡)

𝑡
𝑑𝑡,
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where 𝜇(𝑧; 𝑡) is the number of points 𝜆 ∈ Λ in the circle {ℎ : |𝑧 − ℎ| ⩽ |𝑡|}. Indeed, we make
that change 𝑡 = 𝜎𝑧 and get

|𝑧|∫︁
0

𝜇(𝑧; 𝑡)

𝑡
𝑑𝑡 =

1∫︁
0

𝜇(𝑧;𝜎|𝑧|)
𝜎

𝑑𝜎 =

1∫︁
0

𝑛𝜎(𝑧)

𝜎
𝑑𝜎.

Remark 3.2. The condition (3.2) (the sufficient condition of strong incompleteness of the
system {𝑒𝜆𝑛𝑧} with respect to rectangles) is equivalent to

10. 𝑛Λ(𝑡) ⩽ 𝜔Λ(𝑡), 𝜔Λ ∈ Ω0;

20.

𝑑*∫︁
0

ln lnℎ*(𝛿)𝑑𝛿 < ∞, ℎ*(𝑑*) ⩾ 𝑒.

However, the pairs of conditions 10 and 20, 1) and 2) in Theorem 3.1, the sufficient conditions
of strong incompleteness of the exponential system {𝑒±𝜆𝑛𝑧} and hence, of the system {𝑒𝜆𝑛𝑧}
with respect to vertical strips, are independent. Indeed, we consider the system of segments
{∆𝑗}, where

∆𝑗 =

[︃
2𝑗

2 −

[︃
2𝑗

2

𝑗2

]︃
, 2𝑗

2

]︃
, 𝑗 ⩾ 1,

where [𝑎] is the integer part of 𝑎. Let Λ = {𝜆𝑛} be an increasing sequence of all natural numbers
in

⋃︀
𝑗⩾1∆𝑗. This sequence Λ obeys conditions 1) and 2) of Theorem 3.1 but [7]

𝑑+∫︁
0

ln lnℎ+(𝛿)𝑑𝛿 = ∞.

On the other hand, let Λ = {𝜆𝑛} be the union of two sequences {𝑝𝑛} and {𝑞𝑛}, where
{𝑝𝑛}, 𝑝𝑛 ∈ N, is an interpolating in the sense of Pavlov — Korevaar — Dixon sequence, 𝑞𝑛 =
𝑝𝑛 + exp(−𝑝𝑛 ln 𝑝𝑛). This sequence satisfies the conditions 10 and 20, and the bilogarithmic
condition for the function ℎ(𝛿) = ℎ+(𝛿)ℎ−(𝛿) obviously holds. However, the condensation
index satisfies

𝛿(Λ) = lim
𝑛→∞

1

𝜆𝑛

ln

⃒⃒⃒⃒
1

𝐿′(𝜆𝑛)

⃒⃒⃒⃒
= ∞,

and the condition 2) of Theorem 3.1 fails [3].
We proceed to the next theorem; for natural numbers 𝜆𝑛 the corresponding statement was

proved in [3].

Theorem 3.5. Let Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, be an interpolating in the sense of Pavlov —
Korevaar — Dixon sequence. Then the function ℎ(𝛿) = ℎ+(𝛿)ℎ−(𝛿) satisfies the Levinson
condition (3.2).

Proof. According to Theorem 2.3 we have 𝑛Λ(𝑡) ⩽ 𝜔Λ(𝑡), 𝜔Λ ∈ Ω0. Hence, the integral (3.3)
converges [4]. In the proof of the sufficiency in Theorem 2.3 (the criterion of interpolation in
sense of Pavlov — Korevaar — Dixon for arbitrary real nodes 𝜆𝑛 > 0) we have shown that for
all 𝑧 ∈ 𝐾𝑛, 𝑛 = 1, 2, . . . ,

𝐾𝑛 =

{︂
𝑧 :

ℎ𝑛

4
⩽ |𝑧 − 𝜆𝑛| ⩽

ℎ𝑛

2

}︂
, ℎ𝑛 = min

(︂
min
𝑘 ̸=𝑛

|𝜆𝑘 − 𝜆𝑛|, 1
)︂
,

the estimate ⃒⃒⃒⃒
1

𝐿(𝑧)

⃒⃒⃒⃒
⩽ 𝑒𝜔1(𝜆𝑛), 𝑛 = 1, 2, . . . , 𝜔1 ∈ Ω0 (3.11)
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holds.
Let 𝑧 = 𝑟𝑒𝑖𝛿, 0 < 𝛿 < 𝜋

