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BIFURCATIONS OF PERIODIC OSCILLATIONS
IN DYNAMICAL SYSTEM WITH
HOMOGENEOUS NONLINEARITIES

M.G. YUMAGULOV, M.N. KUNGIROV

Abstract. The paper is devoted to the study of cycle bifurcations and bifurcations at
infinity for dynamical systems with a small parameter, the nonlinearities of which contain
homogeneous polynomials of even or odd degree, and the unperturbed equation has a con-
tinuum of periodic solutions. We propose new necessary and sufficient conditions for these
bifurcations, obtain the formulas for the approximate construction of bifurcation solutions,
and analyze their stability. We show that cycle bifurcations are typical only for systems
with homogeneities of odd degree, while the bifurcations at infinity are typical only for
systems with homogeneities of even degree. We demonstrate the relationship between these
bifurcations and the classical Andronov — Hopf bifurcation.
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1. INTRODUCTION AND FORMULATION OF PROBLEM

We consider the dynamical system depending of a small parameter «

d
d-f:U(:c)mf(x), zeRY (N >2), (1.1)
where U(z) and f(z) are continuously differentiable vector function defined for all z. It is

supposed that U(0) = 0, that is, the unperturbed system

dr _ U(z), z€R", (1.2)
dt
has a zero equilibrium x = 0.

In the system (1.1) various bifurcations are possible, which are related with the emergence
of periodic solutions for small non—zero values of the parameter «. In the present work we
consider three bifurcation scenarios.

The first is the classical Andronov — Hopf bifurcation, which is related with with the emer-
gence of small amplitude periodic orbits in the system (1.1) branching off from the equilibrium
point z = 0 of the unperturbed system (1.2). The value o = 0 is called the Andronov —
Hopf bifurcation point for the system (1.1) if there exists a number g9 > 0 and continuously
differentiable functions defined for € € (—eg, £¢) such that
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Ul) «(0) =0, T(0) = Ty, a(e) # 0 for € # 0;

U2) for non—zero o« = a(e) the system (1.1) possesses a non-stationary 7'(e)-periodic solution
x = x(t,e);

U3) the relation hold

max |z(t,e)|| =0 as € —0.

0<t<Ty
Here T} is some positive number determined by the spectrum of the Jacobi matrix U’(0). By
|z|| we denote the Euclidean norm of a vector x € RY.

The second bifurcation scenario is related with the emergence of periodic orbits in the system
(1.1) branching off from a certain cycle Yo of the unperturbed system (1.2). This bifurcation
scenario is due to the assumption that the unperturbed system (1.2) has a family of periodic
solutions x = (¢, C).

Let © = po(t) be a non—stationary periodic solution in this family, Ty be the period of this
solution, and Yy be the corresponding trajectory in the phase space R of the system (1.2).

The value o = 0 is called the bifurcation point of cycles of the system (1.1), branching off
from the trajectory Yo of the system (1.2) if there exists a number ¢y > 0 and continuously
differentiable functions defined for € € (—¢¢, €0) such that the conditions Ul and U2 are satisfied,
and instead of U3, the following condition is satisfied:

UC) the relation holds

nax lx(t,e) — po(t)]] = 0 as & —0.

Finally, the third bifurcation scenario is related with the emergence of large-amplitude peri-
odic orbits in the system (1.1). The value aw = 0 is called the Andronov— Hopf bifurcation point
at infinity if there exists a number ¢y > 0 and continuously differentiable functions defined for
e € (—egp,&0) such that conditions Ul and U2 are satisfied, and instead of U3, the following
condition is satisfied:

UB) the relations hold
afe)

ple) = max |x(t,e)|| — oo, @mtax Ilf(xz(t,e))|]| — 0, as e —0. (1.3)
Here T is some positive number determined by the spectrum of the Jacobi matrix U’(0).

We mention that, when studying the Andronov — Hopf bifurcation problem at infinity, many
authors restrict themselves only to the first of the relations in (1.3). The second relation in our
formulation is related with the aim to adapt the concept of Andronov — Hopf bifurcation at
infinity with the classical concept of bifurcation of solutions of large norms (see, for example,
[6]), according to which the solutions of large norms should be generated by solutions of the
unperturbed equation in the appropriate formulation. Being applied to the system (1.1), this
means that periodic orbits of large amplitudes should branch off from the large—amplitude
cycles of the unperturbed system (1.2).

