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О НАИЛУЧШЕМ ПРИБЛИЖЕНИИ ФУНКЦИЙ В

ПРОСТРАНСТВЕ БЕРГМАНА 𝐵2

Д.К. ТУХЛИЕВ

Аннотация. В работе изучаются экстремальные задачи, связанные с наилучшим по-

линомиальным приближением аналитических в единичном круге функций в гильбер-

товом пространстве Бергмана 𝐵2. Найдены точные неравенства для наилучшего при-

ближения произвольной аналитической в единичном круге функций 𝑓 ∈ 𝐵2 алгеб-

раическими комплексными полиномами 𝑝𝑛 ∈ 𝒫𝑛 посредством усреднённого значения

модуля непрерывности 𝜔(𝑓 (𝑟), 𝑡)𝐵2 производной 𝑟-го порядка 𝑓 (𝑟) в пространстве 𝐵2.

Введён класс 𝑊
(𝑟)
2 (𝜔,Φ) аналитических в единичном круге функций, усреднённое зна-

чение модуля непрерывности производной 𝑓 (𝑟) которых удовлетворяет неравенству

𝑢∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

𝑢
𝑡 𝑑𝑡 ⩽ Φ2(𝑢), 0 ⩽ 𝑢 ⩽ 2𝜋.

При определённых ограничениях на мажоранту Φ для введённого класса функций вы-

числены точные значения различных 𝑛–поперечников. При решении указанных задач

используются методы решения экстремальных задач в нормированных пространствах

и используется метод оценки 𝑛–поперечников, разработанный В.М.Тихомировым.

Ключевые слова: экстремальные задачи, приближение функций, модуль непрерыв-

ности, верхние грани, 𝑛–поперечники, пространство Бергмана.
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1. Введение и предварительные результаты

Экстремальные задачи наилучшего полиномиального приближения аналитических в
круге функций в различных нормированных пространствах изучались, например, в рабо-
тах [1], [3]–[7], [9]–[13], [15], [16], [19], [20], [22]–[29], [31] и многих других. В данной работе
требуется найти верхние грани наилучших приближений функций комплексными алгеб-
раическими полиномами в пространстве Бергмана 𝐵2.
Пусть N, Z+ — соответственно множество натуральных и целых неотрицательных чи-

сел. Пусть далее C — комплексная плоскость, 𝑈 := {𝑧 ∈ C : |𝑧| < 1} — единичный круг в
C, 𝐴(𝑈) — множество функций, аналитических в круге 𝑈 .

Определение 1.1 ([6]). Говорят, что аналитическая в единичном круге 𝑈 функция

𝑓(𝑧) =
∞∑︁
𝑘=0

𝑐𝑘(𝑓)𝑧
𝑘, 𝑧 = 𝜌𝑒𝑖𝑡, 0 ⩽ 𝜌 < 1, 0 ⩽ 𝑡 ⩽ 2𝜋 (1.1)
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принадлежит пространству Бергмана 𝐵2, если

‖𝑓‖2 := ‖𝑓‖𝐵2 =

(︃
1

𝜋

∫︁∫︁
(𝑈)

|𝑓(𝑧)|2 𝑑𝜎

)︃ 1
2

< ∞. (1.2)

Производную 𝑟-го порядка функции 𝑓 ∈ 𝐴(𝑈) определим, как обычно,

𝑓 (𝑟)(𝑧) :=
𝑑𝑟𝑓(𝑧)

𝑑𝑧𝑟
=

∞∑︁
𝑘=𝑟

𝑘(𝑘 − 1) · · · (𝑘 − 𝑟 + 1)𝑐𝑘(𝑓)𝑧
𝑘−𝑟, 𝑟 ∈ N. (1.3)

Ради краткости, введём обозначение

𝛼𝑘,𝑟 := 𝑘(𝑘 − 1) · · · (𝑘 − 𝑟 + 1) =
𝑘!

(𝑘 − 𝑟)!
, 𝑘, 𝑟 ∈ N, 𝑘 > 𝑟. (1.4)

Всюду далее символом 𝐵
(𝑟)
2 (𝑟 ∈ Z+, 𝐵

(0)
2 = 𝐵2) обозначим множество функций 𝑓 ∈

𝐴(𝑈), принадлежащих пространству 𝐵2, производная 𝑟-го порядка 𝑓 (𝑟)(𝑧) которых также
принадлежит 𝐵2, то есть

𝐵
(𝑟)
2 :=

{︀
𝑓 ∈ 𝐵2 : ‖𝑓 (𝑟)‖2 < ∞

}︀
.

