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ON NEW REPRESENTATIONS FOR VALUES OF
RIEMANN ZETA FUNCTION AT ODD POINTS
AND RELATED NUMBERS

T.A. SAFONOVA, B.D. BARMAK

Abstract. Let ((s) and ((s) be the Riemann zeta function and Dirichlet beta function.
In this work, for some linear combinations of the numbers {(2n + 1) and 5(2n), we obtain
new representations by the series, the general term of which involves the logarithms. This
is done by the methods of spectral theory of ordinary differential operators generated in
the Hilbert space £2[0,7] by the expression I[y] = —y” — a?y and the Dirichlet boundary
condition, where a is a parameter. These representations in particular imply the known
and new representations for these linear combinations as the sums of some sufficiently fast
converging series, the general term of which involves ((2n). The obtained results are applied
to various representations of Catalan constant 3(2) and Apéry constant ((3).

Keywords: Riemann zeta function, Dirichlet beta function, Catalan constant, Apéry con-
stant.
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1. INTRODUCTION

Let, as usually, ((s) be the Riemann zeta function defined for Re s > 1 by the identity
+o00 1
C(s)=> o
k=1

Following |7, Ch. 23|, by the symbols 3(s), A(s) and n(s) we denote related with ((s) Dirichlet
functions defined for Res > 0, Res > 1 and Re s > 0 respectively by the identities

+oo —1)k1 +oo 1 +oo —1)k1
B(s) :;ﬁ> A(s) :;m’ n(s) :;% (1.1)
It is well-known that
A(s) = (1=27)C(s),  nls) = (1—=2"")¢(s) (1.2)
and
(~1)™ (2m)*" 0 (3)

2n) = Bs,, 2n—1) = Eon_1y, =1,2,...,
¢(2n) 2(2n)! 2 Bn—1) 2(2n —2)1 b N
where B, and E,, are the Bernulli and Euler numbers, respectively, see, for instance, [7, Ch. 23,
Eqgs. (23.2.20), (23.2.19), (23.2.16), (23.2.22)]. These identities imply that the numbers ((2n)

and ((2n + 1) are transcendental. However, various known representations for the numbers
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((2n+1), B(2n), A(2n+ 1) and n(2n — 1) for n = 1,2,... or their certain combinations, for
instance, the integral representations

(=1)+ (@myt
2(2n 4 1)!

C2n+1) = /Bgn+1(x) cot(mx) dx (1.3)

and

B(2n) = (1) /EQ” 1@ >dx, (1.4)

4(2n —1)! J cos(mx)

which have already become classical, see, for instance, |7, Ch. 23, Eqs. (23.2.17), (23.2.23)],
and quite recent ones

1
A2n+1) = (_z;g?“ / fr?g;)) dz (1.5)
and
(1) (2m)>!
nen—1) = S / Bon_1(2) tan(rz) dz, (1.6)
0
see, for instance [10, Thm. 1], does not allow to study the arithmetic nature of these numbers

and a little is known about this. In particular, this is the reason why the representations for
these numbers or their combinations as the integrals, series and others is of a special interest,
and the literature devoted to this subject is very rich, see, for instance, [10], [11], [15], [9] and
the references therein.

In Section 2 of the present work we provide preliminary facts used in the proofs of the main
results of this work in Sections 3—6, in which we formulate statements on new representations
of certain linear combinations of the numbers ((2n + 1), 3(2n), A(2n+ 1) and n(2n — 1) as the
series, the general term of which involves the logarithm (Theorem 3.1 and Corollaries 4.1-5.1),
and as the sums of sufficiently fast converging series, the general term of which involves ((2n)
(Corollaries 6.1 and 6.2).

Throughout the paper a special attention is paid to the application of obtained results to
various representations for the Catalana constant 3(2) (=: G) and Apéry constant ((3).

