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BIFURCATIONS OF PERIODIC OSCILLATIONS

IN DYNAMICAL SYSTEM WITH

HOMOGENEOUS NONLINEARITIES

M.G. YUMAGULOV, M.N. KUNGIROV

Abstract. The paper is devoted to the study of cycle bifurcations and bifurcations at

infinity for dynamical systems with a small parameter, the nonlinearities of which contain

homogeneous polynomials of even or odd degree, and the unperturbed equation has a con-

tinuum of periodic solutions. We propose new necessary and sufficient conditions for these

bifurcations, obtain the formulas for the approximate construction of bifurcation solutions,

and analyze their stability. We show that cycle bifurcations are typical only for systems

with homogeneities of odd degree, while the bifurcations at infinity are typical only for

systems with homogeneities of even degree. We demonstrate the relationship between these

bifurcations and the classical Andronov — Hopf bifurcation.
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1. Introduction and formulation of problem

We consider the dynamical system depending of a small parameter 𝛼

𝑑𝑥

𝑑𝑡
= 𝑈(𝑥) + 𝛼𝑓(𝑥), 𝑥 ∈ R𝑁 (𝑁 ⩾ 2), (1.1)

where 𝑈(𝑥) and 𝑓(𝑥) are continuously differentiable vector function defined for all 𝑥. It is
supposed that 𝑈(0) = 0, that is, the unperturbed system

𝑑𝑥

𝑑𝑡
= 𝑈(𝑥), 𝑥 ∈ R𝑁 , (1.2)

has a zero equilibrium 𝑥 = 0.
In the system (1.1) various bifurcations are possible, which are related with the emergence

of periodic solutions for small non–zero values of the parameter 𝛼. In the present work we
consider three bifurcation scenarios.
The first is the classical Andronov — Hopf bifurcation, which is related with with the emer-

gence of small amplitude periodic orbits in the system (1.1) branching off from the equilibrium
point 𝑥 = 0 of the unperturbed system (1.2). The value 𝛼 = 0 is called the Andronov —

Hopf bifurcation point for the system (1.1) if there exists a number 𝜀0 > 0 and continuously
differentiable functions defined for 𝜀 ∈ (−𝜀0, 𝜀0) such that
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U1) 𝛼(0) = 0, 𝑇 (0) = 𝑇0, 𝛼(𝜀) ̸= 0 for 𝜀 ̸= 0;

U2) for non–zero 𝛼 = 𝛼(𝜀) the system (1.1) possesses a non–stationary 𝑇 (𝜀)–periodic solution
𝑥 = 𝑥(𝑡, 𝜀);

U3) the relation hold

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)‖ → 0 as 𝜀 → 0.

Here 𝑇0 is some positive number determined by the spectrum of the Jacobi matrix 𝑈 ′(0). By
‖𝑥‖ we denote the Euclidean norm of a vector 𝑥 ∈ R𝑁 .
The second bifurcation scenario is related with the emergence of periodic orbits in the system

(1.1) branching off from a certain cycle Υ0 of the unperturbed system (1.2). This bifurcation
scenario is due to the assumption that the unperturbed system (1.2) has a family of periodic
solutions 𝑥 = 𝜙(𝑡, 𝐶).
Let 𝑥 = 𝜙0(𝑡) be a non–stationary periodic solution in this family, 𝑇0 be the period of this

solution, and Υ0 be the corresponding trajectory in the phase space R𝑁 of the system (1.2).
The value 𝛼 = 0 is called the bifurcation point of cycles of the system (1.1), branching off

from the trajectory Υ0 of the system (1.2) if there exists a number 𝜀0 > 0 and continuously
differentiable functions defined for 𝜀 ∈ (−𝜀0, 𝜀0) such that the conditions U1 and U2 are satisfied,
and instead of U3, the following condition is satisfied:

UC) the relation holds

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝜙0(𝑡)‖ → 0 as 𝜀 → 0.

Finally, the third bifurcation scenario is related with the emergence of large–amplitude peri-
odic orbits in the system (1.1). The value 𝛼 = 0 is called the Andronov— Hopf bifurcation point

at infinity if there exists a number 𝜀0 > 0 and continuously differentiable functions defined for
𝜀 ∈ (−𝜀0, 𝜀0) such that conditions U1 and U2 are satisfied, and instead of U3, the following
condition is satisfied:

UB) the relations hold

𝜌(𝜀) = max
𝑡

‖𝑥(𝑡, 𝜀)‖ → ∞,
𝛼(𝜀)

𝜌(𝜀)
max

𝑡
‖𝑓(𝑥(𝑡, 𝜀))‖ → 0, as 𝜀 → 0. (1.3)

Here 𝑇0 is some positive number determined by the spectrum of the Jacobi matrix 𝑈 ′(0).
We mention that, when studying the Andronov — Hopf bifurcation problem at infinity, many

authors restrict themselves only to the first of the relations in (1.3). The second relation in our
formulation is related with the aim to adapt the concept of Andronov — Hopf bifurcation at
infinity with the classical concept of bifurcation of solutions of large norms (see, for example,
[6]), according to which the solutions of large norms should be generated by solutions of the
unperturbed equation in the appropriate formulation. Being applied to the system (1.1), this
means that periodic orbits of large amplitudes should branch off from the large–amplitude
cycles of the unperturbed system (1.2).
A vast literature was devoted to the study of these bifurcations. A special place is occupied

by the problem on the classical Andronov — Hopf bifurcation, the deep studies of this problem
and the developed effective methods allow us to speak about the appearance of the Andronov —
Hopf bifurcation theory, see, for example, [4], [16], [17], and the references therein. The cycle
bifurcation problem was studied by many authors. A fundamental result here is the Pontryagin
theorem [1], [13], which proposes a method for studying the cycle bifurcation problem in systems
close to Hamiltonian ones. An effective approach to studying this problem is offered by the
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methods of averaging theory based on the classical works of N.N. Bogolyubov and N.M. Krylov,
see, for example, [14]. The research continue in various directions, see, for example, [10]–[12],
[24].
The Andronov — Hopf bifurcation problem at infinity was also studied by many authors.

