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CAUCHY PROBLEM AND INVERSE PROBLEM

FOR INTEGRO–DIFFERENTIAL EQUATIONS OF

GERASIMOV TYPE WITH REGULAR KERNEL

V.E. FEDOROV, A.V. NAGUMANOVA, A.O. SAGIMBAEVA

Abstract. We study the unique solvability of the Cauchy problem for a linear regular
integro–differential equation of Gerasimov type in a Banach space. This allows us to obtain
a well–posedness criterion for the corresponding linear inverse problem with a constant
unknown coefficient in the right–hand side.

The abstract results are used to consider direct and inverse initial boundary value prob-
lems for a class of equations with a Gerasimov type integro–differential operator in time
and polynomials of the Laplace operator in spatial variables, as well as to study the unique
solvability of the Cauchy problem and the linear inverse problem for a system of ordinary
integro–differential equations. The regular kernel of the integral operator in the system un-
der consideration is essentially operator–valued and defines linear combinations of various
integro–differential operators in the equations of the system.
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1. Introduction

In recent decades, the problems for equations with various fractional derivatives, which are
used in modeling phenomena and processes in physics, chemistry, biology, and in the technical
and social sciences and humanities (see the monographs [4]–[7], [18], [22] and the references
therein), have attracted sustained interest from researchers. Most fractional derivatives are
integro–differential operators, in which first an integral convolution operator acts on a function,
and then the ordinary differentiation operator does, as in the Riemann — Liouville fractional
derivative, or vice versa, as in the Gerasimov–Caputo fractional derivative. In this case, the
kernel in the integral operator is singular. The works of various authors are devoted to the
study of both direct and inverse coefficient problems for fractional differential equations, see,
for instance, [1], [2], [10], [15], [20].
Initial value problems for linear equations in Banach spaces resolved with respect to an

integro–differential operator (of Riemann — Liouville type or Gerasimov type, depending on
the order of action of the convolution operator and the differentiation operator in them) with
an abstract singular integral kernel, in the case of a bounded operator at the unknown function,
were studied in [14]. In [8], [13], the unique solvability was studied of initial value problems for
integro–differential equations of Gerasimov type and Riemann — Liouville type, respectively,
with an unbounded linear operator generating an analytic resolving family of operators of the
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corresponding linear homogeneous equation in the sector. Linear inverse problems for such
Riemann — Liouville type equations were studied in [9].
Recently, integro–differential operators with a regular integral kernel have become objects of

study, in particular, the so–called Caputo — Fabrizio derivatives [11], see also the discussion on
the validity of classifying such integro–differential operators as fractional derivatives [12], [17],
[21], [23]. We note that the present paper remains outside this discussion and does not use the
term “fractional derivative” in relation to such integro–differential operators.
In [3] there were studied the issues on unique solvability of direct and inverse coefficient

problems for evolutionary equations in Banach spaces with the Caputo — Fabrizio derivative,
and in [16] there were addressed for equations with an abstract regular integro–differential
operator of Riemann — Liouville type and a bounded operator at the sought function. The
present work continues the studies of [3], [16] and is devoted to studying direct and inverse
problems for equations in Banach spaces with an abstract regular integro–differential operator
of Gerasimov type.
Let 𝒵, 𝒰 be Banach space, by ℒ(𝒰 ;𝒵) we denote the Banach space of linear continuous

operators from 𝒰 into 𝒵. For 𝒰 = 𝒵 this notation is shortened to ℒ(𝒵). We consider the
Cauchy problem

𝑧(0) = 𝑧0 (1.1)

for the evolutionary equation

𝑡∫︁
0

𝐾(𝑡− 𝑠)𝐷1𝑧(𝑠)𝑑𝑠 = 𝐴𝑧(𝑡) +𝐵(𝑡)𝑢+ 𝑔(𝑡), 𝑡 ∈ [0, 𝑇 ], (1.2)

where 𝐷1 is the differentation operator, 𝐴 is a linear closed operator, 𝐾 ∈ 𝐶1(R+;ℒ(𝒵)),
𝐵 : [0, 𝑇 ] → ℒ(𝒰 ;𝒵), 𝑢 ∈ 𝒰 , 𝑔 : [0, 𝑇 ] → 𝒵. We obtain the conditions ensuring the unique
solvability of the Cauchy problem (1.1) for Equation (1.2) with a known right hand side. This
allows us to study the inverse coefficient problem for such equation. The overdetermination
condition in this problem reads

𝑇∫︁
0

𝑧(𝑡)𝑑𝜇(𝑡) = 𝑧𝑇 (1.3)

in the case of an independent of time uknown coefficient 𝑢; here 𝜇 is a given function with a
bounded variation, and 𝑧𝑇 ∈ 𝒵.
In the second section of the present work we obtain the conditions guaranteeing the unique

solvability of the Cauchy problem for a linear homogeneous integro–differential equation. The
third section contains a similar result for a linear inhomogeneous integro–differential equation.
In Section 4 we obtain the well–definiteness criterion of the linear inverse problem (1.1)–(1.3).
The obtained general results are applied for studying direct and inverse initial boundary value
problems for a class of partial differential equations with an integro–differential operator of
Gerasimov type and polynomials of the Laplace operator. For the system of ordinary integro–
differential equations we also study the Cauchy problem and the inverse problem with an
unknown constant element. The kernel of the integral operator in the considered system is
essentially operator–valued and defines linear combinations of various integro–differential op-
erators in the equations of the system.

2. Cauchy problem for homogeneous equation

Let 𝒵 be a Banach space, 𝒞𝑙(𝒵) be the set of all linear closed operator densely defined in
the space 𝒵, the domain 𝐷𝐴 of an operator 𝐴 ∈ 𝒞𝑙(𝒵) be equipped with the graph norm
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‖ · ‖𝐷𝐴
:= ‖ · ‖𝒵 + ‖𝐴 · ‖𝒵 ,

𝜌(𝐴) := {𝜇 ∈ C : (𝜇𝐼 − 𝐴)−1 ∈ ℒ(𝒵)}
be the resolvent set of the operator 𝐴, and 𝜎(𝐴) = C ∖ 𝜌(𝐴) be its spectrum, R+ = {𝑎 ∈ R :
𝑎 > 0}, R+ = R+ ∪ {0}, 𝐾(𝑡) ∈ ℒ(𝒵) for 𝑡 > 0. We define the convolution operator