2.  PRELIMINARIES
As in works [2] and [3], we consider the differential operator generated by the expression
Iyl = —y" — a*y, —l<a<l,

and the Dirichlet boundary conditions y(0)=y(7)=0 in the Hilbert space £2[0, 7] of all classes of
complex—valued measurable functions y coinciding almost everywhere such that |y|? is Lebesgue
integrable over [0, 7]. By the methods of spectral theory for this operator, in the above cited
works, integral representations were obtained for the sequences of numbers

TN R (=)™ B(2n)
Am = <Z 22(m*”)(2m —on)l gn ) ’

n=1
A2mtl i —Hm B(2n)  A(2m+1)
ot 22 m—n) +1 2m — 2+ 1) 2n r2m+1 ’
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S ( N ()" (- 1)) |

(2m —2n+1)! g2t

o (S (CD™ an—1) 2 1(Cm )
m=r Z (2m —2n +2)! g2l 22m m2mtl

for m =1,2,..., namely, in [2, Cor. 1], the next theorem was proved.

Theorem 2.1. For m = 1,2,... the following identities hold

Wl

_1\m—1 2m
Bm:< 1 /aj dx,

2(2m)! sin x

Jus

; (_1)m—122m—1/2 22 ;
m — . X
(2m)! sin® x

Jus

. (_1)m—122m 2x2m+1d
" 2m 1) /sin2:1: -

This theorem in particular implies the following known identities for the numbers G,

n(1)(=1n2), n(3 )and ¢(3)

us

INIE]

1 T 1 / x? 1 x?
= - A3)==G— - d 1) =— d
2/smm () 2 4/sinx “ n(1) W/Sin2$ *
0 0 0
1 [ gt 272 8 [
3:—12—— d 3)=—In2—- — dux;
1(3) 6 7 3r) sn?z " ¢3) 7 7o) a2 M
0 0

(2.4)

A(3),

the formulas for G, n(1) and n(3) were provided, for instance, in [4, Ch. 2, Sect. 2.5.4, Egs.

(5), (7)], while the formula A(3) is implied by one Ramanujan identity, see |8, Entry 14].

We note that all these identities except for that for n(3) are particular cases of the identities

(1.3)—(1.6) for n = 1, while the identity for n(3) is implied by (1.6) for n = 2.

3. MAIN THEOREM

Using the expansions

+o00
1 1 1
-~ 19y tr=—4+2 —_—
sin x + Zx2 7rk2’ cotr=o x;ﬁ—(wk)w
see, for instance, [16, Egs. (4.22.5), (4.22.3)], we are going to prove the next statement.

Lemma 3.1. For j =1,2,... the identities

5 1

/ .xj dx:(z>j 1 k/ UJH
sin 2 J

0 - 0

(3.1)

(3.2)
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and

™

1 [ pitt ; +00 Wit
d :( . 3.3
j+1/sin2x . Z/ —u2 (3:3)
0
hold.

Proof. We observe that

jus

1

2 . .
x’ m\J+1 x’
- dr = (—) —dx,
sin x 2 sin -
0

0

we replace z by % in the first identity in (3.1), multiply then both sides by z7 and integrate
the obtained identity from 0 and 1. This gives

™

2

I 7T j 1 s k 1$]+1
—dx == - 42 g o 3 dx
sinx J —
0 k=1

0

The absolute value of general term of the series under the integral obviously satisfies the in-
equality
pItt 1
<
(2k)? — 2% = (2k)%2 —

for 0 <z <1and k=1,2,... This implies that this functional series converges absolutely and
uniformly on [0, 1], and this is why we can integrate it term by term, that is, the identity (3.2)
is true.

The validity of identity (3.3) can be proved in the same with the only difference that now we
should start with the identity

jus

1

2 .
xd T\J , T
d_'(_>/9‘1t—d
/sinzxx ‘72 v cg2x

0 0
and take into consideration the second identity in (3.1). The proof is complete. ]
We then mention that the integrals in the right hand sides of identities (3.2) and (3.3) can
be calculated explicitly, namely, for m = 1,2, ... they satisfy the formulas
1
y2m 1 m—1 2]{3 21
————du = 2k)*" ' In 2 3.4
/(2k)2—u2u 2<< ) 2/<;+1Jr ;Qm—%—l> (3.4)
9 —
and

1 - 1 2 (2k)
-3 ((Qk) In <1_W> +l2(;m_l>, (3.5)

see, for instance, [ , Ch. 1, Sect. 1.2.10, Egs. (9), (10)].
Applying now the formulas (3.2)—(3.5) in the identities (2.1)—(2.4) of Theorem 2.1, we arrive
at the next theorem.

