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ON METRIZABILITY OF SOME SPECIAL FUNCTIONS

S.V. AGAPOV

Abstract. We study the second order ordinary differential equations satisfied by the follow-

ing special functions: Bessel function, hypergeometric function, Weierstrass elliptic function.

We prove that all these equations are metrizable and construct explicitly the corresponding

metrics. We show that in all mentioned cases the geodesic equations admit a first integral,

which is linear in momenta.
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1. Introduction and main results

We consider a two–dimensional surface𝑀 with local coordinates 𝑢 = (𝑢1, 𝑢2) and a Riemann-
ian (pseudo–Riemannian) metric 𝑑𝑠2 = 𝑔𝑖𝑗(𝑢)𝑑𝑢

𝑖𝑑𝑢𝑗. The geodesics of this metric are curves,
which satisfy the following system of differential equations:

𝑢̈𝑘 + Γ𝑘
𝑖𝑗𝑢̇

𝑖𝑢̇𝑗 = 0, 𝑘 = 1, 2, (1.1)

hereinafter, as usually, we mean the summation over the repeating indices,

Γ𝑘
𝑖𝑗 =

1

2
𝑔𝑘𝑙

(︂
𝜕𝑔𝑖𝑙
𝜕𝑢𝑗

+
𝜕𝑔𝑗𝑙
𝜕𝑢𝑖

− 𝜕𝑔𝑖𝑗
𝜕𝑢𝑙

)︂
are the Cristoffel symbols, and 𝑔𝑖𝑗 is the tensor inverse to the metric one: 𝑔𝑖𝑘𝑔𝑘𝑗 = 𝛿𝑖𝑗.
We consider one of the coordinates as the function of the other along the geodesics and

rewrite the system (1.1) as a single second order differential equation

𝑑2𝑦

𝑑𝑥2
= 𝐴3(𝑥, 𝑦)

(︂
𝑑𝑦

𝑑𝑥

)︂3

+ 𝐴2(𝑥, 𝑦)

(︂
𝑑𝑦

𝑑𝑥

)︂2

+ 𝐴1(𝑥, 𝑦)

(︂
𝑑𝑦

𝑑𝑥

)︂
+ 𝐴0(𝑥, 𝑦), (1.2)

here 𝑢1 = 𝑥, 𝑢2 = 𝑦, and the coefficients 𝐴𝑗(𝑥, 𝑦), 𝑗 = 0, . . . , 3, read

𝐴3 = Γ1
22, 𝐴2 = 2Γ1

12 − Γ2
22, 𝐴1 = Γ1

11 − 2Γ2
12, 𝐴0 = −Γ2

11. (1.3)

The search of Riemannian metrics on two–dimensional surfaces, the geodesic equations of
which can be integrated by quadratures, is a classical problem. We recall the known integrability
criterion, which is usually formulated in the language of Hamiltonian mechanics.
As it is known, the geodesics satisfy the Euler — Lagrange equations

𝜕𝐿

𝜕𝑢𝑘
− 𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕𝑢̇𝑘

)︂
= 0, 𝑘 = 1, 2, (1.4)
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for the Lagrangian 𝐿 = |𝑢̇|2
2

=
𝑔𝑖𝑗 𝑢̇

𝑖𝑢̇𝑗

2
, that is, they are the extremals of the energy functional

𝑆 =
∫︀
𝐿𝑑𝑡. Applying the Legendre transform (𝑢, 𝑢̇) → (𝑢, 𝑝), where 𝑝 = 𝜕𝐿

𝜕𝑢̇
are conjugate

momenta, we rewrite (1.4) as the Hamiltonian system

𝑢̇𝑘 = {𝑢𝑘, 𝐻} =
𝜕𝐻

𝜕𝑝𝑘
, 𝑝̇𝑘 = {𝑝𝑘, 𝐻} = −𝜕𝐻

𝜕𝑢𝑘
, 𝐻 =

1

2
𝑔𝑖𝑗𝑝𝑖𝑝𝑗, 𝑘 = 1, 2, (1.5)

with the canonical Poisson bracket {𝑢𝑖, 𝑢𝑗} = {𝑝𝑖, 𝑝𝑗} = 0, {𝑢𝑖, 𝑝𝑗} = 𝛿𝑖𝑗.
The first integral of the Hamiltonian system (1.5) is an arbitrary function 𝐹 (𝑢, 𝑝), which is

preserved along the trajectories of (1.5). The first integral 𝐹 obeys the condition

𝐹̇ = {𝐹,𝐻} =
𝜕𝐹

𝜕𝑢𝑘
𝜕𝐻

𝜕𝑝𝑘
− 𝜕𝐹

𝜕𝑝𝑘

𝜕𝐻

𝜕𝑢𝑘
≡ 0.