Various questions were addressed, both theoretical and related to applications in the theory of
Hamiltonian systems, control theory, mechanics, and elsewhere, see [7]–[9], [20]–[22].
It is of interest to study comprehensively all three of these bifurcation scenarios in systems

of the type (1.1). Here, relevant questions include the relationships between these bifurcations,
the determination of necessary and sufficient conditions for bifurcations, the approximate con-
struction of solutions, and the analysis of their stability. The studies of systems (1.1), in which
the nonlinearities contain homogeneous polynomials of even or odd degree, are especially im-
portant. In the modern nonlinear dynamics, the study of such systems attracted an increasing
attention, particularly due to the fact that these systems exhibit rich bifurcation and chaotic
behavior, see, for example, [15], [25]. At the same time, many issues in the study of cycle bifur-
cation problems and the Andronov — Hopf bifurcation at infinity in systems with homogeneous
nonlinearities remain poorly understood.
In this paper we focuse on the system (1.1), in which the function 𝑓(𝑥) can be represented

as 𝑓(𝑥) = 𝐵1𝑥 + 𝑏𝑞(𝑥); here 𝐵1 is a square (of size 𝑁) real matrix, and the nonlinearity 𝑏𝑞(𝑥)
is a homogeneous polynomial of degree 𝑞, 𝑞 ⩾ 2. We propose new necessary and sufficient
conditions for cycle bifurcations and bifurcations at infinity in such systems, which make it
possible, in particular, to establish that cycle bifurcations are typical only for the systems with
homogeneities of odd degree, while bifurcations at infinity are typical only for the systems with
homogeneities of even degree. The proposed bifurcation features are based on new approaches
that combine methods of averaging theory and operator methods for studying problems of
multiparameter bifurcations, see [3], [5].
In the present work we also propose new asymptotic formulas for the approximate construc-

tion of bifurcation solutions and for the study of their stability in problems of cycle bifurcations
and bifurcations at infinity in the system (1.1) of arbitrary orders 𝑞 of homogeneous nonlinear-
ity 𝑏𝑞(𝑥). These formulas extend the results of [18], [19], and [23], in which similar problems
were studied for systems with quadratic and cubic nonlinearities.

2. Main object of study

The main object of study in this paper is the system (1.1), in which 𝑈(𝑥) is a linear function.
Namely, we consider the system

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼𝑓(𝑥), 𝑥 ∈ R𝑁 , (2.1)

in which 𝐵0 is a square (of size 𝑁) real matrix, 𝑓(𝑥) is a continuously differentiable vector
function. We make the following assumptions

V1) the matrix 𝐵0 has a pair of pure imaginary eigenvalues 𝜆 = ±𝜔0𝑖, (𝜔0 > 0);

V2) the other eigenvalues of matrix 𝐵0 have non–zero real parts.

By Assumption V1 there exist non–zero vectors 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 such that identities hold

𝐵0(𝑒+ 𝑖𝑔) = 𝑖𝜔0(𝑒+ 𝑖𝑔), 𝐵*
0(𝑒

* + 𝑖𝑔*) = −𝑖𝜔0(𝑒
* + 𝑖𝑔*), (2.2)

where 𝐵*
0 is the transposed matrix.
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In what follows, for simplicity, if this cause no confusion, we shall use the same notation for
a square (of order 𝑁) matrix and the linear operator generated by this matrix in the standard
basis of the space R𝑁 .
We denote by 𝐸0 the eigenspace of the operator 𝐵0 associated with simple eigenvalues ±𝑖𝜔0.

The space 𝐸0 is two–dimensional; the vectors 𝑒 and 𝑔 can be used as its basis. The space R𝑁

can be represented as a direct sum R𝑁 = 𝐸0⊕𝐸0, where 𝐸0 is an additional invariant subspace
of dimension 𝑁 − 2 for 𝐵0.
By the mentioned assumptions the phase portrait of the linear two–dimensional system

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥, 𝑥 ∈ 𝐸0, (2.3)

has a type “center”, all its solutions as 𝑇0–periodic, where 𝑇0 =
2𝜋

𝜔0

. These solutions can be

represented as 𝑥 = 𝑥0(𝑡, 𝐶) = 𝐶𝜙0(𝑡), where 𝐶 is an arbitrary constant, and the function 𝜙0(𝑡)
is defined by the identity

𝜙0(𝑡) = 𝑒 cos𝜔0𝑡− 𝑔 sin𝜔0𝑡. (2.4)

For simplicity of presentation, most of the constructions and main results will be discussed
for the case when the system (2.1) is two–dimensional, that is, for the system

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼𝑓(𝑥), 𝑥 ∈ R2. (2.5)

Hence, the unperturbed system reads

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥, 𝑥 ∈ R2. (2.6)

The general multi–dimensional case 𝑁 ⩾ 3 is briefly discussed in the concluding part of paper.

3. Study of problem on bifurcation of cycles

We first discuss the problem on bifurcations of cycles in the system (2.5). We make the
non–degenerate 𝑇0–periodic change

𝑦 = 𝑒−𝐵0𝑡𝑥 (3.1)

in this system. As a result, the system (2.5) becomes

𝑑𝑦

𝑑𝑡
= 𝛼𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦), 𝑦 ∈ R2, (3.2)

where the right hand side is 𝑇0–periodic.
Together with (3.2) we consider the averaged system

𝑑𝑢

𝑑𝑡
= 𝛼𝐹 (𝑢), 𝑢 ∈ R2, (3.3)

where

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢) 𝑑𝑡. (3.4)
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3.1. Necessary condition for bifurcation of cycles. The next statement provides a nec-
essary condition for bifurcation of cycles of the system (2.5).