(𝐽𝐾𝑧)(𝑡) :=

𝑡∫︁
0

𝐾(𝑡− 𝑠)𝑧(𝑠)𝑑𝑠 := (𝐾 * 𝑧)(𝑡), 𝑡 > 0,

and the integro–differential operator of the Gerasimov type

(𝐷𝐾,1𝑧)(𝑡) := (𝐽𝐾𝐷1𝑧)(𝑡) :=

𝑡∫︁
0

𝐾(𝑡− 𝑠)𝐷1𝑧(𝑠)𝑑𝑠, 𝑡 > 0,

where 𝐷1 is the operator of the usual first derivative.
For 𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶([0, 𝑇 ];ℒ(𝒵)), 𝑧0 ∈ 𝐷𝐴 we consider the Cauchy problem

𝑧(0) = 𝑧0 (2.1)

for the equation
(𝐷𝐾,1𝑧)(𝑡) = 𝐴𝑧(𝑡), 𝑡 ∈ [0, 𝑇 ]. (2.2)

A solution to the Cauchy problem (2.1), (2.2) is a function 𝑧 ∈ 𝐶([0, 𝑇 ];𝐷𝐴) ∩𝑊 1
1 (0, 𝑇 ;𝒵)

satisfying the condition (2.1) and identity (2.2).

Lemma 2.1. Let 𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶([0, 𝑇 ];ℒ(𝒵)). Then if the solution to the problem (2.1),
(2.2) exists, then 𝑧0 ∈ ker𝐴.

Proof. For 𝑧 ∈ 𝑊 1
1 (0, 𝑇 ;𝒵)⃦⃦⃦⃦

⃦⃦
𝑡∫︁

0

𝐾(𝑡− 𝑠)𝐷1𝑧(𝑠)𝑑𝑠

⃦⃦⃦⃦
⃦⃦
𝒵

⩽ max
𝑠∈[0,𝑇 ]

‖𝐾(𝑠)‖ℒ(𝒵)

𝑡∫︁
0

‖𝐷1𝑧(𝑠)‖𝒵𝑑𝑠→ 0, 𝑡→ 0 + .

By the definition of the solution 𝑧 we have

𝐴𝑧0 = lim
𝑡→0+

𝐴𝑧(𝑡) = lim
𝑡→0+

(𝐷𝐾,1𝑧)(𝑡) = lim
𝑡→0+

𝑡∫︁
0

𝐾(𝑡− 𝑠)𝐷1𝑧(𝑠)𝑑𝑠 = 0.

The proof is complete.

Theorem 2.1. Let

𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶1([0, 𝑇 ];ℒ(𝒵)), (𝐾(0)− 𝐴)−1 ∈ ℒ(𝒵), 𝑧0 ∈ ker𝐴.

Then the function 𝑧(𝑡) ≡ 𝑧0 is the unique solution to the Cauchy problem (2.1), (2.2).

Proof. It is easy to confirm that 𝑧(𝑡) ≡ 𝑧0 solves the problem (2.1), (2.2). Let us prove the
uniqueness. Suppose that 𝑧1 and 𝑧2 are solutions to the problem (2.1), (2.2), then the function
𝑦 = 𝑧1 − 𝑧2 solves the Cauchy problem 𝑦(0) = 0 for the equation

(𝐷𝐾,1𝑦)(𝑡) = 𝐾(0)𝑦(𝑡)−𝐾(𝑡)𝑦(0)− (𝐽𝐾′
𝑦)(𝑡) = 𝐴𝑦(𝑡).

This yields 𝑦(𝑡) = (𝐾(0)− 𝐴)−1(𝐽𝐾′
𝑦)(𝑡).

We consider the operator

𝐵𝑦(𝑡) = (𝐾(0)− 𝐴)−1(𝐽𝐾′
𝑦)(𝑡)

in the space 𝐿1(0, 𝑇1;𝒵) for some 𝑇1 ∈ (0, 𝑇 ]. If 𝐾 ′ ≡ 0, then

𝑦(𝑡) = (𝐾(0)− 𝐴)−10 ≡ 0.



130 V.E. FEDOROV, A.V. NAGUMANOVA, A.O. SAGIMBAEVA

If ‖𝐾 ′‖𝐶([0,𝑇1];ℒ(𝒵)) ̸= 0, for 𝑞 ∈ (0, 1) we take

𝑇1 = 𝑞‖(𝐾(0)− 𝐴)−1‖−1
ℒ(𝒵)‖𝐾

′‖−1
𝐶([0,𝑇1];ℒ(𝒵))

and we get

‖𝐵𝑦‖𝐿1(0,𝑇1;𝒵) ⩽ ‖(𝐾(0)− 𝐴)−1‖ℒ(𝒵)

𝑇1∫︁
0

⃦⃦⃦⃦
⃦⃦

𝑡∫︁
0

𝐾 ′(𝑡− 𝑠)𝑦(𝑠)𝑑𝑠

⃦⃦⃦⃦
⃦⃦
𝒵

𝑑𝑡

⩽ 𝑇1‖(𝐾(0)− 𝐴)−1‖ℒ(𝒵)‖𝐾 ′‖𝐶([0,𝑇1];ℒ(𝒵))‖𝑦‖𝐿1(0,𝑇1;𝒵) = 𝑞‖𝑦‖𝐿1(0,𝑇1;𝒵).

Therefore, the operator 𝐵 is a contraction in the space 𝐿1(0, 𝑇1;𝒵), and this is why the unique
equation of the equation 𝑦 = 𝐵𝑦 in this space is the function 𝑦 = 0 almost everywhere on
(0, 𝑇1).
If 𝑇1 < 𝑇 , we consider the space

𝐿𝑇1
1 (0, 2𝑇1;𝒵) := {𝑦 ∈ 𝐿1(0, 2𝑇1;𝒵) : 𝑦(𝑡) = 0 almost everywhere on (0, 𝑇1)}.

Then

‖𝐵‖ℒ(𝐿𝑇1
1 (0,2𝑇1;𝒵)) ⩽ (2𝑇1 − 𝑇1)‖(𝐾(0)− 𝐴)−1‖ℒ(𝒵)‖𝐾 ′‖𝐶([0,2𝑇1];ℒ(𝒵)) = 𝑞 < 1,

which implies the uniqueness of the trivial solution to the equation 𝑦 = 𝐵𝑦 on (0, 2𝑇1). If
2𝑇1 < 𝑇 , we take the space

𝐿2𝑇1
1 (0, 3𝑇1;𝒵) := {𝑦 ∈ 𝐿1(0, 3𝑇1;𝒵) : 𝑦(𝑡) = 0 almost everywhere on (0, 2𝑇1)}

and prove the uniqueness of the trivial solution to the equation 𝑦 = 𝐵𝑦 on the segment [0, 3𝑇1].
Repeating the arguing, in finitely many steps we completely cover the segment [0, 𝑇 ]. Hence,
the solution to the problem (2.1), (2.2) is unique on [0, 𝑇 ]. The proof is complete.

