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ON NEW REPRESENTATIONS FOR VALUES OF

RIEMANN ZETA FUNCTION AT ODD POINTS

AND RELATED NUMBERS

T.A. SAFONOVA, B.D. BARMAK

Abstract. Let 𝜁(𝑠) and 𝛽(𝑠) be the Riemann zeta function and Dirichlet beta function.
In this work, for some linear combinations of the numbers 𝜁(2𝑛+ 1) and 𝛽(2𝑛), we obtain
new representations by the series, the general term of which involves the logarithms. This
is done by the methods of spectral theory of ordinary differential operators generated in
the Hilbert space ℒ2[0, 𝜋] by the expression 𝑙[𝑦] = −𝑦′′ − 𝑎2𝑦 and the Dirichlet boundary
condition, where 𝑎 is a parameter. These representations in particular imply the known
and new representations for these linear combinations as the sums of some sufficiently fast
converging series, the general term of which involves 𝜁(2𝑛). The obtained results are applied
to various representations of Catalan constant 𝛽(2) and Apéry constant 𝜁(3).

Keywords: Riemann zeta function, Dirichlet beta function, Catalan constant, Apéry con-
stant.
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1. Introduction

Let, as usually, 𝜁(𝑠) be the Riemann zeta function defined for Re 𝑠 > 1 by the identity

𝜁(𝑠) =
+∞∑︁
𝑘=1

1

𝑘𝑠
.

Following [7, Ch. 23], by the symbols 𝛽(𝑠), 𝜆(𝑠) and 𝜂(𝑠) we denote related with 𝜁(𝑠) Dirichlet
functions defined for Re 𝑠 > 0, Re 𝑠 > 1 and Re 𝑠 > 0 respectively by the identities

𝛽(𝑠) =
+∞∑︁
𝑘=1

(−1)𝑘−1

(2𝑘 − 1)𝑠
, 𝜆(𝑠) =

+∞∑︁
𝑘=1

1

(2𝑘 − 1)𝑠
, 𝜂(𝑠) =

+∞∑︁
𝑘=1

(−1)𝑘−1

𝑘𝑠
. (1.1)

It is well–known that

𝜆(𝑠) = (1− 2−𝑠)𝜁(𝑠), 𝜂(𝑠) = (1− 21−𝑠)𝜁(𝑠) (1.2)

and

𝜁(2𝑛) =
(−1)𝑛−1(2𝜋)2𝑛

2(2𝑛)!
𝐵2𝑛, 𝛽(2𝑛− 1) =

(−1)𝑛−1
(︁𝜋
2

)︁2𝑛−1

2(2𝑛− 2)!
𝐸2(𝑛−1), 𝑛 = 1, 2, . . . ,

where 𝐵𝑛 and 𝐸𝑛 are the Bernulli and Euler numbers, respectively, see, for instance, [7, Ch. 23,
Eqs. (23.2.20), (23.2.19), (23.2.16), (23.2.22)]. These identities imply that the numbers 𝜁(2𝑛)
and 𝛽(2𝑛 + 1) are transcendental. However, various known representations for the numbers
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𝜁(2𝑛 + 1), 𝛽(2𝑛), 𝜆(2𝑛 + 1) and 𝜂(2𝑛 − 1) for 𝑛 = 1, 2, . . . or their certain combinations, for
instance, the integral representations

𝜁(2𝑛+ 1) =
(−1)𝑛+1(2𝜋)2𝑛+1

2(2𝑛+ 1)!

1∫︁
0

𝐵2𝑛+1(𝑥) cot(𝜋𝑥) 𝑑𝑥 (1.3)

and

𝛽(2𝑛) =
(−1)𝑛𝜋2𝑛

4(2𝑛− 1)!

1∫︁
0

𝐸2𝑛−1(𝑥)

cos(𝜋𝑥)
𝑑𝑥, (1.4)

which have already become classical, see, for instance, [7, Ch. 23, Eqs. (23.2.17), (23.2.23)],
and quite recent ones

𝜆(2𝑛+ 1) =
(−1)𝑛𝜋2𝑛+1

4(2𝑛)!

1∫︁
0

𝐸2𝑛(𝑥)

sin(𝜋𝑥)
𝑑𝑥 (1.5)

and

𝜂(2𝑛− 1) =
(−1)𝑛(2𝜋)2𝑛−1

2(2𝑛− 1)!

