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ANALYSIS AND NUMERICAL SIMULATION OF
DYNAMIC CONTACT PROBLEM WITH FRICTION
IN THERMO-VISCOELASTICITY

M. BOUALLALA EL-H. ESSOUFI, Y. OUAFIK

Abstract. The focus of our study is a dynamic frictional contact model that involves
a viscoelastic body and a conductive foundation. We use Coulomb’s law to describe the
frictional behavior, while a normal compliance model is employed to simulate the contact.
We formulate a variational formulation for the problem, and we establish the existence of
its unique weak solution using the Banach fixed point theorem. We propose a fully discrete
scheme, using the finite element method for the spatial approximation and the Euler scheme
for the discretization of the time derivatives. The errors on the solutions are derived, and
the linear convergence is obtained under suitable regularity hypotheses. Some numerical
simulations are included to show the performance of method.
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1. INTRODUCTION

Contact problems can be seen everywhere in mechanics, physics, and engineering applications.
Some examples from automotive industry are contact between brake pads and rotors or between
pistons and cylinders. Thermal effects in contact processes affect the composition and stiffness
of the contacting surfaces, and cause thermal stresses in the contacting bodies [16]. Vice versa,
the current temperature may influence the elastic material response. In some works different
thermomechanical frictional problems were studied and developed, see, for instance, [2|, [16]
and the references therein. Besides the rigorous construction of various mathematical models of
contact with thermal effects, the unique weak solvability of these models was proved by using
arguments of variational and hemivariational inequalities.

In [6] the authors studied a class of dynamic thermal contact problems with the normal
compliance condition and friction, for viscoelastic materials, they also proposed a numerical
scheme for the approximation of the solution fields, and the corresponding numerical
computations. In 3], [12], [5], [13], [15], [18] numerical solutions for frictional contact problems,
by taking into account the thermal effects, was presented.

Bouallala et al. [4] treated a dynamic contact problem between a thermo-viscoelastic body
and a conductive foundation with normal compliance and Coulomb’s friction. Here we look at
the same problem and show that a weak solution exists and is unique by using the arguments
of dynamic nonlinear quasi—variational inequalities, nonlinear parabolic variational equalities,
and the fixed point method. We present the discrete problem using the finite element method
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and a backward Euler finite difference and we prove the convergence of its solution. In this
study, we face a lot of difficulties with the nonlinearity of the boundary conditions and the
dynamic nature of the problem. The second novelty of this work is the numerical simulations
of the parameters of the problem. We note that the established results are almost similar with
those in [6] in the case of a non-clamped body. But, unlike [6], in the present work, the Dirichlet
boundary condition is assumed on the part of the surface of body. We also note that, unlike
[6], here the model includes the heat generated by the displacement and the heat exchange
condition, in which the heat exchange coefficient is not a constant but a function of the normal
displacement on contact boundary.

The rest of the paper is structured as follows. The model of the dynamic process of the
thermo-viscoelastic body is presented in Section 2, together with its variational formulation.
In Section 3, we state and prove our main existence and uniqueness result, Theorem 3.1. The
main result concerning the error estimate for fully discrete numerical scheme is presented in
Sections 4. Finally, in Section 5, we present numerical simulations for a two—dimensional test
problem to illustrate the theoretical error estimate and the evolution of the displacement and
the temperature fields.

2. PROBLEM STATEMENT AND WEAK FORMULATION

In this paper, we denote by S¢, (d = 1,2, 3) the space of second order symmetric tensor on
R? and by *’ and || - || the inner product and the Euclidean norm on the space R? and S
respectively, that is for all u, v € R and for all o, 7 € ¢

1 1
UV = UiV, ||U|| = (va>27 0T = 0jTij, ”T” = (7-77-)2'

We denote by t € [0,7] and x € Q the time interval where 7" > 0 and the spatial variable,
respectively.

The body is made of a thermo-viscoelastic material and occupies the domain Q € R¢ with a
smooth boundary I' = 9€2. This boundary is divided into three disjoint measurable parts I'p,
I'y and I'c such that meas(I'p) > 0. Also, below v = {1;} stands for the unit outward normal.

The body is under the action of body forces of density fy, and a volume heat source of a
constant strength ¢ in 2 x (0,7"). The body is clamped on I'p x (0,7") and so the displacement
field vanish there. Surface traction of density f; acts on I'y x (0,7'). We assume that the
temperature vanishes on (I'y UT'p) x (0,7"). The body can arrive in friction contact with the
foundation which is thermally conductive and its temperature is maintained at 6. The normal
gap between I'c and the foundation is denoted by g.

For the displacement field u : Q x (0,T) — R? and a stress tensor o :  x (0,T) — S¢, the
symbols u,, 0,, u, and o, represent its normal and tangential components on the boundary
are respectively defined by

U, = U -V, o, = (ov), Ur = U — UV, OT = oV — O, U.