A vast literature was devoted to the study of these bifurcations. A special place is occupied
by the problem on the classical Andronov — Hopf bifurcation, the deep studies of this problem
and the developed effective methods allow us to speak about the appearance of the Andronov —
Hopf bifurcation theory, see, for example, [1], [16], [L7], and the references therein. The cycle
bifurcation problem was studied by many authors. A fundamental result here is the Pontryagin
theorem [1], |13], which proposes a method for studying the cycle bifurcation problem in systems
close to Hamiltonian ones. An effective approach to studying this problem is offered by the
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methods of averaging theory based on the classical works of N.N. Bogolyubov and N.M. Krylov,
see, for example, [11]. The research continue in various directions, see, for example, [10]-]12],
[24].

The Andronov — Hopf bifurcation problem at infinity was also studied by many authors.
Various questions were addressed, both theoretical and related to applications in the theory of
Hamiltonian systems, control theory, mechanics, and elsewhere, see [7]-9], [20]-[22].

It is of interest to study comprehensively all three of these bifurcation scenarios in systems
of the type (1.1). Here, relevant questions include the relationships between these bifurcations,
the determination of necessary and sufficient conditions for bifurcations, the approximate con-
struction of solutions, and the analysis of their stability. The studies of systems (1.1), in which
the nonlinearities contain homogeneous polynomials of even or odd degree, are especially im-
portant. In the modern nonlinear dynamics, the study of such systems attracted an increasing
attention, particularly due to the fact that these systems exhibit rich bifurcation and chaotic
behavior, see, for example, [15], [25]. At the same time, many issues in the study of cycle bifur-
cation problems and the Andronov — Hopf bifurcation at infinity in systems with homogeneous
nonlinearities remain poorly understood.

In this paper we focuse on the system (1.1), in which the function f(z) can be represented
as f(x) = Bix + by(x); here By is a square (of size N) real matrix, and the nonlinearity b,(z)
is a homogeneous polynomial of degree ¢, ¢ > 2. We propose new necessary and sufficient
conditions for cycle bifurcations and bifurcations at infinity in such systems, which make it
possible, in particular, to establish that cycle bifurcations are typical only for the systems with
homogeneities of odd degree, while bifurcations at infinity are typical only for the systems with
homogeneities of even degree. The proposed bifurcation features are based on new approaches
that combine methods of averaging theory and operator methods for studying problems of
multiparameter bifurcations, see [3], [7].

In the present work we also propose new asymptotic formulas for the approximate construc-
tion of bifurcation solutions and for the study of their stability in problems of cycle bifurcations
and bifurcations at infinity in the system (1.1) of arbitrary orders ¢ of homogeneous nonlinear-
ity by(z). These formulas extend the results of [18], [19], and [23], in which similar problems
were studied for systems with quadratic and cubic nonlinearities.

2. MAIN OBJECT OF STUDY

The main object of study in this paper is the system (1.1), in which U(x) is a linear function.
Namely, we consider the system

d
d—j:BOx—i—&f(m), r € RY, (2.1)

in which By is a square (of size N) real matrix, f(z) is a continuously differentiable vector
function. We make the following assumptions

V1) the matrix By has a pair of pure imaginary eigenvalues A\ = +wqi, (wo > 0);

V2) the other eigenvalues of matrix By have non-zero real parts.
By Assumption V1 there exist non-zero vectors e, g, e*, ¢* € R" such that identities hold
Bo(e + ig) = iwo(e + ig), Bg(e® +ig") = —iwo(e” +ig™), (2.2)

where B is the transposed matrix.



BIFURCATIONS OF PERIODIC OSCILLATIONS 143

In what follows, for simplicity, if this cause no confusion, we shall use the same notation for
a square (of order N) matrix and the linear operator generated by this matrix in the standard
basis of the space R".

We denote by Ej the eigenspace of the operator By associated with simple eigenvalues +iwy.
The space Ej is two-dimensional; the vectors e and ¢ can be used as its basis. The space RY
can be represented as a direct sum RY = E,® E°, where E° is an additional invariant subspace
of dimension N — 2 for Bj.