Пусть 𝒫𝑛 — подпространство комплексных алгебраических многочленов степени 𝑛 вида

𝑝𝑛(𝑧) =
𝑛∑︁

𝑘=0

𝑎𝑘𝑧
𝑘, 𝑎𝑘 ∈ C.

Величину

𝐸𝑛(𝑓)2 := 𝐸(𝑓,𝒫𝑛)𝐵2 = inf
{︀
‖𝑓 − 𝑝𝑛‖2 : 𝑝𝑛 ∈ 𝒫𝑛

}︀
(1.5)

называют наилучшим полиномиальным среднеквадратическим приближением функции
𝑓 ∈ 𝐵2 подпространством 𝒫𝑛.
Хорошо известно [14, c. 203], что для произвольной функции 𝑓 ∈ 𝐵2 имеет место соот-

ношение

𝐸𝑛−1(𝑓2) = ‖𝑓 − 𝑇𝑛−1(𝑓)‖2 =

{︃
∞∑︁
𝑘=𝑛

|𝑐𝑘(𝑓)|2

𝑘 + 1

}︃ 1
2

, (1.6)

где 𝑇𝑛−1(𝑓) — частная сумма порядка 𝑛− 1 ряда (1.1).
Запишем норму (1.1) в более удобном виде

‖𝑓‖2 :=

⎛⎝ 1

𝜋

1∫︁
0

2𝜋∫︁
0

|𝑓(𝜌𝑒𝑖𝑡)|2𝜌 𝑑𝜌 𝑑𝑡

⎞⎠
1
2

,

и символом

∆1
ℎ𝑓(𝜌𝑒

𝑖𝑡) = 𝑓(𝜌𝑒𝑖(𝑡+ℎ))− 𝑓(𝜌𝑒𝑖𝑡)

обозначим конечную разность первого порядка функции 𝑓 ∈ 𝐵2 по аргументу 𝑡 с шагом
ℎ. Равенством

𝜔(𝑓, 𝜏)𝐵2 : = sup
{︀
‖∆1

ℎ(𝑓)‖𝐵2 : |ℎ| ⩽ 𝜏
}︀

= sup
|ℎ|⩽𝜏

1

𝜋

1∫︁
0

2𝜋∫︁
0

|𝑓(𝜌𝑒𝑖(𝑡+ℎ) − 𝑓(𝜌𝑒𝑖𝑡)|2 𝑑𝜌 𝑑𝑡
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определим модуль непрерывности первого порядка функции 𝑓 ∈ 𝐵2. Пользуясь соотноше-
ниями (1.3) и (1.4), для любого 𝑟 ∈ Z+ имеем

∆1
ℎ𝑓

(𝑟)(𝜌𝑒𝑖𝑡) =
∞∑︁

𝑘=𝑟+1

𝛼𝑘,𝑟𝑐𝑘(𝑓)𝜌
𝑘−𝑟𝑒𝑖(𝑘−𝑟)𝑡

(︀
1− 𝑒𝑖(𝑘−𝑟)ℎ

)︀
.

Отсюда, применяя тождество Парсеваля, получаем

‖∆1
ℎ𝑓

(𝑟)‖2 = 2
∞∑︁

𝑘=𝑟+1

𝛼2
𝑘,𝑟

|𝑐𝑘(𝑓)|2

𝑘 − 𝑟 + 1

(︀
1− cos(𝑘 − 𝑟)ℎ

)︀
(1.7)

и, следовательно,

𝜔2(𝑓 (𝑟), 𝜏)𝐵2 = 2 sup
|ℎ|⩽𝜏

∞∑︁
𝑘=𝑟+1

𝛼2
𝑘,𝑟

|𝑐𝑘(𝑓)|2

𝑘 − 𝑟 + 1

(︀
1− cos(𝑘 − 𝑟)ℎ

)︀
. (1.8)

2. Основные результаты

В этом пункте излагаем основные результаты, полученные в данной статье. Имеет место
следующая

Теорема 2.1. Для любой функции 𝑓 ∈ 𝐵2 и любого наперёд заданного 𝑛 ∈ N при любом
ℎ ∈

(︀
0, 𝜋

𝑛

]︀
справедливо неравенство

𝐸2
𝑛−1(𝑓)𝐵2 ⩽

ℎ∫︁
0

𝜔2(𝑓, 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 𝑑𝑡

2

⎡⎣2ℎ
𝜋

−
ℎ∫︁

0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎤⎦ . (2.1)

Для функции 𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐵2 неравенство (2.1) обращается в равенство для всех
ℎ ∈

(︀
0, 𝜋

𝑛

]︀
.