3. Cauchy problem for inhomogeneous equation

Let 𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶1([0, 𝑇 ];ℒ(𝒵)), 𝑓 ∈ 𝐶([0, 𝑇 ];𝒵), 𝑧0 ∈ 𝐷𝐴. We consider the Cauchy
problem

𝑧(0) = 𝑧0 (3.1)

for the linear inhomogeneous equation

(𝐷𝐾,1𝑧)(𝑡) = 𝐴𝑧(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ]. (3.2)

A solution of the Cauchy problem (3.1), (3.2) is a function 𝑧 ∈ 𝐶([0, 𝑇 ];𝐷𝐴) ∩ 𝑊 1
1 (0, 𝑇 ;𝒵)

satisfying the condition (3.1) and identity (3.2).
Similarly to Lemma 2.1 we obtain the following statement.

Lemma 3.1. If a solution to the problem (3.1), (3.2) exists, then 𝐴𝑧0 + 𝑓(0) = 0.

For a function ℎ : R+ → 𝒵, by ̂︀ℎ we denote its Laplace transform.
In what follows we suppose the following condition.

( ̂︀𝐾) For a function 𝐾 ∈ 𝐶1(R+;ℒ(𝒵)) the Laplace transform ̂︀𝐾(𝜆) is well–defined and it can
be continued to the univalent analytic function on the set

Ω𝑎𝐾 := {𝜆 ∈ C : |𝜆| > 𝑎𝐾}.

Lemma 3.2. Let 𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶1(R+;ℒ(𝒵)), (𝐾(0)− 𝐴)−1 ∈ ℒ(𝒵), and the condition

( ̂︀𝐾) be satisfied. Then for some 𝑟 > 𝑎𝐾 the operator–valued function

𝑍(𝑡) =
1

2𝜋𝑖

∫︁
|𝜆|=𝑟

(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1𝑒𝜆𝑡𝑑𝜆, 𝑡 ∈ C, (3.3)
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is well–defined and analytic.

Proof. By the initial value theorem [19], lim
𝜆→+∞

𝜆 ̂︀𝐾(𝜆) = 𝐾(0) in ℒ(𝒵). Since (𝐾(0)− 𝐴)−1 ∈

ℒ(𝒵), in view of the condition ( ̂︀𝐾) this means that the operators

(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1 = (𝐾(0)− 𝐴+ 𝜆 ̂︀𝐾(𝜆)−𝐾(0))−1

= (𝐼 + (𝐾(0)− 𝐴)−1(𝜆 ̂︀𝐾(𝜆)−𝐾(0)))−1(𝐾(0)− 𝐴)−1

are well–defined for sufficiently large |𝜆| > 𝑟0 ⩾ 𝑎𝐾 , for which

‖(𝜆 ̂︀𝐾(𝜆)−𝐾(0))‖ℒ(𝒵) < ‖(𝐾(0)− 𝐴)−1‖−1
ℒ(𝒵).

At the same time there exists 𝐶 > 0 such that for all |𝜆| > 𝑟0 ⩾ 𝑎𝐾 we have

‖(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1‖ℒ(𝒵) ⩽ 𝐶.

We also note that

(𝜆 ̂︀𝐾(𝜆)− 𝐴)(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 = 𝐼 + (𝜆 ̂︀𝐾(𝜆)− 𝜇 ̂︀𝐾(𝜇))(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1,

(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝜆 ̂︀𝐾(𝜆)− 𝐴)−1 = (𝜆 ̂︀𝐾(𝜆)− 𝐴)−1(𝜆 ̂︀𝐾(𝜆)− 𝜇 ̂︀𝐾(𝜇))(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1,

‖(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝜆 ̂︀𝐾(𝜆)− 𝐴)−1‖ℒ(𝒵)

⩽ 𝐶‖𝜆 ̂︀𝐾(𝜆)− 𝜇 ̂︀𝐾(𝜇)‖ℒ(𝒵)‖(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1‖ℒ(𝒵) → 0, 𝜆→ 𝜇.

Moreover,

𝑑

𝑑𝜇
(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 = −(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1

[︂
𝑑

𝑑𝜇
[𝜇 ̂︀𝐾(𝜇)]

]︂
(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1.

Hence, the integrand in (3.3) is analytic in Ω𝑟0 , and since the contour {|𝜆| = 𝑟 > 𝑟0} is bounded,
the function 𝑍(𝑡) is analytic in 𝑡 ∈ C. The proof is complete.

Theorem 3.1. Let

𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶1(R+;ℒ(𝒵)), 𝐾(0)− 𝐴)−1 ∈ ℒ(𝒵),

the condition ( ̂︀𝐾) be satisfied,

𝑓 ∈ 𝑊 1
1 (0, 𝑇 ;𝒵), 𝐴𝑧0 + 𝑓(0) = 0.

Then the function

𝑧(𝑡) = 𝑧0 + (𝐾(0)− 𝐴)−1(𝑓(𝑡)− 𝑓(0))−
𝑡∫︁

0

𝑍(𝑠)𝑓(0)𝑑𝑠+

𝑡∫︁
0

𝑍(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, (3.4)

is the unique solution to the problem (3.1), (3.2).