Theorem 3.1. For m = 1,2,... the identities hold
(_1)m71 2m—1

O\H
M
3

| +
-

Q

M

7r
4m(2m —1)!

1 < 2k — 1 (2k)2!
: BN EUN NOTAUESS MY | N 2
<2m—1+;< ) << et om—21-1))"

A, =
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m—1,2m

_(=D)m
B = 4m2(2m)!

_{ym—1,2m +oo ml 2
D,, = (?T)' (% + z_: ((2]{:)2’” In (1 — (2]1{)2) + Sk_) l> ) (3.9)

We note that we obtained the identity (3.6) in [5], while to the best of our knowledge, the
identities (3.7)—(3.9) are new.

4. ON CATALANA CONSTANT, APERY CONSTANT AND In2

Theorem 3.1 allows us to represent the constants ((3), G, A(3), n(3) and In2 as the series,
the general term of which involves the logarithms. Namely, letting m = 1 in the identities
(3.6)-(3.9) and m = 2 in (3.8), we arrive at the following corollaries of this theorem.

Corollary 4.1. The identities hold

T = 2% — 1
=—11+2 ~1DF 1+ k1 4.1
¢ 4<+;< >(+n2k+1)>, (4)
T 71‘2 —+o00 1
_ 0 _1\k 2 o
A3) = 5G - o <1+2;( 1) (1+4k 1n<1 41@)))’ (4.2)
+oo
2k — 1
n2=14+2 1+ k1 4.3
=12 (1) (43)
2 2 <% 2k — 1
=—In2——1[1+2 1+ 12k + 12k3%1 4.4
0(3) = In 18<+ ;(+ K+ kn2k+1)>, (4.4)
o2 2 = 1
=" In2-——[1+2 1+4k*In (1 - — . 4,
¢(3) —In2— ( + ;( + n( 4k2)>) (4.5)

Corollary 4.2. The identities

or (G — ;C(g) - %2 <1 - 22(—1)’“ (1 +4k% In (1 - #)))

and

27TG—§C(3)_—7T—21112+7T—2 1+2§ 14+ 16k*In {1 — L
] Y 4 16k2

k=1

hold.
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Proof. The first identity is implied immediately by (4.2) once we take into consideration the
7
first relation in (1.2). If we deduct the identity (4.5) multiplied by 3 from the obtained identity,

we arrive at the second required formula. The proof is complete. O

We note that the partial sums Sa,, and Ss,, of the series in the right hand sides of identities
(4.1) and (4.2) are written respectively as

o gy 26— 1 . 1

k=1

Calculating the limits of the partial sums S, and Ss,, as m — +o0o, we arrive at the next
statement.

Corollary 4.3. The identities

o0 £ 2%k + 1
and
o 1
A(3) = —G - 3—2 (1 + 8m£Tm;(—l)kk21 (1 - @)>
hold. :

In the integral in the right hand side of the identity (2.1) with m = 1 we make the change of

i
variable z = 5 t, in the obtained integral we employ the expansion

k+1<2k’ _ 1)
=4
cosz " Z — (27)?

(see, for instance, |1, Sect. 1.422, Eq. (1)]), integrate the obtained series term by term and
calculate the appearing integral of a fractional rational function. This leads us to the following
chain of identities

INIE]

_ T
2

5T T
der =7 k“ (2k — / dx
/ Z )0 wﬁ—(%(zk—nf

0

=7 ln2+z M2k + 1 /yﬂ 2 1))2(133

0

wl=|

“+oo
2k 2k + 2
=7 ln2 —1* (k1 11
T2+ (-1) (kn2k+1+(/€+ )n2k+1)>

k=1
1 &% 1 1 &% k+1
—7|In2+ = 2k +1)In({1 - —— — —1)*1
7| ln +2k:1( )" (2k + )n( (2k+1)2)+2;( )¥In :

and therefore, according to (2.1) with m = 1, we get the following identity for the Catalan
constant
+oo