Theorem 3.1. Let the value 𝛼 = 0 be the point of bifurcation of cycles of the system (2.5),
which branch off from some trajectory Υ0 of the linear system (2.6). Then each vector 𝑢0 ∈ Υ0

is the equilibrium of the averaged system (3.3), that is, 𝐹 (𝑢0) = 0.

Proof. Let the value 𝛼 = 0 be the point of bifurcation of cycles of the system (2.5), that is,
there exist continuous functions 𝛼(𝜀) and 𝑇 (𝜀) such that the conditions U1 and U2 hold as well
as the condition UC, which can be represented as

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝐶0𝜙0(𝑡)‖ → 0 as 𝜀 → 0; (3.5)

here 𝜙0(𝑡) is the function (2.4), 𝐶0 is some positive number. Then Equation (3.2) has the
solution

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡𝑥(𝑡, 𝜀), (3.6)

that is,
𝑑𝑦(𝑡, 𝜀)

𝑑𝑡
≡ 𝛼(𝜀)𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀)), 𝑦 ∈ R2. (3.7)

The function (3.6) is almost periodic in 𝑡. This is why there exists a sequence 𝑇𝑘 → ∞ such
that ‖𝑦(0, 𝜀)− 𝑦(𝑇𝑘, 𝜀)‖ → 0 as 𝑘 → ∞. Integrating the identity (3.7) over the segment [0, 𝑇𝑘],
in view of the condition U1 we find that as 𝑘 → ∞, the identity holds

𝑇𝑘∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀)) 𝑑𝑡 → 0,

or, in view of (3.6), the identity

𝑇𝑘∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡 → 0. (3.8)

Since in this identity the integrand is almost periodic in 𝑡, the limit

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡

is well–defined. By (3.8) this implies

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡 = 0. (3.9)

By (3.5) the function 𝑥(𝑡, 𝜀) can be represented as

𝑥(𝑡, 𝜀) = 𝐶0𝜙0(𝑡) + 𝛿(𝑡, 𝜀),

where the function 𝛿(𝑡, 𝜀) is almost periodic in 𝑡, smooth in 𝜀 and satisfies the relation

max
𝑡

‖𝛿(𝑡, 𝜀)‖ → 0 as 𝜀 → 0.

Then the identity (3.9) casts into the form

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡) + 𝛿(𝑡, 𝜀)) 𝑑𝑡 = 0.



BIFURCATIONS OF PERIODIC OSCILLATIONS 145

This identity holds for all small 𝜀. This is why

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡)) 𝑑𝑡 = 0.

In the obtained identity the integrand is 𝑇0–periodic. Hence,

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡)) 𝑑𝑡 = 0.

We observe that the function (2.4) we have 𝜙0(𝑡) = 𝑒𝐵0𝑡𝑒. Therefore, letting 𝑢0 = 𝐶0𝑒, we
obtain

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢0) 𝑑𝑡 = 0.

Due to the arbitrary choice of the vector 𝑒, this completes the proof.

3.2. Study of systems with homogeneous nonlinearities. There arises a natural ques-
tion for which systems of form (2.5) the necessary condition of bifurcation of cycles hold, that
is, in which case the averaged system (3.3) has non–zero equilibria. In order to study this issue,
we point out the following facts.
Since the matrix 𝐵0 is non–degenerate, there exist 𝛿1, 𝛿2 > 0 such that for |𝛼| < 𝛿2 the system

(2.5) has a unique equilibrium 𝑥 = 𝑥*(𝛼) in the ball ‖𝑥‖ < 𝛿1 such that 𝑥*(0) = 0 and the
function 𝑥*(𝛼) is smooth. We can suppose that 𝑥*(𝛼) ≡ 0, that is, the function 𝑓(𝑥) satisfies
the identity 𝑓(0) = 0. Then the function 𝑓(𝑥) can be represented as

𝑓(𝑥) = 𝐵1𝑥+ 𝑏(𝑥),

where 𝐵1 is a square (of size 2) real matrix, and then nonlinearity 𝑏(𝑥) satisfies the relation

‖𝑏(𝑥)‖ = 𝑂(‖𝑥‖2) as 𝑥 → 0.

In what follows we study the systems with homogeneous nonlinearities, namely, we shall
suppose that the function 𝑓(𝑥) can be represented as

𝑓(𝑥) = 𝐵1𝑥+ 𝑏𝑞(𝑥),

where the nonlinearity 𝑏𝑞(𝑥) is a homogeneous polynomial of degree 𝑞, 𝑞 ⩾ 2, and therefore it
satisfies the condition

𝑏𝑞(𝜆𝑥) ≡ 𝜆𝑞𝑏𝑞(𝑥).

Thus, the system (2.5) casts into the form

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼[𝐵1𝑥+ 𝑏𝑞(𝑥)], 𝑥 ∈ R2. (3.10)

We also suppose that the vectors 𝑒, 𝑔, 𝑒*, 𝑔* defined by the identities (2.2) are normalized as

(𝑒, 𝑒*) = (𝑔, 𝑔*) = 1, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0. (3.11)

By the matrix 𝐵1 and vectors 𝑒, 𝑔, 𝑒*, 𝑔* in (2.2) we define the numbers

𝛾1 = (𝐵1𝑒, 𝑒
*) + (𝐵1𝑔, 𝑔

*), 𝛾2 = (𝐵1𝑒, 𝑔
*)− (𝐵1𝑔, 𝑒

*). (3.12)

Theorem 3.2. Let 𝛾1 ̸= 0 and the value 𝛼 = 0 is the point of bifurcation of cycles of
the system (3.10). Then 𝑞 is odd, that is, in the system (3.10) the nonlinearity 𝑏𝑞(𝑥) is a
homogeneous polynomial of odd degree.
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Proof. It is sufficient to show that if 𝑞, that is, if in the system (3.10) the nonlinearity 𝑏𝑞(𝑥) is
a homogeneous polynomial of an even degree, then the necessary condition for bifurcation of
cycles provided in Theorem 3.1 fails.
Let 𝑞 be even. By Theorem 3.1, for the bifurcation of cycles the equation 𝐹 (𝑢) = 0 necessarily

has a non–zero solution; here 𝐹 (𝑢) is the function (3.4), which in our case reads

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡[𝐵1𝑒
𝐵0𝑡𝑢+ 𝑏𝑞(𝑒

𝐵0𝑡𝑢)] 𝑑𝑡. (3.13)

In what follows we shall employ two auxiliary statements.

