УДК 517.53+517.538.2+517.538.7

ЭКВИВАЛЕНТНЫЕ УСЛОВИЯ УСИЛЕННОЙ НЕПОЛНОТЫ СИСТЕМЫ ЭКСПОНЕНТ

А.М. ГАЙСИН, Р.А. ГАЙСИН

Аннотация. Изучаются интерполяционные последовательности в смысле Павлова — Коревара — Диксона (Ω -интерполяционные последовательности) и обобщения, а также аппроксимативные свойства систем экспонент с соответствующими показателями. Так, представляет интерес интерполяционная задача в классе целых функций экспоненциального типа, определяемом некоторой возрастающей мажорантой из класса сходимости (неквазианалитическим весом). В более узком классе, когда мажоранта обладала свойством вогнутости аналогичная задача в 1978 году была полностью решена Б. Берндсоном, но в случае, когда узлы интерполяции — натуральные числа. Он получил критерий разрешимости данной интерполяционной задачи. Соответствующий критерий для произвольной возрастающей последовательности положительных узлов недавно был получен Р.А. Гайсиным. Он же в 2021 году доказал соответствующий критерий интерполяционности (W-интерполяционности) в случае произвольного неквазианалитического веса. Как и в работах А.И. Павлова, Дж. Коревара и М. Диксона нами была обнаружена тесная связь между интерполяционностью последовательностей и проблемой Макинтайра. Было также показано, что если последовательность вещественных чисел Ω -интерполяционная, то соответствующая система экспонент усиленно не полна (минимальна) относительно прямоугольников (в случае W-интерполяционности усиленная неполнота (минимальность) имеет место относительно вертикальных полос). Однако условия Ω -интерполяционности, предложенные А.М. Гайсиным в 1991 году, оставляли чувство неудовлетворенности из-за того, что они были недостаточно наглялными.

В данной статье в терминах весового индекса концентрации и получены требуемые условия усиленной неполноты (минимальности) системы экспонент относительно прямоугольников.

Ключевые слова: интерполяционная последовательность, усиленно неполные (минимальные) системы экспонент, весовой индекс концентрации, последовательность Макинтайра.

Mathematics Subject Classification: 30E05, 30E10

1. Введение

Статья посвящена обобщениям ряда результатов Дж. Коревара и М. Диксона об интерполяционных последовательностях из обзорной работы [18].

A.M. Gaisin, R.A. Gaisin, Equivalent conditions of strong incompleteness of exponential system.

⁽С) ГАЙСИН А.М., ГАЙСИН Р.А. 2025.

Работа А.М. Гайсина (раздел 1) выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках выполнения государственного задания (код научной темы FMRS-2025-0010). Работа Р.А. Гайсина (разделы 2, 3) выполнена при поддержке гранта РНФ (соглашение № 25-21-00044).

Поступила 23 мая 2025 г.

Пусть $\Lambda = \{\lambda_n\}, \ 0 < \lambda_n \uparrow \infty$. Если $\Lambda \subset \mathbb{N}$, то вместо Λ будем использовать обозначение $P, \ P = \{p_n\}$, где $p_n \in \mathbb{N}, \ p_n \uparrow \infty$. В дальнейшем $S(P) = \{z^{p_n}\}$ — система степеней.

Введем в рассмотрение следующие классы последовательностей $P = \{p_n\}$:

CC (convergence class) — класс сходимости. Это — класс последовательностей P, имеющих лакуны Фейера, т.е. такие, что

$$\sum_{n=1}^{\infty} \frac{1}{p_n} < \infty. \tag{1.1}$$

M (Macintyre sequences) — это класс последовательностей P, для которых любая целая трансцендентная функция

$$f(z) = \sum_{n=1}^{\infty} a_n z^{p_n} \tag{1.2}$$

не ограничена на любой кривой, уходящей в бесконечность.

Макинтайр показал, что $M \subset CC$ (см. [21]). В работе [19] исследуются усиленно свободные (минимальные — по Л. Шварцу) и усиленно не полные системы степеней S(P).

Система степеней $\{z^{p_n}\}$ называется усиленно свободной (минимальной), если для любых $a>1,\ k=1,2,\ldots,$

$$\inf_{\gamma_a} \inf_c \left\| z^{p_k} - \sum_{n \neq k}' c_n z^{p_n} \right\|_{\gamma_a} = \delta_k(a) > 0, \tag{1.3}$$

где $\sum_{n\neq k}'$ — полином, γ_a — кривая, соединяющая окружности $C(0,1)=\{z:|z|=1\}$ и $C(0,a)=\{z:|z|=a\}, \, \|g\|_{\gamma_a}=\max_{z\in\gamma_a}|g(z)|;$ внутренний инфимум берется по всем конечным суммам $\sum_{n\neq k}'$, а внешний — по всем кривым γ_a (см. [18]).

Отметим, что в этом определении вместо C(0,1) можно рассматривать любую окружность C(0,a'), 0 < a' < a.

Система степеней $\{z^{p_n}\}$ называется усиленно не полной, если для любого $\nu \in \mathbb{N} \setminus P$

$$\inf_{\gamma_a} \inf_c \left\| z^{\nu} - \sum_n' c_n z^{p_n} \right\|_{\gamma_a} = \varepsilon_{\nu}(a) > 0. \tag{1.4}$$

Здесь $\sum_{n=1}^{\infty}$ также конечная линейная комбинация степеней.

Класс последовательностей P, для которых выполняется соотношение (1.3), обозначим PSF (мы придерживаемся тех же обозначений, что и в работе [18]). Если выполняется условие (1.4), то соответствующий класс последовательностей P обозначим PSN. Как показано в [19], $PSF \subset M$, $PSN \subset M$.

Пусть W — класс положительных, неограниченно возрастающих и непрерывных на \mathbb{R}_+ функций w, таких, что

$$\int_{1}^{\infty} \frac{w(x)}{x^2} dx < \infty. \tag{1.5}$$

Сходимость ряда (1.1) равносильна тому, что функция $n_P(t)t^{-2}$ принадлежит $L^1(\mathbb{R}_+)$, где $n_P(t)=\sum\limits_{p_n\leqslant t}1$. Так что $P\in CC$ тогда и только тогда, когда найдется функция $w\in W$,

такая, что $n_P(t) \leqslant w(t)$. Множество W также принято называть классом сходимости.