Доказательство. Пользуясь определением модуля непрерывности запишем

𝜔2(𝑓, 𝑡)𝐵2 ⩾ ‖𝑓(·+ 𝑡)− 𝑓(·)‖𝐵2 =
1

𝜋

1∫︁
0

2𝜋∫︁
0

𝜌|𝑓(𝜌𝑒𝑖(𝑥+𝑡))− 𝑓(𝜌𝑒𝑖𝑥)|2 𝑑𝜌 𝑑𝑥

= 2
∞∑︁
𝑘=1

|𝑐𝑘(𝑓)|2

𝑘 + 1
(1− cos 𝑘𝑡) ⩾ 2

∞∑︁
𝑘=𝑛

|𝑐𝑘(𝑓)|2

𝑘 + 1
(1− cos 𝑘𝑡).

(2.2)

В предположении ℎ ∈
(︀
0, 𝜋

𝑛

]︀
умножим обе части неравенства (2.2) на функцию sin 𝜋

ℎ
𝑡 и

проинтегрируем по 𝑡 от 0 до ℎ. В итоге получаем

ℎ∫︁
0

𝜔2(𝑓, 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 ⩾ 2

∞∑︁
𝑘=𝑛

|𝑐𝑘(𝑓)|2

𝑘 + 1

ℎ∫︁
0

(1− cos 𝑘𝑡) sin
𝜋

ℎ
𝑡 𝑑𝑡

= 2
∞∑︁
𝑘=𝑛

|𝑐𝑘(𝑓)|2

𝑘 + 1

ℎ∫︁
0

sin
𝜋

ℎ
𝑡 𝑑𝑡− 2

∞∑︁
𝑘=𝑛

|𝑐𝑘(𝑓)|2

𝑘 + 1

ℎ∫︁
0

cos 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡.

(2.3)
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Теперь заметим, что функция натурального аргумента

𝜙(𝑘) =

ℎ∫︁
0

cos 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡

убывает по 𝑘 ∈ N при ℎ ∈
(︀
0, 𝜋

𝑘

]︀
, так как производная

𝜙′(𝑘) = −
ℎ∫︁

0

𝑡 sin 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡 < 0.

Поэтому при ℎ ∈
(︀
0, 𝜋

𝑘

]︀
, 𝑡 ∈ (0, ℎ) и 𝑘 ⩾ 𝑛

ℎ∫︁
0

cos 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡 ⩽

ℎ∫︁
0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡. (2.4)

При ℎ ∈
(︀
𝜋
𝑘
, 𝜋
𝑛

]︀
, 𝑡 ∈ (0, ℎ) и 𝑘 ⩾ 𝑛 снова имеет место (2.4), так как

ℎ∫︁
0

cos 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡 =

2𝜋ℎ

𝜋2 − ℎ2𝑘2
cos2

𝑘ℎ

2
⩽ 0,

ℎ∫︁
0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡 =

2𝜋ℎ

𝜋2 − ℎ2𝑛2
cos2

𝑛ℎ

2
⩾ 0.

Таким образом, при всех ℎ ∈
(︀
0, 𝜋

𝑛

]︀
, 𝑡 ∈ (0, ℎ) и 𝑘 ⩾ 𝑛

ℎ∫︁
0

cos 𝑘𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡 ⩽

ℎ∫︁
0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡.

Отсюда из (2.3) получаем

ℎ∫︁
0

𝜔2(𝑓, 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 ⩾

4ℎ

𝜋
𝐸2

𝑛−1(𝑓)𝐵2 − 2𝐸2
𝑛−1(𝑓)𝐵2

ℎ∫︁
0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡

= 𝐸2
𝑛−1(𝑓)𝐵2

⎡⎣4ℎ
𝜋

− 2

ℎ∫︁
0

cos𝑛𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎤⎦ ,

откуда и следует неравенство (2.1). Знак равенства для 𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐵2 проверяется
непосредственным вычислением.

Замечание 2.1. Так как при ℎ = 𝜋
𝑛

𝜋
𝑛∫︁

0

cos𝑛𝑡 sin𝑛𝑡 𝑑𝑡 = 0,

из (2.1) получаем

𝐸𝑛−1(𝑓)𝐵2 ⩽
1√
2

⎛⎜⎝𝑛

2

𝜋
𝑛∫︁

0

𝜔2(𝑓, 𝑡)𝐵2 sin𝑛𝑡 𝑑𝑡

⎞⎟⎠
1
2

. (2.5)
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Неравенство (2.5) является аналогом известного неравенства Н.И. Черныха [21], дока-
занного для класса периодических функций 𝐿2 := 𝐿2[0, 2𝜋] на случай аналитических в
единичном круге функций, принадлежащих пространству Бергмана 𝐵2.