Lemma 3.1. Let 𝑞 be even. Then for each vector 𝑢 ∈ R2 the identity holds

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢) 𝑑𝑡 = 0. (3.14)

Indeed, since the matrix 𝐵0 has a pair of purely imaginary eigenvalues 𝜆 = ±𝜔0𝑖, 𝜔0 > 0, we
can suppose that the matrix 𝑒𝐵0𝑡 is of the form

𝑒𝐵0𝑡 =

[︂
cos𝜔0𝑡 − sin𝜔0𝑡
sin𝜔0𝑡 cos𝜔0𝑡

]︂
.

Then the function 𝑏𝑞(𝑒
𝐵0𝑡𝑢) contains only even powers of the functions cos𝜔0𝑡 and sin𝜔0𝑡,

while the product 𝑒−𝐵0𝑡 · 𝑏𝑞(𝑒𝐵0𝑡𝑢) forms odd powers of these trigonometric functions. This fact
ensures the identity (3.14).
We define the matrix

𝐷 =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝐵1𝑒
𝐵0𝑡 𝑑𝑡. (3.15)

It is easy to establish the next lemma.

Lemma 3.2. Let 𝛾1 ̸= 0, where 𝛾1 is the number from (3.12). Then det𝐷 ̸= 0, that is, the
matrix (3.15) is invertible.

It follows from Lemma 3.1 that the function (3.13) is linear and is of the form

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝐵1𝑒
𝐵0𝑡𝑢 𝑑𝑡.

Then by Lemma 3.2 the equation 𝐹 (𝑢) = 0 has only the zero solution. The proof is complete.

3.3. Sufficient condition for bifurcation of cycles. In what follows we discuss the prob-
lem on bifurcation of cycles only in the case, when the nonlinearity 𝑏𝑞(𝑥) in the system (3.10)
is a homogeneous polynomial of an odd degree.
The sufficient condition for the bifurcation of cycles given above is based on operator methods

for studying problems on multi–parametric bifurcations, see [3], [18]. Following these works,
we define the vectors

𝑒(𝑡) = 𝑒 cos 2𝜋𝑡− 𝑔 sin 2𝜋𝑡, 𝜉3 = 𝑇0

1∫︁
0

𝑒−𝑡𝑇0𝐵0𝑏𝑞(𝑒(𝑡)) 𝑑𝑡, (3.16)
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and the numbers

𝛼2 = − 𝜔0

𝜋𝛾1
(𝜉3, 𝑒

*), 𝑇2 =
1

𝜔0

[︁
(𝜉3, 𝑔

*)− 𝛾2
𝛾1

(𝜉3, 𝑒
*)
]︁
. (3.17)

Theorem 3.3. Let

𝛾1 ̸= 0, 𝛼2 ̸= 0. (3.18)

Then 𝛼 = 0 is the point of bifurcation of cycles of the system (3.10), which branch off from

the trajectory Υ0 of the linear system (2.6) containing the vector 𝑢*. Here 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒 (if

𝛼2 > 0) or 𝑢* = (−𝛼2)
1

(1−𝑞) 𝑒 (if 𝛼2 < 0).

Theorem 3.3 is a continuation of a similar result obtained in [18].

Proof. For the sake of definiteness we suppose that 𝛼2 > 0; the case 𝛼2 < 0 can be considered
similarly. The next lemma is obvious.

Lemma 3.3. Let 𝑞 be odd and 𝛼 > 0. Then the change 𝑦 = 𝛼
1

(1−𝑞)𝑥 reduces the system
(3.10) to the form

𝑦′ = (𝐵0 + 𝛼𝐵1)𝑦 + 𝑏𝑞(𝑦), 𝑦 ∈ R2. (3.19)

The inverse change reduces the system (3.19) to the system (3.10).

The condition 𝛾1 ̸= 0 in (3.18) means [18] that the value 𝛼 = 0 is point of Andronov — Hopf
of the system (3.19). Namely, for 𝛼 = 𝛼(𝜀) the system (3.19) has a non–stationary 𝑇 (𝜀)–
periodic solution 𝑦(𝑡, 𝜀) with a small amplitude, and the functions 𝛼(𝜀), 𝑇 (𝜀) and 𝑦(𝑡, 𝜀) can
be represented as

𝛼(𝜀) = 𝛼2𝜀
𝑞−1 +𝑂(𝜀𝑞+1), 𝑇 (𝜀) = 𝑇0 + 𝑇2𝜀

𝑞−1 +𝑂(𝜀𝑞+1), 𝑦(0, 𝜀) = 𝜀𝑒+𝑂(𝜀3). (3.20)

By these identities the bifurcation solutions 𝑦(𝑡, 𝜀) of the system (3.19) emerge for 𝛼 > 0. By
Lemma 3.3 this implies that the system (3.10) for 𝛼 = 𝛼(𝜀) has a non–stationary 𝑇 (𝜀)–periodic
solution

𝑥(𝑡, 𝜀) = (𝛼(𝜀))
1

(1−𝑞)𝑦(𝑡, 𝜀).

This is why by the identities (3.20) we get the relation

𝑥(0, 𝜀) = (𝛼2)
1

(1−𝑞) 𝑒+𝑂(𝜀2).

This means that the value 𝛼 = 0 is the point of bifurcations of cycles of the system (3.10), which

branch off from the trajectoryΥ0 of the linear system (2.6) containing the vector 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒.
We note that the vector 𝑢* is the equilibrium of the averaged system (3.3). The proof is
complete.