Введем еще два класса функций:

$$\Omega = \{\omega \in W : \omega - \text{вогнутая}\}, \qquad \Omega_0 = \{\omega \in W : \frac{\omega(t)}{t} \downarrow \text{ при } t \uparrow \infty\}.$$

Ясно, что $\Omega \subset \Omega_0$. С другой стороны, для любой функции $\omega \in \Omega_0$ верны оценки:

$$\omega(t) \leqslant m_{\omega}(t) \leqslant 2\omega(t)$$
.

Здесь $m_{\omega}(t)$ — наименьшая вогнутая мажоранта функции $\omega(t)$ (см. [17, VII Д. п. 2. С. 326]). С этой точки зрения классы Ω и Ω_0 практически можно не различать (в этом мы убедимся ниже).

Приведем еще одно важное определение (оно введено в работе [19]).

Последовательность P называется интерполяционной (в смысле Павлова — Коревара — Диксона или Ω_0 -интерполяционной), если найдется функция $\omega_P = \omega_P(r)$, $0 < \omega_P(r) \uparrow \infty$ при $r \to \infty$, принадлежащая классу Ω_0 , такая, что для любой последовательности $\{b_n\}$, $b_n \in \mathbb{C}$, $|b_n| \leqslant 1$, существует целая функция g(z), обладающая свойствами:

1)
$$g(p_n) = b_n$$
, $n = 1, 2, ...$;
2) $M_g(r) = \max_{|z|=r} |g(z)| \le e^{\omega_P(r)}$. (1.6)

Следуя работе [18], класс интерполяционных последовательностей обозначим I. В [18] показано, что $I \subset PSF$ и $I \subset PSN$. Таким образом,

$$I \subset PSF \subset M \subset CC$$
.

Открытый вопрос (проблема Макинтайра). Верно ли равенство M = CC (см. [21])?

Отметим, что в приведенной выше цепочке включений эта проблема занимает особое место (более подробно об этом см. в [2, гл. I, § 1], где изучается и регулярный рост рядов (1.2)).

Вопросы интерполяционности последовательности $P_0 = \{p_n\}$ ($p_0 = 0, p_n \in \mathbb{N}, n \ge 1$), а также последовательности $\{\pm p_n\}$ в какой-то степени исследовались в работах [18], [19], [20] Дж. Коревара и М. Диксона. Однако этими авторами класс I не был описан, а интерполяционность была доказана только для последовательностей А.И. Павлова и Т. Ковари (см. [19]). Дело в том, что интерполирующую функцию им удалось построить только в виде ряда типа Лагранжа (см. [19])

$$g(z) = \sum_{|k|=0}^{\infty} b_k \frac{Q(z)}{Q'(p_k)(z - p_k)} \left(\frac{z}{p_k}\right)^{2km_k}, \qquad p_{-k} = -p_k,$$

где

$$Q(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{p_n^2} \right),$$

а натуральные числа m_k выбираются специальным образом. В общем случае ряд типа Лагранжа не подходит. По этой причине авторы указанных работ [18], [19], [20] ограничились только исследованием конкретных примеров. Несколько позже в работе [16] Б. Берндсоном был получен критерий интерполяционности последовательности $P = \{p_n\}$. Этот результат мы приведем в следующем пункте.

Понятие интерполяционных последовательностей легко переносится на произвольные последовательности $\Lambda = \{\lambda_n\},\ 0 < \lambda_n \uparrow \infty$ (см. [1]). Ниже будет показано, что критерий интерполяционности этой последовательности совпадает с критерием интерполяционности Б. Берндсона для $P = \{p_n\}$. Дальнейшее обобщение интерполяционности последовательности $\Lambda = \{\lambda_n\}$ получено в работе [8], а для симметричных последовательностей — в [9]. В отличие от интерполяционной задачи типа Павлова — Коревара — Диксона, в работах [8], [9] мажоранта ω_{Λ} для $\ln M_g(r)$ для интерполирующей функции $g(\lambda)$ в задаче типа (1.6) не обязана быть, скажем, вогнутой, она принадлежит только классу сходимости W. Другими словами, $\omega_{\Lambda}(r)$ является просто неквазианалитическим весом.

В работе [10] введено понятие так называемой обобщенной интерполяционности. Более подробно обо всем этом будет сказано в следующем разделе.

2. Результаты об интерполяционности последовательностей

В статье [16] Б. Берндсон доказал следующий критерий.

Теорема 2.1. Для того, чтобы последовательность $P = \{p_n\}$ была интерполяционной в смысле Павлова — Коревара — Диксона, необходимо и достаточно, чтобы существовала функция $\omega_P \in \Omega_0$, такая, что

a)
$$n_P(p_n) \leqslant \omega_P(p_n)$$
, $n = 1, 2, \dots$, $n_P(t) = \sum_{p_n \leqslant t} 1$;
6) $-\ln \prod_{\substack{k \neq n \\ \frac{p_n}{k} \leqslant p_k \leqslant 2p_n}} \left| 1 - \frac{p_n}{p_k} \right| \leqslant \omega_P(p_n)$, $n = 1, 2, \dots$ (2.1)

Эта теорема, как было уже сказано, полностью переносится на произвольные вещественные последовательности чисел λ_n , $0 < \lambda_n \uparrow \infty$. Этот факт (см. ниже, теорема 2.3) нам пригодится в п. 3, где речь будет идти об усиленной неполноте системы экспонент. А сейчас кратко напомним о других обобщениях теоремы Б. Берндсона.

Последовательность $\Lambda = \{\lambda_n\}$ называется интерполяционной (W-интерполяционной), если существует функция $w_{\Lambda} \in W$, зависящая только от Λ , такая, что для всякой последовательности $\{b_n\}$, $|b_n| \leq 1$, найдется целая функция $f(\lambda)$, обладающая свойствами:

1)
$$f(\lambda_n) = b_n, \quad n = 1, 2, ...;$$

2) $M_f(r) \leqslant e^{w_{\Lambda}(r)}.$ (2.2)

Таким образом, если последовательность Λ интерполяционная в смысле Павлова — Коревара — Диксона, то она и W-интерполяционная.

Критерий W—интерполяционности доказан в [8], где по существу был использован модифицированный метод Б. Берндсона, основанный на одной идее Хёрмандера для решения $\overline{\partial}$ —проблемы в многомерном комплексном анализе. Отметим, что почти одновременно с Берндсоном этот метод был использован и в работе [15].