Proof. It is clear that the initial condition 𝑧(0) = 𝑧0 is satisfied and

𝐷1𝑧(𝑡) = (𝐾(0)− 𝐴)−1𝐷1𝑓(𝑡)− 𝑍(𝑡)𝑓(0) + 𝑍(0)𝑓(𝑡) +

𝑡∫︁
0

𝐷1𝑍(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 ∈ 𝐿1(0, 𝑇 ;𝒵),

𝐷𝐾,1𝑧(𝑡) = (𝐾(0)− 𝐴)−1𝐷𝐾,1𝑓(𝑡)− 𝐽𝐾 [𝑍(𝑡)𝑓(0)] + 𝐽𝐾 [𝑍(0)𝑓(𝑡)]

+ 𝐽𝐾

𝑡∫︁
0

𝐷1𝑍(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 ∈ 𝐶([0, 𝑇 ];𝒵),

𝐴(𝐾(0)− 𝐴)−1 = 𝐾(0)(𝐾(0)− 𝐴)−1 − 𝐼 ∈ ℒ(𝒵),
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𝐴𝑍(𝑡) =
1

2𝜋𝑖

∫︁
|𝜆|=𝑟

𝐴(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1𝑒𝜆𝑡𝑑𝜆

=
1

2𝜋𝑖

∫︁
|𝜆|=𝑟

𝜆 ̂︀𝐾(𝜆)(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1𝑒𝜆𝑡𝑑𝜆 ∈ 𝐶([0, 𝑇 ];ℒ(𝒵)),

𝐴𝑧(𝑡) = 𝐴𝑧0 + 𝐴(𝐾(0)− 𝐴)−1(𝑓(𝑡)− 𝑓(0))−
𝑡∫︁

0

𝐴𝑍(𝑠)𝑓(0)𝑑𝑠

+

𝑡∫︁
0

𝐴𝑍(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 ∈ 𝐶([0, 𝑇 ];𝒵).

For Re𝜇 > 𝑟 by Cauchy integral formula we have

̂︀𝑍(𝜇) = 1

2𝜋𝑖

∫︁
|𝜆|=𝑟

1

𝜇− 𝜆
(𝜆 ̂︀𝐾(𝜆)− 𝐴)−1𝑑𝜆 =

1

2𝜋𝑖

∫︁
|𝜂|= 1

𝑟

1

𝜇− 1
𝜂

(︂
1

𝜂
̂︀𝐾 (︂

1

𝜂

)︂
− 𝐴

)︂−1
𝑑𝜂

𝜂2

=
1

2𝜋𝑖

∫︁
|𝜂|= 1

𝑟

1

𝜇𝜂
(︁
𝜂 − 1

𝜇

)︁ (︂
1

𝜂
̂︀𝐾 (︂

1

𝜂

)︂
− 𝐴

)︂−1

𝑑𝜂 = (𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝐾(0)− 𝐴)−1.

We define the function 𝑓 in a continuous bounded way for 𝑡 > 𝑇 and denote 𝑧𝑓 := 𝑍 * 𝑓 , then̂︀𝑧𝑓 (𝜇) = ̂︀𝑍(𝜇) ̂︀𝑓(𝜇) = [(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝐾(0)− 𝐴)−1] ̂︀𝑓(𝜇).
Therefore,

̂︀𝑧(𝜇) = 𝑧0
𝜇

+ (𝐾(0)− 𝐴)−1

(︂̂︀𝑓(𝜇)− 1

𝜇
𝑓(0)

)︂
− 1

𝜇
[(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝐾(0)− 𝐴)−1]𝑓(0)+

+ [(𝜇 ̂︀𝐾(𝜇)− 𝐴)−1 − (𝐾(0)− 𝐴)−1] ̂︀𝑓(𝜇),
𝐷𝐾,1𝑧(𝜇)− ̂︁𝐴𝑧(𝜇) = (𝜇 ̂︀𝐾(𝜇)− 𝐴)̂︀𝑧(𝜇)− ̂︀𝐾(𝜇)𝑧0 = −𝐴𝑧0

𝜇
− 1

𝜇
𝑓(0) + ̂︀𝑓(𝜇) = ̂︀𝑓(𝜇).

Applying the inverse Laplace transform, we obtain (3.2).
The uniqueness of the solution can be established as in the proof of Theorem 2.1. The proof

is complete.

4. Inverse problem with constant coefficient

Let 𝒵, 𝒰 be Banach spaces. We consider an inverse problem for the evolutionary equation

(𝐷𝐾,1𝑧)(𝑡) = 𝐴𝑧(𝑡) +𝐵(𝑡)𝑢+ 𝑔(𝑡), 𝑡 ∈ [0, 𝑇 ], (4.1)

where 𝐷𝐾,1 is an integro–differential operator of Gerasimov type,

𝐾 ∈ 𝐶1(R+;ℒ(𝒵)), 𝐴 ∈ 𝒞𝑙(𝒵), 𝐵 ∈ 𝑊 1
1 (0, 𝑇 ;ℒ(𝒰 ;𝒵)), 𝑔 ∈ 𝑊 1

1 (0, 𝑇 ;𝒵),

with the initial condition
𝑧(0) = 𝑧0 (4.2)

and the overdetermination condition
𝑇∫︁

0

𝑧(𝑡)𝑑𝜈(𝑡) = 𝑧𝑇 ∈ 𝐷𝐴, (4.3)
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where the function 𝜈 : (0, 𝑇 ] → R has a bounded variation; shortly 𝜈 ∈ 𝐵𝑉 ((0, 𝑇 ];R). Here we
take into consideration the fact that 𝐴𝑧 ∈ 𝐶([0, 𝑇 ];𝒵), and this is why

𝐴

𝑇∫︁
0

𝑧(𝑡)𝑑𝜈(𝑡) =

𝑇∫︁
0

𝐴𝑧(𝑡)𝑑𝜈(𝑡) and

𝑇∫︁
0

𝑧(𝑡)𝑑𝜈(𝑡) ∈ 𝐷𝐴.

At the same time, the additional unknown element 𝑢 in Equation (4.1) is to be found by means
of the additional condition (4.3).
An element 𝑢 ∈ 𝒰 a solution to the problem (4.1)–(4.3) if for this 𝑢 there exists a solution 𝑧

to the Cauchy problem (4.1), (4.2), which satisfies the condition (4.3). The problem (4.1)–(4.3)
is called well–posed if for all 𝑧0, 𝑧𝑇 ∈ 𝐷𝐴, 𝑔 ∈ 𝑊 1

1 (0, 𝑇 ;𝒵) there exists a unique solution 𝑢 ∈ 𝒰
to the problem, and this solution satisfies the estimate

‖𝑢‖𝒰 ⩽ 𝐶
(︀
‖𝑧0‖𝒵 + ‖𝑧𝑇‖𝒵 + ‖𝑔‖𝐶([0,𝑇 ];𝒵)

)︀
, (4.4)

where 𝐶 > 0 is independent of 𝑧0, 𝑧𝑇 , 𝑔.
By the representation of solution (3.4) in the case of existence of a solution to the Cauchy

problem (4.1), (4.2) the element 𝑢 is a solution to the problem (4.1)–(4.3) if and only if it
satisfies the equation