4
, belong to the circle 𝐷𝑛 =

{︀
𝑧 : |𝑧 − 𝜆𝑛| ⩽ ℎ𝑛

4

}︀
. Then⃒⃒⃒⃒

𝑧 − 𝜆𝑛

𝐿(𝑧)

⃒⃒⃒⃒
⩽ max

𝑡∈𝐶𝑛

⃒⃒⃒⃒
𝑡− 𝜆𝑛

𝐿(𝑡)

⃒⃒⃒⃒
⩽

ℎ𝑛

4
𝑒𝜔1(𝜆𝑛) ⩽

1

4
𝑒𝜔1(𝜆𝑛),

𝐶𝑛 = 𝜕𝐷𝑛, 𝑛 = 1, 2, . . . Since |𝑧 − 𝜆𝑛| ⩾ 𝜆𝑛 sin 𝛿 ⩾ 2𝛿
𝜋
, for 𝑧 ∈ 𝐷𝑛, 𝑧 = 𝑟𝑒𝑖𝛿, we have⃒⃒⃒⃒

1

𝐿(𝑧)

⃒⃒⃒⃒
⩽

𝜋

8𝜆1𝛿
𝑒𝜔1(𝜆𝑛) ⩽

1

𝜆1𝛿
𝑒𝜔1(𝑟+1). (3.12)

Since |𝐿(𝑟𝑒𝑖𝛿)|−1 ↑ as 𝛿 ↓ that can be verified straightforwardly, and 𝜔1 ∈ Ω0, in view of (3.11),
(3.12) we obtain that for all 𝑟 ⩾ 1 and 𝑟 ∈

[︀
𝜆𝑛 − ℎ𝑛

2
, 𝜆𝑛 +

ℎ𝑛

2

]︀
,⃒⃒⃒⃒

1

𝐿(𝑟𝑒𝑖𝛿)

⃒⃒⃒⃒
⩽

1

𝜆1𝛿
𝑒2𝜔1(𝑟). (3.13)

Let 𝑟 ∈
[︁
𝜆𝑛 +

ℎ𝑛

2
, 𝜆𝑛+1 − ℎ𝑛+1

2

]︁
. It was shown in [2, Ch. I, Sect. 3] that for 𝑛 ⩾ 𝑛0 each

segment [2𝑛−1, 2𝑛] contains a point 𝑥𝑛 such that⃒⃒⃒⃒
1

𝐿(𝑥𝑛)

⃒⃒⃒⃒
⩽ 𝑒−20 ln𝑀𝐿(𝑥𝑛).

However, if we take into consideration the condition 𝐶 of Theorem 2.3, we get⃒⃒⃒⃒
1

𝐿(𝑥𝑛)

⃒⃒⃒⃒
⩽ 𝑒𝜔2(𝑥𝑛), 𝜔2 ∈ Ω0. (3.14)

The circles 𝐵𝑛 =
{︀
𝑧 : |𝑧 − 𝜆𝑛| ⩽ ℎ𝑛

2

}︀
are pairwise disjoint. If 𝜆𝑛+1

𝜆𝑛
⩽ 2, then by the maximum

principle, the estimates (3.11) and the increase of function |𝐿(𝑟𝑒𝑖𝛿)|−1 as 𝛿 ↓ 0 we get that for

𝑟 ∈
[︁
𝜆𝑛 +

ℎ𝑛

2
, 𝜆𝑛+1 − ℎ𝑛+1

2

]︁
⃒⃒⃒⃒

1

𝐿(𝑟𝑒𝑖𝛿)

⃒⃒⃒⃒
⩽ 𝑒𝜔1(2𝑟) ⩽ 𝑒2𝜔1(𝑟). (3.15)

If 𝜆𝑛+1

𝜆𝑛
> 2, then there exists a finite set of points 𝑥′

𝑛,

𝜆𝑛 +
ℎ𝑛

2
= 𝑥′

0 < 𝑥′
1 < . . . < 𝑥′

𝑁 = 𝜆𝑛+1 −
ℎ𝑛+1

2
,

𝑥′
𝑖+1

𝑥′
𝑖

⩽ 4, 𝑖 = 0, 1, . . . , 𝑁,

in which the estimate of type (3.14) holds. Applying the previous arguing for this partition
points, we again obtain the estimate of type (3.15)⃒⃒⃒⃒

1

𝐿(𝑟𝑒𝑖𝛿)

⃒⃒⃒⃒
⩽ 𝑒𝜔2(4𝑟) ⩽ 𝑒4𝜔2(𝑟), 𝑟 ∈ [𝑥′

𝑖, 𝑥
′
𝑖+1].

