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БИФУРКАЦИИ ПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ

В ДИНАМИЧЕСКИХ СИСТЕМАХ

С ОДНОРОДНЫМИ НЕЛИНЕЙНОСТЯМИ

М.Г. ЮМАГУЛОВ, М.Н. КУНГИРОВ

Аннотация. Статья посвящена исследованию задач о бифуркации циклов и о бифур-
кации на бесконечности для динамических систем с малым параметром, нелинейности
которых содержат однородные полиномы четной или нечетной степени, а невозмущен-
ное уравнение имеет континуум периодических решений. Предлагаются новые необхо-
димые и достаточные условия указанных бифуркаций, получены формулы для при-
ближенного построения бифуркационных решений, проведен анализ их устойчивости.
Показано, что бифуркация циклов типична только для систем с однородностями нечет-
ной степени, а бифуркация на бесконечности — только для систем с однородностями
четной степени. Показана взаимосвязь этих бифуркаций с классической бифуркацией
Андронова — Хопфа.
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ности, однородность.
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1. Введение и постановка задачи

Рассматривается зависящая от малого параметра 𝛼 динамическая система

𝑑𝑥

𝑑𝑡
= 𝑈(𝑥) + 𝛼𝑓(𝑥), 𝑥 ∈ R𝑁 (𝑁 ⩾ 2), (1.1)

в которой 𝑈(𝑥) и 𝑓(𝑥) — непрерывно дифференцируемые вектор–функции, определенные
при всех 𝑥. Предполагается, что 𝑈(0) = 0, т.е. невозмущенная система

𝑑𝑥

𝑑𝑡
= 𝑈(𝑥), 𝑥 ∈ R𝑁 , (1.2)

имеет нулевую точку равновесия 𝑥 = 0.
В системе (1.1) возможны различные бифуркации, связанные с возникновением в ней

периодических решений при малых ненулевых значениях параметра 𝛼. В настоящей ра-
боте рассматриваются три сценария бифуркаций.
Первым является классическая бифуркация Андронова — Хопфа, связанная с возник-

новением у системы (1.1) периодических орбит малой амплитуды, ответвляющихся от
точки равновесия 𝑥 = 0 невозмущенной системы (1.2). Значение 𝛼 = 0 называют точкой

бифуркации Андронова — Хопфа для системы (1.1), если существует число 𝜀0 > 0 и опре-
деленные при 𝜀 ∈ (−𝜀0, 𝜀0) непрерывно дифференцируемые функции 𝛼 = 𝛼(𝜀), 𝑇 = 𝑇 (𝜀)
и 𝑥 = 𝑥(𝑡, 𝜀) такие, что
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U1) 𝛼(0) = 0, 𝑇 (0) = 𝑇0, 𝛼(𝜀) ̸= 0 при 𝜀 ̸= 0;
U2) система (1.1) при ненулевых 𝛼 = 𝛼(𝜀) имеет нестационарное 𝑇 (𝜀)–периодическое ре-

шение 𝑥 = 𝑥(𝑡, 𝜀);
U3) имеет место соотношение

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)‖ → 0 при 𝜀 → 0.

Здесь 𝑇0 — некоторое положительное число, определяемое спектром матрицы Якоби 𝑈 ′(0).
Через ‖𝑥‖ будем обозначать евклидову норму вектора 𝑥 ∈ R𝑁 .
Второй сценарий бифуркации связан с возникновением у системы (1.1) периодических

орбит, ответвляющихся от некоторого цикла Υ0 невозмущенной системы (1.2). Этот сцена-
рий бифуркации связан с предположением, что невозмущенная система (1.2) имеет семей-
ство периодических решений 𝑥 = 𝜙(𝑡, 𝐶). Пусть 𝑥 = 𝜙0(𝑡) — это некоторое нестационарное
периодическое решение из указанного семейства. Обозначим через 𝑇0 период этого реше-
ния, а через Υ0 соответствующую траекторию в фазовом пространстве R𝑁 системы (1.2).
Значение 𝛼 = 0 будем называть точкой бифуркации циклов системы (1.1), ответвляю-

щихся от траектории Υ0 системы (1.2), если существует число 𝜀0 > 0 и определенные при
𝜀 ∈ (−𝜀0, 𝜀0) непрерывно дифференцируемые функции 𝛼 = 𝛼(𝜀), 𝑇 = 𝑇 (𝜀) и 𝑥 = 𝑥(𝑡, 𝜀)
такие, что выполнены условия U1 и U2, а вместо U3 выполнено условие:

UC) имеет место соотношение:

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝜙0(𝑡)‖ → 0 при 𝜀 → 0.

Наконец, третий сценарий бифуркации связан с возникновением у системы (1.1) пери-
одических орбит больших амплитуд. Значение 𝛼 = 0 будем называть точкой бифуркации

Андронова — Хопфа на бесконечности, если существует число 𝜀0 > 0 и определенные при
𝜀 ∈ (−𝜀0, 𝜀0) непрерывно дифференцируемые функции 𝛼 = 𝛼(𝜀), 𝑇 = 𝑇 (𝜀) и 𝑥 = 𝑥(𝑡, 𝜀)
такие, что выполнены условия U1 и U2, а вместо U3 выполнено условие:

UB) имеют место соотношения:

𝜌(𝜀) = max
𝑡

‖𝑥(𝑡, 𝜀)‖ → ∞,
𝛼(𝜀)

𝜌(𝜀)
max

𝑡
‖𝑓(𝑥(𝑡, 𝜀))‖ → 0, при 𝜀 → 0. (1.3)

Здесь 𝑇0 — некоторое положительное число, определяемое спектром матрицы Якоби 𝑈 ′(0).
Отметим, что при изучении задачи о бифуркации Андронова — Хопфа на бесконечно-

сти многие авторы ограничиваются только первым из соотношений, указанных в (1.3).
Требование выполнения второго соотношения в нашей постановке связано с желанием
согласовать понятие бифуркации Андронова — Хопфа на бесконечности с классическим
понятием бифуркации решений больших норм (см., например, [6]), согласно которому ре-
шения больших норм должны (в соответствующей постановке) порождаться решениями
невозмущенного уравнения. Применительно к системе (1.1) это означает, что периодиче-
ские орбиты больших амплитуд должны «ответвляться» от циклов больших амплитуд
невозмущенной системы (1.2).
Вопросам изучения указанных бифуркаций посвящена обширная литература. Особое