Theorem 3.3 and the results of the work [18] imply the next statement.

Theorem 3.4. Under the assumptions of Theorem 3.3 the bifurcation solutions 𝑥(𝑡, 𝜀) of
the system (3.10) emerge for 𝛼 > 0 (if 𝛼2 > 0) or for 𝛼 < 0 (if 𝛼2 < 0). These solutions are
orbitally asymptotically stable (unstable) if (𝜉3, 𝑒

*) < 0 (if (𝜉3, 𝑒
*) > 0).
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3.4. Example 1: Van der Pol equation. We consider the Van der Pol equation of form,
see, for instance, [14],

𝑦′′ + 𝛼(𝑦2 − 1)𝑦′ + 𝑦 = 0. (3.21)

The change 𝑥1 = 𝑦, 𝑥2 = 𝑦′ reduces this equation to a system of form (3.10) with 𝑞 = 3,

𝐵0 =

[︂
0 1
−1 0

]︂
, 𝐵1 =

[︂
0 0
0 1

]︂
, 𝑏3(𝑥) =

[︂
0

−𝑥2
1𝑥2

]︂
.

The matrix 𝐵0 has the eigenvalues ±𝑖. As the vectors 𝑒, 𝑒*, 𝑔, 𝑔* in (2.2) here we can take the
vectors

𝑒 = 𝑒* =

[︂
1
0

]︂
, 𝑔 = 𝑔* =

[︂
0
1

]︂
.

We first analyze the averaged system (3.3). Simple calculations show that the equation
𝐹 (𝑢) = 0 leads us to the system {︃

4𝑢1 − 𝑢1𝑢
2
2 − 𝑢3

1 = 0,

4𝑢2 − 𝑢2
1𝑢2 − 𝑢3

2 = 0,

the non–zero solution of which describe a circumference of radius 2 : 𝑢2
1 + 𝑢2

2 = 4. By Theo-
rem 3.1 we then find that the cycles of Equation (3.21) can branch off only from the mentioned
circumference.
Now we are going to show that the value 𝛼 = 0 is indeed the bifurcation point of cycles of

Equation (3.21). In order to do this, we employ Theorems 3.3 and 3.4. Here the calculations
show that

𝛾1 = 1, 𝛼2 =
1

4
, (𝜉3, 𝑒

*) = −𝜋

4
.

By Theorems 3.3 and 3.4 this implies that 𝛼 = 0 is the bifurcation point of cycles of Equa-
tion (3.21). These cycles appear for 𝛼 > 0 and are stable.

4. Study of problem on Andronov — Hopf bifurcation at infinity

We proceed to discussing problem on Andronov — Hopf bifurcation at infinity in the sys-
tem (3.10).

4.1. On properties of bifurcation at infinity. The above definition of the bifurcation at
infinity, namely, the conditions U1, U2 and UB imply the next statement.

Theorem 4.1. Let the value 𝛼 = 0 be the point of Andronov — Hopf bifurcation at infinity
of the system (3.10). Then

– the matrix 𝐵0 has a pair of eigenvalues ±𝜔0𝑖 (𝜔0 > 0), and the period 𝑇0 mentioned in

the definition of bifurcation at infinity is equal to 𝑇0 =
2𝜋

𝜔0

;

– the bifurcation solutions 𝑥(𝑡, 𝜀) of the system (3.10) satisfy the relation

𝑥(0, 𝜀) = 𝜌(𝜀)ℎ0 + 𝑜(𝜌(𝜀)) as 𝜀 → 0, (4.1)

where 𝜌(𝜀) = max
𝑡

‖𝑥(𝑡, 𝜀)‖, and ℎ0 ∈ 𝐸0 is a non–zero vector such that ‖ℎ0‖ ⩽ 1.

This theorem confirms the fact that under the Andronov — Hopf bifurcation at infinity, the
large amplitude periodic orbits of the system (3.10) branch off from the large–amplitude cycles
of the unperturbed system (2.6). We note that if we weaken the definition of bifurcation at
infinity, leaving only the first relation in (1.3), then Theorem 4.1 no longer holds.
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4.1.1. Example 2. As an illustration we consider two systems{︃
𝑥′ = 𝑥− 𝑦 − 𝛼(𝑥2 + 𝑦2)𝑥,

𝑦′ = 𝑥+ 𝑦 − 𝛼(𝑥2 + 𝑦2)𝑦,
(4.2){︃

𝑥′ = 𝑘𝑦 − (1 + 𝑘)𝛼(𝑥2 + 𝑦2)𝑥,

𝑦′ = −𝑘𝑥+ (1 + 𝑘)𝛼(𝑥2 + 𝑦2)𝑦,
(4.3)

where 𝑘 > 0. For positive 𝛼 both systems have the limit cycle

𝑥2 + 𝑦2 =
1

𝛼
,

which tends to infinity as 𝛼 → 0. This cycle Υ(𝛼) is associated with a periodic solution

𝑥 =
1√
𝛼
cos 𝑡, 𝑦 =

1√
𝛼
sin 𝑡.

Here the second relation in (1.3) fails. The statements of Theorem 4.1 do not hold for these
systems. We also note that the limit cycles Υ(𝛼) of these systems, coming from infinity, do not
branch off from the large–amplitude cycles of the unperturbed system. Namely, the unperturbed
system for (4.2) has no cycles at all, and although all solutions of the unperturbed system for

(4.3) are cycles, their period 𝑇 (𝑘) =
2𝜋

𝑘
(for 𝑘 ̸= 1) does not coincide with the period 𝑇0 =

2

𝜋
of the cycles Υ(𝛼).

4.2. Necessary condition of bifurcation at infinity. Let us present a necessary condition
for the bifurcation at infinity, which yields that this bifurcation is typical only for the case when
the nonlinearity 𝑏𝑞(𝑥) in the system (3.10) is homogeneous of even order.