Учитывая оценку (см. [8], лемма 3)

$$\left| -\ln \prod_{\substack{k \neq n \\ \frac{\lambda_n}{2} \leqslant \lambda_k \leqslant 2\lambda_n}} \left| 1 - \frac{\lambda_n}{\lambda_k} \right| - \int_0^{\lambda_n} \frac{\nu(\lambda_n; t)}{t} dt \right| \\
\leqslant n_{\Lambda}(2\lambda_n) + N(2\lambda_n) + \ln M_L(\lambda_n), \quad n = 1, 2, \dots,$$
(2.3)

где $\nu(\lambda_n;\ t)$ — число точек $\lambda_k \neq \lambda_n$ из отрезка $\{h: |h-\lambda_n| \leqslant t\},$

$$n_{\Lambda}(t) = \sum_{\lambda_n \leqslant t} 1, \qquad t > 0,$$

$$N(t) = \int_0^t \frac{n_{\Lambda}(x)}{x} dx, \qquad L(\lambda) = \prod_{n=1}^{\infty} \left(1 - \frac{\lambda^2}{\lambda_n^2}\right), \qquad (2.4)$$

критерий интерполяционности последовательности Λ из [8] перепишем следующим образом (для симметрической последовательности $\{\pm \lambda_n\}$ критерий такой же (см. [9])). **Теорема 2.2.** Для того, чтобы последовательность Λ была W-интерполяционной, необходимо и достаточно, чтобы существовала функция $w_{\Lambda} \in W$, такая, что

A.
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty; \qquad B. \quad \int_{0}^{\lambda_n} \frac{\nu(\lambda_n; t)}{t} dt \leqslant w_{\Lambda}(\lambda_n), \quad n = 1, 2, \dots.$$

Здесь учтено, что при условии A

$$\int_{1}^{\infty} \frac{n_{\Lambda}(t)}{t^2} dt < \infty,$$

а функции N(t) и $\ln M_L(t)$ (t>0) принадлежат классу W (см. [13, гл. I, § 1, п. 3], [5, § 2, п. 2.4]).

Отметим, что из оценок (2.3) и условий A, B следует, что

$$\ln \frac{1}{h_n} \leqslant w_0(\lambda_n), \quad n = 1, 2, \dots,$$
(2.5)

где $h_n = \min\left(\min_{k \neq n} |\lambda_n - \lambda_k|, 1\right)$, w_0 — некоторая функция из W.

Таким образом, для W-интерполяционной последовательности Λ необходимо

$$h_n \geqslant e^{-w_0(\lambda_n)}, \qquad n = 1, 2, \dots, \qquad w_0 \in W.$$

Кратко остановимся на еще одном расширении W-интерполяционности.

Пусть $\beta = \beta(t)$ — некоторая фиксированная функция из класса W. Последовательность $\Lambda = \{\lambda_n\}$ называется W-интерполяционной в широком смысле, если найдется функция $w_{\Lambda} \in W$, зависящая от функции $\beta(t)$ и последовательности Λ , такая, что для любой последовательности комплексных чисел b_n , $|b_n| \leq e^{\beta(\lambda_n)}$, $n = 1, 2, \ldots$, существует целая функция $f(\lambda)$, обладающая свойствами (2.2).

Соответствующую задачу (2.2) будем называть обобщенной интерполяционной задачей. Критерий обобщенной интерполяционности точно такой же, что и в теореме 2.2 (см. [10]).

Теорема 2.1 Б. Берндсона допускает обобщение на случай произвольных узлов $\lambda_n > 0^1$. Сформулируем этот результат в более удобных терминах.

Теорема 2.3. Для того, чтобы последовательность $\Lambda = \{\lambda_n\}$, $0 < \lambda_n \uparrow \infty$, была интерполяционной в смысле Павлова — Коревара — Диксона, необходимо и достаточно, чтобы существовала функция $\omega_{\Lambda} \in \Omega_0$, такая, что

C.
$$n_{\Lambda}(t) \leqslant \omega_{\Lambda}(t);$$
 D.
$$\int_{0}^{\lambda_{n}} \frac{\nu(\lambda_{n}; t)}{t} dt \leqslant \omega_{\Lambda}(\lambda_{n}), \quad n = 1, 2, \dots$$

3. УСИЛЕННАЯ НЕПОЛНОТА СИСТЕМЫ ЭКСПОНЕНТ

Понятие усиленной неполноты системы степеней $S(P) = \{z^{p_n}\}_{n=1}^{\infty}$ впервые было введено Дж. Кореваром и М. Диксоном в работе [19], которое в [3] было перенесено на систему экспонент $e_{\Lambda} = \{e^{\lambda_n z}\}, 0 < \lambda_n \uparrow \infty$, а позже в статье [9] — на систему $\{e^{\pm \lambda_n z}\}.$

Система экспонент $\{e^{\pm\lambda_n z}\}$ называется усиленно не полной (относительно прямоугольников), если для всех $a, b \ (0 < a < \infty, \ 0 < b < \infty)$ и $\beta, \beta \neq \pm \lambda_n, \ n = 1, 2, \ldots$,

$$\inf_{\gamma(-a,a)} \inf_{c_n} \left\| e^{\beta z} - \sum_{n \in \mathbb{Z} \setminus \{0\}} c_n e^{\mu_n z} \right\|_{\gamma(-a,a)} = \varepsilon_{\beta}(a,b) > 0.$$

 $^{^{1}}$ Доказательство этого результата будет опубликовано в другой статье.

Здесь $\|g\|_{\gamma} = \max_{z \in \gamma} |g(z)|$, внутренний инфимум находится по всем квазиполиномам

$$\sum_{n \in \mathbb{Z} \setminus \{0\}} c_n e^{\mu_n z}, \quad \mu_n = \lambda_n, \quad \mu_{-n} = -\lambda_n, \quad n \in \mathbb{N};$$

внешний — по всем спрямляемым кривым $\gamma = \gamma(-a,a)$ из прямоугольника

$$P(a,b) = \{z = x + iy : |x| \le a, |y| < b\},\$$

соединяющим его вертикальные стороны.

Для системы $\{e^{\lambda_n z}\}$ аналогичное понятие рассматривалось в работе [3]. В статье [9] доказана следующая теорема.