Теорема 2.2. Для любой функции 𝑓 ∈ 𝐵
(𝑟)
2 , 𝑟 ∈ Z+ и любой 𝑛 ∈ N, 𝑛 > 𝑟 справедливо

неравенство

𝐸2
𝑛−1(𝑓)𝐵2 ⩽

1

2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

ℎ∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 𝑑𝑡

ℎ∫︁
0

(1− cos(𝑛− 𝑟)𝑡) sin
𝜋

ℎ
𝑡 𝑑𝑡

. (2.6)

Доказательство. В [30] доказано, что для произвольной функции 𝑓 ∈ 𝐵
(𝑟)
2 при любых

𝑛 ∈ N, 𝑟 ∈ Z+, 𝑛 > 𝑟 имеет место неравенство

𝐸𝑛−1(𝑓)𝐵2 ⩽

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

𝐸𝑛−𝑟−1(𝑓
(𝑟))𝐵2 . (2.7)

В силу теоремы 2.1 имеем

𝐸𝑛−𝑟−1(𝑓
(𝑟))𝐵2 ⩽

⎧⎨⎩
ℎ∫︁

0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎫⎬⎭
1
2

⎧⎨⎩2

⎡⎣2ℎ
𝜋

−
ℎ∫︁

0

cos(𝑛− 𝑟)𝑡 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎤⎦⎫⎬⎭
1
2

=

⎧⎨⎩
ℎ∫︁

0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎫⎬⎭
1
2

⎧⎨⎩2

ℎ∫︁
0

(1− cos(𝑛− 𝑟)𝑡) sin
𝜋

ℎ
𝑡 𝑑𝑡

⎫⎬⎭
1
2

.

(2.8)

Учитывая неравенство (2.8), из (2.7) получаем

𝐸𝑛−1(𝑓)𝐵2 ⩽

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

⎧⎨⎩
ℎ∫︁

0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

ℎ
𝑡 𝑑𝑡

⎫⎬⎭
1
2

⎧⎨⎩2

ℎ∫︁
0

(1− cos(𝑛− 𝑟)𝑡) sin
𝜋

ℎ
𝑡 𝑑𝑡

⎫⎬⎭
1
2

(2.9)

и таким образом неравенство (2.6) доказано. Легко проверить, что неравенство (2.6) для

функции 𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐵
(𝑟)
2 , 𝑛 > 𝑟, 𝑛 ∈ N, 𝑟 ∈ Z+ обращается в равенство.
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Следствие 2.1. В условиях теоремы при ℎ = 𝜋
(𝑛−𝑟)

, 𝑛 > 𝑟 имеет место неравенство

𝐸𝑛−1(𝑓)𝐵2 ⩽
1√
2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

⎧⎪⎨⎪⎩𝑛− 𝑟

2

𝜋
(𝑛−𝑟)∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin(𝑛− 𝑟)𝑡 𝑑𝑡

⎫⎪⎬⎪⎭
1
2

. (2.10)

Следствие 2.2. Для произвольной функции 𝑓0 ∈ 𝐵
(𝑟)
2 при любых 𝑛 ∈ N, 𝑟 ∈ Z+, 𝑛 > 𝑟

имеет место неравенство типа Джексона

𝐸𝑛−1(𝑓)𝐵2 ⩽
1√
2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

𝜔

(︂
𝑓 (𝑟),

𝜋

𝑛− 𝑟

)︂
𝐵2

. (2.11)

Неравенство (2.11) является следствием монотонного возрастания модуля непрерывно-

сти 𝜔(𝑓 (𝑟), 𝑡)𝐵2 на отрезке
[︁
0, 𝜋

(𝑛−𝑟)

]︁
. Но, если модуль непрерывности 𝜔(𝑓 (𝑟), 𝑡)𝐵2 на отрезке[︁

0, 𝜋
(𝑛−𝑟)

]︁
является выпуклой вверх функцией, то есть для любых 𝑡 ∈

[︁
0, 𝜋

(𝑛−𝑟)

]︁
удовлетво-

ряет условию

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 + 𝜔2

(︂
𝑓 (𝑟),

𝜋

𝑛− 𝑟
− 𝑡

)︂
𝐵2

⩽ 2𝜔2

(︂
𝑓 (𝑟),

𝜋

𝑛− 𝑟

)︂
𝐵2

, (2.12)

то неравенство (2.11) можно уточнить.