We denote by ¢ = (¢;) : @ x (0,7) — R the heat flux vector, by 6 : Q x (0,7) — R the
temperature and by e(u) the linearized strain tensor given by

1
e(u) = (ei5(w),  eiylu) = 5 (uiy +uji),
where u; ; = g;f] Here and below Div(o) = 0y;; and div(¢) = (¢;;) denote the divergence

operator for tensor and vector valued function.
The classical model for the thermo—viscoelastic contact problem is as follows.

Problem 2.1. Find a displacement field
u(x,t) : Q x (0,T) — R,
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a stress field
o(z,t): Qx (0,T) — S,
a temperature field
O(x,t) : Q2 x (0, 7) — R
and a heat flux
q(z,t): Q2 x (0,T) = R
such that
o(t) = Ee(u(t)) + Ve(u(t)) — ()M in Q2 x (0,T),
q(t) = =KVo(t) in Qx(0,7),
i(t) = Div  o(t)+ fo(t) in Qx(0,T),
+ div q(t) — Re(u(t)) = qo(t) in Qx (0,7T),
u=0 on I'px(0,7),
v=fi(t) on 'y x (0,7),
0 on ('vuUlp) x (0,7),
_UV(u<t) - g) = pl,(ul,(t) - g) on FC X (O,T),

o ~1 O Ut = W N
N’ N N e N e N

NN N N N N /S

il0) #0% 0(0) = —peluft) —g) i T2
ag,(/t) = ke(uu(t) = 9)or(0(t) —0F) on T'e x(0,7), (2.10)
u(0, ) = ug, (0, x) = 1, 0(0,z) =0y in K. (2.11)

Equations (2.1) and (2.2) represent the thermo—viscoelastic constitutive law in which
€= (Eim),  V=0Viyu) M=WMy), K=(Ky)

are respectively the elastic tensor, fourth—order viscosity tensor, thermal expansion tensor and
thermal conductivity tensor. Equation (2.3) is the equation of motion where the mass density
p = 1. Equation (2.4) is the Fourier law of heat conduction where the function R = (R;;)
describe the influence of the displacement field. In addition, (2.5)-(2.7) are the displacement
and thermal boundary condition. The normal compliance contact condition is considered in
(2.8), where p, is a prescribed function. When it is positive, u, — g represents the penetration of
the surface as parities into those of the foundation. The relation (2.9) represents the Coulomb’s
law of friction, where p, is a prescribed non—negative function, the so—called friction bound.

. . L dq .
The relation (2.10) represents a regularized thermal contact condition where 8_q is the normal
v

derivative of ¢ such that

AR ke(r) =0 f <0
¢L($): s for _L<S<L7 c\T) = or r ,
L for s> 1L k.(r) >0 for r >0,

where L is a large positive constant [7]. Finally, the initials conditions are posed in Equation
(2.11).
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The variational formulation of Problem 2.1 requires some additional notation and prelimi-
naries. First, we introduce the spaces

H=1L*(%RY) ={u=(w): v € *(Q)},
H={0=(0y4): oy=0;€L*Q)},
Hy=L* (8 ={u=(w): e(u) € H},
Hi={oc€eH: Divoe H}.

These are real Hilbert spaces endowed with the scalar product

(u,v)H:/uivid:E, u,v € H,
9)

(o,7)y = /Uisz’j dz, o, 7T €H,
Q

(w, ), = (u,0) g + (e(u),e(v))n,

(0,7)3, = (0,7)% + (Div o,Div 7)g,

and the associated norms, || - ||g, || &, || - [|l%, and || - |2,
For the mechanical and the thermal unknowns, we introduce the spaces

V={veH :v=00nTp},
K={veV:uv <gonl¢},
Q:{T]GHli n:OonFDUFN},

endowed with the inner products and norms given by

o)y = E@.e@n, ol =@ @me=(V0Ynu, il = (nme

The following Korn and Friedrichs-Poincaré inequalities hold

le()lln = cllvllm,, vevV, (2.12)
IVl = crlinlle, n€Q. (2.13)

where ¢, and ¢f are two positive constants depending on 2 and I'p.
By the Sobolev trace theorem,

||U||[L2(rc)yi < sy, vev, (2.14)
| <

nllizecoy < s2llnlle. ne€@ (2.15)

where s; and sy are two positive constants depend on 2, I'p and I'c.
We denote by V' the dual space of V and by identifying H with its own dual, we have
V C H=H' CV'. Wedenote by (-, )y «v the duality pairing between V' and V" and let || - ||y~
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be the norm in V’. Next, we consider the mappings

(f(t),0)y = [ folt)-vdz+ [ fi(t)-vda,
[ ]

(au(t). Mo = / wo(t)n d,

Q
J(u(t),v) = / Pt () — g)vy da + / pr (s () — g)l|0s ] da,
(0,60 1) = [ kulu®) - 9)61(6(0) ~ b da

Te
We now introduce assumptions on the data in Problem 2.1.
(H1) The viscosity operator V = Vi : Q x S — S? satisfies
i) there exists m; > 0 such that for all &,& € S? and almost all z € Q