1∫︁
0

𝐵2𝑛−1(𝑥) tan(𝜋𝑥) 𝑑𝑥, (1.6)

see, for instance [10, Thm. 1], does not allow to study the arithmetic nature of these numbers
and a little is known about this. In particular, this is the reason why the representations for
these numbers or their combinations as the integrals, series and others is of a special interest,
and the literature devoted to this subject is very rich, see, for instance, [10], [11], [15], [9] and
the references therein.
In Section 2 of the present work we provide preliminary facts used in the proofs of the main

results of this work in Sections 3–6, in which we formulate statements on new representations
of certain linear combinations of the numbers 𝜁(2𝑛+1), 𝛽(2𝑛), 𝜆(2𝑛+1) and 𝜂(2𝑛− 1) as the
series, the general term of which involves the logarithm (Theorem 3.1 and Corollaries 4.1–5.1),
and as the sums of sufficiently fast converging series, the general term of which involves 𝜁(2𝑛)
(Corollaries 6.1 and 6.2).
Throughout the paper a special attention is paid to the application of obtained results to

various representations for the Catalana constant 𝛽(2) (=: 𝐺) and Apéry constant 𝜁(3).

2. Preliminaries

As in works [2] and [3], we consider the differential operator generated by the expression

𝑙[𝑦] = −𝑦′′ − 𝑎2𝑦, −1 < 𝑎 < 1,

and the Dirichlet boundary conditions 𝑦(0)=𝑦(𝜋)=0 in the Hilbert space ℒ2[0, 𝜋] of all classes of
complex–valued measurable functions 𝑦 coinciding almost everywhere such that |𝑦|2 is Lebesgue
integrable over [0, 𝜋]. By the methods of spectral theory for this operator, in the above cited
works, integral representations were obtained for the sequences of numbers

𝒜𝑚 = 𝜋2𝑚

(︃
𝑚∑︁

𝑛=1

(−1)𝑚−𝑛

22(𝑚−𝑛)(2𝑚− 2𝑛)!

𝛽(2𝑛)

𝜋2𝑛

)︃
,

ℬ𝑚 = 𝜋2𝑚+1

(︃
𝑚∑︁

𝑛=1

(−1)𝑚−𝑛

22(𝑚−𝑛)+1(2𝑚− 2𝑛+ 1)!

𝛽(2𝑛)

𝜋2𝑛
− 𝜆(2𝑚+ 1)

𝜋2𝑚+1

)︃
,
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𝒞𝑚 = 𝜋2𝑚

(︃
𝑚∑︁

𝑛=1

(−1)𝑚−𝑛

(2𝑚− 2𝑛+ 1)!

𝜂(2𝑛− 1)

𝜋2𝑛−1

)︃
,

𝒟𝑚 = 𝜋2𝑚+1

(︃
𝑚∑︁

𝑛=1

(−1)𝑚−𝑛

(2𝑚− 2𝑛+ 2)!

𝜂(2𝑛− 1)

𝜋2𝑛−1
− 22𝑚+1 − 1

22𝑚
𝜁(2𝑚+ 1)

𝜋2𝑚+1

)︃
for 𝑚 = 1, 2, . . ., namely, in [2, Cor. 1], the next theorem was proved.

Theorem 2.1. For 𝑚 = 1, 2, . . . the following identities hold

𝒜𝑚 =
(−1)𝑚−1

2(2𝑚− 1)!

𝜋
2∫︁

0

𝑥2𝑚−1

sin𝑥
𝑑𝑥, (2.1)

ℬ𝑚 =
(−1)𝑚−1

2(2𝑚)!

𝜋
2∫︁

0

𝑥2𝑚

sin𝑥
𝑑𝑥, (2.2)

𝒞𝑚 =
(−1)𝑚−122𝑚−1

(2𝑚)!

𝜋
2∫︁

0

𝑥2𝑚

sin2 𝑥
𝑑𝑥 (2.3)

𝒟𝑚 =
(−1)𝑚−122𝑚

(2𝑚+ 1)!