Theorem 4.2. Let the value 𝛼 = 0 be the point of the Andronov — Hopf bifurcation at
infinity of the system (3.10). Then for each vector 𝑢 ∈ R2 the identity holds

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢) 𝑑𝑡 = 0. (4.4)

We observe the following fact. Lemma 3.1 implies that the necessary condition (4.4) of the
Andronov — Hopf bifurcation at infinity holds for the system (3.10) for even 𝑞, that is, when
the nonlinearity 𝑏𝑞(𝑥) is homogeneous of even order. At the same time, for odd 𝑞 this condition
for the system (3.10) usually fails.

Proof of Theorem 4.2. Let the value 𝛼 = 0 be the point of the Andronov — Hopf bifurcation
at infinity of the system (3.10). Then there exist continuous functions 𝛼(𝜀) and 𝑇 (𝜀) such that
for 𝛼 = 𝛼(𝜀) the system (3.10) has a 𝑇 (𝜀)–periodic solution 𝑥(𝑡, 𝜀), and 𝛼(0) = 0, 𝑇 (0) = 𝑇0

and the relations (1.3) hold.
As in the problem on bifurcation of cycles, we make the nondegenerate 𝑇0–periodic change

(3.1) in the system (2.5). As a result, the system (3.10) is reduced to (3.2), which for 𝛼 = 𝛼(𝜀)
has the solution

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡𝑥(𝑡, 𝜀),

that is,
𝑑𝑦(𝑡, 𝜀)

𝑑𝑡
≡ 𝛼(𝜀)𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀)), 𝑦 ∈ R2; (4.5)

where 𝑓(𝑥) = 𝐵1𝑥+ 𝑏𝑞(𝑥).
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Reproducing for (4.5) the same arguing as above in consideration of the identity (3.7), we
arrive at the relation

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡 = 0. (4.6)

By Theorem 4.1, the function 𝑥(𝑡, 𝜀) can be represented in the form (4.1). Then the identity
(4.6) reads

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡[𝐵1(𝜌(𝜀)𝜙0(𝑡) + 𝑜(𝜌(𝜀))) + 𝑏𝑞(𝜌(𝜀)𝜙0(𝑡) + 𝑜(𝜌(𝜀)))] 𝑑𝑡 = 0,

or, in view of the homogeneous property of 𝑏𝑞(𝑥),

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡[𝜌(𝜀)𝐵1(𝜙0(𝑡) + 𝑜(1)) + (𝜌(𝜀))𝑞𝑏𝑞(𝜙0(𝑡) + 𝑜(1))] 𝑑𝑡 = 0.

We divide this identity by (𝜌(𝜀))𝑞 and pass to the limit at 𝜀 → 0 to obtain

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝜙0(𝑡)) 𝑑𝑡 = 0.

In this identity the integrand is a 𝑇0–periodic function and this is why

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝜙0(𝑡)) 𝑑𝑡 = 0.

Since the solution 𝜙0(𝑡) of the unperturbed system (2.6) can be represented as 𝜙0(𝑡) = 𝑒𝐵0𝑡𝑢0

for some nonzero vector 𝑢0 ∈ R2, we get

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢0) 𝑑𝑡 = 0.

By the arbitrariness of solution 𝜙0(𝑡) we get the identity (4.4). The proof is complete.

4.3. Sufficient condition for bifurcation at infinity. In what follows, we discuss the
problem on bifurcation at infinity only for the case when the nonlinearity 𝑏𝑞(𝑥) in system (3.10)
is homogeneous of even order.
Like Theorem 3.3, the sufficient condition for bifurcation at infinity given below is based on

operator methods for studying problems on multiparametric bifurcations, see [3], [18]. Following
these works, we define the vectors

𝑒(𝑡) = 𝑒 cos 2𝜋𝑡− 𝑔 sin 2𝜋𝑡, 𝜉2 =

1∫︁
0

𝑒−𝑡𝑇0𝐵0𝛽2(𝑡) 𝑑𝑡,

where

𝛽2(𝑡) = 𝑇0𝐹2(𝑡)

𝑡∫︁
0

𝑒−𝜏𝑇0𝐵0𝑏𝑞(𝑒(𝜏)) 𝑑𝜏, 𝐹2(𝑡) = 𝑇0𝑏
′
𝑞𝑥(𝑒(𝑡))𝑒

𝑇0𝐵0𝑡;

𝑏′𝑞𝑥(𝑥) is the Jacobi matrix of the function 𝑏𝑞(𝑥).
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We also define the numbers

𝛼2 = − 𝜔0

𝜋𝛾1
(𝜉2, 𝑒

*), 𝑇2 =
1

𝜔0

[︁
(𝜉2, 𝑔

*)− 𝛾2
𝛾1

(𝜉2, 𝑒
*)
]︁
. (4.7)

Theorem 4.3. Let 𝑞 be even and the conditions hold:

𝛾1 ̸= 0, 𝛼2 ̸= 0. (4.8)

Then 𝛼 = 0 is the point of Andronov — Hopf bifurcation at infinity of the system (3.10).

Theorem 4.3 is a continuation of a similar result obtained in [18].
The next lemma is obvious.

Lemma 4.1. Let 𝑞 be even. For 𝛼 ̸= 0 the change 𝑦 = 𝛼
1

(𝑞−1)𝑥 reduces the system (3.10) to

𝑦′ = (𝐵0 + 𝛼𝐵1)𝑦 + 𝑏𝑞(𝑦), 𝑦 ∈ R2. (4.9)

The inverse change reduces the system (4.9) to the system (3.10).