V(&) = V(x,8)) - (& — &) = mypll& — &%
ii) there exists M; > 0 such that for all &, & € S? and almost all x € Q

[V(z,81) = V(z, &)l < Myl|§1 — &af|;
iii) the mapping x — V(x, ) is measurable on Q, for all £ € S%
iv) V(z,0) = 0 for almost all = € Q.
(H2) The elasticity operator & = E;jiy : Q x S — S? satisfies
i) there exists m, > 0 such that for all &, & € S? and almost all z €

(E(x,6) — E(x,&)) - (& — &) = mall&s — &I
ii) there exists M, > 0 such that for all £;,&, € S¢ and almost all z €

1E(x,&1) — E(x, &) < Mall§1 — &ff;
iii) the mapping = — &(z,&) is measurable on Q, for all £ € S%
iv) E(x,0) =0 for almost all z € Q.
(H3) The thermal conductivity tensor K = (K;;) : @ x R? — R? satisfies
i) Ky = Kji € L=(Q);
i) Kij(2)&& = mall€]|? with mg > 0 for all £ € RY, z € O
i) 1(CV0, Vi)l < Malléllalinllg with My > 0 or all 6, € Q.
(H4) The thermal expansion tensor M = (M,;) : @ x R — R satisfies
i) Mij; = M € L>(Q);
i) [(MO,e(v))|ls < MullO)lollv]lv with M, >0 forall € Q,veV.

(H5) The influence of the displacement field tensor R = (R;;) : @ x R — R satisfies
i) Rij = Ry € L=(Q);
i) [((MO,e(v))|ls < Mc||0]lollv]lv with M, >0 for all # € Q,v e V.

(H6) i) The forces, the traction and the thermal flux satisfy

fo € L*(0,T; L*(Q)%), f1 € L*0,T; L*(Ty)%), q € L*(0,T; L*(Q));

(2.16)

(2.17)

(2.18)

(2.19)
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ii) the gap function, the thermal potential and the initial data satisfy
g=0, gelL>T¢), 0pe€Ll*0,T;L*Tc)),  uog, i€ V;

iii) the functional j is proper, convex and lower semi—continuous on V.
(H7) The coefficient of heat exchange k.: I'c x R — R™ satisfies

i) there exists My, > 0 such that |k.(z,u)| < My, for all u € R,z € T'e, © — ke(z,u) is
measurable on I'c for all z € R, k.(x,u) =0 for all x € 'c and u < 0;

ii) there exists Ly, > 0 such that |k.(x,u;) — ke(x,uz)| < Ly,

(H8) The normal compliance function p, and the friction bound p, satisfy the following hy-
pothesis for r = v, 7
) pr:To xR — Ry
ii) © — p.(z,u) is measurable on I'c for all u € R;
iii) x — pr(z,u) = 0 for v < 0 and almost all € T'¢;
iv) there exists L, > 0 such that |p,.(-,u) — p,(-,v)| < L,|u — v| for all u,v € R;.

For the sake of simplification, we assume that

a:VxV =R, a(u,v) = (Ee(u),e(v))y,

uy — ug| for all uy,us € R.

b:VxV =R, bu,v):=Ve(u),e(v))x,
d:Q xQ —R, d(8,n) == (KV0,Vn)u,
m:QxV =R, m(0,v) == (M0, e(v))n,

e:VxQ—=R,  e(un):=(Re(v),n)r20)-

According to this notation and through a standard derivation, we have the following variational
formulation in terms of displacement field and temperature.

Problem 2.2. Find a displacement field
u(x,t) : Q x (0,T) — RY,
and a temperature field

O(z,t) : Q2 x(0,T) — R for almost all t€]0,T[, veV, neq

such that
(i(t),v —a(t)) g + b(u(t),v —a(t)) + a(u(t),v — u(t)) — m(0(t),v — u(t)) (2.20)
+ j(u(t), v) = j(u(t), w) = (f(t),v —ult))v,
(0(t), ) L2() + d(0(t), n) — e(ul(t),n) + x(u(t),0(t),n) = (a(t), n)q, (2.21
u(0) = uyp, 4(0) = 1y, 6(0) = by. (2.22)
To study this problem, we impose the condition
mq < (L, + L,) s, mq > My, s5. (2.23)

3. EXISTENCE AND UNIQUENESS RESULT
In this section, we present an existence and uniqueness result.

Theorem 3.1. Assume that (H1)-(H8) and the condition (2.23) hold. Then there exists a
unique solution (u,0) to Problem 2.2, which satisfies the regularity conditions

u e L*0,T;V), w € L*0,T; V'), 0 c L*0,T;Q). (3.1)
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This theorem is proved in several steps and is based on the Banach fixed point theorem.
First, let y € L*(0,T;V) and z € L*(0,T; L*(2)) given by

(y(t),v), =m(0.(t),v), Yv €V,

(2(t),n)g = —e(uy(t),n), Vn € Q.
Applying Riesz representation theorem, we define the operators

(fy(@),v)y, = (f(),v)y — (y(t),v)y,

(2:(t),m g = (an(t),n)g — (2(t),n)g - (3.5)
Next, we consider the intermediate problems.