By the mentioned assumptions the phase portrait of the linear two—dimensional system

dx

E = Bofﬂ, x € Eo, (23)

27
has a type “center”, all its solutions as Ty—periodic, where Ty = —. These solutions can be
Wo

represented as x = xy(t, C') = Cpo(t), where C'is an arbitrary constant, and the function g (¢)
is defined by the identity

@o(t) = ecoswot — gsinwpt. (2.4)

For simplicity of presentation, most of the constructions and main results will be discussed
for the case when the system (2.1) is two—dimensional, that is, for the system

do _

o Bor + af(z), z € R (2.5)
Hence, the unperturbed system reads
d

d—i — Bor, z€R2 (2.6)

The general multi-dimensional case N > 3 is briefly discussed in the concluding part of paper.

3. STUDY OF PROBLEM ON BIFURCATION OF CYCLES

We first discuss the problem on bifurcations of cycles in the system (2.5). We make the
non—degenerate Tp—periodic change

y=e Py (3.1)

in this system. As a result, the system (2.5) becomes

d
d_?i = ae Pl f(ePly), y e R?, (3.2)

where the right hand side is Ty—periodic.
Together with (3.2) we consider the averaged system

d
Y WF(u), ueR? (3.3)
dt
where
pf
Flu) = 7 / e~ Dot f(Boty) dit. (3.4)
0

0
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3.1. Necessary condition for bifurcation of cycles. The next statement provides a nec-
essary condition for bifurcation of cycles of the system (2.5).

Theorem 3.1. Let the value o = 0 be the point of bifurcation of cycles of the system (2.5),
which branch off from some trajectory Y of the linear system (2.6). Then each vector ug € T
is the equilibrium of the averaged system (3.3), that is, F(uy) = 0.

Proof. Let the value @ = 0 be the point of bifurcation of cycles of the system (2.5), that is,
there exist continuous functions a(e) and T'(¢) such that the conditions Ul and U2 hold as well
as the condition UC, which can be represented as

max ||z(t,e) — Copo(t)]| =0 as & — 0; (3.5)

0<t<Tp

here () is the function (2.4), Cy is some positive number. Then Equation (3.2) has the
solution
y =1y(t,e) = e Pla(t ), (3.6)

that is,

dyi;t’ °) = afe)e Pl f(ePly(t,e)), y e R (3.7)

The function (3.6) is almost periodic in ¢. This is why there exists a sequence T}, — oo such
that [|y(0,e) — y(Ty,€)|| — 0 as k — oo. Integrating the identity (3.7) over the segment [0, T}],
in view of the condition Ul we find that as k — oo, the identity holds

Tk

/e_BOtf(eBOty(t, g))dt — 0,

0

or, in view of (3.6), the identity
Tk
/e_BOtf(x(t,e)) dt — 0. (3.8)
0

Since in this identity the integrand is almost periodic in ¢, the limit
T

lim % / et £ ({1, £)) dt

T—00
0

is well-defined. By (3.8) this implies
T

lim / B f(3(t,2)) dt = 0. (3.9)

T—o0
0

By (3.5) the function x(t, ) can be represented as
x(t,e) = Copol(t) + (t, ),
where the function (¢, ¢) is almost periodic in ¢, smooth in ¢ and satisfies the relation
mtaxH(S(t,e)H —0 as —0.

Then the identity (3.9) casts into the form
T

lim 1 /eBOtf(Cmpo(t) +d(t,e)) dt = 0.

T—oo 1’
0
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This identity holds for all small . This is why
T

1 _
Tlgrolof/e Bt f(Copo(t)) dt = 0.
0
In the obtained identity the integrand is To—periodic. Hence,

To

/ e Bl F(Copo(t)) dt = 0.

0

We observe that the function (2.4) we have () = ePo'e. Therefore, letting uy = Cye, we

obtain
To

/e_BOtf(eB"tuo) dt = 0.

0
Due to the arbitrary choice of the vector e, this completes the proof. O

3.2. Study of systems with homogeneous nonlinearities. There arises a natural ques-
tion for which systems of form (2.5) the necessary condition of bifurcation of cycles hold, that
is, in which case the averaged system (3.3) has non—zero equilibria. In order to study this issue,
we point out the following facts.

Since the matrix By is non—degenerate, there exist d1,d2 > 0 such that for |a| < d, the system
(2.5) has a unique equilibrium = = z*(«) in the ball ||z|| < ¢; such that z*(0) = 0 and the
function z*(«) is smooth. We can suppose that x*(a) = 0, that is, the function f(x) satisfies
the identity f(0) = 0. Then the function f(z) can be represented as

f(x) = Bix +b(z),
where Bj is a square (of size 2) real matrix, and then nonlinearity b(z) satisfies the relation
Ib(2)l| = O(Jl][*) as x — 0.