Теорема 3.1. Пусть выполнены условия:

1)
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty; \qquad 2) \int_{0}^{\lambda_n} \frac{\nu(\lambda_n; t)}{t} dt \leqslant w(\lambda_n), \quad n = 1, 2, \dots,$$
 (3.1)

где $\nu(\lambda_n; t)$ — число точек $\lambda_k \neq \lambda_n$ из отрезка $\{h: |h-\lambda_n| \leqslant t\}$, а w — некоторая функция из класса сходимости W.

Тогда система экспонент $\{e^{\pm\lambda_n z}\}$ усиленно не полна относительно вертикальных полос $P(a,\infty)^1$.

Как известно, пара условий 1) и 2) из (3.1) равносильна условиям 1) и 3) или 1) и 4), где

3)
$$-\ln \prod_{\substack{k \neq n \\ \frac{\lambda_n}{2} \leqslant \lambda_k \leqslant 2\lambda_n}} \left| 1 - \frac{\lambda_n}{\lambda_k} \right| \leqslant w(\lambda_n), \quad n = 1, 2, \dots, \quad w \in W;$$

4)
$$-\ln |L'(\lambda_n)| \leqslant w(\lambda_n), \quad n = 1, 2, \dots, \quad w \in W$$

Поэтому каждая из трех эквивалентных пар условий 1) и 2), 1) и 3), 1) и 4) необходима и достаточна для того, чтобы последовательность $M = \{\mu_{\pm n}\}, \, \mu_n = \lambda_n, \, \mu_{-n} = -\lambda_n, \, n \in \mathbb{N}$ была W-интерполяционной (см. [9]).

Таким образом, для любой интерполяционной последовательности $M=\{\pm\lambda_n\}$ соответствующая система экспонент $\{e^{\pm\lambda_n z}\}$ усиленно не полна по семейству спрямляемых кривых $\gamma(-a,a)$ из $P(a,\infty)$ по равномерной норме. В частности, в условиях теоремы 3.1 система экспонент $\{e^{\pm\lambda_n z}\}$ не полна на любой спрямляемой кривой γ , т.е. не полна в пространстве непрерывных функций $C(\gamma)$. А это означает, что существует ненулевая комплексная мера Бореля μ на γ , преобразование Лапласа которой

$$\hat{\mu}(s) = \int\limits_{\gamma} e^{sz} d\mu(z)$$

обращается в ноль в точках $\pm \lambda_n$, $n=1,2,\ldots$ Важно отметить, что условия теоремы 3.1 сформулированы в терминах основных характеристик распределения точек последовательности $\{\pm \lambda_n\}$.

В этой связи следует обратить внимание на соответствующий результат статьи [3] об усиленной неполноте относительно прямоугольников $P(a,b), b \neq \infty$. В нем зависимость условий усиленной неполноты системы экспонент от каких—либо известных характеристик распределения точек $\lambda_n, n=1,2,\ldots$, совсем не очевидна. Действительно, в [3] доказано следующее утверждение.

 $^{^1}$ Усиленная неполнота системы $\{e^{\pm \lambda_n z}\}$ относительно полосы $P(a,\infty)$ формально понимается как усиленная неполнота относительно прямоугольника P(a,b), для которого $b=\infty$.

Теорема 3.2. Пусть $n = o(\lambda_n)$ при $n \to \infty$, $h(\delta) = h_-(\delta)h_+(\delta)$, где

$$h_{+}(\delta) = \int_{0}^{\infty} |L(ir)|e^{-\delta r} dr, \qquad h_{-}(\delta) = \int_{0}^{\infty} |L(re^{i\delta})|^{-1} e^{-\delta r} dr, \quad \delta > 0.$$

Eсли функция $h(\delta)$ удовлетворяет билогарифмическому условию Левинсона

$$\int_{0}^{d} \ln \ln h(\delta) d\delta < \infty, \quad h(d) = e, \tag{3.2}$$

то система экспонент $\{e^{\lambda_n z}\}$ усиленно не полна относительно прямоугольников.

Функции $h_{+}(\delta)$ и $h_{-}(\delta)$ — убывающие на $(0,\infty)$, $h_{+}(\delta)\uparrow\infty$, $h_{-}(\delta)\uparrow\infty$ при $\delta\downarrow 0$ (см. [3]). Хорошо известно также, что условие (3.2) равносильно условию Левинсона для каждой из функций $h_{+}(\delta)$ и $h_{-}(\delta)$; далее, условие

$$\int_{0}^{d_{+}} \ln \ln h_{+}(\delta) d\delta < \infty, \qquad h_{+}(d_{+}) \geqslant e, \tag{3.3}$$

эквивалентно условию C теоремы 2.3 (см. [3], [4])¹.

Наша цель — расшифровать условие

$$\int_{0}^{d_{-}} \ln \ln h_{-}(\delta) d\delta < \infty, \quad h_{-}(d_{-}) \geqslant e, \tag{3.4}$$

и придать ему более понятный и естественный вид, учитывающий явную зависимость от последовательности Λ . Для этого предварительно выясним, при каких условиях на последовательность $\Lambda = \{\lambda_n\}$

$$\sup_{\theta \neq 0, \pi} \overline{\lim}_{r \to \infty} \frac{1}{\omega(r)} \ln \left| \frac{1}{L(re^{i\theta})} \right| < \infty,$$

где $\omega(r)$ — некоторая мажоранта функции $\ln M_L(r)$, принадлежащая классу Ω и такая, что

$$0 < \overline{\lim}_{r \to \infty} \frac{\ln M_L(r)}{\omega(r)} < \infty.$$

Для случая $\omega(r) \equiv r$ этот вопрос был поставлен А.Ф. Леонтьевым в 1956 году в связи с задачей о распространении сходимости любой последовательности полиномов Дирихле

$$P_n(z) = \sum_{k=1}^{q_n} a_k^{(n)} e^{\lambda_k z}, \qquad n = 1, 2, \dots,$$

равномерно сходящейся внутри некоторой выпуклой области, где система экспонент $\{e^{\lambda_k z}\}$ не полна, внутрь полуплоскости $\{z: \operatorname{Re} z < c\}$ (одной и той же для всех последовательностей $\{P_n(z)\}$) (см. [12]).

В работе [11] И.Ф. Красичкова был получен ответ на вопрос А.Ф. Леонтьева. И.Ф. Красичковым рассматривается случай

$$\omega(r) = V(r),$$

 $^{^{1}}$ В условии C в качестве функции $\omega_{\Lambda}(t)$ можно брать наименьшую вогнутую мажоранту функции $n_{\Lambda}(t)$ (см. [4]).