Problem 3.1. Find a displacement field u, € K x (0,T) for all v € V such that
iy (1), v — 1y (t))m + b (i (t), v — 0y (1)) + a (uy(t),v —1y(t))

3 00) 0. 8(0) > 0= i)y P

1y (0) = ug, 0, (0) = 1. (3.7)
Problem 3.2. Find a temperature field 6, € Q x (0,T) for all n € Q such that

(060, 1) gy + (800, 1) + X 1y (6, (8), 1) = (@=(0), ) (33)

0.(0) = 6. (3.9)

At the second step, we establish the unique solvability of the intermediate problems.

Lemma 3.1. For allv € K and for almost all t € (0,T), Problem 3.1 has a unique solution
u, with the reqularity

u, € L*(0,T;V), w, € L*(0,T;V").
The proof is based on similar arguments to those used in [11, Thm. 5.15].

Lemma 3.2. Foralln € Q and for a.et € (0,T), Problem 3.2 has a unique solution 0, with
the reqularity

6. € L*(0,T;Q).

The proof of this result is presented in [8, Lm. 3.3| by using the Galerkin method.
At the last step we define the operator

(I)(y’ Z)<t) = (q)l(ya Z)(t)a (I)Q(yaz)(t)) S V X Q> (310)

where
(@1(y, 2)(1),v)y = m (0:(1), v), (3.11)
(P2(y, 2)(t), m)g = —€ (uy(t),n) . (3.12)

Lemma 3.3. For (y,z) € L*(0,T;V) x L*(0,T; L*(Y)), the operator ® is continuous and
has a unique fized point (y*, 2*) € L*(0,T;V x L*(Q)).

Proof. Let (y,z) € L*(0,T;V x L*(Q)) and ty,t, € [0,T]. By the assumptions (H2) and (H5)
we have
[P1(y, 2)(t1) — Pa(y, 2)(L2) ||y wp2i) < Mim [16:(t1) — 0:(22) | (3.13)
[P2(y, 2)(t1) — Pa(y, 2)(L2) [y wp2i) < Me [uy(tr) — uy(t2)]]y (3.14)

and in view of the regularity of 6, and u, we see that ® is continuous.
Let (y1,21), (Y2, 22) € L*(0,T;V x L*(Q)). For ¢t € [0,T] and similar to (3.13)-(3.14) we
obtain

121, 20)(8) = (2, 2) Oy gy < € (s () = Oy + 10:1(8) = 0 (D)) - (3.15)
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For i = 1,2 we have
t

() = [ G (5)ds + o

0
and

s () = w0 < /mw ~ ()l ds

By the relations (3.4) and (3.6) we find

(uyl (t) - uyz (t)7 uyl (t) - uyz (t)) +b (uyl (t) - qu( ) uyl (t) qu (t)>
+ @ (uy, (8) — wy, (1), 1y, (1) — 1y, ()
+ (1 (t) = y2(t), iy, (£) — 11y, (1))

); va (
+J (g (), Gy, (£)) = 5 (g, (£), 5oy (1))
= J (Uyy (£), gy (1)) =+ J (g, (1), Uy, (1)) <O
By the assumptions on the operator 7 we have
‘j (g (), 1y (£)) = 5 (g (£), gy (£)) = J (g (£), ty, (£)) + J (tty, (£), thy, (£))

< s7(Ly + Ly) [y, (8) = wyo (D) Iy [[thy, (8) = gy ()] -
We integrate the inequality (3.17) over [0,7] and by (3.18), (H1) this yields

1 .
7m/mm iy () ds + 5 i, (6) — i, (DI

<—/@mwwﬁw%®—%ﬂ»w

+ (M, + 3%([4/ + L)) / |2y, (5) — uyz(s)”\/ 12y, () — uyz(‘S)Hv ds

This estimate, the Young inequality
1
< da” + — §>0
aﬁ «@ + 4(55 Y Y
and the Gornwall inequality imply

[y (8) =ty ()] 20,70y < € N91(8) = w2(0) | 20 1) -

Hence,

(‘931 (t) - ézQ (t) ) - ) - 02’2 (t)> 021 (t) - sz (t))

L2

+ (21(t) — 22(t), 0 (1) — ())Q ( () Uy, (1), 02, (£) — 02,(1))
= X (0=, (1), uy, (1), 0:, () — 0, (1)) =
By (2.19) and (H7) we get
|X (021 (t)’ Uy, (t)’ 021 (t) - 922 (t)) - X (922( ) Uy (t)7 0»21( ) - 02’2 (t))|
< My, 52 102, (8) = 02 (D)l + Lo Lsrsa 162, (1) = 024 ()l N1y, (1) — g ()], -
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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After some calculation and by using condition (2.23), we see that there exists a positive constant
c such that

1021 () = 0= (D)l 120.1n0) < €22 () = 22(D)l 20,1220y - (3.25)
Combining (3.15), (3.21) and (3.25), we find

[P (y1, 21)(t) — @(y2, 22) (D)l 200wy < €l (W1s 20) () — (20 22) Ol 20 v w2y - (3:26)
Reiterating this inequality n times, we obtain

n n (cT)"
12" (y1, 210) () — @™ (y2, 22) (Dl 207V x@) < o [(y1,21) (@) = (2, 22) Ol 220,70 x 12(00)) »

(3.27)

which implies that for sufficiently large n the operator @ is a contraction in L?(0,T;V x Q).
Therefore, there exists a unique fixed point (y*, z*) of ®. The proof is complete. O

Now we are in position to prove Theorem 3.1.