The Hamiltonian 𝐻 is obviously a first integral of (1.5). If at the same time there exists
an additional first integral 𝐹, which is functionally independent with 𝐻, then the geodesic
flow (1.5) is called completely integrable, and in this case, by the Arnold — Liouville theorem
the geodesic equations can be integrated by quadratures [2]. There is a huge amount of works
devoted to the search of the first integrals; a main attention is paid to the polynomial integrals,
see, for instance, [3]–[6], [10], [19] and the references therein. For instance, it is known that the
integrable metrics with an additional linear or quadratic first integral in an appropriate local
coordinate system read

1) 𝑑𝑠2 = 𝑓(𝑥)(𝑑𝑥2 + 𝑑𝑦2), 𝐹1 = 𝑝2, (1.6)

2) 𝑑𝑠2 = (𝑓(𝑥) + 𝑔(𝑦))(𝑑𝑥2 + 𝑑𝑦2), 𝐹2 =
𝑔𝑝21 − 𝑓𝑝22
𝑓 + 𝑔

,

here 𝑓(𝑥), 𝑔(𝑦) are arbitrary functions. We note that even with an additional integral the direct
integration of geodesic equations is a separate, and generally speaking complicated problem. In
the most cases the geodesic equations are not polynomially integrable, see, for instance, [15].
The problem on integrable geodesic flows and their first integrals can be approached in

another way. The equations of form (1.2) with appropriate coefficients 𝐴𝑗 appear in many
various problems of mathematical physics, their solutions are often various special functions
[8]. Let us pose the question whether their exist two–dimensional metrics, the geodesics of
which satisfy the corresponding equation (1.2) for some prescribed special function. In the case
of the positive answer, we generally speaking get an entire family of metrics (see the details
below), the geodesic equations of which are integrated in terms of the chosen special function.
To the best of our knowledge, the issue on metrizability of equations of form (1.2), which are
of interest in mathematical physics, is being actively studied just recently, see [1], [9], [13].
It is clear that not each equation of form (1.2) determine the geodesics of some metric: the

corresponding metrizability criterion was obtained in [16], see also [11]. It reads as follows. We
consider a system of partial differential equations for the functions 𝜓𝑗(𝑥, 𝑦), 𝑗 = 1, 2, 3:

(𝜓1)𝑥 =
2

3
𝐴1𝜓1 − 2𝐴0𝜓2,

(𝜓3)𝑦 = 2𝐴3𝜓2 −
2

3
𝐴2𝜓3,

(𝜓1)𝑦 + 2(𝜓2)𝑥 =
4

3
𝐴2𝜓1 −

2

3
𝐴1𝜓2 − 2𝐴0𝜓3,

(𝜓3)𝑥 + 2(𝜓2)𝑦 = 2𝐴3𝜓1 −
4

3
𝐴1𝜓3 +

2

3
𝐴2𝜓2.

(1.7)
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If this system has a solution obeying ∆ = 𝜓1𝜓3 − 𝜓2
2 ̸≡ 0, then Equation (1.2) determine

geodesics of the metric

𝑑𝑠2 =
(𝜓1𝑑𝑥

2 + 2𝜓2𝑑𝑥𝑑𝑦 + 𝜓3𝑑𝑦
2)

∆2

and the relations (1.3) are satisfied. In this case we say that Equation (1.2) is metrizable.
The system (1.7) possesses the following wonderful properties.

1) The space of solutions of system (1.7), that is the space of corresponding metrics, is a finite–
dimentional vector space. The geodesics of these metrics satisfy the same equation (1.2),
that is, they coincide as non–parametrized curves. Such metrics are called projectively

equivalent; they were studied in various works, see, for instance, [7], [12]. It is known for
a long time that the dimension of space of geodesically equivalent metrics does not exceed
6 [17].

2) If the dimension of the space of solutions (1.7) exceeds 3, then the geodesic flow of each
of corresponding metric necessarily admits a linear in momenta first integral [14], see
also [18], [20].