Ψ𝑢 = 𝜓, (4.5)

where Ψ and 𝜓 are defined by the formulas

Ψ :=

𝑇∫︁
0

(𝐾(0)− 𝐴)−1(𝐵(𝑡)−𝐵(0))𝑑𝜈(𝑡)−
𝑇∫︁

0

𝑡∫︁
0

𝑍(𝑠)𝐵(0)𝑑𝑠𝑑𝜈(𝑡)

+

𝑇∫︁
0

𝑡∫︁
0

𝑍(𝑡− 𝑠)𝐵(𝑠)𝑑𝑠𝑑𝜈(𝑡) ∈ ℒ(𝒰 ;𝒵)

𝜓 :=𝑧𝑇 −
𝑇∫︁

0

𝑑𝜈(𝑡)𝑧0 −
𝑇∫︁

0

(𝐾(0)− 𝐴)−1(𝑔(𝑡)− 𝑔(0))𝑑𝜈(𝑡) +

𝑇∫︁
0

𝑡∫︁
0

𝑍(𝑠)𝑔(0)𝑑𝑠𝑑𝜈(𝑡)

−
𝑇∫︁

0

𝑡∫︁
0

𝑍(𝑡− 𝑠)𝑔(𝑠)𝑑𝑠𝑑𝜈(𝑡) ∈ 𝒵.

Theorem 4.1. Let

𝐴 ∈ 𝒞𝑙(𝒵), 𝐾 ∈ 𝐶1(R+;ℒ(𝒵)), (𝐾(0)− 𝐴)−1 ∈ ℒ(𝒵),

the condition ( ̂︀𝐾) be satisfied,

𝐵 ∈ 𝑊 1
1 (0, 𝑇 ;ℒ(𝒰 ;𝒵)), 𝐵(0) = 0, 𝑔 ∈ 𝑊 1

1 (0, 𝑇 ;𝒵),

𝑧0, 𝑧𝑇 ∈ 𝐷𝐴, 𝐴𝑧0 + 𝑔(0) = 0, 𝜈 ∈ 𝐵𝑉 ((0, 𝑇 ];C).

Then the inverse problem (4.1)–(4.3) is well–posed if and only if there exists the inverse operator
Ψ−1 ∈ ℒ(𝒵;𝒰). At the same time the solution to the problem reads 𝑢 = Ψ−1𝜓.

Proof. By Theorem 3.1, for a given element 𝑢 ∈ 𝒰 , a solution to the Cauchy problem (4.1),
(4.2) exists and it reads

𝑧(𝑡) =𝑧0 + (𝐾(0)− 𝐴)−1(𝐵(𝑡)𝑢+ 𝑔(𝑡)−𝐵(0)𝑢− 𝑔(0))−
𝑡∫︁

0

𝑍(𝑠)(𝐵(0)𝑢+ 𝑔(0))𝑑𝑠
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+

𝑡∫︁
0

𝑍(𝑡− 𝑠)(𝐵(𝑠)𝑢+ 𝑔(𝑠))𝑑𝑠.

Substituting this solution into the overdetermination condition (4.3), we obtain the identity
(4.5), which implies the required fact. At the same time by the identity 𝐵(0) = 0 we have

Ψ :=

𝑇∫︁
0

(𝐾(0)− 𝐴)−1𝐵(𝑡)𝑑𝜈(𝑡) +

𝑇∫︁
0

𝑡∫︁
0

𝑍(𝑡− 𝑠)𝐵(𝑠)𝑑𝑠𝑑𝜈(𝑡),

‖𝑢‖𝒰 ⩽ ‖Ψ−1‖ℒ(𝒵;𝒰)‖𝜓‖𝒵 ⩽ ‖Ψ−1‖ℒ(𝒵;𝒰)(‖𝑧𝑇‖𝒵 + 𝑉 𝑇
0 (𝜈)‖𝑧0‖𝒵

+ 2𝑇𝑉 𝑇
0 (𝜈)‖(𝐾(0)− 𝐴)−1‖ℒ(𝒵)‖𝑔‖𝐶([0,𝑇 ];𝒵) + 2𝑇 2𝑉 𝑇

0 (𝜈)‖𝑍‖𝐶([0,𝑇 ];𝒵)‖𝑔‖𝐶([0,𝑇 ];𝒵))

⩽ 𝐶
(︀
‖𝑧0‖𝒵 + ‖𝑧𝑇‖𝒵 + ‖𝑔‖𝐶([0,𝑇 ];𝒵)

)︀
for

𝐶 = max{1, 𝑉 𝑇
0 (𝜈), (2𝑇𝑉 𝑇

0 (𝜈)‖(𝐾(0)− 𝐴)−1‖ℒ(𝒵) + 2𝑇 2𝑉 𝑇
0 (𝜈)‖𝑍‖𝐶([0,𝑇 ];𝒵))} > 0.

Here 𝑉 𝑇
0 (𝜈) is the variation of the function 𝜈 on the semi–interval (0, 𝑇 ]. The proof is complete.

5. One class of initial boundary value problem

Let

𝑃𝑛(𝜆) =
𝑛∑︁

𝑗=0

𝑐𝑗𝜆
𝑗, 𝑄𝑛(𝜆) =

𝑛∑︁
𝑗=0

𝑑𝑗𝜆
𝑗,

𝑐𝑗, 𝑑𝑗 ∈ C, 𝑗 = 0, 1, . . . , 𝑛 ∈ N0 : N ∪ {0}, 𝑑𝑛 ̸= 0. Let Ω ⊂ R𝑑 be a bounded domain with a
smooth boundary 𝜕Ω, in this domain the Laplace operator

∆𝑤(𝜉) =
𝑑∑︁

𝑗=1

𝜕2𝑤

𝜕𝜉2
(𝜉)

is defined on the domain 𝐷Δ = 𝐻2
0 (Ω) := {𝑤 ∈ 𝐻2(Ω) : 𝑤(𝜉) = 0, 𝜉 ∈ 𝜕Ω}. As it is known, the

spectrum 𝜎(∆) of the operator ∆ is negative, discrete, of finite multiplicity and accumulates
at −∞ only. Let {𝜙𝑘 : 𝑘 ∈ N} be an orthonormalized in 𝐿2(Ω) system of eigenfunctions of the
operator ∆ associated with the corresponding eigenvalues {𝜆𝑘 : 𝑘 ∈ N} taken in the ascending
order counting the multitplicities.
We consider the inverse problem with a time–independent element 𝑢