In what follows we study the systems with homogeneous nonlinearities, namely, we shall
suppose that the function f(z) can be represented as

f(:l?) = Bix + bq(x)a

where the nonlinearity b,(x) is a homogeneous polynomial of degree ¢, ¢ > 2, and therefore it
satisfies the condition
by(Az) = Nby(x).

Thus, the system (2.5) casts into the form

C;—f = Byz + a[Biz + b,(z)], =€ R (3.10)
We also suppose that the vectors e, g, €*, g* defined by the identities (2.2) are normalized as
(e,e")=(g,9) =1,  (e,9") =(g,¢)=0. (3.11)

By the matrix B; and vectors e, g, €*, g* in (2.2) we define the numbers
7 = (Bie,e”) + (Big,g%), e = (Bie,g") — (Bug, e"). (3.12)

Theorem 3.2. Let v, # 0 and the value o = 0 is the point of bifurcation of cycles of
the system (3.10). Then q is odd, that is, in the system (3.10) the nonlinearity b,(z) is a
homogeneous polynomial of odd degree.
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Proof. 1t is sufficient to show that if ¢, that is, if in the system (3.10) the nonlinearity b,(x) is
a homogeneous polynomial of an even degree, then the necessary condition for bifurcation of
cycles provided in Theorem 3.1 fails.
Let g be even. By Theorem 3.1, for the bifurcation of cycles the equation F'(u) = 0 necessarily
has a non-zero solution; here F'(u) is the function (3.4), which in our case reads
To

/G_Bot[BleBOtu + by(eP0'u)] dt. (3.13)

0

1

F(u):T0

In what follows we shall employ two auxiliary statements.

Lemma 3.1. Let q be even. Then for each vector u € R? the identity holds
To
/6_B°tbq(eB°tu) dt = 0. (3.14)
0

Indeed, since the matrix By has a pair of purely imaginary eigenvalues A = +wgi, wy > 0, we

can suppose that the matrix e?? is of the form

oBot _ coswolt  — sinwgt
sinwgt  coswpt

Then the function b,(eP'u) contains only even powers of the functions coswyt and sinwyt,
while the product e=Pot - b, (ePo'u) forms odd powers of these trigonometric functions. This fact
ensures the identity (3.14).

We define the matrix
To

/ e Bt B ePot ., (3.15)

0

1

D=—
1o

It is easy to establish the next lemma.

Lemma 3.2. Let v; # 0, where v, is the number from (5.12). Then det D # 0, that is, the
matriz (3.15) is invertible.

It follows from Lemma 3.1 that the function (3.13) is linear and is of the form
To
/e_BOtBleBotu dt.

0

1

Flu) = —
(W=7
Then by Lemma 3.2 the equation F'(u) = 0 has only the zero solution. The proof is complete.
]

3.3. Suflicient condition for bifurcation of cycles. In what follows we discuss the prob-
lem on bifurcation of cycles only in the case, when the nonlinearity b,(x) in the system (3.10)
is a homogeneous polynomial of an odd degree.

The sufficient condition for the bifurcation of cycles given above is based on operator methods
for studying problems on multi-parametric bifurcations, see [3], [18]. Following these works,
we define the vectors

1
e(t) = ecos 2wt — gsin 2mt, = To/etTOBObq(e(t)) dt, (3.16)
0
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and the numbers
1
= =2 (), Ty=—|(Esg) — %(&e*) . (3.17)

Theorem 3.3. Let
1 # 0, ag # 0. (3.18)

Then o = 0 is the point of bifurcation of cycles of the system (3.10), which branch off from
the trajectory Yo of the linear system (2.6) containing the vector u*. Here u* = (ag)Toe (if
as >0) oru* = (—a2)T9e (if ay <0).

Theorem 3.3 is a continuation of a similar result obtained in [18].

Proof. For the sake of definiteness we suppose that as > 0; the case as < 0 can be considered
similarly. The next lemma is obvious.

Lemma 3.3. Let q be odd and o > 0. Then the change y = aﬂ%q):v reduces the system
(5.10) to the form

y = (By + aBy)y + by(y), y € R?. (3.19)

The inverse change reduces the system (5.19) to the system (3.10).