Следствие 2.3. На множестве функций 𝑓 ∈ 𝐵
(𝑟)
2 , у которых функция 𝜔(𝑓 (𝑟), 𝑡)𝐵2 удо-

влетворяет условию (2.12), справедливо неравенство

𝐸𝑛−1(𝑓)𝐵2 ⩽
1√
2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

𝜔

(︂
𝑓 (𝑟),

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

. (2.13)

Существует функция 𝑓0 ∈ 𝐵
(𝑟)
2 , которая обращает (2.13) в равенство.

Доказательство. Для произвольной функции 𝑓 ∈ 𝐵
(𝑟)
2 с учетом неравенства (2.12) имеем

𝜋
(𝑛−𝑟)∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin(𝑛− 𝑟)𝑡 𝑑𝑡 =

𝜋
2(𝑛−𝑟)∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin(𝑛− 𝑟)𝑡 𝑑𝑡

+

𝜋
(𝑛−𝑟)∫︁
𝜋

2(𝑛−𝑟)

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin(𝑛− 𝑟)𝑡 𝑑𝑡

=

𝜋
2(𝑛−𝑟)∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin(𝑛− 𝑟)𝑡 𝑑𝑡

+

𝜋
2(𝑛−𝑟)∫︁
0

𝜔2

(︂
𝑓 (𝑟),

𝜋

𝑛− 𝑟
− 𝑡

)︂
𝐵2

sin(𝑛− 𝑟)𝑡 𝑑𝑡

=

𝜋
2(𝑛−𝑟)∫︁
0

[︃
𝜔2(𝑓 (𝑟), 𝑡)𝐵2 + 𝜔2

(︂
𝑓 (𝑟),

𝜋

𝑛− 𝑟
− 𝑡

)︂
𝐵2

]︃
sin(𝑛− 𝑟)𝑡 𝑑𝑡
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⩽

𝜋
2(𝑛−𝑟)∫︁
0

2𝜔2

(︂
𝑓 (𝑟),

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

sin(𝑛− 𝑟)𝑡 𝑑𝑡

=
2

𝑛− 𝑟
𝜔2

(︂
𝑓 (𝑟),

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

,

откуда сразу следует, что

𝐸𝑛−1(𝑓)𝐵2 ⩽
1√
2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

𝜔

(︂
𝑓 (𝑟),

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

и неравенство (2.13) доказано.

Докажем, что для функции 𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐵
(𝑟)
2 неравенство (2.13) обращается в равенство.

Для этой функции

𝐸𝑛−1(𝑓0)𝐵2 =
1√
𝑛+ 1

и так как

𝑓
(𝑟)
0 (𝑧) = 𝛼𝑛,𝑟𝑧

𝑛−𝑟, 𝑛 > 𝑟,

в силу формулы (1.8) имеем

𝜔
(︁
𝑓
(𝑟)
0 , 𝑡

)︁
𝐵2

=

√
2𝛼𝑛,𝑟√

𝑛− 𝑟 + 1
(1− cos(𝑛− 𝑟)𝑡)

1
2 ,

𝜔

(︂
𝑓
(𝑟)
0 ,

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

=

√
2𝛼𝑛,𝑟√

𝑛− 𝑟 + 1
.

Пользуясь этими равенствами, запишем√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

1√
2
𝜔

(︂
𝑓
(𝑟)
0 ,

𝜋

2(𝑛− 𝑟)

)︂
𝐵2

=

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

1√
2

√
2𝛼𝑛,𝑟√

𝑛− 𝑟 + 1
=

1√
𝑛+ 1

= 𝐸𝑛−1(𝑓0)𝐵2

и следствие 2.3 доказано.