In [1], the metrizability of Schrödinger equation

𝑑2𝑦

𝑑𝑥2
− 𝑢(𝑥)𝑦 = 0 (1.8)

was studied. It was also proved that in the case of a finite gap potential 𝑢(𝑥), the metric and
geodesics can be found explicitly in terms of the Baker — Akhiezer function.
In this work we study the equation of form

𝑑2𝑦

𝑑𝑥2
+ 𝑓(𝑥)

𝑑𝑦

𝑑𝑥
+ 𝑔(𝑥)𝑦 = 0; (1.9)

as it is known, it is satisfied by many special functions under appropriate choice of 𝑓(𝑥), 𝑔(𝑥).
Our main results are as follows.

Theorem 1.1 (Bessel function). Equation (1.9) for

𝑓(𝑥) =
1

𝑥
, 𝑔(𝑥) =

𝑥2 − 𝛼2

𝑥2
, 𝛼 ∈ R, (1.10)

is metrizable. Namely, there exists a 6–parametric family of two–dimensional metrics, the

geodesics of which satisfy (1.9), (1.10) and possess a linear in momenta first integral.

Theorem 1.2 (Hypergeometric function). Equation (1.9) for

𝑓(𝑥) =
𝑐− (𝑎+ 𝑏+ 1)𝑥

𝑥(1− 𝑥)
, 𝑔(𝑥) = − 𝑎𝑏

𝑥(1− 𝑥)
, 𝑎, 𝑏, 𝑐 ∈ R, (1.11)

is metrizable. Namely, there exists a 6–parametric family of two–dimensional metrics, the

geodesics of which satisfy (1.9), (1.11) and possess a linear in momenta first integral.

We also consider the equation

𝑑2𝑦

𝑑𝑥2
= 𝑎𝑦2 + 𝑏𝑦 + 𝑐, 𝑎, 𝑏, 𝑐 ∈ R, (1.12)

which is satisfied, in particular, by the Weierstrass elliptic function.

Theorem 1.3 (Weierstrass elliptic function). Equation (1.12) is metrizable. Namely, there

exists a 2–parametric family of two–dimensional metrics, the geodesics of which satisfy (1.12)
and possess a linear in momenta first integral. At the same time, there exists one more tran-

scendental integral, that is, the geodesic flow is superintegrable.
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2. Bessel function

Proof of Theorem 1.1. The Bessel function [8] satisfies the equation

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝛼2)𝑦 = 0, (2.1)

here 𝛼 ∈ R is an arbitrary parameter called the order. For Equation (2.1) we have

𝐴3 = 𝐴2 = 0, 𝐴1 = −1

𝑥
, 𝐴0 = −𝑥

2 − 𝛼2

𝑥2
𝑦

and therefore, the system (1.7) becomes

(𝜓1)𝑥 +
2

3𝑥
𝜓1 +

2𝑦(𝛼2 − 𝑥2)

𝑥2
𝜓2 = 0, (𝜓3)𝑦 = 0,

(𝜓1)𝑦 + 2(𝜓2)𝑥 −
2

3𝑥
𝜓2 +

2𝑦(𝛼2 − 𝑥2)

𝑥2
𝜓3 = 0, (𝜓3)𝑥 + 2(𝜓2)𝑦 −

4

3𝑥
𝜓3 = 0.

(2.2)

This immediately implies that 𝜓3(𝑥, 𝑦) = 𝑙(𝑥). Integrating the fourth equation of system (2.2),
we find 𝜓2 :

𝜓2(𝑥, 𝑦) =
2𝑦

3𝑥
𝑙(𝑥)− 𝑦

2
𝑙′(𝑥) + 𝑠(𝑥),

where 𝑠(𝑥) is an arbitrary function. Integrating the third equation in (2.2), we obtain

𝜓1(𝑥, 𝑦) =
1

18𝑥2
{2𝑦2

(︀
9𝑥2 − 9𝛼2 + 8

)︀
𝑙(𝑥)+3𝑥(6𝑥𝛾(𝑥)+𝑦(4𝑠(𝑥)−5𝑦𝑙′(𝑥)−12𝑥𝑠′(𝑥)+3𝑥𝑦𝑙′′(𝑥)))},

where 𝛾(𝑥) is an arbitrary function. After that the first equation in (2.2) becomes

𝑅0(𝑥) +𝑅1(𝑥)𝑦 +𝑅2(𝑥)𝑦
2 = 0,

where

𝑅0 = 36𝑥2𝛾(𝑥) + 54𝑥3𝛾′(𝑥),

𝑅1 = −108𝑥3𝑠′′(𝑥)− 36𝑥2𝑠′(𝑥)− 12𝑥(9𝑥2 − 9𝛼2 + 1)𝑠(𝑥),

𝑅2 = 27𝑥3𝑙′′′(𝑥)− 27𝑥2𝑙′′(𝑥) + 9𝑥(12𝑥2 − 12𝛼2 + 7)𝑙′(𝑥)− 4(9𝑥2 − 36𝛼2 + 16)𝑙(𝑥).