G== <1n2+ Z 2k+1ln(l—@k—_li_l)Q)—i-%Z(—l)klnkZl).

k=1
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Applying the Wallis formula, we get

+00 +oo
k+1 4n?
Z(—l)kln Z :—lnH 5 1n2 . :—lng.
k=1 n:1<n_ )(2n +1)
Thus,
s 8 X 1
G==|ln— Dk + D) (1- ——— |- 4.6
4<n7r+k:1( )2k + )n( (2k+1)2)> (4.6)
This identity is due to Ramanujan [13|, while the identities in the above corollaries were earlier

given in [5] and [6].

In conclusion of this section, we note that Theorem 3.1 obviously yields a statement analogous
to Corollary 4.1 for an arbitrary m. However, the resulting formulas are cumbersome, and here
we restrict ourselves to presenting only one of them. Letting m = 2 in the identity (3.6), we
find

B(4) = 7r_2G _ 7T_3 14+ 2%(—1)]“ 1+ 12k + 12k3 In 2k —1
-8 288 — 2k+1) |

3¢(3)
4

Using this identity and (4.4) and taking into consideration that 7(3) = (see the second

identity in (1.2) for s = 3), we obtain

§_725(4)_27g() 31n2_1 *f(u oh)?

\) I

T 3 872

+ 12(2k)? + 1)

and

4k + 3
4k + 1

9G _T28(4)  27¢(3) 32 _ i’f

3
- S o ; (12(% +1)%In

—12(2k +1)* — 1) .

k=

o

5. CATALAN CONSTANT, APERY CONSTANT, In2 AND INFINITE PRODUCTS

The identities (4.1)—(4.5) can be obviously written in a bit different form. Namely, the next
statement is true.

Corollary 5.1. The identities hold

e%:m*“ ( <1+4k2+1)2k“), (5.1)
oo _ f ( < ) )) 52
@:ﬁ<e . ) 539
S a1 < (1 2 1)) 7 5.4
24;3’_\[ g( ( >W>. (5.5)
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Proof. We begin with the identity (5.1). In order to do this, we divide both sides of the identity
(4.1) by 7, and both sides of (4.3) by 4. Then we deduct the second obtained identity from the

first and find
“+o00

G In2 4k + 3
;—T‘i‘ ((2]€+1)1D4k+1—1).
k=0
Thus,
+oo 4 +oo
a 4k +3 3v/2 4k +3
T =2 2k + 1)1 —1 = 2k + 1)1 —1
ot = g2y (3 (s v i 1)) = 220 (5 (- -1))
that is, the identity (5.1) is true. The second identity in Corollary 4.2 can be written as
35¢(3) 4G In2 1 <X ) 1
it /A T I 1+ 4k)*In(1-—
T r T 2+k§ + (k) In k)2 ) )

which implies (5.2). The identities (5.3)—(5.5) obviously follow (4.3)—(4.5). The proof is com-
plete. O

The identity (4.1) also yields

G 1 In2 4k —1

A 1+ 2k1

T2 4+;(+kn4k+1)’

that is,
o0 2k

- 2
S= YT e (- . .
) Wk:1<e( 4k+1) ) o0

Multiplication and squaring of the identities (5.1) and (5.6) lead us to the relation

Lo 4k+1
e =9 (1+ 1 P
e 1l ik —1 (4k + 1)? ’

which recalls the Ramanujan identity

+o0 (—=1)k(2k+1)
Jre 1
.em =8 )
meer =81l ( 2k + 1)2)

k=1

(see identity (4.6)).

In conclusion of this section, we mention that in |12| the expansion into infinite products
. . : : ¢ B
for some mathematical constants are given, including the numbers /e, e=, @ and others.

However, they were obtained by other methods and differ from the above formulas. We also
note that some of the formulas in this section were given by us earlier in a slightly different
form in [5] and [6].