3. Точные значения 𝑛–поперечников классов функций 𝑊2(𝜔,Φ) в 𝐵2

Для формулировки результатов данного пункта напомним необходимые понятия и опре-
деления.
Пусть 𝑆 := {𝑓 : ‖𝑓‖ ⩽ 1} — единичный шар в 𝐵2; M — выпуклое центрально–

симметричное подмножество из 𝐵2; ℒ𝑛 ⊂ 𝐵2 — 𝑛–мерное подпространство; ℒ𝑛 ⊂ 𝐵2 —
подпространство коразмерности 𝑛; Λ : 𝐵2 → ℒ𝑛 — непрерывный линейный оператор;
Λ⊥ : 𝐵2 → ℒ𝑛 — непрерывный оператор линейного проектирования. Величины

𝑏𝑛(M, 𝐵2) = sup {sup {𝜀 > 0 : 𝜀𝑆 ∩ ℒ𝑛+1 ⊂ M} : ℒ𝑛+1 ⊂ 𝐵2} ,
𝑑𝑛(M, 𝐵2) = inf {sup {inf {‖𝑓 − 𝜙‖𝐵2 : 𝜙 ∈ ℒ𝑛} : 𝑓 ∈ M} : ℒ𝑛 ⊂ 𝐵2} ,
𝛿𝑛(M, 𝐵2) = inf {inf {sup {‖𝑓 − Λ𝑓‖𝐵2 : 𝑓 ∈ M} : Λ𝐵2 ⊂ ℒ𝑛} : ℒ𝑛 ⊂ 𝐵2} ,
𝑑𝑛(M, 𝐵2) = inf {sup {‖𝑓‖𝐵2 : 𝑓 ∈ M ∩ ℒ𝑛} : ℒ𝑛 ⊂ 𝐵2} ,
Π𝑛(M, 𝐵2) = inf

{︀
inf
{︀
sup

{︀
‖𝑓 − Λ⊥𝑓‖𝐵2 : 𝑓 ∈ M

}︀
: Λ⊥𝐵2 ⊂ ℒ𝑛

}︀
: ℒ𝑛 ⊂ 𝐵2

}︀
,
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называют соответственно бернштейновским, колмогоровским, линейным, гельфандов-

ским, проекционным 𝑛–поперечниками множества M в пространстве 𝐵2.
Так как 𝐵2 является гильбертовым пространством, то между перечисленными выше

𝑛–поперечниками выполняются соотношения [17], [32]:

𝑏𝑛(M, 𝐵2) ⩽ 𝑑𝑛(M, 𝐵2) ⩽ 𝑑𝑛(M, 𝐵2) = 𝛿𝑛(M, 𝐵2) = Π𝑛(M, 𝐵2). (3.1)

Напомним, что вычислению в пространстве 𝐵2 точных значений 𝑛–поперечников классов
аналитических в единичном круге функций, определенных при помощи модулей непре-
рывности и иных характеристик гладкости, посвящены работы С.Б. Вакарчука [4]–[7], [9],
М.Ш. Шабозова с учениками [22]–[24], А. Пинкуса [32], Ю.А. Фаркова [19], М.Р. Лангар-
шоева [12], [13], С.Б. Вакарчука и М.Ш. Шабозова [8] и многих других.
Используя определение модуля непрерывности, рассмотрим следующий класс функций.

Пусть Φ(𝑢), где 0 ⩽ 𝑢 ⩽ 2𝜋 есть непрерывная возрастающая функция такая, что Φ(0) = 0.

Символом 𝑊
(𝑟)
2 (𝜔,Φ) обозначим класс функций 𝑓 ∈ 𝐵

(𝑟)
2 , 𝑟 ∈ Z+, для которых при

любом 𝑢 ∈ (0, 𝜋] выполняется неравенство

𝑢∫︁
0

𝜔2(𝑓 (𝑟), 𝑡)𝐵2 sin
𝜋

𝑢
𝑡 𝑑𝑡 ⩽ Φ2(𝑢).

Вычислим точные значения вышеперечисленных 𝑛–поперечников при выполнении неко-
торых ограничений на мажоранту Φ2(𝑢).
Отметим, что подобные классы функций впервые появились в работах Л.В. Тайкова

[15], [16] и его ученика Н. Айнуллоева [1] при вычислении точных значение поперечников
классов периодических функций в 𝐿2 := 𝐿2[0, 2𝜋] и аналитических в единичном круге
функций, принадлежащих пространству Харди 𝐻𝑞 (𝑞 ⩾ 1).
Естественно, возникает желание использовать указанные классы функций при решении

ряда экстремальных задач в пространстве Бергмана.