место здесь занимает задача о классической бифуркации Андронова — Хопфа, глубо-
кие исследования которой и разработанные эффективные методы позволяют говорить о
возникновении теории бифуркации Андронова — Хопфа (см., например, [4], [16], [17] и
имеющуюся там библиографию).
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Задача о бифуркации циклов изучалась многими авторами. Фундаментальным резуль-
татом здесь является теорема Понтрягина (см. [1], [13]), в которой предложен метод ис-
следования задачи о бифуркации циклов в системах, близких к гамильтоновым. Эффек-
тивный аппарат исследования такой задачи предлагают методы теории усреднения, осно-
ванные на классических работах Н.Н. Боголюбова и Н.М. Крылова (см., например, [14]).
Исследования продолжаются в различных направлениях (см., например, [10]–[12], [24]).
Задача о бифуркации Андронова — Хопфа на бесконечности также изучалась многими

авторами. Здесь изучались различные вопросы как теоретического характера, так и свя-
занные с приложениями в теории гамильтановых систем, теории управления, механике и
др. (см. [7]–[9], [20]–[22]).
Представляет интерес провести детальное комплексное исследование всех трех указан-

ных сценариев бифуркаций в системах типа (1.1). Здесь актуальными являются вопросы
о взаимосвязи указанных бифуркаций, определению необходимых и достаточных усло-
вий бифуркаций, о приближенном построении решений, анализе их устойчивости. Особо
важными представляются исследования систем (1.1), в которых нелинейности содержат
однородные полиномы четной или нечетной степени. В современной нелинейной динами-
ке исследованию таких систем уделяется повышенное внимание, в частности, в силу того,
что указанные системы демонстрируют богатое бифуркационное и хаотическое поведение
(см., например, [15], [25]). В то же время многие вопросы исследования задач о бифуркации
циклов и бифуркации Андронова — Хопфа на бесконечности в системах с однородными
нелинейностями остаются малоизученными.
В настоящей статье основное внимание уделяется изучению системы (1.1), в которой

функция 𝑓(𝑥) представима в виде 𝑓(𝑥) = 𝐵1𝑥+ 𝑏𝑞(𝑥); здесь 𝐵1 — квадратная (порядка 𝑁)
вещественная матрица, а нелинейность 𝑏𝑞(𝑥) является однородным полиномом степени 𝑞
(𝑞 ⩾ 2). В работе предлагаются новые необходимые и достаточные условия бифуркации
циклов и бифуркации на бесконечности в таких системах, позволившие, в частности, уста-
новить, что бифуркация циклов типична только для систем с однородностями нечетной
степени, а бифуркация на бесконечности – только для систем с однородностями четной
степени. Предлагаемые признаки бифуркаций базируются на новых подходах, сочетающих
методы теории усреднения и операторные методы исследования задач о многопараметри-
ческих бифуркациях (см. [3], [5]).
В настоящей работе предлагаются также новые асимптотические формулы для прибли-

женного построения бифуркационных решений и исследования их устойчивости в задачах
о бифуркации циклов и бифуркации на бесконечности в системе (1.1) при произвольных
порядках 𝑞 однородной нелинейности 𝑏𝑞(𝑥). Эти формулы являются развитием результатов
работ [18], [19], [23], в которых изучались аналогичные задачи для систем с квадратичны-
ми и кубическими нелинейностями.

2. Основной объект исследования

Основным объектом исследования в настоящей работе будет система (1.1), в которой
𝑈(𝑥) является линейной функцией. А именно, рассматривается система

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼𝑓(𝑥), 𝑥 ∈ R𝑁 , (2.1)

в которой 𝐵0 — квадратная (порядка 𝑁) вещественная матрица, 𝑓(𝑥) — непрерывно диф-
ференцируемая вектор–функция. Будем считать, что выполнены предположения:

V1) матрица 𝐵0 имеет пару простых чисто мнимых собственных значений 𝜆 = ±𝜔0𝑖
(𝜔0 > 0);

V2) остальные собственные значения матрицы 𝐵0 имеют ненулевые вещественные части.
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В силу предположения V1 найдутся ненулевые векторы 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 такие, что вы-
полняются равенства

𝐵0(𝑒+ 𝑖𝑔) = 𝑖𝜔0(𝑒+ 𝑖𝑔), 𝐵*
0(𝑒

* + 𝑖𝑔*) = −𝑖𝜔0(𝑒
* + 𝑖𝑔*) (2.2)

здесь 𝐵*
0 — транспонированная матрица.

Ниже для простоты (там где это не вызовет путаницы) будут использоваться одни и
те же обозначения для квадратной (порядка 𝑁) матрицы и порожденной ею линейного
оператора в стандартном базисе пространства R𝑁 .
Обозначим через 𝐸0 собственное подпространство оператора 𝐵0, отвечающее простым

собственным значениям ±𝑖𝜔0. Пространство 𝐸0 является двумерным; в качестве его ба-
зиса могут использоваться векторы 𝑒 и 𝑔. Пространство R𝑁 может быть представлено
в виде прямой суммы R𝑁 = 𝐸0 ⊕ 𝐸0, где 𝐸0 — дополнительное инвариантное для 𝐵0

подпространство размерности 𝑁 − 2.
В силу указанных предположений фазовый портрет линейной двумерной системы

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥, 𝑥 ∈ 𝐸0, (2.3)

имеет тип «центр», все ее решения являются 𝑇0–периодическими
(︁
здесь 𝑇0 =

2𝜋

𝜔0

)︁
. Эти

решения можно представить в виде 𝑥 = 𝑥0(𝑡, 𝐶) = 𝐶𝜙0(𝑡); здесь 𝐶 — произвольная посто-
янная, а функция 𝜙0(𝑡) определена равенством

𝜙0(𝑡) = 𝑒 cos𝜔0𝑡− 𝑔 sin𝜔0𝑡. (2.4)

Для простоты изложения большая часть построений и основные результаты будут об-
суждаться для случая, когда система (2.1) является двумерной, т.е. для системы

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼𝑓(𝑥), 𝑥 ∈ R2. (2.5)

Соответственно, невозмущенная система имеет вид

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥, 𝑥 ∈ R2. (2.6)

Общий многомерный случай, когда 𝑁 ⩾ 3, в краткой форме обсуждается в заключитель-
ной части статьи.