Proof of Theorem (3.1). Existence. Let (y*,2*) € L*(0,T;V x L*(Q)) be the fixed point of
the operator ® and uy., 07. be the solutions of Problem 3.1 and Problem 3.2, respectively. For

(y,2) = (y*, z%), and by definition of ® we find that the pair (u;j, (9:*) is a solution of Problem
2.2.

Uniqueness. The uniqueness follows from the uniqueness of the fixed point of ®. The proof
is complete. O

4. FULLY DISCRETE SCHEME AND ERROR ESTIMATE

In this section, we present a fully discrete scheme for the variational formulated in Problem
2.2, and we establish a result on error estimate. Let {Th} be a regular family of triangular finite

element partition of Q are compatible with the boundary decomposition ' = T'p UTy U T¢,
where h > 0 denotes a spatial discretization parameter.
Let V" and Q" are a finite dimensional subspace of V' and @ respectively given by

Vh = {vh € [C(ﬁ)}d : v(ﬁn e [Py(Tr)]* VTr e T" v" =0on fc} cV,
Q"={n"eC): nly, ePy(Tr)VIr T n"=00nTpUlN} CQ,
K'=Knv"
For a positive integer N, we define a uniform partition of [0, 7] given by
O=to<ti <...<ty=T,

and the time step size k, = t, — t,_1, where k = max{k,} be the maximal step size.
n

For a time continuous function v = u(t), we write

Un, = u(ty), 5:E(un—un_1), n=1,...,N.
We also use the notation
wit = Sult, upt = kgt g, 0= k00" + 6f.
j=1

Jj=1

Using the backward Euler scheme, the fully discrete approximation of Problem 2.2 is as follows.
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Problem 4.1. Find a displacement field {uﬁk}:[:o C K" and a temperature {92’“}7]:/:0 c Q"
for all v" € V" and n" € Q" such that

(5w vh—w ) +b( vh—w )—l—a(hk vh—whk)

4.1

m (81 o — ) 5 (o) — () > (oot — ),

(GOR% ") 12y + (92’“,77 ) — e (upt ") + x (up", 00 0") = (qn, ") (42)
R A (43

where ul} € VP, wl € V" and 0h € Q" are respectively approzimates of ug, o and 0.

Under the assumptions of Theorem 3.1, we follow the same arguments asin previous section,
and conclude on the unique solvability of Problem 4.1.
Next, we recall the following discrete Gornwall s inequality [17, Lm. 4.1].

Lemma 4.1. Let T > 0 be given. For a positive integer N, define k = T/N. Assume thal
{gu}N_, and {e,}_, are two sequences of nonnegative numbers satisfying

chn—i—cZkej, n=1,...,N,

for a positive constant ¢ independent of N or k. Then, there exists a positive constant c,
independent of N or k, such that

max e, < ¢ max (gy.
1<n<N 1<n<N

Now we state a result on error estimation.

n rrn

tively. Assume (H1)-(H8) and (2.23). Then the following bound holds for all {v? } cvh
and {n} } cQ"

Lemma 4.2. Let (u,0) and ( hk Qhk) be solutions to Problems 2.2 and Problem 4.1, respec-

o = w1 1100 = 4y + ek D (ley = w1+ 10, = 0415
j=1
< e {lewo = w15 + o = w115 + 110 = 05 oy + 160 — 054115

+v{Wm—vMZ+H%—nMZmJ+f{W%—vMZ+H%—nMZmJ
+ ek 10020y + K Nl 2o gy + kR (wy, 1) (44)

J
k3 (s =Sy + s — o2 + o161
1n—l

j=1
n h 2 n h 2
T T Z (H(w] —v}) = (wj1 — Uj+1)HH +[(0; - ;) = (0541 — nj+1)HL2(Q)> ’

. 2
0, — 30, ,

where
R(wn,vh) = (5wn,vh —wn)H+b(wn,vh ) +a(un, h—wn)

—-m (9n,vh — wn) +7 (un,v ) — J (up,wy) — (fn,vh — w”)v’ (4.5)
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Proof. By the inequality (4.1) we have
(5whk Wy — ) +0 ( hk , Wy, — ka) <a (uhk w, — whk)
((92’C 1y Wy — wzk) ((5wn , Wy, — vh)H —b (wzk, Wy, — vh) —a (uhk Wy, — vh) (4.6)
(OZkl,vh — ’wn) +7 (uzk,vh) -7 (uﬁk,wzk — (fn,vh — wzk) .