𝑣(𝜉, 𝑠) = 𝑣0(𝜉), 𝜉 ∈ Ω, (5.1)

∆𝑘𝑣(𝜉, 𝑡) = 0, 𝑘 = 1, 2, . . . , 𝑛− 1, (𝜉, 𝑡) ∈ 𝜕Ω× [0, 𝑇 ], (5.2)

𝑃𝑛(∆)

𝑡∫︁
0

𝑎𝐸𝛽
𝛼,1(𝑏(𝑡− 𝑠)𝛼)

𝜕𝑣

𝜕𝑠
(𝜉, 𝑠)𝑑𝑠

= 𝑄𝑛(∆)𝑣(𝜉, 𝑡) + 𝑐(𝑡)𝑢(𝜉) + ℎ(𝜉, 𝑡), (𝜉, 𝑡) ∈ Ω× [0, 𝑇 ],

(5.3)

𝑣(𝜉, 𝑇 ) = 𝑣𝑇 (𝜉), 𝜉 ∈ Ω, (5.4)

where the functions 𝑣0, 𝑣𝑇 : Ω → R, 𝑐 : [0, 𝑇 ] → R, ℎ : Ω× [0, 𝑇 ] → R are given.
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In Equation (5.3), the kernel of integro–differential operator is the generalized Mittag–Leffler
[18]

𝐾𝛼,𝛽(𝑡) := 𝑎𝐸𝛽
𝛼,1(𝑏𝑡

𝛼)𝐼 = 𝑎
∞∑︁
𝑘=0

(𝛽)𝑘𝑏
𝑘𝑡𝛼𝑘

Γ(𝛼𝑘 + 1)
𝐼, 𝑎, 𝑏 ∈ R ∖ {0}, 𝛼, 𝛽 ∈ N,

where (𝛽)𝑘 is the Pochhammer function [18]. Its Laplace image

̂︀𝐾𝛼,𝛽(𝜆) =
𝑎𝜆𝛼𝛽−1

(𝜆𝛼 − 𝑏)𝛽
𝐼

is a univalent analytic function on the set

Ω
|𝑏|

1
𝛼
:= {𝜇 ∈ C : |𝜇| > |𝑏|

1
𝛼},

and this is why the condition ( ̂︀𝐾) holds for this function with 𝑎𝐾 = |𝑏| 1𝛼 . We note that for
𝛼 = 𝛽 = 1, 𝐾1,1(𝑡) = 𝑎𝑒𝑏𝑡 the integro–differential operator 𝐷𝐾,1 is the Caputo — Fabrizio
derivative [11], while for 𝛼 ∈ N ∖ {0}, 𝛽 = 1, 𝐾𝛼,1(𝑡) = 𝑎𝐸𝛼(𝑏𝑡

𝛼) is the one–parametric Mittag–
Leffler function [18], while 𝐷𝐾,1 is the so–called Atangana — Baleanu derivative.
We let

𝑛0 := max{𝑗 ∈ {0, 1, . . . , 𝑛} : 𝑐𝑗 ̸= 0},
𝒵 = {𝑤 ∈ 𝐻2𝑟𝑛0(Ω) : ∆𝑘𝑤(𝜉) = 0, 𝑘 = 0, 1, . . . , 𝑛0 − 1, 𝜉 ∈ 𝜕Ω}.

The operator 𝑃𝑛(∆) ∈ ℒ(𝒵;𝐿2(Ω)) is continuously invertible if and only if 𝑃𝑛(𝜆𝑘) ̸= 0 for all
𝑘 ∈ N. In this case, on the Banach space 𝒵 we define the linear operator 𝐴 = 𝑃𝑛(∆)−1𝑄𝑛(∆),
which is bounded in 𝒵 if 𝑛0 = 𝑛, that is, 𝑐𝑛 ̸= 0. If 𝑐𝑛 = 0 and 𝑛0 < 𝑛, we have 𝐴 ∈ 𝒞𝑙(𝒵)
with the domain

𝐷𝐴 = {𝑤 ∈ 𝐻2𝑟𝑛(Ω) : ∆𝑘𝑤(𝜉) = 0, 𝑘 = 0, 1, . . . , 𝑛− 1, 𝜉 ∈ 𝜕Ω}.
The problem (5.1)–(5.3) is reduced to the problem (4.1), (4.2).
We denote

𝜁𝑘(𝑡) :=
1

2𝜋𝑖

∫︁
|𝜆|=𝑟

𝑒𝜆𝑡𝑑𝜆
𝑎𝜆𝛼𝛽

(𝜆𝛼−𝑏)𝛽
− 𝑄𝑛(𝜆𝑘)

𝑃𝑛(𝜆𝑘)

, 𝑡 ∈ C, 𝑘 ∈ N.

Theorem 5.1. Let

𝑎, 𝑏 ∈ R ∖ {0}, 𝛼, 𝛽 ∈ N, 𝑃𝑛(𝜆𝑘) ̸= 0, 𝑄𝑛(𝜆𝑘)/𝑃𝑛(𝜆𝑘) ̸= 𝑎 for all 𝑘 ∈ N,
𝑣0 ∈ 𝐷𝐴, 𝑢 ∈ 𝐿2(Ω), 𝑐 ∈ 𝑊 1

1 (0, 𝑇 ;R), ℎ ∈ 𝑊 1
1 (0, 𝑇 ;𝐿2(Ω)),

𝑄𝑛(∆)𝑣0(𝜉) + 𝑐(0)𝑢(𝜉) + ℎ(𝜉, 0) ≡ 0 in Ω.

Then the problem (5.1)–(5.3) has the unique solution

𝑣(𝜉, 𝑡) =𝑣0(𝜉) +
∞∑︁
𝑘=1

⟨(𝑐(𝑡)− 𝑐(0))𝑢(·) + ℎ(·, 𝑡)− ℎ(·, 0), 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑎𝑃𝑛(𝜆𝑘)−𝑄𝑛(𝜆𝑘)

−
𝑡∫︁

0

∞∑︁
𝑘=1

𝜁𝑘(𝑠)⟨𝑐(0)𝑢(·) + ℎ(·, 0), 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑃𝑛(𝜆𝑘)
𝑑𝑠

+

𝑡∫︁
0

∞∑︁
𝑘=1

𝜁𝑘(𝑡− 𝑠)⟨𝑐(𝑠)𝑢(·) + ℎ(·, 𝑠), 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑃𝑛(𝜆𝑘)
𝑑𝑠.