3. Исследование задачи о бифуркации циклов

Обсудим сначала задачу о бифуркации циклов в системе (2.5). В этой системе произве-
дем невырожденную 𝑇0–периодическую замену

𝑦 = 𝑒−𝐵0𝑡𝑥. (3.1)

В результате система (2.5) преобразуется к виду

𝑑𝑦

𝑑𝑡
= 𝛼𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦), 𝑦 ∈ R2, (3.2)

с 𝑇0–периодической правой частью.
Наряду с (3.2) будем рассматривать также усредненную систему

𝑑𝑢

𝑑𝑡
= 𝛼𝐹 (𝑢), 𝑢 ∈ R2, (3.3)

где

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢) 𝑑𝑡. (3.4)
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3.1. Необходимое условие бифуркации циклов. Следующее утверждение содер-
жит необходимое условие бифуркации циклов системы (2.5).

Теорема 3.1. Пусть значение 𝛼 = 0 является точкой бифуркации циклов систе-
мы (2.5), ответвляющихся от некоторой траектории Υ0 линейной системы (2.6). То-
гда любой вектор 𝑢0 ∈ Υ0 является точкой равновесия усредненной системы (3.3), т.е.
𝐹 (𝑢0) = 0.

Доказательство. Пусть значение 𝛼 = 0 является точкой бифуркации циклов систе-
мы (2.5), т.е. существуют непрерывные функции 𝛼(𝜀) и 𝑇 (𝜀) такие, что выполнены условия
U1 и U2, а также условие UC, которое можно представить в виде

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝐶0𝜙0(𝑡)‖ → 0 при 𝜀 → 0; (3.5)

здесь 𝜙0(𝑡) — функция (2.4), 𝐶0 — некоторое положительное число.
Тогда уравнение (3.2) имеет решение

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡𝑥(𝑡, 𝜀), (3.6)

т.е.
𝑑𝑦(𝑡, 𝜀)

𝑑𝑡
≡ 𝛼(𝜀)𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀)), 𝑦 ∈ R2. (3.7)

Функция (3.6) является почти периодической по 𝑡. Поэтому существует последователь-
ность 𝑇𝑘 → ∞ такая, что ‖𝑦(0, 𝜀)− 𝑦(𝑇𝑘, 𝜀)‖ → 0 при 𝑘 → ∞. Проинтегрировав тождество
(3.7) на промежутке [0, 𝑇𝑘], получим (с учетом условия U1), что при 𝑘 → ∞ имеет место
соотношение

𝑇𝑘∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀))𝑑𝑡 → 0,

или (с учетом (3.6)) — соотношение

𝑇𝑘∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀))𝑑𝑡 → 0. (3.8)

Так как в этом соотношении подынтегральная функция является почти периодической по
𝑡, существует предел

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡.

Отсюда и из (3.8) получим

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡 = 0. (3.9)

В силу (3.5) функция 𝑥(𝑡, 𝜀) представима в виде

𝑥(𝑡, 𝜀) = 𝐶0𝜙0(𝑡) + 𝛿(𝑡, 𝜀),

где функция 𝛿(𝑡, 𝜀) является почти периодической по 𝑡, гладкой по 𝜀 и удовлетворяет
соотношению:

max
𝑡

‖𝛿(𝑡, 𝜀)‖ → 0 при 𝜀 → 0.
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Тогда равенство (3.9) примет вид

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡) + 𝛿(𝑡, 𝜀)) 𝑑𝑡 = 0.

Это равенство справедливо при всех малых 𝜀. Поэтому

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡)) 𝑑𝑡 = 0.

В полученном равенстве подынтегральная функция является уже 𝑇0–периодической. По-
этому

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝐶0𝜙0(𝑡)) 𝑑𝑡 = 0.

Заметим, что для функции (2.4) имеем 𝜙0(𝑡) = 𝑒𝐵0𝑡𝑒. Следовательно, полагая 𝑢0 = 𝐶0𝑒,
получим

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢0) 𝑑𝑡 = 0.

В силу произвольности выбора вектора 𝑒 получим справедливость утверждения теоре-
мы 3.1.

3.2. Исследование систем с однородными нелинейностями. Возникает естествен-
ный вопрос о том, для каких систем вида (2.5) выполняется необходимое условие бифур-
кации циклов, т.е. в каком случае усредненная система (3.3) имеет ненулевые точки рав-
новесия. С целью изучения этого вопроса отметим следующее.
Так как матрица 𝐵0 невырождена, то найдутся такие 𝛿1, 𝛿2 > 0, что система (2.5) при

|𝛼| < 𝛿2 имеет в шаре ‖𝑥‖ < 𝛿1 единственную точку равновесия 𝑥 = 𝑥*(𝛼) такую, что
𝑥*(0) = 0, и функция 𝑥*(𝛼) является гладкой. Можно считать, что 𝑥*(𝛼) ≡ 0, т.е. функция
𝑓(𝑥) удовлетворяет равенству 𝑓(0) = 0. Тогда функция 𝑓(𝑥) представима в виде

𝑓(𝑥) = 𝐵1𝑥+ 𝑏(𝑥),

в котором 𝐵1 — квадратная (порядка 2) вещественная матрица, а нелинейность 𝑏(𝑥) удо-
влетворет соотношению:

‖𝑏(𝑥)‖ = 𝑂(‖𝑥‖2) при 𝑥 → 0.

Далее будут изучаться системы с однородными нелинейностями, а именно, будем счи-
тать, что функция 𝑓(𝑥) представима в виде

𝑓(𝑥) = 𝐵1𝑥+ 𝑏𝑞(𝑥),

в котором нелинейность 𝑏𝑞(𝑥) является однородным полиномом степени 𝑞 (𝑞 ⩾ 2) и, сле-
довательно, удовлетворяет условию

𝑏𝑞(𝜆𝑥) ≡ 𝜆𝑞𝑏𝑞(𝑥).

Таким образом, система (2.5) примет вид

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼[𝐵1𝑥+ 𝑏𝑞(𝑥)], 𝑥 ∈ R2. (3.10)

Будем также считать, что определенные равенствами (2.2) векторы 𝑒, 𝑔, 𝑒*, 𝑔* норми-
рованы в соответствии с равенствами:

(𝑒, 𝑒*) = (𝑔, 𝑔*) = 1, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0. (3.11)
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По матрице 𝐵1 и векторам 𝑒, 𝑔, 𝑒*, 𝑔* из (2.2) определим числа

𝛾1 = (𝐵1𝑒, 𝑒
*) + (𝐵1𝑔, 𝑔

*), 𝛾2 = (𝐵1𝑒, 𝑔
*)− (𝐵1𝑔, 𝑒

*). (3.12)

Теорема 3.2. Пусть 𝛾1 ̸= 0. Пусть значение 𝛼 = 0 является точкой бифуркации
циклов системы (3.10). Тогда 𝑞 — нечетно, т.е. в системе (3.10) нелинейность 𝑏𝑞(𝑥)
является однородным полиномом нечетной степени.