The general solution of the system 𝑅0 = 𝑅1 = 𝑅2 = 0 is

𝛾(𝑥) =
𝑐0

𝑥
2
3

, 𝑠(𝑥) = 𝑥
1
3 (𝑐1𝐽𝛼(𝑥) + 𝑐2𝑌𝛼(𝑥)) ,

𝑙(𝑥) = 𝑥
4
3

(︀
𝑐3𝐽

2
𝛼(𝑥) + 𝑐4𝐽𝛼(𝑥)𝑌𝛼(𝑥) + 𝑐5𝑌

2
𝛼 (𝑥)

)︀
,

here 𝐽𝛼(𝑥) and 𝑌𝛼(𝑥) are the Bessel functions of first and second kind. Thus, all functions
𝜓1(𝑥, 𝑦), 𝜓2(𝑥, 𝑦), 𝜓3(𝑥, 𝑦) are found and therefore, the sought metric coefficients are recovered
by the formulas

𝑔11 =
𝜓1

(𝜓1𝜓3 − 𝜓2
2)

2
, 𝑔12 =

𝜓2

(𝜓1𝜓3 − 𝜓2
2)

2
, 𝑔22 =

𝜓3

(𝜓1𝜓3 − 𝜓2
2)

2
. (2.3)

The coefficients of metric depend on 6 arbitrary parameters 𝑐0, . . . , 𝑐5. Thus, we have con-
structed a 6–parametric family of projectively equivalent metrics. Therefore, the geodesic flow
of each metric in this family possesses a linear first integral [14]. The proof is complete.

We note that in the case of arbitrary constants 𝑐0, . . . , 𝑐5 the constructed metric coefficients
are rather cumbersome and, in contrast to the metric (1.6), in this case it is not so easy to
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provide the linear first integral explicitly. For instance, in the partial case 𝑐2 = 𝑐4 = 𝑐5 = 0 we
have

𝑔11(𝑥, 𝑦) =
𝑐0 + 𝑦 (𝑥𝐽𝛼−1(𝑥)− 𝛼𝐽𝛼(𝑥)) (−2𝑐1 + 𝑐3𝑥𝑦𝐽𝛼−1(𝑥)− 𝑐3𝑦𝛼𝐽𝛼(𝑥))

𝑥2(𝑐21 − 𝑐0𝑐3)2𝐽4
𝛼(𝑥)

,

𝑔12(𝑥, 𝑦) =
𝑐1 + 𝑐3𝑦𝛼𝐽𝛼(𝑥)− 𝑐3𝑥𝑦𝐽𝛼−1(𝑥)

𝑥(𝑐21 − 𝑐0𝑐3)2𝐽3
𝛼(𝑥)

, 𝑔22(𝑥, 𝑦) =
𝑐3

(𝑐21 − 𝑐0𝑐3)2𝐽2
𝛼(𝑥)

.

The Gaussian curvature of this metric is zero. It seems that generally for all values of the
parameters 𝑐0, . . . , 𝑐5 all constructed metrics are planar.

3. Hypergeometric function

Proof of Theorem 1.2. The hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐;𝑥) [8] solves the equation

𝑥(1− 𝑥)
𝑑2𝑦

𝑑𝑥2
+ (𝑐− (𝑎+ 𝑏+ 1)𝑥)

𝑑𝑦

𝑑𝑥
− 𝑎𝑏𝑦 = 0, (3.1)

here 𝑎, 𝑏, 𝑐 are arbitrary constants. Sequentially integrating the second, fourth and third
equation in the system (1.7), we get

𝜓3(𝑥, 𝑦) =𝑙(𝑥), 𝜓2(𝑥, 𝑦) =
2(𝑐− (𝑎+ 𝑏+ 1)𝑥)