𝜋
2∫︁

0

𝑥2𝑚+1

sin2 𝑥
𝑑𝑥. (2.4)

This theorem in particular implies the following known identities for the numbers 𝐺, 𝜆(3),
𝜂(1)(= ln 2), 𝜂(3) and 𝜁(3)

𝐺 =
1

2

𝜋
2∫︁

0

𝑥

sin𝑥
𝑑𝑥, 𝜆(3) =

𝜋

2
𝐺− 1

4

𝜋
2∫︁

0

𝑥2

sin𝑥
𝑑𝑥, 𝜂(1) =

1

𝜋

𝜋
2∫︁

0

𝑥2

sin2 𝑥
𝑑𝑥,

𝜂(3) =
𝜋2

6
ln 2− 1

3𝜋

𝜋
2∫︁

0

𝑥4

sin2 𝑥
𝑑𝑥, 𝜁(3) =

2𝜋2

7
ln 2− 8

21

𝜋
2∫︁

0

𝑥3

sin2 𝑥
𝑑𝑥;

the formulas for 𝐺, 𝜂(1) and 𝜂(3) were provided, for instance, in [4, Ch. 2, Sect. 2.5.4, Eqs.
(5), (7)], while the formula 𝜆(3) is implied by one Ramanujan identity, see [8, Entry 14].
We note that all these identities except for that for 𝜂(3) are particular cases of the identities

(1.3)–(1.6) for 𝑛 = 1, while the identity for 𝜂(3) is implied by (1.6) for 𝑛 = 2.

3. Main theorem

Using the expansions

1

sin𝑥
=

1

𝑥
+ 2𝑥

+∞∑︁
𝑘=1

(−1)𝑘

𝑥2 − (𝜋𝑘)2
, cot𝑥 =

1

𝑥
+ 2𝑥

+∞∑︁
𝑘=1

1

𝑥2 − (𝜋𝑘)2
, (3.1)

see, for instance, [16, Eqs. (4.22.5), (4.22.3)], we are going to prove the next statement.

Lemma 3.1. For 𝑗 = 1, 2, . . . the identities
𝜋
2∫︁

0

𝑥𝑗

sin𝑥
𝑑𝑥 =

(︁𝜋
2

)︁𝑗⎛⎝1

𝑗
− 2

+∞∑︁
𝑘=1

(−1)𝑘
1∫︁

0

𝑢𝑗+1

(2𝑘)2 − 𝑢2
𝑑𝑢

⎞⎠ (3.2)
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and

1

𝑗 + 1

𝜋
2∫︁

0

𝑥𝑗+1

sin2 𝑥
𝑑𝑥 =

(︁𝜋
2

)︁𝑗⎛⎝1

𝑗
− 2

+∞∑︁
𝑘=1

1∫︁
0

𝑢𝑗+1

(2𝑘)2 − 𝑢2
𝑑𝑢

⎞⎠ . (3.3)

hold.

Proof. We observe that
𝜋
2∫︁

0

𝑥𝑗

sin𝑥
𝑑𝑥 =

(︁𝜋
2

)︁𝑗+1
1∫︁

0

𝑥𝑗

sin 𝜋𝑥
2

𝑑𝑥,

we replace 𝑥 by
𝜋𝑥

2
in the first identity in (3.1), multiply then both sides by 𝑥𝑗 and integrate

the obtained identity from 0 and 1. This gives
𝜋
2∫︁

0

𝑥𝑗

sin𝑥
𝑑𝑥 =

(︁𝜋
2

)︁𝑗⎛⎝1

𝑗
+ 2

1∫︁
0

+∞∑︁
𝑘=1

(−1)𝑘−1𝑥𝑗+1

(2𝑘)2 − 𝑥2
𝑑𝑥

⎞⎠ .

The absolute value of general term of the series under the integral obviously satisfies the in-
equality

𝑥𝑗+1

(2𝑘)2 − 𝑥2
⩽

1

(2𝑘)2 − 1
for 0 ⩽ 𝑥 ⩽ 1 and 𝑘 = 1, 2, . . . This implies that this functional series converges absolutely and
uniformly on [0, 1], and this is why we can integrate it term by term, that is, the identity (3.2)
is true.
The validity of identity (3.3) can be proved in the same with the only difference that now we

should start with the identity
𝜋
2∫︁

0

𝑥𝑗

sin2 𝑥
𝑑𝑥 = 𝑗

(︁𝜋
2

)︁𝑗 1∫︁
0

𝑥𝑗−1𝑐𝑡𝑔
𝜋𝑥

2
𝑑𝑥

and take into consideration the second identity in (3.1). The proof is complete.