где $V(r)=r^{\rho(r)},\, \rho(r)$ — уточненный порядок, $\rho(r)\to \rho,\, \rho>0$ (в нашей ситуации $0<\rho\leqslant 1),$ такой, что

$$0 < \overline{\lim}_{r \to \infty} \frac{\ln M_L(r)}{V(r)} < \infty.$$

В [11] получено необходимое и достаточное условие на последовательность $\Lambda = \{\lambda_n\}$ для того, чтобы $\sup_{\theta \neq 0,\pi} H_L(\theta) < \infty$, где

$$H_L(\theta) = \overline{\lim}_{r \to \infty} \frac{1}{V(r)} \ln \left| \frac{1}{L(re^{i\theta})} \right|, \qquad V(r) = r^{\rho(r)},$$

— индикатор функции $|L(\lambda)|^{-1}$ при уточненном порядке $\rho(r)$. Наша задача заключается в том, чтобы в этом результате функцию точного роста $V(r) = r^{\rho(r)}$ заменить на подходящую функцию $\omega(r)$, $\omega \in \Omega_0$. Это, как можно предположить, дало бы возможность сформулировать сходимость интеграла (3.4) от повторного логарифма функции $h_-(\delta)$ в терминах так называемого весового индекса концентрации (ω -концентрации) последовательности Λ . Такая постановка задачи, как видно, является актуальной, тем более ответ на нее не может быть получен как простое следствие упомянутого результата И.Ф. Красичкова из [11]. Дело в том, что функция $\omega(r)$, $\omega \in \Omega_0$, в отличие от V(r), не обязана быть правильно меняющейся в бесконечности (см. [14]). А в [11] по существу использован этот факт, а именно свойства уточненного порядка при оценке интегралов (см. [11], свойства а) – в) на стр. 842).

В [6] доказана следующая теорема о конечности весового индикатора для функции $|L(\lambda)|^{-1}$, где $L(\lambda)$ — целая функция экспоненциального типа из (2.4).

Теорема 3.3 (см. [6]). Пусть наименьшая вогнутая мажоранта ω функции $\ln M_L(r)$ принадлежит классу сходимости W.

$$H_{\omega}(\theta) = \overline{\lim}_{r \to \infty} \frac{1}{\omega(r)} \ln \left| \frac{1}{L(re^{i\theta})} \right|$$
 (3.5)

— весовой индикатор функции $|L(\lambda)|^{-1}$, $\lambda = re^{i\theta}$. Для того, чтобы

$$\sup_{\theta \neq 0, \pi} H_{\omega}(\theta) < \infty, \tag{3.6}$$

необходимо и достаточно, чтобы был конечен весовой индекс концентрации

$$I_{\Lambda}(\omega, \mathbb{R}_{+}) = \lim_{\varepsilon \to 0} \overline{\lim_{x \to +\infty}} \frac{1}{\omega(x)} \int_{\varepsilon}^{1} \frac{n_{\sigma}(x)}{\sigma} d\sigma, \tag{3.7}$$

где $n_{\sigma}(x)$ — число точек λ_n в круге $\Delta_{\sigma}(x)=\{t:|t-x|\leqslant \sigma|x|\},\ x\in\mathbb{R}.$

Случай $\omega(r)=V(r),\,V(r)=r^{\rho(r)},\,\rho(r)$ — уточненный порядок, $\rho(r)\to\rho>0$, как было сказано, исследован в работе [11].

В основе этого результата лежит следующий факт, который для произвольных целых функций уточненного порядка $\rho(r)$, $\rho(r) \to \rho$, $0 < \rho < \infty$, также был по существу использован в [11].

В условиях теоремы 3.3 справедливо представление (см. [6]): для всех $\lambda \neq 0$

$$\ln|L(\lambda)| = -\int_{0}^{1} \frac{n_{\sigma}(\lambda)}{\sigma} d\sigma + R(|\lambda|), \tag{3.8}$$

 $^{^{1}}$ Очевидно, это предположение равносильно требованию (3.3), т.е. условию C теоремы 2.3.

где $R(|\lambda|) = O(1)\omega(|\lambda|)$, а O(1) — некоторая функция, ограниченная вне любого круга $\{z: |z| \leq \rho\}$, $\rho > 0$ (функция $n_{\sigma}(\lambda)$ для комплексных λ определяется аналогично). Как показано в [6],

$$|R(|\lambda|)| \leq A_0 + A_1 \omega(|\lambda|), \qquad |\lambda| \geqslant 0.$$

Поэтому, из теоремы 3.3 и представления (3.8) получаем утверждение: если $\omega(r)$ — наименьшая вогнутая мажоранта функции $\ln M_L(r)$, то условие (3.6) равносильно требованию

$$\sup_{\theta \neq 0, \pi} \frac{\overline{\lim}}{r \to \infty} \frac{1}{\omega(r)} \int_{0}^{1} \frac{n_{\sigma}(re^{i\theta})}{\sigma} d\sigma < \infty. \tag{3.9}$$

Как и в теореме 3.3, будем предполагать, что $\omega \in \Omega$.

Оценим функцию $h_{-}(\delta)$ сверху и снизу.

Обозначим

$$I(\lambda) = \int_{0}^{1} \frac{n_{\sigma}(\lambda)}{\sigma} d\sigma, \quad \lambda = re^{i\delta}.$$

Тогда, пользуясь равенством (3.8), получим

$$h_{-}(\delta) \leqslant h^* \left(\frac{\delta}{2}\right) e^{A_0 + m\left(\frac{\delta}{2}\right)},$$
 (3.10)

где

$$m(\xi) = \sup_{r>0} (A_1 \omega(r) - \xi r), \qquad \xi > 0,$$

$$h^*(\xi) = \int_0^\infty \exp(I(\lambda) - \xi r) dr, \qquad \lambda = re^{i\delta}.$$

Из (3.10) при $\delta \leqslant \delta_0$ получаем неравенство

$$\ln h_{-}(\delta) \leqslant \ln h^{*}\left(\frac{\delta}{2}\right) + 2m\left(\frac{\delta}{2}\right).$$

Далее, пользуясь элементарным неравенством

$$\ln^+(a+b) \le \ln^+ a + \ln^+ b + \ln 2, \quad a > 0, \quad b > 0,$$

будем иметь

$$\ln \ln h_{-}(\delta) \leqslant \ln \ln h^* \left(\frac{\delta}{2}\right) + 2 \ln 2 + \ln m \left(\frac{\delta}{2}\right), \quad 0 < \delta \leqslant \delta_1 < \delta_0.$$

Так как $\omega \in \Omega$, имеем (см. [19])

$$\int_{0}^{d_0} \ln m(\xi) d\xi < \infty, \quad m(d_0) \geqslant 1.$$

Поэтому из сходимости интеграла (3.4) для функции $h^*(\xi)$ следует сходимость того же интеграла и для $h_-(\xi)$.