Доказательство. Достаточно показать, что если 𝑞 четно, т.е. если в системе (3.10) нели-
нейность 𝑏𝑞(𝑥) является однородным полиномом четной степени, то указанное в теореме 3.1
необходимое условие бифуркации циклов не будет выполняться.
Пусть 𝑞 — чётно. По теореме 3.1 для бифуркации циклов необходимо, чтобы уравнение

𝐹 (𝑢) = 0 имело ненулевое решение; здесь 𝐹 (𝑢) — функция (3.4), которая в нашем случае
имеет вид

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡[𝐵1𝑒
𝐵0𝑡𝑢+ 𝑏𝑞(𝑒

𝐵0𝑡𝑢)] 𝑑𝑡. (3.13)

Далее нам понадобятся два вспомогательных утверждения.

Лемма 3.1. Пусть 𝑞 — четно. Тогда для любого вектора 𝑢 ∈ R2 выполнено равенство

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢) 𝑑𝑡 = 0. (3.14)

Действительно, так как матрица 𝐵0 имеет пару простых чисто мнимых собственных
значений 𝜆 = ±𝜔0𝑖 (𝜔0 > 0), то можно считать, что матрица 𝑒𝐵0𝑡 имеет вид:

𝑒𝐵0𝑡 =

[︂
cos𝜔0𝑡 − sin𝜔0𝑡
sin𝜔0𝑡 cos𝜔0𝑡

]︂
.

Тогда функция 𝑏𝑞(𝑒
𝐵0𝑡𝑢) содержит только чётные степени функций cos𝜔0𝑡 и sin𝜔0𝑡, а про-

изведение 𝑒−𝐵0𝑡·𝑏𝑞(𝑒𝐵0𝑡𝑢) формирует нечётные степени этих тригонометрических функций.
Этот факт и обеспечивает выполнение равенства (3.14).
Определим теперь матрицу

𝐷 =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝐵1𝑒
𝐵0𝑡 𝑑𝑡. (3.15)

Несложно установить, что верна

Лемма 3.2. Пусть 𝛾1 ̸= 0 (здесь 𝛾1 — число из (3.12)). Тогда det𝐷 ̸= 0, т.е. матрица
(3.15) обратима.

Из леммы 3.1 следует, что функция (3.13) является линейной вида

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑒−𝐵0𝑡𝐵1𝑒
𝐵0𝑡𝑢 𝑑𝑡.

Тогда в силу леммы 3.2 уравнение 𝐹 (𝑢) = 0 имеет только нулевое решение. Теорема 3.2
доказана.
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3.3. Достаточный признак бифуркации циклов. Далее задачу о бифуркации цик-
лов будем обсуждать только для случая, когда в системе (3.10) нелинейность 𝑏𝑞(𝑥) явля-
ется однородным полиномом нечетной степени.
Приводимый ниже достаточный признак бифуркации циклов основан на операторных

методах исследования задач о многопараметрических бифуркациях (см. [3], [18]). Следуя
этим работам определим векторы

𝑒(𝑡) = 𝑒 cos 2𝜋𝑡− 𝑔 sin 2𝜋𝑡, 𝜉3 = 𝑇0

1∫︁
0

𝑒−𝑡𝑇0𝐵0𝑏𝑞(𝑒(𝑡)) 𝑑𝑡, (3.16)

и числа

𝛼2 = − 𝜔0

𝜋𝛾1
(𝜉3, 𝑒

*), 𝑇2 =
1

𝜔0

[︁
(𝜉3, 𝑔

*)− 𝛾2
𝛾1

(𝜉3, 𝑒
*)
]︁
. (3.17)

Теорема 3.3. Пусть
𝛾1 ̸= 0, 𝛼2 ̸= 0. (3.18)

Тогда 𝛼 = 0 является точкой бифуркации циклов системы (3.10), ответвляющихся от

содержащей вектор 𝑢* траектории Υ0 линейной системы (2.6). Здесь 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒

(если 𝛼2 > 0) или 𝑢* = (−𝛼2)
1

(1−𝑞) 𝑒 (если 𝛼2 < 0).

Теорема 3.3 является развитием аналогичного результата, полученного в [18].

Доказательство. Для определенности будем считать, что 𝛼2 > 0 (случай 𝛼2 < 0 рассмат-
ривается аналогично). Очевидна

Лемма 3.3. Пусть 𝑞 нечетно. Пусть 𝛼 > 0. Тогда замена 𝑦 = 𝛼
1

(1−𝑞)𝑥 сводит систему
(3.10) к виду

𝑦′ = (𝐵0 + 𝛼𝐵1)𝑦 + 𝑏𝑞(𝑦), 𝑦 ∈ R2. (3.19)

Обратная замена сводит систему (3.19) к системе (3.10).

Условие 𝛾1 ̸= 0 в (3.18) означает (см. [18]), что значение 𝛼 = 0 является точкой бифур-
кацией Андронова — Хопфа системы (3.19). А именно, система (3.19) при 𝛼 = 𝛼(𝜀) имеет
нестационарное 𝑇 (𝜀)–периодическое решение 𝑦(𝑡, 𝜀) малой амплитуды, при этом функции
𝛼(𝜀), 𝑇 (𝜀) и 𝑦(𝑡, 𝜀) представимы в виде

𝛼(𝜀) = 𝛼2𝜀
𝑞−1 +𝑂(𝜀𝑞+1), 𝑇 (𝜀) = 𝑇0 + 𝑇2𝜀

𝑞−1 +𝑂(𝜀𝑞+1), 𝑦(0, 𝜀) = 𝜀𝑒+𝑂(𝜀3). (3.20)

В силу этих равенств бифуркационные решения 𝑦(𝑡, 𝜀) системы (3.19) возникают при 𝛼 >
0. Отсюда и из леммы 3.3 следует, что система (3.10) при 𝛼 = 𝛼(𝜀) имеет нестационарное
𝑇 (𝜀)–периодическое решение

𝑥(𝑡, 𝜀) = (𝛼(𝜀))
1

(1−𝑞)𝑦(𝑡, 𝜀).

Поэтому из равенств (3.20) получим соотношение:

𝑥(0, 𝜀) = (𝛼2)
1

(1−𝑞) 𝑒+𝑂(𝜀2).