We take v = w!* in (2.20) at time t = t,,
(wn,wn — whk) +b (wn, Wy, — wzk) <a (un, whk — wn)

n
hk hk

_m(gnawn _wn)+J(un7 n) ](unawn)_ ( ny Wy, _wn)v-

Adding the previous inequality, after some calculations we obtain

(4.7)

(wn — 5U)Zk Wy, whk) +b (wn — whk , Wy, — whk)
éa( n_uzkvwzk_wn) (8 _szla Zk_wn)
— (6w, w, — v"),, —b (wh*, w, — ") —a (ufF w, —v™)  (4.8)
+m (038, w, — ") 4 (") = (ut wt)
- (fna - n)V +](un>w7};k) _j(un7wn)a
Using the relation

hk hky hk hk
n Wy — W, )H—(éwn—éwn , Wy, — W, )H

+ (wn — OWy, Wy, — vh)H + (wn - 5wzk,vh — w,}fbk)H,

(1 = 0w (4.9)

we get

(5wn — 5wzk, Wy, — whk) +b (wn — whk , Wy, — wﬁk)

< ((5wn - 5wn , Wy, — vh)H (5wn Wy, V" — wzk)H

+ a (u, — ul®, Wl —w,) —m (6, — 0% |, wi* —w,) (4.10)
+ b (w, — Wl w, — ") +a (uy — ulF, w, — ")

—m(9 szl,wn—vh)jLR(wn,vh) + Ry,

where
Ri=j (un, Zk) Jj (un,vh) +7 (uzk,vh) —J (uﬁk,wﬁk) ) (4.11)
Using the formula
2@~y a)g = |z —ylly + el — WlE  o=w,—ws  b=w,q —wity,
we find
(B — 0w — ) > o (=t~ fns —wlf[) . (412

By the Lipschitz continuity of b and the continuity of a, b and m we get
hk

hk hk||2
b(wn—wn , Wy, — W, ) }mwan—wn HV,

b a0, = w10, = 0%)| < My, = 2], = o

@ (un =l = ") < M [fun =l [l =", @.13)
o (= w0, | < M [ =y flws = |
[m (0 = 001, w0 —0")| < Mo [0 = 025 [ = o

(0= 0121, w0l — )| < Mo (16 = 0154 | el =
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Taking into account (H8) and (2.19), we find
ol < VeI + L) o= ]t = o

Applying this inequality

Vv

lwn® = vl < flwn® = wally [lwn =0

and combing (3.2), (4.8)—(4.15), we obtain

|

Vv

s = [+ e [Jun =i

<k { Jun = w5+ [ = 025 I + s = o,

hk (|2
[ = wnt ||, —

o el {liom = B[ + [fun = 0" [, + R (wn, ")}
+ 2k (5wn — 6w2k, W, — vh)H .
We replace n by 7 and sum over j from 1 to n

n
e — !5 4 ek S [y — w15 < o — wl[]5

j=1
- 2 2
ok > (g = a1+ s = o217
j=1
+ ey — Sl + ||ws — o5,

105 =055 + R (wy.0}) )

+ ckZ (5wj — 5w§-‘k,wj — v]h)H

j=1
Estimate the latter term in the right hand side of the above inequality

n

EY (0w — 0wl w; =) = ((wy —wl*) = (wjoy —wi®) w; — o),
j=1

j=1
+ (=l — o), — (g — 0w = of)
+ Z (wj — wi*, wy — v — (w1 —v]))

<e( flwn = wf |y + llwn = ] + oo = wfl,

We recall the classical inequality

J
lus =25y < o =gl + 3 flwon = wr*fy, + 1,
=1
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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where

I = < Klull g2 0,1y

t; .
j
/w(s)ds - Z kw,
0 =1

v
Then

J
s = < o= 4532 = T+ )
=1

We use the inequality ) <n < N and Nk =T to get

n n J
> kg =5 < o (fluo = wlfy + K2l mmozay ) + T kD [Jwn— w5

j=1 j=1 =1

Using the previous inequalities, we obtain
n
o — w2+ ek S oy — ¥ < 1, — 625, 1 + okl
j=1
o [fwo = b |5, + fluo = w3

+ fleon = 13+ leon — o213 )
n

+ ckz ( [i; — w; ||} + ||w; — ”?Hf/
Jj=1

+ 1165 = O I + R (wy,02) )

J
1 n—1 . , )
T > My = v = (wi = o) [
7j=1
We take n = n € Q" at time t = ¢, in (2.21)
(o) g+ ) = () X () = (a1 0)
We subtract (2.21) from (4.2)
(971 - 502k7 77h> L2(9) + d (Qn - sza Uh) —¢€ (un - uzk—la T]h)
+ X (s 0 ") = x (. 037, 0") = 0.
We substitute " by n" — 0% into (4.25)
<9n — 80%F " — 92’“) iy T8O = OE " = 0F) —e (wn —wfyn —0.F)
+ X (s O " = 03F) = x (w0, 0" = 03F) = 0.
Using the identities