С другой стороны, как легко проверить,

$$h_{-}(\delta) \geqslant h^{*}(2\delta)e^{-A_{0}-m(\delta)},$$

т. е.

$$h_{-}(\delta)e^{A_0+m(\delta)} \geqslant h^*(2\delta).$$

Те же рассуждения показывают, что если $h_{-}(\xi)$ удовлетворяет условию Левинсона (3.4), то и функция $h^{*}(\xi)$ подчинена тому же условию.

Таким образом, получаем утверждение.

Теорема 3.4. Пусть наименьшая вогнутая мажоранта функции $\ln M_L(r)$ принадлежит классу W. Тогда верны утверждения:

I. Интегралы

$$\int_{0}^{d_{-}} \ln \ln h_{-}(\delta) d\delta, \qquad \int_{0}^{d^{*}} \ln \ln h^{*}(\delta) d\delta$$

равносходятся (функции $h_{-}(\delta)$ и $h^{*}(\delta)$ определены выше).

II. Эквивалентные условия (3.6) и (3.9) имеют место тогда и только тогда, когда $I_{\Lambda}(\omega,\mathbb{R}_{+})<\infty$ ($I_{\Lambda}(\omega,\mathbb{R}_{+})$ — весовой индекс концентрации последовательности Λ , заданный формулой (3.7)).

Замечание 3.1. Отметим, что

$$\int_{0}^{1} \frac{n_{\sigma}(z)}{\sigma} d\sigma = \int_{0}^{|z|} \frac{\mu(z;t)}{t} dt,$$

где $\mu(z;t)$ — число точек $\lambda \in \Lambda$ из круга $\{h: |z-h| \leqslant |t|\}$. Действительно, сделаем замену $t=\sigma z$. Тогда

$$\int_{0}^{|z|} \frac{\mu(z;t)}{t} dt = \int_{0}^{1} \frac{\mu(z;\sigma|z|)}{\sigma} d\sigma = \int_{0}^{1} \frac{n_{\sigma}(z)}{\sigma} d\sigma.$$

Замечание 3.2. Условие (3.2) (достаточное условие усиленной неполноты системы $\{e^{\lambda_n z}\}$ относительно прямоугольников) равносильно тому, что

1°.
$$n_{\Lambda}(t) \leqslant \omega_{\Lambda}(t), \qquad \omega_{\Lambda} \in \Omega_0;$$

$$2^{0}. \quad \int_{0}^{d^{*}} \ln \ln h^{*}(\delta) d\delta < \infty, \qquad h^{*}(d^{*}) \geqslant e.$$

Однако пары условий 1^0 и 2^0 , 1) и 2) из теоремы 3.1 (достаточные условия усиленной неполноты системы экспонент $\{e^{\pm \lambda_n z}\}$, а подавно и системы $\{e^{\lambda_n z}\}$, относительно вертикальных полос) не зависимы. Действительно, рассмотрим систему отрезков $\{\Delta_j\}$, где

$$\Delta_j = \left[2^{j^2} - \left[\frac{2^{j^2}}{j^2}\right], 2^{j^2}\right], \qquad j \geqslant 1$$

([a] — целая часть a). Пусть $\Lambda = \{\lambda_n\}$ — возрастающая последовательность всех натуральных чисел из $\bigcup_{j\geqslant 1} \Delta_j$. Для этой последовательности Λ условия 1) и 2) теоремы 3.1 выполнены, но (см. [7])

$$\int_{0}^{d_{+}} \ln \ln h_{+}(\delta) d\delta = \infty.$$

С другой стороны, пусть $\Lambda = \{\lambda_n\}$ — объединение двух последовательностей $\{p_n\}$ и $\{q_n\}$, где $\{p_n\}$, $p_n \in \mathbb{N}$, — интерполяционная в смысле Павлова — Коревара — Диксона последовательность, $q_n = p_n + \exp(-p_n \ln p_n)$. Для этой последовательности условия 1^0 и 2^0 выполнены (билогарифмическое условие для функции $h(\delta) = h_+(\delta)h_-(\delta)$, очевидно, имеет место). Однако индекс конденсации

$$\delta(\Lambda) = \overline{\lim}_{n \to \infty} \frac{1}{\lambda_n} \ln \left| \frac{1}{L'(\lambda_n)} \right| = \infty,$$

т.е. условие 2) теоремы 3.1 вообще не выполнено (см. [3]).

Докажем теперь следующую теорему (для натуральных λ_n соответствующее утверждение доказано в [3]).

Теорема 3.5. Пусть $\Lambda = \{\lambda_n\}$, $0 < \lambda_n \uparrow \infty$, — последовательность, интерполяционная в смысле Павлова — Коревара — Диксона. Тогда функция $h(\delta) = h_+(\delta)h_-(\delta)$ удовлетворяет условию Левинсона (3.2).