Thus, in view of (3.13), we finally have: for all 𝑟 ⩾ 1⃒⃒⃒⃒
1

𝐿(𝑟𝑒𝑖𝛿)

⃒⃒⃒⃒
⩽

const

𝛿
𝑒𝜔3(𝑟),

where 𝜔3(𝑟) = 2𝜔1(𝑟) + 4𝜔2(𝑟). Hence,

ℎ−(𝛿) ⩽
const

𝛿

∞∫︁
0

𝑒𝜔3(𝑟)−𝛿𝑟𝑑𝑟, 𝜔3 ∈ Ω0.

This implies the convergence of bilogarithmic integral for this function. The proof is complete.
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Remark 3.3. The union of finitely many interpolating in the considered sense sequences
does not spoil the convergence of integrals (3.3) and (3.4). If Λ = {𝜆𝑛} is the union of two
interpolating sequences {𝜆′

𝑛} and {𝜆′′
𝑛}, then the exponential system {𝑒𝜆𝑧}𝜆∈Λ is strongly incom-

plete with respect to the rectangles as the systems {𝑒𝜆′
𝑛𝑧} and {𝑒𝜆′′

𝑛𝑧}. At the same time, as we
have seen, the sequence Λ is not necessarily interpolating since the numbers ℎ𝑛 can tend to zero
arbitrarily fast for the interpolating sequences

ln
1

ℎ𝑛

⩽ 𝑒𝜔(𝜆𝑛), 𝑛 ⩾ 1,

where the function 𝜔 belongs at least to the convergence class 𝑊 .

Remark 3.4. The condition

sup
𝜃 ̸=0,𝜋

𝐻𝜔(𝜃) < ∞

is equivalent to the condition (3.9), and this implies that for some 𝐾 < ∞ and each 𝜃 ∈
(︀
0, 𝜋

2

]︀
for 𝑟 ⩾ 𝑟(𝜃) we have

𝐼(𝑧)
𝑑𝑒𝑓
=

1∫︁
0

𝑛𝜎(𝑧)

𝜎
𝑑𝜎 < 𝐾𝜔(𝑟), 𝑧 = 𝑟𝑒𝑖𝜃.

Hence, for an arbitrary 𝑧 = 𝑟𝑒𝑖𝜃

𝐼(𝑧) ⩽ max(𝑚0(𝜃), 𝐾𝜔(𝑟)), 𝑚0(𝜃) = max
0⩽𝑟⩽𝑟(𝜃)

𝐼(𝑧).

This yields ℎ*(𝜃) ⩽ 𝑀(𝜃)ℎ0(𝜃), where the function ℎ*(𝜃) is the same as in (3.10), and

𝑀(𝜃) = 𝑒𝑚0(𝜃), ℎ0(𝜃) =

∞∫︁
0

𝑒𝐾𝜔(𝑟)−𝜃𝑟𝑑𝑟, 0 < 𝜃 ⩽ 𝜃0 <
𝜋

4
.

This shows that the convergence of integral

𝑑*∫︁
0

ln lnℎ*(𝜃)𝑑𝜃, ℎ*(𝑑*) ⩾ 𝑒,

is ensured by
𝑑𝑀∫︁
0

ln ln𝑀(𝜃)𝑑𝜃 < ∞, 𝑀(𝑑𝑀) ⩾ 𝑒.

As we have seen, for the interpolating sequences we have

𝑀(𝜃) =
const

𝜃
.

If Λ =
⋃︀𝑛

𝑖=1 Λ
(𝑖), where Λ(𝑖) are interpolating sequences, then

𝑀(𝜃) = const

(︂
1

𝜃

)︂𝑁

.

On the other hand we can write

ℎ*(𝜃) =

⎛⎜⎝ 𝑟(𝜃)∫︁
0

+

∞∫︁
𝑟(𝜃)

⎞⎟⎠ [exp(𝐼(𝑧)− 𝜃𝑟)] 𝑑𝑟 ⩽ ℎ1(𝜃) + ℎ0(𝜃),
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where ℎ0(𝜃) is the same function as above and

ℎ1(𝜃) =

𝑟(𝜃)∫︁
0

𝑒𝐼(𝑧)−𝜃𝑟𝑑𝑟, 𝑧 = 𝑟𝑒𝑖𝜃.

It is easy to see that
ℎ1(𝜃) ⩽ ℎ*(𝜃) ⩽ ℎ1(𝜃) + ℎ0(𝜃).

As one can easily confirm, this means that the bilogarithmic integrals of the functions ℎ*(𝜃) and
ℎ1(𝜃) are equiconvergent.

Question. How to characterise the convergence of the integral
𝑑1∫︁
0

ln lnℎ1(𝜃)𝑑𝜃, ℎ1(𝑑1) ⩾ 𝑒,

in terms of the distribution of sequence?
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