Это означает, что значение 𝛼 = 0 является точкой бифуркации циклов системы (3.10),

ответвляющихся от содержащей вектор 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒 траектории Υ0 линейной систе-
мы (2.6). Отметим, что вектор 𝑢* является точкой равновесия усреднённой системы (3.3).
Теорема доказана.

Из теоремы 3.3 и результатов работы [18] получим справедливость следующего утвер-
ждения.

Теорема 3.4. В условиях теоремы 3.3 бифуркационные решения 𝑥(𝑡, 𝜀) системы (3.10)
возникают при 𝛼 > 0 (если 𝛼2 > 0) или при 𝛼 < 0 (если 𝛼2 < 0). Эти решения орбитально
асимптотически устойчивы (неустойчивы), если (𝜉3, 𝑒

*) < 0 (если (𝜉3, 𝑒
*) > 0).
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3.4. Пример 1: уравнение Ван-дер-Поля. Рассмотрим уравнение Ван-дер-Поля ви-
да (см., например, [14]):

𝑦′′ + 𝛼(𝑦2 − 1)𝑦′ + 𝑦 = 0. (3.21)

Замена 𝑥1 = 𝑦, 𝑥2 = 𝑦′ приводит это уравнение к системе вида (3.10) при 𝑞 = 3,

𝐵0 =

[︂
0 1
−1 0

]︂
, 𝐵1 =

[︂
0 0
0 1

]︂
, 𝑏3(𝑥) =

[︂
0

−𝑥2
1𝑥2

]︂
.

Матрица 𝐵0 имеет собственные значения ±𝑖. В качестве векторов 𝑒, 𝑒*, 𝑔, 𝑔* из (2.2) здесь
можно взять векторы

𝑒 = 𝑒* =

[︂
1
0

]︂
, 𝑔 = 𝑔* =

[︂
0
1

]︂
.

Проведем сначала анализ усредненной системы (3.3). Несложные вычисления показы-
вают, что уравнение 𝐹 (𝑢) = 0 здесь приводит к системе{︃

4𝑢1 − 𝑢1𝑢
2
2 − 𝑢3

1 = 0,

4𝑢2 − 𝑢2
1𝑢2 − 𝑢3

2 = 0,

ненулевые решения которой описывают окружность радиуса 2: 𝑢2
1 + 𝑢2

2 = 4. Отсюда и из
теоремы 3.1 получим, что циклы уравнения (3.21) могут ответвляться только от указанной
окружности.
Покажем теперь, что значение 𝛼 = 0 действительно является точкой бифуркации цик-

лов уравнения (3.21). Для этого воспользуемся теоремами 3.3 и 3.4. Здесь подсчет пока-
зывает, что

𝛾1 = 1, 𝛼2 =
1

4
, (𝜉3, 𝑒

*) = −𝜋

4
.

Отсюда и из теорем 3.3 и 3.4 следует, что 𝛼 = 0 является точкой бифуркации циклов
уравнения (3.21). Эти циклы возникают при 𝛼 > 0 и являются устойчивыми.

4. Исследование задачи о бифуркации

Андронова — Хопфа на бесконечности

Перейдем теперь к обсуждению задачи о бифуркации Андронова — Хопфа на бесконеч-
ности в системе (3.10).

4.1. О свойствах бифуркации на бесконечности. Из приведенного выше определе-
ния бифуркации на бесконечности, т.е. из условий U1, U2 и UB вытекает справедливость
следующего утверждения.

Теорема 4.1. Пусть значение 𝛼 = 0 является точкой бифуркации Андронова —
Хопфа на бесконечности системы (3.10). Тогда:

– матрица 𝐵0 имеет пару собственных значений ±𝜔0𝑖 (𝜔0 > 0), а указанный в опре-

делении бифуркации на бесконечности период 𝑇0 равен числу 𝑇0 =
2𝜋

𝜔0

;

– для бифуркационных решений 𝑥(𝑡, 𝜀) системы (3.10) верно соотношение:

𝑥(0, 𝜀) = 𝜌(𝜀)ℎ0 + 𝑜(𝜌(𝜀)) при 𝜀 → 0, (4.1)

в котором 𝜌(𝜀) = max
𝑡

‖𝑥(𝑡, 𝜀)‖, а ℎ0 ∈ 𝐸0 — ненулевой вектор такой, что ‖ℎ0‖ ⩽ 1.

Эта теорема подтверждает тот факт, что при бифуркации Андронова — Хопфа на бес-
конечности периодические орбиты больших амплитуд системы (3.10) «ответвляются» от
циклов больших амплитуд невозмущенной системы (2.6). Отметим, что если ослабить
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определение бифуркации на бесконечности, оставив в (1.3) только первое из соотношений,
то теорема 4.1 уже не имеет место.

4.1.1. Пример 2. В качестве иллюстрации рассмотрим две системы{︃
𝑥′ = 𝑥− 𝑦 − 𝛼(𝑥2 + 𝑦2)𝑥,

𝑦′ = 𝑥+ 𝑦 − 𝛼(𝑥2 + 𝑦2)𝑦,
(4.2){︃

𝑥′ = 𝑘𝑦 − (1 + 𝑘)𝛼(𝑥2 + 𝑦2)𝑥,

𝑦′ = −𝑘𝑥+ (1 + 𝑘)𝛼(𝑥2 + 𝑦2)𝑦,
(4.3)

где 𝑘 > 0. У обеих систем при положительных 𝛼 имеется предельный цикл

𝑥2 + 𝑦2 =
1

𝛼
,

стремящийся к бесконечности при 𝛼 → 0. Этому циклу Υ(𝛼) соответствует периодическое
решение

𝑥 =
1√
𝛼
cos 𝑡, 𝑦 =

1√
𝛼
sin 𝑡.

Второе из соотношений (1.3) здесь не выполнено. Для указанных систем утверждения тео-
ремы 4.1 не имеют место. Отметим также, что приходящие из бесконечности предельные
циклы Υ(𝛼) указанных систем не «ответвляются» от циклов больших амплитуд невозму-
щенной системы. А именно, у невозмущенной для (4.2) системы вовсе нет циклов, а хотя у

невозмущенной для (4.3) системы все решения являются циклами, но их период 𝑇 (𝑘) =
2𝜋

𝑘

(при 𝑘 ̸= 1) не совпадает с периодом 𝑇0 =
2

𝜋
циклов Υ(𝛼).