(e‘n VL 92’“) = (60, — 60" " —

2@) On) 2o

(00, — 8010, — 015) L, o) + (9’ — 80,1 — egk)

and
d (0, — 0 " —00%) =d (0, — 625, 0" — 0,) +d (0, — O1F,0" — 6) |

L3(Q)’

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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we find
hk hk hk gh _ phk
(00, — 0010, — 02F) o+ (6, — 06" — 02%)
_(p hk _  h hk h
_ (9 —86,, 0 ) >L2<m (00, — 8080 — 1) ey (4.29)
—d (0, — 0% " —0,) +e(u, —ul¥ 0" —0,) +R,,
where
R, =x (uﬁk, 92’“, — 02’“) —X (un, O, 1" — 92’“) ) (4.30)
Using (2.19) and (H7), we get
|Ry| < My, L, sy ||n" — ethQ (4.31)

By the inequalities

1
(86— 3016 = 017 1) = 5 (1160 = 02 [Faiy = 1001 = 015 [y )

- X (4.32)
In" = 02" llg < lIn* = Oallg + 10 = 0
and (H1), (H3) and (H5), we conclude that there exist a positive constant ¢ such that
O e 9’”“1\&2 + k|6 = 63l
; 2
<ch ([ = 00u][ o+ 00= =) 439

+ck (80, — 60,%, 00 —11") 1 g -

We replace n by 7 and sum this inequality over j from 1 to n

[0 = 02 oy + ek D110 = 03
j=1

2
<=0 ek 2 ([0, )+H9j—n?HZ) (434
+ck > |ug—u Hv+ck2 =001 0; = 1) L2y -
j=1
Moreover,
kz 59hk n?)LQ(Q) - Z ((ej —0;1) — (eglk - 9?61) 05 — n?)LQ(Q)

:Z (05 — 05,6, — n?)m(sz)

j=1
n 4.35
E (0= 00— 1) (4.35)
j=1
= Z (6, - G?k’ (6 - 77?) — (01— n?+1))L2(Q)
j=1

+ (en —03F, 0, — nZ)LQ(Q) - (00 — 05", 01 — n?>L2(Q) :
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Then

n

k Z (66, — 667", 6; — U;Z)L2(Q)

j=1
<t (18 = 0|y + 118n =1y + 160 = 5113y + 16 =i 20
n—1
+ D 105 = 05 o 105 = 1) = (B0 = 01) [ 2 (4.36)
j=1
hk||2 |2 |2 |2
s¢ <H9n — 0, HLz(Q) + [0 — 77nHL2(Q) +1]60 - 90HL2(Q) + |61 —m HL2(Q)>
n—1 1 n—1
T kZ 16; - e?kHi?(Q) T Z 1(0; = n7) = (051 — 151) Hi?(ﬂ) :
=1 j=1
By (4.34), and previous inequality we get

6 = 61K 1y + kD 1165 = 51l

j=1

S C{HHO - ngHi,Q(Q) +1]61 - n?HiQ(Q) + |60 — 772”12(9)}

" . 2 (4.37)
wok 3 (s =ty + - oo, + s =)
j=1
n—1 1 n
+ kZ 165 — Q?kH;(Q) + % Z (65 = n7) = (001 — 77?+1)Hi2(ﬂ) :
j=1 j=1
In the same way, by using in (4.22), we obtain
n n—1 J
>kl = w5 < o ([uo = whlly + B ullroray ) + T3 kD [lun = w5,
=1 =1 =1 (4.38)
- hk ||2 n||2 2 =, x hk||2 |
S k|6 — 012 < e (1160 — 6 + K0l o) + T S kS [|66r — 0675,
j=1 j=1 =1

Finally, we combine (4.23), (4.37) and (4.38) and arrive at (4.4). The proof is complete. [
The main result of this section is the next theorem.
Theorem 4.1. Under the assumptions of Theorem 5.1 and the regularity conditions
ue C(0,T; H* (4 RY)) N H? (0,T; H),
i, € C(0,T; H* (T, RY)) (4.39)
0 €C(0,T; H*(Q) N H*(0,T;L*(), 6 € L* (0, T; H(Q)),
we have the estimate

max {||wa = wl |, + [[un =¥l + 160 = 0|y} elh+B). (440)

1<n<N
Proof. Applying the discrete Gronwall inequality 4.1, we find
max {ea} <o { [l — wf |+ [luo = uf |5+ 160 = 064112 0, |

(4.41)
2 2
+ ck® HQHHl(O,T;Q) + ck? HUHH2(0,T;V) + cmax {9n},
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where
e = [t = Wl 15+ 1160 = 0|y + kD (s = w5 + 16 - 614115)  (142)
j=1
and
o= ot (13 (1=t o 1)
77?6@*’ o
n 2
+ 3 (1= 301 o + 105 a1+ R )
=t (4.43)
1 n—1
D7 (s = 7) = (wgen =) [+ 165 =) = B = 1) )
Jj=1