Теорема 3.1. Если для заданного 𝜆 ∈ (0, 1) и для всех 𝜇 > 0, 𝑢 ∈ (0, 𝜋] мажоранта Φ
удовлетворяет условию

Φ2

(︂
𝑢

𝜇
𝜆

)︂ 𝜋𝜇∫︁
0

(1− cos 𝑡)* sin
𝑡

𝜇
𝑑𝑡 ⩽ Φ2(𝑢)

𝜋𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡, (3.2)

где

(1− cos 𝑡)* =

{︃
1− cos 𝑡, 𝑡 ⩽ 𝜋,

2, 𝑡 ⩾ 𝜋,

то при любых 𝑛 ∈ N, 𝑟 ∈ Z+, 𝑛 > 𝑟 справедливо равенство

𝜆𝑛(𝑊
(𝑟)
2 (𝜔,Φ), 𝐵2) = 𝐸𝑛−1(𝑊

(𝑟)
2 (𝜔,Φ))𝐵2

=

√︂
𝑛− 𝑟 + 1

𝑛+ 1

𝑛− 𝑟

𝛼𝑛,𝑟

Φ

(︂
𝜋𝜆

𝑛− 𝑟

)︂
√
2

⎛⎝ 𝜋𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

⎞⎠
1
2

, (3.3)

где 𝜆𝑛(·) любой из вышеперечисленных 𝑛–поперечников, а для N ⊂ 𝐵2 положено

𝐸𝑛−1(N)𝐵2 := sup {𝐸𝑛−1(𝑓)𝐵2 : 𝑓 ∈ 𝐵2} . (3.4)
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Доказательство. Если в правой части (2.9) положить ℎ = 𝜋𝜆
(𝑛−𝑟)

, 𝜆 ∈ (0, 1), 𝑛 ∈ N, 𝑟 ∈ Z+,

𝑛 > 𝑟 и использовать определение класса 𝑊
(𝑟)
2 (𝜔,Φ), то в силу соотношения (3.1) получим

оценку сверху всех 𝑛–поперечников и величины (3.4):

𝜆𝑛(𝑊
(𝑟)
2 (𝜔,Φ), 𝐵2) ⩽ 𝐸𝑛−1(𝑊

(𝑟)
2 (𝜔,Φ)𝐵2

⩽

√︂
𝑛− 𝑟 + 1

𝑛+ 1

1

𝛼𝑛,𝑟

Φ

(︂
𝜋𝜆

𝑛− 𝑟

)︂
√
2

⎛⎝ 𝜋𝜆/(𝑛−𝑟)∫︁
0

(1− cos(𝑛− 𝑟)𝑡) sin
𝑛− 𝑟

𝜆
𝑡 𝑑𝑡

⎞⎠
1
2

=
1√
2

√︂
𝑛− 𝑟 + 1

𝑛+ 1

√
𝑛− 𝑟

𝛼𝑛,𝑟

Φ

(︂
𝜋𝜆

𝑛− 𝑟

)︂
⎛⎝ 𝜋𝜆∫︁

0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

⎞⎠
1
2

.

(3.5)

Для доказательства соотношения (3.3) в силу (3.1) достаточно получить оценку бернштей-
новского 𝑛–поперечника, равную правой части (3.5). С этой целью для произвольного
полинома

𝑝𝑛(𝑧) =
𝑛∑︁

𝑘=0

𝑎𝑘𝑧
𝑘 ∈ 𝒫𝑛

оценим 𝜔(𝑝
(𝑟)
𝑛 , 𝑡)𝐵2 при условии 𝑡 ∈

(︁
0, 𝜋

(𝑛−𝑟)

]︁
. В силу равенства Парсеваля имеем

‖𝑝(𝑟)𝑛 (𝜌𝑒𝑖(𝑥+𝑡))− 𝑝(𝑟)𝑛 (𝜌𝑒𝑖𝑥)‖2𝐵2
= 2

𝑛∑︁
𝑘=𝑟

𝛼2
𝑘,𝑟

|𝑎𝑘|2

𝑘 − 𝑟 + 1
(1− cos(𝑘 − 𝑟)𝑡)

= 2
𝑛∑︁

𝑘=𝑟

𝛼2
𝑘,𝑟

𝑘 + 1

𝑘 − 𝑟 + 1

|𝑎𝑘|2

𝑘 + 1
(1− cos(𝑘 − 𝑟)𝑡).