3𝑥(1− 𝑥)
𝑦𝑙(𝑥)− 𝑦

2
𝑙′(𝑥) + 𝑠(𝑥),

𝜓1(𝑥, 𝑦) =
𝑦

18𝑥2(1− 𝑥)2
{2𝑦(2𝑐(3 + 𝑐)− 9𝑎𝑏𝑥− 4(𝑎+ 𝑏+ 4)𝑐𝑥

+ (2𝑎2 + 13𝑎𝑏+ 2𝑏2 + 10𝑎+ 10𝑏+ 8)𝑥2)𝑙(𝑥) + 3𝑥(𝑥− 1)

· (4𝑠(𝑥)(−𝑐+ 𝑥(𝑎+ 𝑏+ 1))− 5𝑦(−𝑐+ 𝑥(𝑎+ 𝑏+ 1))𝑙′(𝑥)

+ 3𝑥(𝑥− 1)(𝑦𝑙′′(𝑥)− 4𝑠′(𝑥)))}+ 𝛾(𝑥).

The remaining equation in (1.7) becomes

𝑅0(𝑥) +𝑅1(𝑥)𝑦 +𝑅2(𝑥)𝑦
2 = 0.

Integrating the relations 𝑅0 = 𝑅1 = 𝑅2 = 0, we obtain

𝛾(𝑥) =𝑑0𝑥
− 2𝑐

3 (𝑥− 1)−
2(𝑎+𝑏+1−𝑐)

3 ,

𝑠(𝑥) =(−1)−𝑐𝑥−
2𝑐
3 (𝑥− 1)

(𝑎+𝑏+1−𝑐)
3 {(−1)𝑐𝑑1𝑥

𝑐
2𝐹1(𝑎, 𝑏; 𝑐;𝑥)

− 𝑑2𝑥2𝐹1(1 + 𝑎− 𝑐, 1 + 𝑏− 𝑐; 2− 𝑐;𝑥)},

𝑙(𝑥) =(−1)−2𝑐𝑥−
2𝑐
3 (𝑥− 1)4(𝑎+𝑏+1−𝑐)/3{(−1)2𝑐𝑑3𝑥

2𝑐
2 𝐹1(𝑎, 𝑏; 𝑐;𝑥)

2

− (−1)𝑐𝑑4𝑥
1+𝑐
2 𝐹1(𝑎, 𝑏; 𝑐;𝑥)2𝐹1(1 + 𝑎− 𝑐, 1 + 𝑏− 𝑐; 2− 𝑐;𝑥)

+ 𝑑5𝑥
2
2𝐹1(1 + 𝑎− 𝑐, 1 + 𝑏− 𝑐; 2− 𝑐;𝑥)2,

here 𝑑0, . . . , 𝑑5 are arbitrary constants.
Thus, all the functions 𝜓1(𝑥, 𝑦), 𝜓2(𝑥, 𝑦), 𝜓3(𝑥, 𝑦) have been found. The corresponding metric

coefficients are found by the formulas (2.3) and, as in the case of the Bessel function, they have
a rather cumbersome form. As the result we obtain a 6–parametric family of projectively
equivalent metrics (which seem to be planar), and in view of the results obtained in [14] this
implies the existence of the linear integral. The proof is complete.
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4. Weierstrass elliptic function

The Weierstrass elliptic function ℘(𝑧) solves the equation [8]

(℘′)2 = 4℘3 + 𝑔2℘
2 + 𝑔1℘+ 𝑔0,

where 𝑔0, 𝑔1, 𝑔2 are arbitrary constants. Differentiating this equation in 𝑧 and simplifying, we
obtain

℘′′ = 6℘2 + 𝑔2℘+
𝑔1
2
.

Proof of Theorem 1.3. Here we study the metrizability of a bit more general equation

𝑑2𝑦

𝑑𝑥2
= 𝑎𝑦2 + 𝑏𝑦 + 𝑐, (4.1)

where 𝑎, 𝑏, 𝑐 are arbitrary constants. Integrating the system (1.7), we finally get

𝜓1(𝑥, 𝑦) = 𝑑1 −
𝑑0
3

(︀
2𝑎𝑦2 + 3𝑏𝑦 + 6𝑐

)︀
𝑦, 𝜓2(𝑥, 𝑦) = 0, 𝜓3(𝑥, 𝑦) = 𝑑0,

that is, by (2.3),

𝑔11 = 𝑑−2
0

(︂
𝑑1 −

𝑑0
3

(︀
2𝑎𝑦2 + 3𝑏𝑦 + 6𝑐

)︀
𝑦

)︂−1

, 𝑔12 = 0,

𝑔22 = 𝑑−1
0

(︂
𝑑1 −

𝑑0
3

(︀
2𝑎𝑦2 + 3𝑏𝑦 + 6𝑐

)︀
𝑦

)︂−2

.