6. REPRESENTATIONS OF A,,, B,,, C,, AND D,,
AS SERIES WITH GENERAL TERM INVOLVING ((2n)

Theorem 3.1 allows us to represent the scalar sequences A,,, B,,, C,, and D,, as the sums of
sufficiently fast converging series, the general term of which involves ((2n). Namely, the next
corollary of this theorem is true.
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Corollary 6.1. For m = 1,2,... the identities hold

A= Uy (27— 2)¢(2n)

T om0 \2 16720+ 2m — 1)’ (6.1)
(= myem QX220 - 1)¢(2n)
B = (2m)! (E) 16"(n+m) (6.2)
C. — (—=1)m2z2m=1 X ¢(2n) 63)

—1)! n — ’
(2m—1)! &= 4n(2n+2m — 1)

(—)"r ] ((2n)
D = (2m)! ; 4n(n+m) (6.4)

Proof. We begin with the identity (6.1). In the right hand side of the identity (3.6) we employ
the known relation

400
1 —|—I x2n+1
- Z 2n +1’

In

<1 6.5
— « (6.5)

(see, for instance, [1, Sect. 5.2.4, Eq. (8 )] and then interchange the integration order and
take into consideration the definition of eta function (see the first identity in (1.1)). This the
following chain of identities for the sequence A,,

R L (2k)2 o R 1
<2m—1+ (Zz =1 ) ;(zk)%ﬂ(%ﬂ)))

=0

+oo

G A N - 1

=2@m = 1) 3 (g2 Z(_l) (;ﬂ (2% 2 (2 + 1)))

B (_1)m—1 T\ 2m—1 1 1 +o00 (_1)k+1
(
(

z4n2n+2m_l>)

The analytic continuation of the function ((s) to the entire complex plane possesses the property

1
¢(0) = —3 Using this property and the second identity from (1.2) in the latter identity, we

arrive at (6.1).

The identities (6.2)—(6.4) can be proved in the same way once we begin with the identities
(3.7)=(3.9). At the same time in the right hand of the identity (6.3) we use the same expansion
(6.5), while in the right hand sides of (3.7) and (3.9) the next expansion is to be emplyoed

oo n
T
In(l—2z)=— — -1<z<1
n(l—ux) nEZI — x
(see, for instance, |1, Sect. 5.2.4, Eq. (4)]). The proof is complete. O

Letting m = 1 in the identities (6.1)—(6.4) and m = 2 in (6.3), we arrive at the next statement
for the constants G, ((3), A(3), n(3) and In 2.



ON NEW REPRESENTATIONS FOR VALUES OF RIEMANN ZETA FUNCTION 113

Corollary 6.2. The identities hold

+o00 —
_ (227 —1)¢(2n)
¢ = an_% 167(2n +1) (6.6)
o, IR - 1) LR (22— 1)(2n 4+ 3)¢(2n)
A8 =356-3 167 (n + 8 Z 16"(n+1)2n+1) (67)
ln2——224n 2n+1 (6.8)

n(3) = (ln? +2 Z o 2n 3 ) (6.9)

¢(3) = 2% <m2+2%). (6.10)

We note that some of the results formulated in Corollaries 6.1 and 6.2 are well known and were
obtained earlier by other authors. For example, the identities (6.3) and (6.4) were established
by other methods in [11], see also [15, Egs. (58), (59)]. Moreover, all identities in Corollaries 6.1
and 6.2 were obtained by us earlier in |2, and the formulas (6.1) and (6.2) seems to appear
first here. Note also that we presented the identities (6.6)—(6.10) in [6].

In conclusion we mention that Theorem 3.1 does not cover the known formula

-EGn(ed)

where v is the Euler constant, see, for instance, [4, Sect. 5.5.1, Eq. (15)], but it contains the
known formula (4.3) for In2, see, for instance, |1, Sect. 5.5.1, Eq. (21)]. It seems that the
new formulas (4.1)—(4.5) can be treated as a continuation of this list. Thus, the identities in
Corollary 6.2 show that Theorem 3.1 is a generalization of the identities for v and In2 to the
case of the sequences A,,, B,,, C,, and D,,.
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