The condition v; # 0 in (3.18) means 18] that the value o = 0 is point of Andronov — Hopf
of the system (3.19). Namely, for @ = a(e) the system (3.19) has a non-stationary T'(¢)-
periodic solution y(¢,¢) with a small amplitude, and the functions a(e), T'(¢) and y(t, ) can
be represented as

ale) = age™™ + O™, T(e) =Ty + Toe™ ' + 0™, y(0,e) =ece+0(*). (3.20)

By these identities the bifurcation solutions y(t, ¢) of the system (3.19) emerge for @ > 0. By
Lemma 3.3 this implies that the system (3.10) for & = a(¢) has a non-stationary T'(¢)-periodic
solution

2(t,€) = (a(e)) ™D y(t,e).

This is why by the identities (3.20) we get the relation
z(0,¢) = (ag)ﬁe + O(£?).

This means that the value v = 0 is the point of bifurcations of cycles of the system (3.10), which
branch off from the trajectory Yy of the linear system (2.6) containing the vector u* = (ag)ﬁe.
We note that the vector u* is the equilibrium of the averaged system (3.3). The proof is
complete. O

Theorem 3.3 and the results of the work [18] imply the next statement.

Theorem 3.4. Under the assumptions of Theorem 3.3 the bifurcation solutions xz(t,e) of
the system (3.10) emerge for e > 0 (if ag > 0) or for a < 0 (if ay < 0). These solutions are
orbitally asymptotically stable (unstable) if (&3,€*) < 0 (if (§3,€*) > 0).
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3.4. Example 1: Van der Pol equation. We consider the Van der Pol equation of form,
see, for instance, [11],

y' +aly® =1y +y=0. (3.21)
The change 1 = y, x2 = 3/ reduces this equation to a system of form (3.10) with ¢ = 3,
0 1 0 0 0

The matrix By has the eigenvalues +i. As the vectors e, e*, g, g* in (2.2) here we can take the

vectors
€=¢ = O ) g_g - 1 .

We first analyze the averaged system (3.3). Simple calculations show that the equation
F(u) = 0 leads us to the system

2

duy — uyui — ud =0,
duy — udug —ud =0,

the non-zero solution of which describe a circumference of radius 2 : u} + u3 = 4. By Theo-
rem 3.1 we then find that the cycles of Equation (3.21) can branch off only from the mentioned
circumference.

Now we are going to show that the value o = 0 is indeed the bifurcation point of cycles of
Equation (3.21). In order to do this, we employ Theorems 3.3 and 3.4. Here the calculations

show that
1 T

7 =1, g = — (&3,€") = 1

By Theorems 3.3 and 3.4 this implies that o = 0 is the bifurcation point of cycles of Equa-
tion (3.21). These cycles appear for o > 0 and are stable.

4. STUDY OF PROBLEM ON ANDRONOV — HOPF BIFURCATION AT INFINITY

We proceed to discussing problem on Andronov — Hopf bifurcation at infinity in the sys-
tem (3.10).

4.1. On properties of bifurcation at infinity. The above definition of the bifurcation at
infinity, namely, the conditions Ul, U2 and UB imply the next statement.

Theorem 4.1. Let the value o = 0 be the point of Andronov — Hopf bifurcation at infinity
of the system (3.10). Then

— the matriz By has a pair of eigenvalues £wyi (wo > 0), and the period Ty mentioned in
2w

the definition of bifurcation at infinity is equal to Ty = —;
Wo
— the bifurcation solutions x(t,e) of the system (3.10) satisfy the relation
z(0,¢) = p(e)ho + o(p(e)) as e —0, (4.1)

where p(e) = max llz(t,e)|l, and ho € Ey is a non—zero vector such that ||hol|| < 1.

This theorem confirms the fact that under the Andronov — Hopf bifurcation at infinity, the
large amplitude periodic orbits of the system (3.10) branch off from the large-amplitude cycles
of the unperturbed system (2.6). We note that if we weaken the definition of bifurcation at
infinity, leaving only the first relation in (1.3), then Theorem 4.1 no longer holds.
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4.1.1. Ezample 2. As an illustration we consider two systems

¥ =x—y—al@®+y?), (4.2)
y =z +y—al@®+y)y,

¥ =ky— (1+k)a(z* + y*)x, (4.3)
Y = —kx+ (1 +k)a(z? + %)y, .

where k& > 0. For positive a both systems have the limit cycle

1
22yt =
«

which tends to infinity as o — 0. This cycle T(«) is associated with a periodic solution

r = —— cost, = ——sint.
va T Va
Here the second relation in (1.3) fails. The statements of Theorem 4.1 do not hold for these
systems. We also note that the limit cycles Y(«) of these systems, coming from infinity, do not
branch off from the large-amplitude cycles of the unperturbed system. Namely, the unperturbed

system for (4.2) has no cycles at all, and although all solutions of the unperturbed system for

2 2

4.3) are cycles, their period T'(k) = T (for k # 1) does not coincide with the period Ty = —
k

T

of the cycles T(«).