Proof. The spectrum of operator 𝐴 = 𝑃𝑛(∆)−1𝑄𝑛(∆) is the set

𝜎(𝐴) =

{︂
𝑄𝑛(𝜆𝑘)

𝑃𝑛(𝜆𝑘)
, 𝑘 ∈ N

}︂
.
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Therefore, the inequality

𝑄𝑛(𝜆𝑘)

𝑃𝑛(𝜆𝑘)
̸= 𝑎 for all 𝑘 ∈ N

means the existence of the inverse operator (𝐾(0)− 𝐴)−1 = (𝑎𝐼 − 𝐴)−1 ∈ ℒ(𝒵).
For a sufficiently large 𝑟 > 0 we have

𝑍(𝑡) =
∞∑︁
𝑘=1

1

2𝜋𝑖

∫︁
|𝜆|=𝑟

⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)𝑒
𝜆𝑡𝑑𝜆

𝑎𝜆𝛼𝛽

(𝜆𝛼−𝑏)𝛽
− 𝑄𝑛(𝜆𝑘)

𝑃𝑛(𝜆𝑘)

=
∞∑︁
𝑘=1

𝜁𝑘(𝑡)⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉), 𝑡 ∈ R.

In Theorem 3.1 we take 𝑓(𝑡) = 𝑃𝑛(∆)−1(𝑐(𝑡)𝑢(·) + ℎ(·, 𝑡)) and get the required statement. The
proof is complete.

For the inverse problem (5.1)–(5.4) with the unknown element 𝑢 in the case 𝑐(0) = 0 we
respectively obtain the operator and vector

Ψ :=
∞∑︁
𝑘=1

𝑐(𝑇 )⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑎𝑃𝑛(𝜆𝑘)−𝑄𝑛(𝜆𝑘)
+

𝑇∫︁
0

∞∑︁
𝑘=1

𝜁𝑘(𝑡− 𝑠)𝑐(𝑠)⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑃𝑛(𝜆𝑘)
𝑑𝑠,

𝜓 :=𝑣𝑇 − 𝑣0 −
∞∑︁
𝑘=1

(ℎ(·, 𝑇 )− ℎ(·, 0))⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑎𝑃𝑛(𝜆𝑘)−𝑄𝑛(𝜆𝑘)
+

𝑇∫︁
0

∞∑︁
𝑘=1

𝜁𝑘(𝑠)ℎ(·, 0)⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑃𝑛(𝜆𝑘)
𝑑𝑠

−
𝑇∫︁

0

∞∑︁
𝑘=1

𝜁𝑘(𝑡− 𝑠)ℎ(·, 𝑠)⟨·, 𝜙𝑘⟩𝜙𝑘(𝜉)

𝑃𝑛(𝜆𝑘)
𝑑𝑠.

Theorem 5.2. Let

𝑎, 𝑏 ∈ R ∖ {0}, 𝛼, 𝛽 ∈ N, 𝑃𝑛(𝜆𝑘) ̸= 0, 𝑄𝑛(𝜆𝑘)/𝑃𝑛(𝜆𝑘) ̸= 𝑎 for all 𝑘 ∈ N,
𝑐 ∈ 𝑊 1

1 (0, 𝑇 ;R), 𝑐(0) = 0, 𝑣0, 𝑣𝑇 ∈ 𝐷𝐴, ℎ ∈ 𝑊 1
1 (0, 𝑇 ;𝐿2(Ω)),

𝑄𝑛(∆)𝑣0(𝜉) + ℎ(𝜉, 0) ≡ 0 in Ω.

Then the inverse problem (5.1)–(5.4) is well–posed if and only if there exists 𝑑 > 0 such that,
for all 𝑘 ∈ N, ⃒⃒⃒⃒

⃒⃒ 𝑐(𝑇 )

𝑎𝑃𝑛(𝜆𝑘)−𝑄𝑛(𝜆𝑘)
+

𝑇∫︁
0

𝜁𝑘(𝑡− 𝑠)𝑐(𝑠)

𝑃𝑛(𝜆𝑘)
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ ⩾ 𝑑.

At the same time, 𝑢 = Ψ−1𝜓.

Proof. Here 𝜈 is the function of the unit jump at the point 𝑡 = 𝑇 . We take the space 𝒰 = 𝐿2(Ω)
and the operator function

𝐵(𝑡) = 𝑐(𝑡)𝑃𝑛(∆)−1 ∈ 𝑊 1
1 (0, 𝑇 ;ℒ(𝐿2(Ω);𝒵)).

Thus, the problem (5.1)–(5.4) is reduced to the inverse problem (4.1)–(4.3). The assumptions
of the theorem imply

‖Ψ−1‖ℒ(𝒵;𝐿2(Ω)) ⩽ 𝑑−1.

The proof is complete.



CAUCHY PROBLEM AND INVERSE PROBLEM FOR INTEGRO–DIFFERENTIAL EQUATIONS 137

6. System of ordinary integro–differential equations

We consider the Cauchy problem

𝑧𝑗(0) = 𝑧0𝑗, 𝑗 = 1, 2, . . . , 𝑛, (6.1)

for the system of integro–differential equations

𝑛∑︁
𝑗=1

𝐷𝑘𝑖𝑗 ,1𝑧𝑗(𝑡) =
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑧𝑗(𝑡) +
𝑚∑︁
𝑘=1

𝑏𝑖𝑘(𝑡)𝑢𝑘 + ℎ𝑖(𝑡), 𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ [0, 𝑇 ], (6.2)

where

𝑎𝑖𝑗 ∈ C, 𝑏𝑖𝑘 : [0, 𝑇 ] → C, 𝑢𝑘 ∈ C, ℎ𝑖 : [0, 𝑇 ] → C, 𝑘𝑖𝑗(𝑡) := 𝑎𝑖𝑗𝐸
𝛽𝑖𝑗

𝛼𝑖𝑗 ,1
(𝑏𝑖𝑗𝑡

𝛼),

𝑎𝑖𝑗, 𝑏𝑖𝑗 ∈ R ∖ {0}, 𝛼𝑖𝑗, 𝛽𝑖𝑗 ∈ N, , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚.