4.2. Необходимое условие бифуркации на бесконечности. Приведем необходимое
условие бифуркации на бесконечности, из которого будет следовать, что эта бифуркация
типична только для случая, когда в системе (3.10) нелинейность 𝑏𝑞(𝑥) является однородной
четного порядка.

Теорема 4.2. Пусть значение 𝛼 = 0 является точкой бифуркации Андронова —
Хопфа на бесконечности системы (3.10). Тогда для любого вектора 𝑢 ∈ R2 выполнено
равенство

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢) 𝑑𝑡 = 0. (4.4)

Отметим следующее. Из леммы 3.1 следует, что необходимое условие (4.4) бифуркации
Андронова — Хопфа на бесконечности выполнено для системы (3.10) при четных 𝑞, т.е.
когда нелинейность 𝑏𝑞(𝑥) является однородной четного порядка. В то же время это условие
для системы (3.10) при нечетных 𝑞, как правило, не выполняется.

Доказательство теоремы 4.2. Пусть значение 𝛼 = 0 является точкой бифуркация Андро-
нова — Хопфа на бесконечности системы (3.10). Тогда существуют непрерывные функции
𝛼(𝜀) и 𝑇 (𝜀) такие, что система (3.10) при 𝛼 = 𝛼(𝜀) имеет 𝑇 (𝜀)–периодическое решение
𝑥(𝑡, 𝜀), при этом 𝛼(0) = 0, 𝑇 (0) = 𝑇0 и выполнены соотношения (1.3).
Как и в задаче о бифуркации циклов, в системе (2.5) произведем невырожденную 𝑇0–

периодическую замену (3.1). В результате система (3.10) преобразуется к виду (3.2), ко-
торое при 𝛼 = 𝛼(𝜀) имеет решение

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡𝑥(𝑡, 𝜀),
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т.е.
𝑑𝑦(𝑡, 𝜀)

𝑑𝑡
≡ 𝛼(𝜀)𝑒−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦(𝑡, 𝜀)), 𝑦 ∈ R2; (4.5)

здесь 𝑓(𝑥) = 𝐵1𝑥+ 𝑏𝑞(𝑥).
Повторяя для (4.5) те же рассуждения, что были проведенные выше при рассмотрении

равенства (3.7), придем к соотношению

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑓(𝑥(𝑡, 𝜀)) 𝑑𝑡 = 0. (4.6)

В силу теоремы 4.1 функция 𝑥(𝑡, 𝜀) представима в виде (4.1). Тогда равенство (4.6) имеет
вид

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡[𝐵1(𝜌(𝜀)𝜙0(𝑡) + 𝑜(𝜌(𝜀))) + 𝑏𝑞(𝜌(𝜀)𝜙0(𝑡) + 𝑜(𝜌(𝜀)))] 𝑑𝑡 = 0,

или, учитывая однородность функции 𝑏𝑞(𝑥), вид

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡[𝜌(𝜀)𝐵1(𝜙0(𝑡) + 𝑜(1)) + (𝜌(𝜀))𝑞𝑏𝑞(𝜙0(𝑡) + 𝑜(1))] 𝑑𝑡 = 0.

Разделив это равенство на (𝜌(𝜀))𝑞 и переходя к пределу при 𝜀 → 0, получим

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝜙0(𝑡)) 𝑑𝑡 = 0.

В полученном равенстве подынтегральная функция является 𝑇0–периодической. Поэтому

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝜙0(𝑡)) 𝑑𝑡 = 0.

Так как решение 𝜙0(𝑡) невозмущенной системы (2.6) может быть представлено в виде
𝜙0(𝑡) = 𝑒𝐵0𝑡𝑢0 при некотором ненулевом векторе 𝑢0 ∈ R2, получим

𝑇0∫︁
0

𝑒−𝐵0𝑡𝑏𝑞(𝑒
𝐵0𝑡𝑢0) 𝑑𝑡 = 0.

В силу произвольности решения 𝜙0(𝑡) получим равенство (4.4). Теорема доказана.

4.3. Достаточный признак бифуркации на бесконечности. Далее задачу о би-
фуркации на бесконечности будем обсуждать только для случая, когда в системе (3.10)
нелинейность 𝑏𝑞(𝑥) является однородной четного порядка.
Как и теорема 3.3, приводимый ниже достаточный признак бифуркации на бесконеч-

ности основан на операторных методах исследования задач о многопараметрических би-
фуркациях (см. [3], [18]). Следуя этим работам определим векторы

𝑒(𝑡) = 𝑒 cos 2𝜋𝑡− 𝑔 sin 2𝜋𝑡, 𝜉2 =

1∫︁
0

𝑒−𝑡𝑇0𝐵0𝛽2(𝑡) 𝑑𝑡,

где

𝛽2(𝑡) = 𝑇0𝐹2(𝑡)

𝑡∫︁
0

𝑒−𝜏𝑇0𝐵0𝑏𝑞(𝑒(𝜏)) 𝑑𝜏 ; здесь 𝐹2(𝑡) = 𝑇0𝑏
′
𝑞𝑥(𝑒(𝑡))𝑒

𝑇0𝐵0𝑡;
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𝑏′𝑞𝑥(𝑥) — матрица Якоби вектор–функции 𝑏𝑞(𝑥).
Определим также числа

𝛼2 = − 𝜔0

𝜋𝛾1
(𝜉2, 𝑒

*), 𝑇2 =
1

𝜔0

[︁
(𝜉2, 𝑔

*)− 𝛾2
𝛾1

(𝜉2, 𝑒
*)
]︁
. (4.7)

Теорема 4.3. Пусть 𝑞 — четно. Пусть выполнены условия:

𝛾1 ̸= 0, 𝛼2 ̸= 0. (4.8)

Тогда 𝛼 = 0 является точкой бифуркации Андронова — Хопфа на бесконечности системы
(3.10).

Теорема 4.3 является развитием аналогичного результата, полученного в [18].
Очевидна следующая лемма.

Лемма 4.1. Пусть 𝑞 четно. При 𝛼 ̸= 0 замена 𝑦 = 𝛼
1

(𝑞−1)𝑥 сводит систему (3.10) к
виду

𝑦′ = (𝐵0 + 𝛼𝐵1)𝑦 + 𝑏𝑞(𝑦), 𝑦 ∈ R2. (4.9)

Обратная замена сводит систему (4.9) к системе (3.10).