We then mention that the integrals in the right hand sides of identities (3.2) and (3.3) can
be calculated explicitly, namely, for 𝑚 = 1, 2, . . . they satisfy the formulas

1∫︁
0

𝑢2𝑚

(2𝑘)2 − 𝑢2
𝑑𝑢 = −1

2

(︃
(2𝑘)2𝑚−1 ln

2𝑘 − 1

2𝑘 + 1
+ 2

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

2𝑚− 2𝑙 − 1

)︃
(3.4)

and
1∫︁

0

𝑢2𝑚+1

(2𝑘)2 − 𝑢2
𝑑𝑢 = −1

2

(︃
(2𝑘)2𝑚 ln

(︂
1− 1

(2𝑘)2

)︂
+

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

𝑚− 𝑙

)︃
, (3.5)

see, for instance, [4, Ch. 1, Sect. 1.2.10, Eqs. (9), (10)].
Applying now the formulas (3.2)–(3.5) in the identities (2.1)–(2.4) of Theorem 2.1, we arrive

at the next theorem.

Theorem 3.1. For 𝑚 = 1, 2, . . . the identities hold

𝒜𝑚 =
(−1)𝑚−1𝜋2𝑚−1

4𝑚(2𝑚− 1)!

·

(︃
1

2𝑚− 1
+

+∞∑︁
𝑘=1

(−1)𝑘

(︃
(2𝑘)2𝑚−1 ln

2𝑘 − 1

2𝑘 + 1
+ 2

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

2𝑚− 2𝑙 − 1

)︃)︃
,

(3.6)
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ℬ𝑚 =
(−1)𝑚−1𝜋2𝑚

4𝑚2(2𝑚)!

·

(︃
1

2𝑚
+

+∞∑︁
𝑘=1

(−1)𝑘

(︃
(2𝑘)2𝑚 ln

(︂
1− 1

(2𝑘)2

)︂
+

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

𝑚− 𝑙

)︃)︃
,

(3.7)

𝒞𝑚 =
(−1)𝑚−1𝜋2𝑚−1

(2𝑚− 1)!

·

(︃
1

2𝑚− 1
+

+∞∑︁
𝑘=1

(︃
(2𝑘)2𝑚−1 ln

2𝑘 − 1

2𝑘 + 1
+ 2

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

2𝑚− 2𝑙 − 1

)︃)︃
,

(3.8)

𝒟𝑚 =
(−1)𝑚−1𝜋2𝑚

(2𝑚)!

(︃
1

2𝑚
+

+∞∑︁
𝑘=1

(︃
(2𝑘)2𝑚 ln

(︂
1− 1

(2𝑘)2

)︂
+

𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

𝑚− 𝑙

)︃)︃
. (3.9)

We note that we obtained the identity (3.6) in [5], while to the best of our knowledge, the
identities (3.7)–(3.9) are new.

4. On Catalana constant, Apéry constant and ln 2

Theorem 3.1 allows us to represent the constants 𝜁(3), 𝐺, 𝜆(3), 𝜂(3) and ln 2 as the series,
the general term of which involves the logarithms. Namely, letting 𝑚 = 1 in the identities
(3.6)–(3.9) and 𝑚 = 2 in (3.8), we arrive at the following corollaries of this theorem.

Corollary 4.1. The identities hold

𝐺 =
𝜋

4

(︃
1 + 2

+∞∑︁
𝑘=1

(−1)𝑘
(︂
1 + 𝑘 ln

2𝑘 − 1

2𝑘 + 1

)︂)︃
, (4.1)

𝜆(3) =
𝜋

2
𝐺− 𝜋2

32

(︃
1 + 2

+∞∑︁
𝑘=1

(−1)𝑘
(︂
1 + 4𝑘2 ln

(︂
1− 1

4𝑘2

)︂)︂)︃
, (4.2)

ln 2 = 1 + 2
+∞∑︁
𝑘=1

(︂
1 + 𝑘 ln

2𝑘 − 1

2𝑘 + 1

)︂
, (4.3)

𝜂(3) =
𝜋2

6
ln 2− 𝜋2

18

(︃
1 + 2

+∞∑︁
𝑘=1

(︂
1 + 12𝑘2 + 12𝑘3 ln

2𝑘 − 1

2𝑘 + 1

)︂)︃
, (4.4)

𝜁(3) =
2𝜋2

7
ln 2− 𝜋2

7

(︃
1 + 2

+∞∑︁
𝑘=1

(︂
1 + 4𝑘2 ln

(︂
1− 1

4𝑘2

)︂)︂)︃
. (4.5)

Corollary 4.2. The identities

2𝜋𝐺− 7

2
𝜁(3) =

𝜋2

8

(︃
1 + 2

+∞∑︁
𝑘=1

(−1)𝑘
(︂
1 + 4𝑘2 ln

(︂
1− 1

4𝑘2

)︂)︂)︃

and

2𝜋𝐺− 35

8
𝜁(3) = −𝜋2

4
ln 2 +

𝜋2

4

(︃
1 + 2

+∞∑︁
𝑘=1

(︂
1 + 16𝑘2 ln

(︂
1− 1

16𝑘2

)︂)︂)︃
hold.
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Proof. The first identity is implied immediately by (4.2) once we take into consideration the

first relation in (1.2). If we deduct the identity (4.5) multiplied by
7

8
from the obtained identity,

we arrive at the second required formula. The proof is complete.