4.2. Necessary condition of bifurcation at infinity. Let us present a necessary condition
for the bifurcation at infinity, which yields that this bifurcation is typical only for the case when
the nonlinearity b,(x) in the system (3.10) is homogeneous of even order.

Theorem 4.2. Let the value a« = 0 be the point of the Andronov — Hopf bifurcation at
infinity of the system (5.10). Then for each vector u € R? the identity holds

To
/e_BOtbq(eBOtu) dt = 0. (4.4)
0

We observe the following fact. Lemma 3.1 implies that the necessary condition (4.4) of the
Andronov — Hopf bifurcation at infinity holds for the system (3.10) for even ¢, that is, when
the nonlinearity b,(x) is homogeneous of even order. At the same time, for odd ¢ this condition
for the system (3.10) usually fails.

Proof of Theorem 4.2. Let the value a = 0 be the point of the Andronov — Hopf bifurcation
at infinity of the system (3.10). Then there exist continuous functions a(e) and T'(¢) such that
for a = a(e) the system (3.10) has a T'(¢)-periodic solution z(¢,¢), and «(0) = 0, T'(0) = T)
and the relations (1.3) hold.

As in the problem on bifurcation of cycles, we make the nondegenerate Ty—periodic change
(3.1) in the system (2.5). As a result, the system (3.10) is reduced to (3.2), which for a = a(¢)
has the solution

y=y(te)= e_BOtx(tv £),

that is,

= a(e)e” ™" f(e™y(t,e)), ye R (4.5)
where f(z) = Biz + by(x).
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Reproducing for (4.5) the same arguing as above in consideration of the identity (3.7), we
arrive at the relation

lim —/e_BOtf(x(t,s))dt = 0. (4.6)

By Theorem 4.1, the function x(t,e) can be represented in the form (4.1). Then the identity
(4.6) reads

T

lim o [ ¢ P BpE)n(t) + o(p(2) + bp(eNanlt) + olple))] di =0,

T—o0
0

or, in view of the homogeneous property of b,(z),

im = [ ¢ o) Balin(t) + 1)) + (o) yli®) + (1))} dt = 0.

T—o0
0

We divide this identity by (p(€))? and pass to the limit at ¢ — 0 to obtain
T
lim l/e_BOtbq(npo(t))dt: 0.
0
In this identity the integrand is a Ty—periodic function and this is why
To
/eBOtbq(wo(t)) dt = 0.
0
Since the solution ¢y(t) of the unperturbed system (2.6) can be represented as g (t) = Bty
for some nonzero vector ug € R?, we get
To
/e_B‘)tbq(eBOtuo) dt = 0.
0

By the arbitrariness of solution g (t) we get the identity (4.4). The proof is complete. O

4.3. Sufficient condition for bifurcation at infinity. In what follows, we discuss the
problem on bifurcation at infinity only for the case when the nonlinearity b,(z) in system (3.10)
is homogeneous of even order.

Like Theorem 3.3, the sufficient condition for bifurcation at infinity given below is based on
operator methods for studying problems on multiparametric bifurcations, see [3], [18]. Following
these works, we define the vectors

1
e(t) = ecos2mt — gsin 27t & = /6_”03%2(75) dt,
0

where
t

BQ(t) = T()Fg(t) /e—TToBObq(e(T)) dT, Fz(t) = Tob’qm(e@))eToBot;
0
b;x(:v) is the Jacobi matrix of the function b,(z).
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We also define the numbers

Qg = (5276*), T, = wio (5279*) - %(f% e*) . (4-7)

Wo
™
Theorem 4.3. Let g be even and the conditions hold:
Y1 7é O, (6%) 7é 0. (48)
Then « = 0 is the point of Andronov — Hopf bifurcation at infinity of the system (5.10).

Theorem 4.3 is a continuation of a similar result obtained in [18].
The next lemma is obvious.