Доказательство. Согласно теореме 2.3 имеем: $n_{\Lambda}(t) \leqslant \omega_{\Lambda}(t)$, $\omega_{\Lambda} \in \Omega_{0}$. Значит, сходится интеграл (3.3) (см. [4]). В ходе доказательства достаточной части теоремы 2.3 (критерий интерполяционности Павлова — Коревара — Диксона для произвольных вещественных узлов $\lambda_{n} > 0$) показывается, что для всех $z \in K_{n}$, $n = 1, 2, \ldots$,

$$K_n = \left\{ z : \frac{h_n}{4} \leqslant |z - \lambda_n| \leqslant \frac{h_n}{2} \right\}, \quad h_n = \min\left(\min_{k \neq n} |\lambda_k - \lambda_n|, 1\right),$$

выполняется оценка

$$\left| \frac{1}{L(z)} \right| \leqslant e^{\omega_1(\lambda_n)}, \quad n = 1, 2, \dots, \quad \omega_1 \in \Omega_0.$$
 (3.11)

Пусть $z=re^{i\delta},\,0<\delta<\frac{\pi}{4},$ принадлежит кругу $D_n=\left\{z:|z-\lambda_n|\leqslant \frac{h_n}{4}\right\}$. Тогда

$$\left| \frac{z - \lambda_n}{L(z)} \right| \leqslant \max_{t \in C_n} \left| \frac{t - \lambda_n}{L(t)} \right| \leqslant \frac{h_n}{4} e^{\omega_1(\lambda_n)} \leqslant \frac{1}{4} e^{\omega_1(\lambda_n)},$$

 $C_n = \partial D_n, \ n = 1, 2, \dots$ Поскольку $|z - \lambda_n| \geqslant \lambda_n \sin \delta \geqslant \frac{2\delta}{\pi}$, для $z \in D_n, \ z = re^{i\delta}$,

$$\left| \frac{1}{L(z)} \right| \leqslant \frac{\pi}{8\lambda_1 \delta} e^{\omega_1(\lambda_n)} \leqslant \frac{1}{\lambda_1 \delta} e^{\omega_1(r+1)}. \tag{3.12}$$

Так как $|L(re^{i\delta})|^{-1}$ ↑ при $\delta \downarrow$ (это проверяется непосредственно), а $\omega_1 \in \Omega_0$, с учетом (3.11), (3.12) получаем, что при всех $r \geqslant 1$ и $r \in \left[\lambda_n - \frac{h_n}{2}, \lambda_n + \frac{h_n}{2}\right]$,

$$\left| \frac{1}{L(re^{i\delta})} \right| \leqslant \frac{1}{\lambda_1 \delta} e^{2\omega_1(r)}. \tag{3.13}$$

Пусть $r \in \left[\lambda_n + \frac{h_n}{2}, \lambda_{n+1} - \frac{h_{n+1}}{2}\right]$. В [2, гл. I, § 3, стр. 23] показано, что в каждом отрезке $[2^{n-1}, 2^n]$ при $n \geqslant n_0$ найдется точка x_n , такая, что

$$\left| \frac{1}{L(x_n)} \right| \leqslant e^{-20\ln M_L(x_n)}.$$

Отсюда, если учесть условие C теоремы 2.3, будем иметь

$$\left| \frac{1}{L(x_n)} \right| \leqslant e^{\omega_2(x_n)}, \quad \omega_2 \in \Omega_0. \tag{3.14}$$

Далее, кружки $B_n = \left\{z: |z-\lambda_n| \leqslant \frac{h_n}{2} \right\}$ попарно не пересекаются. Если $\frac{\lambda_{n+1}}{\lambda_n} \leqslant 2$, то применяя принцип максимума и с учетом оценок (3.11) и возрастания функции $|L(re^{i\delta})|^{-1}$ при $\delta \downarrow 0$, получаем, что для $r \in \left[\lambda_n + \frac{h_n}{2}, \lambda_{n+1} - \frac{h_{n+1}}{2} \right]$

$$\left| \frac{1}{L(re^{i\delta})} \right| \leqslant e^{\omega_1(2r)} \leqslant e^{2\omega_1(r)}. \tag{3.15}$$

Если же $\frac{\lambda_{n+1}}{\lambda_n} > 2$, то найдется конечный набор точек x'_n ,

$$\lambda_n + \frac{h_n}{2} = x'_0 < x'_1 < \dots < x'_N = \lambda_{n+1} - \frac{h_{n+1}}{2}, \qquad \frac{x'_{i+1}}{x'_i} \le 4, \qquad i = 0, 1, \dots, N,$$

в которых верна оценка типа (3.14). Применяя предыдущие рассуждения для этих точек разбиения, опять получим оценку типа (3.15)

$$\left| \frac{1}{L(re^{i\delta})} \right| \leqslant e^{\omega_2(4r)} \leqslant e^{4\omega_2(r)}, \quad r \in [x_i', x_{i+1}'].$$

Таким образом, если учтем (3.13), окончательно будем иметь: для всех $r \geqslant 1$

$$\left| \frac{1}{L(re^{i\delta})} \right| \leqslant \frac{\text{const}}{\delta} e^{\omega_3(r)},$$

где $\omega_3(r) = 2\omega_1(r) + 4\omega_2(r)$. Так что

$$h_{-}(\delta) \leqslant \frac{\text{const}}{\delta} \int_{0}^{\infty} e^{\omega_{3}(r) - \delta r} dr, \quad \omega_{3} \in \Omega_{0}.$$

Отсюда и следует сходимость билогарифмического интеграла для этой функции. Теорема доказана.

Замечание 3.3. Объединение конечного числа интерполяционных в рассматриваемом смысле последовательностей не нарушает сходимость интегралов (3.3) и (3.4). Если $\Lambda = \{\lambda_n\}$ есть объединение двух интерполяционных последовательностей $\{\lambda'_n\}$ и $\{\lambda''_n\}$, то система экспонент $\{e^{\lambda z}\}_{\lambda \in \Lambda}$ будет усиленно не полной относительно прямоугольников, как и системы $\{e^{\lambda'_n z}\}$ и $\{e^{\lambda''_n z}\}$. При этом последовательность Λ , как мы видели, не обязана быть интерполяционной ни в каком смысле, поскольку числа h_n могут стремиться к нулю сколь угодно быстро (для интерполяционных последовательностей

$$\ln \frac{1}{h_n} \leqslant e^{\omega(\lambda_n)}, \qquad n \geqslant 1,$$

где функция ω принадлежит по крайней мере классу сходимости W).