We take

𝒵 = R𝑛, 𝒰 = R𝑚, 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑛(𝑡))
𝑇 : [0, 𝑇 ] → 𝒵,

𝑔(𝑡) = (𝑔1(𝑡), 𝑔2(𝑡), . . . , 𝑔𝑛(𝑡))
𝑇 : [0, 𝑇 ] → 𝒵, 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑚)

𝑇 ∈ 𝒰 .

The actions of the operators 𝐴 ∈ ℒ(𝒵), 𝐾(𝑡) ∈ ℒ(𝒵) for 𝑡 ⩾ 0 and 𝐵(𝑡) ∈ ℒ(𝒰 ;𝒵) for 𝑡 ∈ [0, 𝑇 ]
are given by same–named matrices of sizes 𝑛× 𝑛, 𝑛× 𝑛 and 𝑛×𝑚, respectively:

𝐴 =

⎛⎜⎜⎝
𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛
. . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛

⎞⎟⎟⎠ , 𝐾(𝑡) =

⎛⎜⎜⎝
𝑘11(𝑡) 𝑘12(𝑡) . . . 𝑘1𝑛(𝑡)
𝑘21(𝑡) 𝑘22(𝑡) . . . 𝑘2𝑛(𝑡)
. . . . . . . . . . . .
𝑘𝑛1(𝑡) 𝑘𝑛2(𝑡) . . . 𝑘𝑛𝑛(𝑡)

⎞⎟⎟⎠ ,

𝐵(𝑡) =

⎛⎜⎜⎝
𝑏11(𝑡) 𝑏12(𝑡) . . . 𝑏1𝑚(𝑡)
𝑏21(𝑡) 𝑏22(𝑡) . . . 𝑏2𝑚(𝑡)
. . . . . . . . . . . .
𝑏𝑛1(𝑡) 𝑏𝑛2(𝑡) . . . 𝑏𝑛𝑚(𝑡)

⎞⎟⎟⎠ .

At the same time,

̂︀𝐾(𝜆) =

⎛⎜⎜⎜⎝
𝑎11𝜆𝛼11𝛽11−1

(𝜆𝛼11−𝑏11)𝛽11
𝑎12𝜆𝛼12𝛽12−1

(𝜆𝛼12−𝑏12)𝛽12
. . . 𝑎1𝑛𝜆𝛼1𝑛𝛽1𝑛−1

(𝜆𝛼1𝑛−𝑏1𝑛)𝛽1𝑛
𝑎21𝜆𝛼21𝛽21−1

(𝜆𝛼21−𝑏21)𝛽21
𝑎22𝜆𝛼22𝛽22−1

(𝜆𝛼22−𝑏22)𝛽22
. . . 𝑎2𝑛𝜆𝛼2𝑛𝛽2𝑛−1

(𝜆𝛼2𝑛−𝑏2𝑛)𝛽2𝑛

. . . . . . . . . . . .
𝑎𝑛1𝜆𝛼𝑛1𝛽𝑛1−1

(𝜆𝛼𝑛1−𝑏𝑛1)𝛽𝑛1

𝑎𝑛2𝜆𝛼𝑛2𝛽𝑛2−1

(𝜆𝛼𝑛2−𝑏𝑛2)𝛽𝑛2
. . . 𝑎𝑛𝑛𝜆𝛼𝑛𝑛𝛽𝑛𝑛−1

(𝜆𝛼𝑛𝑛−𝑏𝑛𝑛)𝛽𝑛𝑛

⎞⎟⎟⎟⎠ .

Thus, we have obtained the direct problem (4.1), (4.2).

Theorem 6.1. Let

det(𝐾(0)− 𝐴) ̸= 0, det ̂︀𝐾 ̸≡ 0, 𝑏𝑖𝑘 ∈ 𝑊 1
1 (0, 𝑇 ;C), 𝑢𝑘 ∈ C,

ℎ𝑖 ∈ 𝑊 1
1 (0, 𝑇 ;C), 𝑧0𝑖 ∈ C,

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑧0𝑗 +
𝑚∑︁
𝑘=1

𝑏𝑖𝑘(0)𝑢𝑘 + ℎ𝑖(0) = 0,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚.

Then there exists a unique solution of the problem (6.1), (6.2).

Proof. We note that the function det ̂︀𝐾 is the quotient of two polynomials and this is why it
possesses finitely many poles, and hence, the condition ( ̂︀𝐾) is satisfied. By Theorem 3.1 we get
the required statement.
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We note that the solution to the problem (6.1), (6.2) is of the form (3.4) for 𝑓(𝑡) = 𝐵(𝑡)𝑢+ℎ(𝑡)
(in the vector notation).
Under the assumption that 𝑢𝑘, 𝑘 = 1, 2, . . . ,𝑚, are unknown, we consider the overdetermi-

nation conditions
𝑧𝑗(𝑇 ) = 𝑧𝑇𝑗, 𝑗 = 1, 2, . . . , 𝑛. (6.3)

Theorem 6.2. Let

det(𝐾(0)− 𝐴) ̸= 0, det ̂︀𝐾 ̸≡ 0, 𝑏𝑖𝑘 ∈ 𝑊 1
1 (0, 𝑇 ;C), 𝑏𝑖𝑘(0) = 0,

ℎ𝑖 ∈ 𝑊 1
1 (0, 𝑇 ;C), 𝑧0𝑖, 𝑧𝑇 𝑖 ∈ C,

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑧0𝑗 + ℎ𝑖(0) = 0,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚.

Then the inverse problem (6.1)–(6.3) is well–posed if and only if

det

⎛⎝(𝐾(0)− 𝐴)−1𝐵(𝑇 ) +

𝑇∫︁
0

𝑍(𝑇 − 𝑠)𝐵(𝑠)𝑑𝑠

⎞⎠ ̸= 0.

At the same time the solution of the problem in the vector notation reads

𝑢 =

⎛⎝(𝐾(0)− 𝐴)−1𝐵(𝑇 ) +

𝑇∫︁
0

𝑍(𝑇 − 𝑠)𝐵(𝑠)𝑑𝑠

⎞⎠−1

·

⎛⎝𝑧𝑇 − 𝑧0 − (𝐾(0)− 𝐴)−1(𝑔(𝑇 )− 𝑔(0)) +

𝑇∫︁
0

𝑍(𝑠)𝑔(0)𝑑𝑠−
𝑇∫︁

0

𝑍(𝑇 − 𝑠)𝑔(𝑠)𝑑𝑠

⎞⎠ ,

where the matrices 𝑍(𝑡) are of the form (3.3).

Proof. By Theorem 4.1 we obtain the required statement.
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