Lemma 4.1. Let q be even. For o # 0 the change y = a@ g reduces the system (3.10) to
Y = (Bo+aB))y +b,(y), yeR. (4.9)

The inverse change reduces the system (4.9) to the system (5.10).
Proof of Theorem /.3. The first of conditions (4.8) means that o = 0 is the point of Andronov —
Hopf bifurcation of the system (4.9). Namely, for a = «(e) the system (4.9) has a non-

stationary T'(e)-periodic solution y(t,e) with a small amplitude, and the functions a(e), T'(¢)
and y(t,e) can be represented as

a(e) = axe? + 0(e7?), T(e) = Ty + The? + O(71?), y(0,e) = e+ O(%).  (4.10)

It follows from Lemma 4.1 that for & = a(e) the system (3.10) has a non-stationary T'(¢)-
periodic solution
r(t,€) = (ale)) Dyl ).
By the identities (4.10) this implies that the solution x(t, ) satisfies both relations (1.3). This

is why the value @ = 0 is the point Andronov — Hopf bifurcation at infinity for the system
(3.10). The proof is complete. O

Theorem 4.3 and the results of the work [18] imply the next statement.

Theorem 4.4. Under the assumptions of Theorem /.3 the bifurcation solutions xz(t,e) of
system (3.10) appear for a > 0 (if ag > 0) or for a < 0 (if ay < 0). The asymptotics in the
small parameter ¢ for the solutions x(t,e) is given by the identity

I(O,é) = Ll + O(gﬁ%
(Oégé?)m
where e is the vector from (2.2) and (5.11). These solutions are orbitally asymptotically stable
(unstable) if (&2,e*) <O (if (§&2,¢€*) > 0).

4.4. Example 3. As an illustration we consider the system

¥ = Ala)x + aa(z), r € R?, (4.11)
where
7
—1—a 12(1+a) — L 1222 + 2117,
A ) = ]_ alx) = 12
(@) : () 2
—5 1 Ty 11T
2 4

The system (4.11) is obtained by transformation of Holling — Tanner model, see, for in-
stance, |2|, namely, by the translation of the origin at the equilibrium of the model and an
appropriate cutting of the right hand side in the obtained system.
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The system (4.11) can be represented in the form (3.10) for ¢ = 2,

-1 12
-1 12
By = _% E Blz{o 0}, bao(x) = a(z).

The matrix By possesses the eigenvalues wyi, where wy = /5. As the vectors e, e*, g, ¢* in
(2.2) and (3.11) we can take the vectors

. (5 —/5) _(5+h)

1
€= (1+\/g) y 9= (\/5—1) , €= 61\95 , g = 6\/Q
12 12 —

The numbers 7y, o and (&, €*) from (3.12) and (4.7) read

Y1 = —1, Qo = 070277 (52,6*) = %

By Theorems 4.3 and 4.4 this implies that o = 0 is the point of Andronov — Hopf bifurcation
at infinity of the system (4.11). These cycles emerge for o« > 0 and are unstable.

5. MULTIDIMENSIONAL SYSTEM

We return back to the discussion of problems on bifurcations of cycles and bifurcation at
infinity for the multidimensional system (2.1) for N > 3. These problems can be studied by
the same scheme as for the two—dimensional system with natural modifications. We restrict
ourselves by providing the scheme for studying the problem on bifurcation of cycles.

5.1. Problem on bifurcation of cycles: necessary conditions. We recall that above
the conditions V1 and V2 were assumed to be satisfied. We also recall that the space RY can
be represented as the direct sum RY = E, @ E°, where E| is a two-dimensional eigenspace of
the operator By associated with the simple eigenvalues +iwy, and E° is an additional subspace
of dimension N — 2 invariant for B,.

The identity RY = Ey ® E° defines the projection operators

Py:RY - Ey, and P°: RY — E°
such that P° = I — P,, and the operator P, can be represented as
Pol’ = (I7 6*)6 + (Ihg*)ga

where e, g, e*, g* € RY are the vectors chosen by the identities (2.2) and (3.11).
We consider the two—dimensional autonomous system

u' = aF (u), u € Fy, (5.1)
where
7
F(u) = /P e~ Dot f(eBoty) dt.
Ty

0
The next statement provides a necessary condition for the bifurcation of cycles of (2.1) for
N > 3.

Theorem 5.1. Let the value o = 0 be a point of bifurcation of cycles of the system (2.1),
which branch off from some trajectory Y of the linear system (2.3). Then each vector ug € T
is an equilibrium of the system (5.1), that is, F(ug) = 0.
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This statement can be proved in the same way as its analogue, Theorem 3.1. We describe
the scheme of the proof of Theorem 5.1.