(3.6)

Так как

max
𝑟⩽𝑘⩽𝑛

𝛼2
𝑘,𝑟

𝑘 + 1

𝑘 − 𝑟 + 1
= 𝛼2

𝑛,𝑟

𝑛+ 1

𝑛− 𝑟 + 1

и при любых 𝑘, 𝑛 ∈ N, 𝑟 ∈ Z+ и любом 𝑡 ⩾ 0 и 𝑘 ⩽ 𝑛, cos(𝑘 − 𝑟)𝑡 ⩾ cos(𝑛 − 𝑟)𝑡, из (3.6) и
определении модуля непрерывности (1.8) имеем

𝜔2(𝑝(𝑟)𝑛 , 𝑡)𝐵2 ⩽ 2𝛼2
𝑛,𝑟

𝑛+ 1

𝑛− 𝑟 + 1
(1− cos(𝑛− 𝑟)𝑡)*

𝑛∑︁
𝑘=𝑟

|𝑎𝑘|2

𝑘 + 1

⩽ 2𝛼2
𝑛,𝑟

𝑛+ 1

𝑛− 𝑟 + 1
(1− cos(𝑛− 𝑟)𝑡)*‖𝑝𝑛‖2𝐵2

.

Умножая обе части полученного неравенства на функцию sin
𝜋

𝑢
𝑡 и интегрируя по 𝑡 от 0

до 𝑢, получаем

𝑢∫︁
0

𝜔2(𝑝(𝑟)𝑛 , 𝑡)𝐵2 sin
𝜋

𝑢
𝑡 𝑑𝑡 ⩽ 2𝛼2

𝑛,𝑟

𝑛+ 1

𝑛− 𝑟 + 1
‖𝑝𝑛‖2𝐵2

𝑢∫︁
0

(1− cos(𝑛− 𝑟)𝑡)* sin
𝜋

𝑢
𝑡 𝑑𝑡. (3.7)
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Введём в рассмотрение сферу (𝑛+ 1)–мерных полиномов

𝑆𝑛+1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑝𝑛 ∈ 𝒫𝑛 : ‖𝑝𝑛‖2𝐵2

=
𝑛− 𝑟 + 1

𝑛+ 1

𝑛− 𝑟

𝛼2
𝑛,𝑟

Φ2

(︂
𝜋𝜆

𝑛− 𝑟

)︂

2

2𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

и покажем, что эта сфера содержится в классе 𝑊
(𝑟)
2 (𝜔,Φ). Для этого возьмём любой по-

лином 𝑝𝑛 ∈ 𝑆𝑛+1 и покажем, что 𝑝𝑛 ∈ 𝑊
(𝑟)
2 (𝜔,Φ). Пусть 𝑝𝑛 ∈ 𝑆𝑛+1. Тогда из (3.7) получаем

𝑢∫︁
0

𝜔2(𝑝(𝑟)𝑛 , 𝑡)𝐵2 sin
𝜋

𝑢
𝑡 𝑑𝑡 ⩽ Φ2

(︂
𝜋𝜆

𝑛− 𝑟

)︂ (𝑛− 𝑟)

𝑢∫︁
0

(1− cos(𝑛− 𝑟)𝑡)* sin
𝜋

𝑢
𝑡 𝑑𝑡

2𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

. (3.8)

Положив в правой части (3.8) 𝑢 = 𝜋𝜇
(𝑛−𝑟)

, 𝜇 > 0 и сделав замену переменной, в силу огра-

ничения (3.2) имеем

𝑢∫︁
0

𝜔2(𝑝(𝑟)𝑛 , 𝑡)𝐵2 sin
𝜋

𝑢
𝑡 𝑑𝑡 ⩽ Φ2

(︂
𝑢

𝜇
𝜆

)︂
𝜋𝜇∫︁
0

(1− cos 𝑡)* sin
𝑡

𝜇
𝑑𝑡

𝜋𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

⩽ Φ2(𝑢).

Следовательно, 𝑆𝑛+1 ∈ 𝑊
(𝑟)
2 (𝜔,Φ) и по определению бернштейновского 𝑛–поперечника

𝑏𝑛(𝑊
(𝑟)
2 (𝜔,Φ), 𝐵2) ⩾ 𝑏𝑛(𝑆𝑛+1, 𝐵2)

=

√︂
𝑛− 𝑟 + 1

𝑛+ 1

√
𝑛− 𝑟

𝛼𝑛,𝑟

Φ

(︂
𝜋𝜆

𝑛− 𝑟

)︂
√
2

⎛⎝ 𝜋𝜆∫︁
0

(1− cos 𝑡) sin
𝑡

𝜆
𝑑𝑡

⎞⎠
1
2

. (3.9)

Требуемое равенство (3.3) в силу соотношения (3.1) следует из сопоставления оценки свер-
ху (3.5) и снизу (3.9). Теорема полностью доказана.

В [2] доказано, что для функции Φ2
*(𝑢) = 𝑢𝛼 неравенства (3.2) выполняются для значе-

ний 𝛼 в пределах
𝜋

8
+ 1 < 𝛼 < 3.
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