We note that the partial sums 𝑆2𝑚 and 𝑆2𝑚 of the series in the right hand sides of identities
(4.1) and (4.2) are written respectively as

𝑆2𝑚 =
2𝑚∑︁
𝑘=1

(−1)𝑘𝑘 ln
2𝑘 − 1

2𝑘 + 1
and 𝑆2𝑚 = 4

2𝑚∑︁
𝑘=1

(−1)𝑘𝑘2 ln

(︂
1− 1

4𝑘2

)︂
.

Calculating the limits of the partial sums 𝑆2𝑚 and 𝑆2𝑚 as 𝑚 → +∞, we arrive at the next
statement.

Corollary 4.3. The identities

𝐺 =
𝜋

4

(︃
1 + 2 lim

𝑚→+∞

2𝑚∑︁
𝑘=1

(−1)𝑘𝑘 ln
2𝑘 − 1

2𝑘 + 1

)︃
and

𝜆(3) =
𝜋

2
𝐺− 𝜋2

32

(︃
1 + 8 lim

𝑚→+∞

2𝑚∑︁
𝑘=1

(−1)𝑘𝑘2 ln

(︂
1− 1

4𝑘2

)︂)︃
hold.

In the integral in the right hand side of the identity (2.1) with 𝑚 = 1 we make the change of

variable 𝑥 =
𝜋

2
− 𝑡, in the obtained integral we employ the expansion

1

cos𝑥
= 4𝜋

+∞∑︁
𝑘=1

(−1)𝑘+1(2𝑘 − 1)

(𝜋 (2𝑘 − 1))2 − (2𝑥)2

(see, for instance, [1, Sect. 1.422, Eq. (1)]), integrate the obtained series term by term and
calculate the appearing integral of a fractional rational function. This leads us to the following
chain of identities

𝜋
2∫︁

0

𝜋
2
− 𝑥

cos𝑥
𝑑𝑥 = 𝜋

+∞∑︁
𝑘=1

(−1)𝑘+1(2𝑘 − 1)

𝜋
2∫︁

0

𝑥− 𝜋
2

𝑥2 −
(︀
𝜋
2
(2𝑘 − 1)

)︀2 𝑑𝑥
= 𝜋

⎛⎜⎝ln 2 +
+∞∑︁
𝑘=1

(−1)𝑘(2𝑘 + 1)

𝜋
2∫︁

0

𝑥− 𝜋
2

𝑥2 −
(︀
𝜋
2
(2𝑘 + 1)

)︀2 𝑑𝑥
⎞⎟⎠

= 𝜋

(︃
ln 2 +

+∞∑︁
𝑘=1

(−1)𝑘
(︂
𝑘 ln

2𝑘

2𝑘 + 1
+ (𝑘 + 1) ln

2𝑘 + 2

2𝑘 + 1

)︂)︃

= 𝜋

(︃
ln 2 +

1

2

+∞∑︁
𝑘=1

(−1)𝑘(2𝑘 + 1) ln

(︂
1− 1

(2𝑘 + 1)2

)︂
+

1

2

+∞∑︁
𝑘=1

(−1)𝑘 ln
𝑘 + 1

𝑘

)︃
and therefore, according to (2.1) with 𝑚 = 1, we get the following identity for the Catalan
constant

𝐺 =
𝜋

2

(︃
ln 2 +

1

2

+∞∑︁
𝑘=1

(−1)𝑘(2𝑘 + 1) ln

(︂
1− 1

(2𝑘 + 1)2

)︂
+

1

2

+∞∑︁
𝑘=1

(−1)𝑘 ln
𝑘 + 1

𝑘

)︃
.
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Applying the Wallis formula, we get

+∞∑︁
𝑘=1

(−1)𝑘 ln
𝑘 + 1

𝑘
= − ln

+∞∏︁
𝑛=1

4𝑛2

(2𝑛− 1)(2𝑛+ 1)
= − ln

𝜋

2
.