Proof of Theorem 4.3. The first of conditions (4.8) means that 𝛼 = 0 is the point of Andronov —
Hopf bifurcation of the system (4.9). Namely, for 𝛼 = 𝛼(𝜀) the system (4.9) has a non–
stationary 𝑇 (𝜀)–periodic solution 𝑦(𝑡, 𝜀) with a small amplitude, and the functions 𝛼(𝜀), 𝑇 (𝜀)
and 𝑦(𝑡, 𝜀) can be represented as

𝛼(𝜀) = 𝛼2𝜀
𝑞 +𝑂(𝜀𝑞+2), 𝑇 (𝜀) = 𝑇0 + 𝑇2𝜀

𝑞 +𝑂(𝜀𝑞+2), 𝑦(0, 𝜀) = 𝜀𝑒+𝑂(𝜀3). (4.10)

It follows from Lemma 4.1 that for 𝛼 = 𝛼(𝜀) the system (3.10) has a non–stationary 𝑇 (𝜀)–
periodic solution

𝑥(𝑡, 𝜀) = (𝛼(𝜀))
1

(1−𝑞)𝑦(𝑡, 𝜀).

By the identities (4.10) this implies that the solution 𝑥(𝑡, 𝜀) satisfies both relations (1.3). This
is why the value 𝛼 = 0 is the point Andronov — Hopf bifurcation at infinity for the system
(3.10). The proof is complete.

Theorem 4.3 and the results of the work [18] imply the next statement.

Theorem 4.4. Under the assumptions of Theorem 4.3 the bifurcation solutions 𝑥(𝑡, 𝜀) of
system (3.10) appear for 𝛼 > 0 (if 𝛼2 > 0) or for 𝛼 < 0 (if 𝛼2 < 0). The asymptotics in the
small parameter 𝜀 for the solutions 𝑥(𝑡, 𝜀) is given by the identity

𝑥(0, 𝜀) =
𝑒

(𝛼2𝜀)
1

(𝑞−1)

+ 𝑜(𝜀
1

(1−𝑞) ),

where 𝑒 is the vector from (2.2) and (3.11). These solutions are orbitally asymptotically stable
(unstable) if (𝜉2, 𝑒

*) < 0 (if (𝜉2, 𝑒
*) > 0).

4.4. Example 3. As an illustration we consider the system

𝑥′ = 𝐴(𝛼)𝑥+ 𝛼𝑎(𝑥), 𝑥 ∈ R2, (4.11)

where

𝐴(𝛼) =

[︃
−1− 𝛼 12(1 + 𝛼)

−1

2
1

]︃
, 𝑎(𝑥) =

⎡⎢⎣−𝑥2
1

12
− 12𝑥2

2 + 2𝑥1𝑥2

−𝑥2
2

2
− 𝑥1𝑥2

4

⎤⎥⎦ .

The system (4.11) is obtained by transformation of Holling — Tanner model, see, for in-
stance, [2], namely, by the translation of the origin at the equilibrium of the model and an
appropriate cutting of the right hand side in the obtained system.
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The system (4.11) can be represented in the form (3.10) for 𝑞 = 2,

𝐵0 =

[︃
−1 12

−1

2
1

]︃
, 𝐵1 =

[︂
−1 12
0 0

]︂
, 𝑏2(𝑥) = 𝑎(𝑥).

The matrix 𝐵0 possesses the eigenvalues ±𝜔0𝑖, where 𝜔0 =
√
5. As the vectors 𝑒, 𝑒*, 𝑔, 𝑔* in

(2.2) and (3.11) we can take the vectors

𝑒 =

⎡⎣ 1

(1 +
√
5)

12

⎤⎦ , 𝑔 =

⎡⎣ −1

(
√
5− 1)

12

⎤⎦ , 𝑒* =

⎡⎢⎣(5−
√
5)

10
6
√
5

5

⎤⎥⎦ , 𝑔* =

⎡⎢⎣−(5 +
√
5)

10
6
√
5

5

⎤⎥⎦ .

The numbers 𝛾1, 𝛼2 and (𝜉2, 𝑒
*) from (3.12) and (4.7) read

𝛾1 = −1, 𝛼2 ≈ 0, 027, (𝜉2, 𝑒
*) =

𝜋𝛼2√
5
.

By Theorems 4.3 and 4.4 this implies that 𝛼 = 0 is the point of Andronov — Hopf bifurcation
at infinity of the system (4.11). These cycles emerge for 𝛼 > 0 and are unstable.

5. Multidimensional system

We return back to the discussion of problems on bifurcations of cycles and bifurcation at
infinity for the multidimensional system (2.1) for 𝑁 ⩾ 3. These problems can be studied by
the same scheme as for the two–dimensional system with natural modifications. We restrict
ourselves by providing the scheme for studying the problem on bifurcation of cycles.

5.1. Problem on bifurcation of cycles: necessary conditions. We recall that above
the conditions V1 and V2 were assumed to be satisfied. We also recall that the space R𝑁 can
be represented as the direct sum R𝑁 = 𝐸0 ⊕ 𝐸0, where 𝐸0 is a two–dimensional eigenspace of
the operator 𝐵0 associated with the simple eigenvalues ±𝑖𝜔0, and 𝐸0 is an additional subspace
of dimension 𝑁 − 2 invariant for 𝐵0.
The identity R𝑁 = 𝐸0 ⊕ 𝐸0 defines the projection operators

𝑃0 : R
𝑁 → 𝐸0 and 𝑃 0 : R𝑁 → 𝐸0

such that 𝑃 0 = 𝐼 − 𝑃0, and the operator 𝑃0 can be represented as

𝑃0𝑥 = (𝑥, 𝑒*)𝑒+ (𝑥, 𝑔*)𝑔,

where 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 are the vectors chosen by the identities (2.2) and (3.11).
We consider the two–dimensional autonomous system

𝑢′ = 𝛼𝐹 (𝑢), 𝑢 ∈ 𝐸0, (5.1)

where

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑃0𝑒
−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢) 𝑑𝑡.

The next statement provides a necessary condition for the bifurcation of cycles of (2.1) for
𝑁 ⩾ 3.