2 2 2 2
+wm—wM+wrmmmm+wfwmﬁwm—%mmﬂ-

Let U? c vh 77? € Q" be the finite element interpolation of u; and 6, respectively. The
following approximation properties hold [9], [10]

max Hwn _UhHV Ch”wnc(OTH?(Q) )

1<n<N (4 44)
max |6 =zl < hllbloo i -
Hwo — Wy HV < ch ||w0||H2(Q RA) >
HUO_UOHH < ChHUOHHl(QRd)? (4.45)
H90 - QSLHLQ(Q) < ch H90HL2(Q) )
and
B <||wj — Swll; + 50| Q)) < K ||ull oo 7,22y + K2 1012207220 5
j=1
1 2 n 2 (4.46)
LS (s =) = s = 2 )+ 65 =) = B =) )
Jj=1
< ch? HUHH2 orv) T ch? 101l gr2(0.7.0) -
Similarly to the proof presented in [10], [20] we obtain
|7 (wj,v5) | < cjwn — UZHLQ(FC)d S Ch2||w””C’(O,T;H2(Q)d)' (4.47)

Finally, we combine the previous estimates (4.42), (4.44)—(4.47) and arrive at (4.40). The proof
is complete. O

5. NUMERICAL SIMULATIONS

This section provides computer simulation results on the contact Problem 4.1, including
numerical evidence of the theoretical error estimates obtained in the previous section for the
discrete approximation of the variational problem. The solution of Problem 4.1 is based on
numerical methods described in [1], [14]. For more considerations about computational contact
mechanics, see [19].
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The physical setting used for Problem 4.1 is shown in Figure 1. In this case the body
Q = (0,1) x (0,1) € R? is clamped on T'p = [0,1] x {0}. The tractions fy and f3 are
prescribed on the lateral parts 'y, T'%;, respectively, that is, I'y := 'y, UT%). The body is in
contact with a thermally conductive foundation on its lower boundary I'c = [0, 1] x {0}.

The material response is governed by a linear viscoelastic constitutive law, in which the
elasticity tensor £ and the viscosity tensor ) read

Ev FE o
(E1)ij = m(ﬁl + T92)0i5 + H—Vﬂ'j, 1<4,j<2, T7€S? (5.1)
(V7)ij = pa(Ti1 + T22)0i5 + poTij, 1<i,j<2, 7S

where F is the Young modulus, v is the Poisson ratio of the material, d;; denotes the Kronecker
delta, and p; and ps are viscosity constants.

The functions p, and p, in the frictional contact conditions (2.8) and (2.9) are given by
p(r) = ¢ry and p, = p,p,, where ¢, is a large positive constant and g, is the friction
coefficient. The truncation function ¢, and the conductivity functions k. in the conditions
(2.10) are given by ¢ (s) = s and

- S
ke—, 0<s<e.,
EC
ke(s) = ke, s> e,
0, otherwise,

where k. and €. are positive constants.
For computation we use the following data (IS unity):

E:2, 1/20.1, u1:10, ,u2:10, Mij:]Cij:Rijzla 1<l,]<2,
fo=1(0,-1), g =1, fa =(1.4,04), f2 =(-0.8,0.4), ¢, = 104, pr =0.2,
g=0, k.=1, € =1075, T=1, uy =0, Uy =0, 6y = 0.

Our interest in this example is to study the influence of the thermal conductivity of the

N N/ N7 N7 \/

el Ip ™~
el ™~
Q deformable body
A N
~ ~
el ™~
_ Ic ™~

FIGURE 1. Physical setting.

foundation on the contact process. Thus, in Figure 2, we show the deformed configurations at
final time, and in Figures 4 and 3, the corresponding norm of the temperature and stress fields
through the body for two different values of the temperatures of the foundation. These figures
show that, as the temperature of the foundation is more important then the deformations, the
norm of the stress and the temperature are larger. To see the convergence behaviour of the fully
discrete scheme, we compute a sequence of numerical solutions based on uniform partitions of
the time interval [0, T, and uniform triangulations of the body. Then, we provide the estimated
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FIGURE 2. Deformed configuration for 0z = 0 (left) and 6 = 10 (right).

error values for several discretization parameters h and k. Here, the sides of the square are
divided into 1/h equal parts and the time interval [0,7] is divided into 1/k time steps. We
start with A = 1/16 and k¥ = 1/16 which are successively halved. The numerical solution
corresponding to h = 1/256 and k& = 1/256 has been considered as the “exact” solution in order
to compute the numerical errors given by

B = max { [l — wl[| 4 um = il + (|60 = 02 oy } (5.2)

1<n<N

FIGURE 3. Temperature field for 6 = 0 (left) and 6 = 10 (right).

0.39

Q —
FIGURE 4. Von Mises stress norm for fp = 0 (left) and 67 = 10 (right).

The linear asymptotic convergence behaviour obtained in (4.40) is almost observed (see Figure
5).
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FIGURE 5. Estimated errors.
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