Thus,

𝐺 =
𝜋

4

(︃
ln

8

𝜋
+

+∞∑︁
𝑘=1

(−1)𝑘(2𝑘 + 1) ln

(︂
1− 1

(2𝑘 + 1)2

)︂)︃
. (4.6)

This identity is due to Ramanujan [13], while the identities in the above corollaries were earlier
given in [5] and [6].
In conclusion of this section, we note that Theorem 3.1 obviously yields a statement analogous

to Corollary 4.1 for an arbitrary 𝑚. However, the resulting formulas are cumbersome, and here
we restrict ourselves to presenting only one of them. Letting 𝑚 = 2 in the identity (3.6), we
find

𝛽(4) =
𝜋2

8
𝐺− 𝜋3

288

(︃
1 + 2

+∞∑︁
𝑘=1

(−1)𝑘
(︂
1 + 12𝑘2 + 12𝑘3 ln

2𝑘 − 1

2𝑘 + 1

)︂)︃
.

Using this identity and (4.4) and taking into consideration that 𝜂(3) =
3𝜁(3)

4
(see the second

identity in (1.2) for 𝑠 = 3), we obtain

9𝐺

𝜋
− 72𝛽(4)

𝜋3
− 27𝜁(3)

8𝜋2
+

3 ln 2

4
=

1

2
+

+∞∑︁
𝑘=1

(︂
12(2𝑘)3 ln

4𝑘 − 1

4𝑘 + 1
+ 12(2𝑘)2 + 1

)︂
and

9𝐺

𝜋
− 72𝛽(4)

𝜋3
+

27𝜁(3)

8𝜋2
− 3 ln 2

4
=

+∞∑︁
𝑘=0

(︂
12(2𝑘 + 1)3 ln

4𝑘 + 3

4𝑘 + 1
− 12(2𝑘 + 1)2 − 1

)︂
.

5. Catalan constant, Apéry constant, ln 2 and infinite products

The identities (4.1)–(4.5) can be obviously written in a bit different form. Namely, the next
statement is true.

Corollary 5.1. The identities hold

𝑒
𝐺
𝜋 =

3 4
√
2

𝑒

+∞∏︁
𝑘=1

(︃
𝑒−1

(︂
1 +

2

4𝑘 + 1

)︂2𝑘+1
)︃
, (5.1)

𝑒
4𝐺
𝜋

− 35𝜁(3)

4𝜋2 =

√︂
𝑒

2

+∞∏︁
𝑘=1

(︃
𝑒

(︂
1− 1

(4𝑘)2

)︂(4𝑘)2
)︃
, (5.2)√︂

2

𝑒
=

+∞∏︁
𝑘=1

(︃
𝑒−1

(︂
1 +

2

2𝑘 − 1

)︂𝑘
)︃
, (5.3)

𝑒−
9𝜂(3)

𝜋2 =
1

2

√︂
𝑒

2

+∞∏︁
𝑘=1

(︃
𝑒1+12𝑘2

(︂
1− 2

2𝑘 + 1

)︂12𝑘3
)︃
, (5.4)

𝑒−
7𝜁(3)

2𝜋2 =

√︂
𝑒

2

∞∏︁
𝑘=1

(︃
𝑒

(︂
1− 1

(2𝑘)2

)︂(2𝑘)2
)︃
. (5.5)
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Proof. We begin with the identity (5.1). In order to do this, we divide both sides of the identity
(4.1) by 𝜋, and both sides of (4.3) by 4. Then we deduct the second obtained identity from the
first and find

𝐺

𝜋
=

ln 2

4
+

+∞∑︁
𝑘=0

(︂
(2𝑘 + 1) ln

4𝑘 + 3

4𝑘 + 1
− 1

)︂
.

Thus,

𝑒
𝐺
𝜋 =

4
√
2 exp

(︃
+∞∑︁
𝑘=0

(︂
(2𝑘 + 1) ln

4𝑘 + 3

4𝑘 + 1
− 1

)︂)︃
=

3 4
√
2

𝑒
exp

(︃
+∞∑︁
𝑘=1

(︂
(2𝑘 + 1) ln

4𝑘 + 3

4𝑘 + 1
− 1

)︂)︃
,

that is, the identity (5.1) is true. The second identity in Corollary 4.2 can be written as

−35𝜁(3)

4𝜋2
+

4𝐺

𝜋
+

ln 2

2
=

1

2
+

+∞∑︁
𝑘=1

(︂
1 + (4𝑘)2 ln

(︂
1− 1

(4𝑘)2

)︂)︂
,

which implies (5.2). The identities (5.3)–(5.5) obviously follow (4.3)–(4.5). The proof is com-
plete.