Theorem 5.1. Let the value 𝛼 = 0 be a point of bifurcation of cycles of the system (2.1),
which branch off from some trajectory Υ0 of the linear system (2.3). Then each vector 𝑢0 ∈ Υ0

is an equilibrium of the system (5.1), that is, 𝐹 (𝑢0) = 0.
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This statement can be proved in the same way as its analogue, Theorem 3.1. We describe
the scheme of the proof of Theorem 5.1.
Since R𝑁 = 𝐸0 ⊕ 𝐸0, each vector 𝑥 ∈ 𝑅𝑁 is uniquely represented as 𝑥 = 𝑥0 + 𝑥0, where

𝑥0 = 𝑃0𝑥 and 𝑥0 = 𝑃 0𝑥. Therefore, the system (2.1) can be equivalently represented as{︃
(𝑥0)

′ = 𝐵0𝑥0 + 𝛼𝑃0𝑓(𝑥0 + 𝑥0),

(𝑥0)′ = 𝐵0𝑥
0 + 𝛼𝑃 0𝑓(𝑥0 + 𝑥0).

(5.2)

In the system (5.2) we make the non–degenerate 𝑇0–periodic change

𝑦0 = 𝑒−𝐵0𝑡𝑥0, 𝑦0 = 𝑥0. (5.3)

As a result, the system (5.2) is transformed to{︃
(𝑦0)

′ = 𝛼𝑃0𝑒
−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦0 + 𝑦0),

(𝑦0)′ = 𝐵0𝑦
0 + 𝛼𝑃 0𝑓(𝑒𝐵0𝑡𝑦0 + 𝑦0)

(5.4)

with a 𝑇0–periodic right hand side.
Let the value 𝛼 = 0 be a point of bifurcation of cycles of the system (2.1), that is, there exist

continuous functions 𝛼(𝜀) and 𝑇 (𝜀) such that the conditions U1 and U2 hold, as well as the
condition UC, which can be presented as the relation (3.5):

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝐶0𝜙0(𝑡)‖ → 0 as 𝜀 → 0, (5.5)

where 𝜙0(𝑡) is the function (2.4), 𝐶0 is some positive number. The relation (5.5) implies that
the solution 𝑥(𝑡, 𝜀) of system (2.1) can be represented as

𝑥(𝑡, 𝜀) = 𝐶0𝜙0(𝑡) + 𝛿0(𝑡, 𝜀) + 𝛿0(𝑡, 𝜀), (5.6)

where the functions 𝛿0(𝑡, 𝜀) ∈ 𝐸0 and 𝛿0(𝑡, 𝜀) ∈ 𝐸0 are almost periodic in 𝑡, smooth in 𝜀 and
satisfy the relations

max
𝑡

‖𝛿0(𝑡, 𝜀)‖ → 0, max
𝑡

‖𝛿0(𝑡, 𝜀)‖ → 0

as 𝜀 → 0. Then the system (5.4) has the solution

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡[𝐶0𝜙0(𝑡) + 𝛿0(𝑡, 𝜀)] + 𝛿0(𝑡, 𝜀).

Further arguing in similar to that in the proof of Theorem 3.1 while considering the function
(3.6). Here the identity (5.6) is essential. We also note that the right hand side of the system
(5.1) is obtained by averaging the right hand side of the first equation in the system (5.4) with
𝑦0 = 0.

5.2. Problem on bifurcation of cycles: systems with homogeneous nonlinearities.

We consider the case when the system (2.1) reads

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼[𝐵1𝑥+ 𝑏𝑞(𝑥)], 𝑥 ∈ R𝑁 , (5.7)

where the nonlinearity 𝑏𝑞(𝑥) is a homogeneous polynomial of degree 𝑞.
As in the two–dimensional case, we define the numbers and vectors (3.12), (3.16) and (3.17).

The following analogues of Theorems 3.2–3.4.

Theorem 5.2. Let 𝛾1 ̸= 0 and the value 𝛼 = 0 be the point of bifurcation of cycles of the
system (5.7). Then 𝑞 is odd, that is, in the system (5.7) the nonlinearity 𝑏𝑞(𝑥) is a homogeneous
polynomial of odd degree.
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Theorem 5.3. Let 𝛾1 ̸= 0, 𝛼2 ̸= 0. Then 𝛼 = 0 is the point of bifurcation of cycles of the
system (5.7), which branch off from the trajectory Υ0 of the linear system (2.3) containing the

vector 𝑢*. Here 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒 (if 𝛼2 > 0) or 𝑢* = (−𝛼2)
1

(1−𝑞) 𝑒 (if 𝛼2 < 0). At the same time,
the bifurcation solutions 𝑥(𝑡, 𝜀) of the system (5.7) appear for 𝛼 > 0 (if 𝛼2 > 0) or for 𝛼 < 0
(if 𝛼2 < 0).

Theorem 5.4. Let the eigenvalues of the matrix 𝐵0 not coinciding with 𝜆 = ±𝜔0𝑖 have
negative real parts. Then the bifurcation solutions 𝑥(𝑡, 𝜀) of the system (5.7), which appear under
the assumptions of Theorem 5.3 are orbitally asymptotically stable (unstable) if (𝜉3, 𝑒

*) < 0 (if
(𝜉3, 𝑒

*) > 0).

6. Conclusion

In the paper we study in detail the problems on bifurcation of cycles and the Andronov —
Hopf bifurcation at infinity for dynamical systems with a small parameter with the nonlinearities
containing homogeneous polynomials of even or odd degree, and the unperturbed equation has
a continuum of periodic solutions. We propose new necessary and sufficient conditions for these
bifurcations, obtain the formulas for the approximate construction of bifurcation solutions, and
analyze their stability. We show that the cycle bifurcation of cycles is typical only for systems
with the homogeneities of odd degree, while the bifurcation at infinity is typical only for systems
with homogeneities of even degree. A relationship between these bifurcations and the classical
Andronov — Hopf bifurcation is demonstrated.
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