Since RY = Ey @ E°, each vector x € R" is uniquely represented as z = x¢ + 2°, where
xg = Pyx and 2° = PYx. Therefore, the system (2.1) can be equivalently represented as

(z0)" = Boxo + oPy f(zo + 2°), (5.2)
(1) = Bua® + aP"f(zy + 2°). |

In the system (5.2) we make the non-degenerate Ty—periodic change
yo = e Pz, o0 =2, (5.3)
As a result, the system (5.2) is transformed to
(o) = aPoe™ B0t f(ePolyy +4),
(y(])/ — BOyO + aPOf(eBotyO + yO)

with a To—periodic right hand side.

Let the value o« = 0 be a point of bifurcation of cycles of the system (2.1), that is, there exist
continuous functions a(e) and T'(¢) such that the conditions Ul and U2 hold, as well as the
condition UC, which can be presented as the relation (3.5):

(5.4)

max ||z(t,e) — Copo(t)|| =0 as e —0, (5.5)

0<t<Ty

where @q(t) is the function (2.4), Cp is some positive number. The relation (5.5) implies that
the solution z(t,¢) of system (2.1) can be represented as

l’(t, 6) = COQDO(t) + 50(t7 5) + 50(t7 5)7 (56)

where the functions dy(t,e) € Ey and §°(t,e) € E° are almost periodic in ¢, smooth in ¢ and
satisfy the relations

mtaxH(SU(t,s)H — 0, m?XH(SO(t,e)H —0
as € — 0. Then the system (5.4) has the solution
Yy = y(t7 5) = e_BOt[COQOU(t) + 60(t7 6)] + 60(t7 6)’

Further arguing in similar to that in the proof of Theorem 3.1 while considering the function
(3.6). Here the identity (5.6) is essential. We also note that the right hand side of the system
(5.1) is obtained by averaging the right hand side of the first equation in the system (5.4) with

0
y° = 0.

5.2. Problem on bifurcation of cycles: systems with homogeneous nonlinearities.
We consider the case when the system (2.1) reads

d
d_f = Byz + a[Biz + by(z)], = €RY, (5.7)

where the nonlinearity b,(z) is a homogeneous polynomial of degree g.
As in the two—dimensional case, we define the numbers and vectors (3.12), (3.16) and (3.17).
The following analogues of Theorems 3.2-3.4.

Theorem 5.2. Let v, # 0 and the value o = 0 be the point of bifurcation of cycles of the
system (5.7). Then q is odd, that is, in the system (5.7) the nonlinearity by(z) is a homogeneous
polynomial of odd degree.
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Theorem 5.3. Let y1 # 0, as # 0. Then o = 0 is the point of bifurcation of cycles of the
system (5.7), which branch off from the trajectory Yo of the linear system (2.3) containing the
vector u*. Here u* = (&Q)ﬁe (if g > 0) or u* = (—042)(1%@6 (if ag < 0). At the same time,
the bifurcation solutions xz(t,e) of the system (5.7) appear for a > 0 (if ag > 0) or for a < 0
(Zf Qg < 0)

Theorem 5.4. Let the eigenvalues of the matriz By not coinciding with A = dwgi have
negative real parts. Then the bifurcation solutions x(t, ) of the system (5.7), which appear under
the assumptions of Theorem 5.3 are orbitally asymptotically stable (unstable) if (&3,¢e*) <0 (if

(&,€7) > 0).

6. (CONCLUSION

In the paper we study in detail the problems on bifurcation of cycles and the Andronov —
Hopf bifurcation at infinity for dynamical systems with a small parameter with the nonlinearities
containing homogeneous polynomials of even or odd degree, and the unperturbed equation has
a continuum of periodic solutions. We propose new necessary and sufficient conditions for these
bifurcations, obtain the formulas for the approximate construction of bifurcation solutions, and
analyze their stability. We show that the cycle bifurcation of cycles is typical only for systems
with the homogeneities of odd degree, while the bifurcation at infinity is typical only for systems
with homogeneities of even degree. A relationship between these bifurcations and the classical
Andronov — Hopf bifurcation is demonstrated.
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