The identity (4.1) also yields

𝐺

𝜋
=

1

2
− ln 2

4
+

+∞∑︁
𝑘=1

(︂
1 + 2𝑘 ln

4𝑘 − 1

4𝑘 + 1

)︂
,

that is,

𝑒
𝐺
𝜋 =

√
𝑒

4
√
2

+∞∏︁
𝑘=1

(︃
𝑒

(︂
1− 2

4𝑘 + 1

)︂2𝑘
)︃
. (5.6)

Multiplication and squaring of the identities (5.1) and (5.6) lead us to the relation

𝑒 · 𝑒
4𝐺
𝜋 = 9

+∞∏︁
𝑘=1

(︂
1 +

4

4𝑘 − 1

)︂(︂
1− 4

(4𝑘 + 1)2

)︂4𝑘+1

,

which recalls the Ramanujan identity

𝜋 · 𝑒
4𝐺
𝜋 = 8

+∞∏︁
𝑘=1

(︂
1− 1

(2𝑘 + 1)2

)︂(−1)𝑘(2𝑘+1)

(see identity (4.6)).
In conclusion of this section, we mention that in [12] the expansion into infinite products

for some mathematical constants are given, including the numbers
√
𝑒, 𝑒

𝐺
𝜋 , 𝑒

7𝜁(3)

(4𝜋2) , and others.
However, they were obtained by other methods and differ from the above formulas. We also
note that some of the formulas in this section were given by us earlier in a slightly different
form in [5] and [6].

6. Representations of 𝒜𝑚, ℬ𝑚, 𝒞𝑚 and 𝒟𝑚

as series with general term involving 𝜁(2𝑛)

Theorem 3.1 allows us to represent the scalar sequences 𝒜𝑚, ℬ𝑚, 𝒞𝑚 and 𝒟𝑚 as the sums of
sufficiently fast converging series, the general term of which involves 𝜁(2𝑛). Namely, the next
corollary of this theorem is true.
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Corollary 6.1. For 𝑚 = 1, 2, . . . the identities hold

𝒜𝑚 =
(−1)𝑚−1

(2𝑚− 1)!

(︁𝜋
2

)︁2𝑚−1
+∞∑︁
𝑛=0

(22𝑛 − 2)𝜁(2𝑛)

16𝑛(2𝑛+ 2𝑚− 1)
, (6.1)

ℬ𝑚 =
(−1)𝑚−1

(2𝑚)!

(︁𝜋
2

)︁2𝑚 +∞∑︁
𝑛=0

(22𝑛−1 − 1)𝜁(2𝑛)

16𝑛(𝑛+𝑚)
, (6.2)

𝒞𝑚 =
(−1)𝑚2𝜋2𝑚−1

(2𝑚− 1)!

+∞∑︁
𝑛=0

𝜁(2𝑛)

4𝑛(2𝑛+ 2𝑚− 1)
, (6.3)

𝒟𝑚 =
(−1)𝑚𝜋2𝑚

(2𝑚)!

+∞∑︁
𝑛=0

𝜁(2𝑛)

4𝑛(𝑛+𝑚)
. (6.4)

Proof. We begin with the identity (6.1). In the right hand side of the identity (3.6) we employ
the known relation

ln
1 + 𝑥

1− 𝑥
= 2

+∞∑︁
𝑛=0

𝑥2𝑛+1

2𝑛+ 1
, |𝑥| < 1 (6.5)

(see, for instance, [4, Sect. 5.2.4, Eq. (8)]), and then interchange the integration order and
take into consideration the definition of eta function (see the first identity in (1.1)). This the
following chain of identities for the sequence 𝒜𝑚

𝒜𝑚 =
(−1)𝑚−1

2(2𝑚− 1)!

(︁𝜋
2

)︁2𝑚−1

·

(︃
1

2𝑚− 1
+ 2

+∞∑︁
𝑘=1

(−1)𝑘

(︃
𝑚−1∑︁
𝑙=0

(2𝑘)2𝑙

2𝑚− 2𝑙 − 1
− (2𝑘)2𝑚−1

+∞∑︁
𝑛=0

1

(2𝑘)2𝑛+1(2𝑛+ 1)

)︃)︃

=
(−1)𝑚−1

2(2𝑚− 1)!