Доказательство Теоремы 4.3. Первое из условий (4.8) означает, что 𝛼 = 0 является точ-
кой бифуркации Андронова — Хопфа системы (4.9). А именно, система (4.9) при 𝛼 = 𝛼(𝜀)
имеет нестационарное 𝑇 (𝜀)–периодическое решение 𝑦(𝑡, 𝜀) малой амплитуды, при этом
функции 𝛼(𝜀), 𝑇 (𝜀) и 𝑦(𝑡, 𝜀) представимы в виде

𝛼(𝜀) = 𝛼2𝜀
𝑞 +𝑂(𝜀𝑞+2), 𝑇 (𝜀) = 𝑇0 + 𝑇2𝜀

𝑞 +𝑂(𝜀𝑞+2), 𝑦(0, 𝜀) = 𝜀𝑒+𝑂(𝜀3). (4.10)

Из леммы 4.1 следует, что система (3.10) при 𝛼 = 𝛼(𝜀) имеет нестационарное 𝑇 (𝜀)–пери-
одическое решение

𝑥(𝑡, 𝜀) = (𝛼(𝜀))
1

(1−𝑞)𝑦(𝑡, 𝜀).

Отсюда и из равенств (4.10) следует, что оба соотношения (1.3) для решения 𝑥(𝑡, 𝜀) вы-
полнены. Поэтому значение 𝛼 = 0 является точкой бифуркации Андронова — Хопфа на
бесконечности системы (3.10). Теорема доказана.

Из теоремы 4.3 и результатов работы [18] получим справедливость следующего утвер-
ждения.

Теорема 4.4. В условиях теоремы 4.3 бифуркационные решения 𝑥(𝑡, 𝜀) системы (3.10)
возникают при 𝛼 > 0 (если 𝛼2 > 0) или при 𝛼 < 0 (если 𝛼2 < 0). Асимптотика (по
малому параметру 𝜀) решений 𝑥(𝑡, 𝜀) определяется равенством

𝑥(0, 𝜀) =
𝑒

(𝛼2𝜀)
1

(𝑞−1)

+ 𝑜(𝜀
1

(1−𝑞) ),

в котором 𝑒 — вектор из (2.2) и (3.11). Эти решения орбитально асимптотически
устойчивы (неустойчивы), если (𝜉2, 𝑒

*) < 0 (если (𝜉2, 𝑒
*) > 0).

4.4. Пример 3. В качестве иллюстрации рассмотрим систему

𝑥′ = 𝐴(𝛼)𝑥+ 𝛼𝑎(𝑥), 𝑥 ∈ R2, (4.11)

в которой

𝐴(𝛼) =

[︃
−1− 𝛼 12(1 + 𝛼)

−1

2
1

]︃
, 𝑎(𝑥) =

⎡⎢⎣−𝑥2
1

12
− 12𝑥2

2 + 2𝑥1𝑥2

−𝑥2
2

2
− 𝑥1𝑥2

4

⎤⎥⎦ .
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Система (4.11) получена путем преобразования модели Холлинга — Тэннера (см., напри-
мер, [2]), а именно, путем переноса начала координат в точку равновесия модели и соот-
ветствующего «обрезания» правой части полученной системы.
Система (4.11) может быть представлена в виде (3.10) при 𝑞 = 2,

𝐵0 =

[︃
−1 12

−1

2
1

]︃
, 𝐵1 =

[︂
−1 12
0 0

]︂
, 𝑏2(𝑥) = 𝑎(𝑥).

Матрица 𝐵0 имеет собственные значения ±𝜔0𝑖, где 𝜔0 =
√
5. В качестве векторов 𝑒, 𝑒*, 𝑔,

𝑔* из (2.2) и (3.11) здесь можно взять векторы

𝑒 =

⎡⎣ 1

(1 +
√
5)

12

⎤⎦ , 𝑔 =

⎡⎣ −1

(
√
5− 1)

12

⎤⎦ , 𝑒* =

⎡⎢⎣(5−
√
5)

10
6
√
5

5

⎤⎥⎦ , 𝑔* =

⎡⎢⎣−(5 +
√
5)

10
6
√
5

5

⎤⎥⎦ .

Числа 𝛾1, 𝛼2 и (𝜉2, 𝑒
*) из (3.12) и (4.7) здесь равны:

𝛾1 = −1, 𝛼2 ≈ 0, 027, (𝜉2, 𝑒
*) =

𝜋𝛼2√
5
.

Отсюда и из теорем 4.3 и 4.4 следует, что 𝛼 = 0 является точкой бифуркации Андронова —
Хопфа на бесконечности системы (4.11). Эти циклы возникают при 𝛼 > 0 и являются
неустойчивыми.

5. Многомерная система

Вернемся к обсуждению задач о бифуркации циклов и бифуркации на бесконечности
для многомерной системы (2.1) при 𝑁 ⩾ 3. Эти задачи можно изучать по той же схеме,
что и для двумерной системы с естественными модификациями построений. Ограничимся
приведением схемы исследования задачи о бифуркации циклов.

5.1. Задача о бифуркации циклов: необходимые условия. Напомним, что выше
предполагались выполненными условия V1 и V2. Напомним также о том, что пространство
R𝑁 может быть представлено в виде прямой суммы R𝑁 = 𝐸0 ⊕ 𝐸0, где 𝐸0 — двумерное
собственное подпространство оператора 𝐵0, отвечающее простым собственным значениям
±𝑖𝜔0, а 𝐸0 — дополнительное инвариантное для 𝐵0 подпространство размерности 𝑁 − 2.
Равенство R𝑁 = 𝐸0 ⊕ 𝐸0 определяет операторы проектирования

𝑃0 : R
𝑁 → 𝐸0 и 𝑃 0 : R𝑁 → 𝐸0

так, что 𝑃 0 = 𝐼 − 𝑃0, а оператор 𝑃0 может быть представлен в виде

𝑃0𝑥 = (𝑥, 𝑒*)𝑒+ (𝑥, 𝑔*)𝑔;

здесь 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 — векторы, выбранные в соответствии с равенствами (2.2) и (3.11).
Рассмотрим двумерную автономную систему

𝑢′ = 𝛼𝐹 (𝑢), 𝑢 ∈ 𝐸0, (5.1)

где

𝐹 (𝑢) =
1

𝑇0

𝑇0∫︁
0

𝑃0𝑒
−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑢) 𝑑𝑡.

Следующее утверждение содержит необходимое условие бифуркации циклов (2.1) при
𝑁 ⩾ 3.
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Теорема 5.1. Пусть значение 𝛼 = 0 является точкой бифуркации циклов систе-
мы (2.1), ответвляющихся от некоторой траектории Υ0 линейной системы (2.3). Тогда
любой вектор 𝑢0 ∈ Υ0 является точкой равновесия системы (5.1), т.е. 𝐹 (𝑢0) = 0.