(4.2)

here 𝑑0, 𝑑1 are arbitrary constants. The Gaussian curvature 𝐾 of this metric is

𝐾 =
𝑑20
3

(︀
𝑑0(𝑎

2𝑦4 + 2𝑎𝑏𝑦3 + 6𝑎𝑐𝑦2 − 3𝑐2)− 3𝑑1(2𝑎𝑦 + 𝑏)
)︀
.

We rewrite the geodesic equations of metric (4.2) in the Hamiltonian form (1.5). Since the
components of the metric 𝑔𝑖𝑗 depend only on 𝑦, the coordinate 𝑥 is cyclic and therefore, the
function 𝐹1 = 𝑝1 together with the Hamiltonian 𝐻 is the first integral of (1.5). We are going
to show how to project 𝐹1 onto the first integral of Equation (4.1). We employ the inverse
Legendre transform and express 𝑝1, 𝑝2 as functions of 𝑥, 𝑦, 𝑥̇, 𝑦̇. The function 𝐽 = 𝐻

𝐹 2
1
is

obviously also the first integral. Replacing in 𝐽 the momenta 𝑝1, 𝑝2 by their expressions in
terms of the velocities 𝑥̇, 𝑦̇ and using the relation 𝑦𝑥 = 𝑑𝑦

𝑑𝑥
= 𝑦̇

𝑥̇
, we finally get the autonomous

first integral

𝐼1(𝑥, 𝑦, 𝑦𝑥) = 3𝑦2𝑥 − 2𝑎𝑦3 − 3𝑏𝑦2 − 6𝑐𝑦

of Equation (4.1).
Equation (4.1) admits one more first integral. While searching for it, we follow the ideas

of [13], where a similar equation was considered. By the definition, the first integral 𝐼(𝑥, 𝑦, 𝑢)
of Equation (4.1) satisfies the relation

𝐼𝑥 + 𝐼𝑦𝑢+ 𝐼𝑢(𝑎𝑦
2 + 𝑏𝑦 + 𝑐) = 0,

where 𝑢 = 𝑦𝑥. Suppose that 𝐼 = 𝑥+ 𝑓(𝑦, 𝑢), then

𝑢𝑓𝑦 + (𝑎𝑦2 + 𝑏𝑦 + 𝑐)𝑓𝑢 = −1.

The characteristic equation reads

𝑑𝑦

𝑢
=

𝑑𝑢

𝑎𝑦2 + 𝑏𝑦 + 𝑐
=

𝑑𝑓

−1
.

The first identity implies immediately 𝑢𝑑𝑢 = (𝑎𝑦2 + 𝑏𝑦 + 𝑐)𝑑𝑦, that is,

3𝑦2𝑥 − 2𝑎𝑦3 − 3𝑏𝑦2 − 6𝑐𝑦 = 𝑘0,
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where 𝑘0 is an arbitrary constant; this is exactly the integral 𝐼1 constructed above. In view of
this, the relation 𝑢𝑑𝑓 = −𝑑𝑦 yields

𝑓 = −
∫︁

𝑑𝑦√︁
𝑘0
3
+ 2

3
𝑎𝑦3 + 𝑏𝑦2 + 2𝑐𝑦

.

Therefore, the first integrals of Equation (4.1) are found in quadratures and they read

𝐼1 = 3𝑦2𝑥 − 2𝑎𝑦3 − 3𝑏𝑦2 − 6𝑐𝑦, 𝐼2 = 𝑥−
∫︁

𝑑𝑦√︁
𝐼1
3
+ 2

3
𝑎𝑦3 + 𝑏𝑦2 + 2𝑐𝑦

.

Thus, the geodesic flow of metric (4.2) is superintegrable. The proof is complete.
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sur la Théorie Générale des Surfaces”, Vol. 4. Chelsea Publishing, Vermont (1896).

15. B. Kruglikov, V.S. Matveev. The geodesic flow of a generic metric does not admit nontrivial inte-

grals polynomial in momenta // Nonlinearity 29:6, 1755–1768 (2016).

https://doi.org/10.1088/0951-7715/29/6/1755
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