(︁𝜋
2

)︁2𝑚−1
(︃

1

2𝑚− 1
+ 2

+∞∑︁
𝑘=1

(−1)𝑘+1

(︃
+∞∑︁
𝑛=𝑚

1

(2𝑘)2𝑛−2𝑚+2(2𝑛+ 1)

)︃)︃

=
(−1)𝑚−1

2(2𝑚− 1)!

(︁𝜋
2

)︁2𝑚−1
(︃

1

2𝑚− 1
+ 2

+∞∑︁
𝑛=𝑚

1

22𝑛−2𝑚+2(2𝑛+ 1)

(︃
+∞∑︁
𝑘=1

(−1)𝑘+1

𝑘2𝑛−2𝑚+2

)︃)︃

=
(−1)𝑚−1

2(2𝑚− 1)!

(︁𝜋
2

)︁2𝑚−1
(︃

1

2𝑚− 1
+ 2

+∞∑︁
𝑛=1

𝜂(2𝑛)

4𝑛(2𝑛+ 2𝑚− 1)

)︃
.

The analytic continuation of the function 𝜁(𝑠) to the entire complex plane possesses the property

𝜁(0) = −1

2
. Using this property and the second identity from (1.2) in the latter identity, we

arrive at (6.1).
The identities (6.2)–(6.4) can be proved in the same way once we begin with the identities

(3.7)–(3.9). At the same time in the right hand of the identity (6.3) we use the same expansion
(6.5), while in the right hand sides of (3.7) and (3.9) the next expansion is to be emplyoed

ln (1− 𝑥) = −
+∞∑︁
𝑛=1

𝑥𝑛

𝑛
, −1 ⩽ 𝑥 < 1

(see, for instance, [4, Sect. 5.2.4, Eq. (4)]). The proof is complete.

Letting𝑚 = 1 in the identities (6.1)–(6.4) and𝑚 = 2 in (6.3), we arrive at the next statement
for the constants 𝐺, 𝜁(3), 𝜆(3), 𝜂(3) and ln 2.
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Corollary 6.2. The identities hold

𝐺 = 𝜋

+∞∑︁
𝑛=0

(22𝑛−1 − 1)𝜁(2𝑛)

16𝑛(2𝑛+ 1)
, (6.6)

𝜆(3) =
𝜋

2
𝐺− 𝜋2

8

+∞∑︁
𝑛=0

(22𝑛−1 − 1)𝜁(2𝑛)

16𝑛(𝑛+ 1)
=

𝜋2

8

+∞∑︁
𝑛=0

(22𝑛−1 − 1)(2𝑛+ 3)𝜁(2𝑛)

16𝑛(𝑛+ 1)(2𝑛+ 1)
, (6.7)

ln 2 = −2
+∞∑︁
𝑛=0

𝜁(2𝑛)

4𝑛(2𝑛+ 1)
, (6.8)

𝜂(3) =
𝜋2

6

(︃
ln 2 + 2

+∞∑︁
𝑛=0

𝜁(2𝑛)

4𝑛(2𝑛+ 3)

)︃
, (6.9)

𝜁(3) =
2𝜋2

7

(︃
ln 2 +

+∞∑︁
𝑛=0

𝜁(2𝑛)

4𝑛(𝑛+ 1)

)︃
. (6.10)

We note that some of the results formulated in Corollaries 6.1 and 6.2 are well known and were
obtained earlier by other authors. For example, the identities (6.3) and (6.4) were established
by other methods in [14], see also [15, Eqs. (58), (59)]. Moreover, all identities in Corollaries 6.1
and 6.2 were obtained by us earlier in [2], and the formulas (6.1) and (6.2) seems to appear
first here. Note also that we presented the identities (6.6)–(6.10) in [6].
In conclusion we mention that Theorem 3.1 does not cover the known formula

𝛾 =
+∞∑︁
𝑘=1

(︂
1

𝑘
− ln

(︂
1 +

1

𝑘

)︂)︂
,

where 𝛾 is the Euler constant, see, for instance, [4, Sect. 5.5.1, Eq. (15)], but it contains the
known formula (4.3) for ln 2, see, for instance, [4, Sect. 5.5.1, Eq. (21)]. It seems that the
new formulas (4.1)–(4.5) can be treated as a continuation of this list. Thus, the identities in
Corollary 6.2 show that Theorem 3.1 is a generalization of the identities for 𝛾 and ln 2 to the
case of the sequences 𝒜𝑚, ℬ𝑚, 𝒞𝑚 and 𝒟𝑚.
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