Замечание 3.4. Условие

$$\sup_{\theta \neq 0, \pi} H_{\omega}(\theta) < \infty$$

равносильно условию (3.9), откуда следует, что при некотором $K < \infty$ и для любого $\theta \in \left(0, \frac{\pi}{2}\right]$ при $r \geqslant r(\theta)$

$$I(z) \stackrel{def}{=} \int_{0}^{1} \frac{n_{\sigma}(z)}{\sigma} d\sigma < K\omega(r), \qquad z = re^{i\theta}.$$

 $Ta\kappa$ что для любого $z=re^{i\theta}$

$$I(z) \leqslant \max(m_0(\theta), K\omega(r)), \qquad m_0(\theta) = \max_{0 \leqslant r \leqslant r(\theta)} I(z).$$

Отсюда $h^*(\theta) \leqslant M(\theta)h_0(\theta)$, где функция $h^*(\theta)$ та же, что и в (3.10), а

$$M(\theta) = e^{m_0(\theta)}, \qquad h_0(\theta) = \int_0^\infty e^{K\omega(r) - \theta r} dr, \qquad 0 < \theta \leqslant \theta_0 < \frac{\pi}{4}.$$

Отсюда видно, что для сходимости интеграла

$$\int_{0}^{d^{*}} \ln \ln h^{*}(\theta) d\theta, \qquad h^{*}(d^{*}) \geqslant e,$$

достаточно, чтобы

$$\int_{0}^{d_{M}} \ln \ln M(\theta) d\theta < \infty, \qquad M(d_{M}) \geqslant e.$$

Для интерполяционных последовательностей, как мы видели,

$$M(\theta) = \frac{\text{const}}{\theta}.$$

Eсли $\Lambda = \bigcup_{i=1}^n \Lambda^{(i)}$, где $\Lambda^{(i)}$ — интерполяционные последовательности, то

$$M(\theta) = \operatorname{const}\left(\frac{1}{\theta}\right)^{N}.$$

С другой стороны, можем записать

$$h^*(\theta) = \left(\int_0^{r(\theta)} + \int_{r(\theta)}^{\infty} \right) \left[\exp(I(z) - \theta r) \right] dr \leqslant h_1(\theta) + h_0(\theta),$$

 $r\partial e\ h_0(heta)$ та же функция, что и выше, а

$$h_1(\theta) = \int_{0}^{r(\theta)} e^{I(z)-\theta r} dr, \quad z = re^{i\theta}.$$

Легко видеть, что

$$h_1(\theta) \leqslant h^*(\theta) \leqslant h_1(\theta) + h_0(\theta).$$

Это означает (в этом нетрудно убедиться), что билогарифмические интегралы от функций $h^*(\theta)$ и $h_1(\theta)$ равносходятся.

Вопрос. Как в терминах распределения последовательности охарактеризовать сходимость интеграла

$$\int_{0}^{d_1} \ln \ln h_1(\theta) d\theta, \quad h_1(d_1) \geqslant e?$$

СПИСОК ЛИТЕРАТУРЫ

- 1. А.М. Гайсин. Асимптотическое поведение суммы целого ряда Дирихле на кривых. В: Исследования по теории приближений, Труды Института математики с ВЦ БНЦ УрО АН СССР, Уфа, 3–15 (1990).
- 2. А.М. Гайсин. *Регулярный рост целых функций, представленных рядами Дирихле*. М., Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований. 2024.
- 3. А.М. Гайсин. Усиленная неполнота системы экспонент и проблема Макинтайра // Мат. сб. **182**:7, 931–945 (1991).
- 4. А.М. Гайсин. Условие Левинсона в теории целых функций. Эквивалентные утверждения // Мат. заметки **83**:3, 350–360 (2008).
- 5. А.М. Гайсин. Целые функции: основы классической теории с приложениями к исследованиям по комплексному анализу. Уфа: РИЦ БашГУ. 2016.
- 6. А.М. Гайсин, Р.А. Гайсин. Весовой индекс концентрации // Владикавказ. мат. ж. 27:1, 21-35 (2025).
- 7. А.М. Гайсин, Ж.Г. Рахматуллина. Вещественные последовательности, лакунарные в смысле Φ ейера // Уфим. мат. ж. **2**:2, 27–40 (2010).

- 8. Р.А. Гайсин. Интерполяционная задача Павлова Коревара Диксона с мажорантой из класса сходимости // Уфим. мат. ж. **9**:4, 22–35 (2017).
- 9. Р.А. Гайсин. Интерполяционные последовательности и неполные системы экспонент на кривых // Мат. сб. **212**:5, 58–79 (2021).
- 10. Р.А. Гайсин. Обобщенная интерполяционная задача типа Коревара-Диксона // Итоги науки и тех., Сер. Соврем. мат. прилож., Темат. обз. **162**, 25–33 (2019).
- 11. И.Ф. Красичков. Оценки снизу для целых функций конечного порядка // Сиб. мат. ж. **6**:4, 840–861 (1965).
- 12. А.Ф. Леонтьев. О сходимости последовательности полиномов Дирихле // Доклады акад. наук СССР $108:1, 23-26 \ (1956)$.
- 13. А.Ф. Леонтьев. Ряды экспонент. М.: Наука. 1976.
- 14. В.Б. Шерстюков. Распределение нулей канонических произведений и весовой индекс конденсации // Мат. сб. **206**:9, 139–180 (2015).
- 15. C.A. Berenstein, B.A. Taylor. A new look at interpolation theory for the entire functions of one variable // Adv. Math. 33:2, 109–143 (1979).
- 16. B. Berndtsson. A note on $Pavlov-Korevaar-Dixon\ interpolation\ //\ Indag.\ Math.\ 40,409-414\ (1978).$
- 17. P. Koosis. The logarithmic integral. I. Cambridge Univ. Press, Cambridge (1988).
- 18. J. Korevaar. Müntz approximation on arcs and Macintyre exponents // in: "Complex Analysis", Lect. Notes Math. 747, 205–218 (1979).
- 19. J. Korevaar, M. Dixon. Interpolation, strongly nonspanning powers and Macintyre exponents // Nederl. Akad. Wet., Proc., Ser. A 81, 243–258 (1978).
- 20. J. Korevaar, M. Dixon. Nonspanning sets of exponentials on curves // Acta Math. Acad. Sci. Hung. 33, 89–100 (1979).
- 21. A.J. Macintyre. Asymptotic paths of integral functions with gap power series // Proc. Lond. Math. Soc., III. Ser. 2, 286–296 (1952).

Ахтяр Магазович Гайсин,

Институт математики с ВЦ УФИЦ РАН,

ул. Чернышевского, 112,

450008, г. Уфа, Россия

Уфимский университет науки и технологий,

ул. Заки Валиди, 32,

450000, г. Уфа, Россия

E-mail: gaisinam@mail.ru

Рашит Ахтярович Гайсин,

Институт математики с ВЦ УФИЦ РАН,

ул. Чернышевского, 112,

450008, г. Уфа, Россия

E-mail: rashit.gajsin@mail.ru