Доказательство этого утверждения можно проводить так же, как и доказательство ее
аналога — теоремы 3.1. Приведем схему доказательства теоремы 5.1.
Так как R𝑁 = 𝐸0⊕𝐸0, каждый вектор 𝑥 ∈ 𝑅𝑁 единственным образом представим в виде

𝑥 = 𝑥0 + 𝑥0, где 𝑥0 = 𝑃0𝑥 и 𝑥0 = 𝑃 0𝑥. Соответственно, систему (2.1) можно представить в
равносильном виде {︃

(𝑥0)
′ = 𝐵0𝑥0 + 𝛼𝑃0𝑓(𝑥0 + 𝑥0),

(𝑥0)′ = 𝐵0𝑥
0 + 𝛼𝑃 0𝑓(𝑥0 + 𝑥0).

(5.2)

В системе (5.2) произведем невырожденную 𝑇0–периодическую замену

𝑦0 = 𝑒−𝐵0𝑡𝑥0, 𝑦0 = 𝑥0. (5.3)

В результате система (5.2) преобразуется к виду{︃
(𝑦0)

′ = 𝛼𝑃0𝑒
−𝐵0𝑡𝑓(𝑒𝐵0𝑡𝑦0 + 𝑦0),

(𝑦0)′ = 𝐵0𝑦
0 + 𝛼𝑃 0𝑓(𝑒𝐵0𝑡𝑦0 + 𝑦0)

(5.4)

с 𝑇0–периодической правой частью.
Пусть значение 𝛼 = 0 является точкой бифуркации циклов системы (2.1), т.е. существу-

ют непрерывные функции 𝛼(𝜀) и 𝑇 (𝜀) такие, что выполнены условия U1 и U2, а также
условие UC, которое можно представить в виде соотношения (3.5):

max
0⩽𝑡⩽𝑇0

‖𝑥(𝑡, 𝜀)− 𝐶0𝜙0(𝑡)‖ → 0 при 𝜀 → 0; (5.5)

здесь 𝜙0(𝑡) — функция (2.4), 𝐶0 — некоторое положительное число. Из соотношения (5.5)
следует, что решение 𝑥(𝑡, 𝜀) системы (2.1) представимо в виде

𝑥(𝑡, 𝜀) = 𝐶0𝜙0(𝑡) + 𝛿0(𝑡, 𝜀) + 𝛿0(𝑡, 𝜀), (5.6)

где функции 𝛿0(𝑡, 𝜀) ∈ 𝐸0 и 𝛿0(𝑡, 𝜀) ∈ 𝐸0 являются почти периодическими по 𝑡, гладкими
по 𝜀 и удовлетворяют соотношениям:

max
𝑡

‖𝛿0(𝑡, 𝜀)‖ → 0, max
𝑡

‖𝛿0(𝑡, 𝜀)‖ → 0

при 𝜀 → 0. Тогда система (5.4) имеет решение

𝑦 = 𝑦(𝑡, 𝜀) = 𝑒−𝐵0𝑡[𝐶0𝜙0(𝑡) + 𝛿0(𝑡, 𝜀)] + 𝛿0(𝑡, 𝜀).

Дальнейшие рассуждения аналогичны рассуждениям, проведенным при доказательстве
теоремы 3.1 при рассмотрении функции (3.6). При этом существенно равенство (5.6). От-
метим также, что правая часть системы (5.1) получена усреднением правой части первого
уравнения системы (5.4) при 𝑦0 = 0.

5.2. Задача о бифуркации циклов: системы с однородными нелинейностями.

Рассмотрим теперь случай, когда система (2.1) имеет вид

𝑑𝑥

𝑑𝑡
= 𝐵0𝑥+ 𝛼[𝐵1𝑥+ 𝑏𝑞(𝑥)], 𝑥 ∈ R𝑁 , (5.7)

в котором нелинейность 𝑏𝑞(𝑥) является однородным полиномом степени 𝑞.
Как и в двумерном случае, определим числа и векторы (3.12), (3.16) и (3.17). Имеют

место следующие аналоги теорем 3.2–3.4.

Теорема 5.2. Пусть 𝛾1 ̸= 0. Пусть значение 𝛼 = 0 является точкой бифуркации цик-
лов системы (5.7). Тогда 𝑞 — нечетно, т.е. в системе (5.7) нелинейность 𝑏𝑞(𝑥) является
однородным полиномом нечетной степени.
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Теорема 5.3. Пусть 𝛾1 ̸= 0, 𝛼2 ̸= 0. Тогда 𝛼 = 0 является точкой бифуркации циклов
системы (5.7), ответвляющихся от содержащей вектор 𝑢* траектории Υ0 линейной

системы (2.3). Здесь 𝑢* = (𝛼2)
1

(1−𝑞) 𝑒 (если 𝛼2 > 0) или 𝑢* = (−𝛼2)
1

(1−𝑞) 𝑒 (если 𝛼2 < 0). При
этом бифуркационные решения 𝑥(𝑡, 𝜀) системы (5.7) возникают при 𝛼 > 0 (если 𝛼2 > 0)
или при 𝛼 < 0 (если 𝛼2 < 0).

Теорема 5.4. Пусть отличные от 𝜆 = ±𝜔0𝑖 собственные значения матрицы 𝐵0 име-
ют отрицательные вещественные части. Тогда возникающие в условиях теоремы 5.3
бифуркационные решения 𝑥(𝑡, 𝜀) системы (5.7) орбитально асимптотически устойчивы
(неустойчивы), если (𝜉3, 𝑒

*) < 0 (если (𝜉3, 𝑒
*) > 0).

6. Заключение

В статье проведено детальное исследование задач о бифуркации циклов и о бифурка-
ции Андронова — Хопфа на бесконечности для динамических систем с малым парамет-
ром, нелинейности которых содержат однородные полиномы четной или нечетной степени,
а невозмущенное уравнение имеет континуум периодических решений. Предложены но-
вые необходимые и достаточные условия указанных бифуркаций, получены формулы для
приближенного построения бифуркационных решений, проведен анализ их устойчивости.
Показано, что бифуркация циклов типична только для систем с однородностями нечетной
степени, а бифуркация на бесконечности — только для систем с однородностями четной
степени. Показана взаимосвязь этих бифуркаций с классической бифуркацией Андроно-
ва — Хопфа.
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