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ON METRIZABILITY OF SOME SPECIAL FUNCTIONS

S.V. AGAPOV

Abstract. We study the second order ordinary differential equations satisfied by the follow-
ing special functions: Bessel function, hypergeometric function, Weierstrass elliptic function.
We prove that all these equations are metrizable and construct explicitly the corresponding
metrics. We show that in all mentioned cases the geodesic equations admit a first integral,
which is linear in momenta.

Keywords: geodesics, metrizability, special functions, integrability, first integral.

Mathematics Subject Classification: 34B30, 53C22

1. INTRODUCTION AND MAIN RESULTS

We consider a two—dimensional surface M with local coordinates u = (u', u?) and a Riemann-

ian (pseudo—Riemannian) metric ds® = g;;(u)du'du’. The geodesics of this metric are curves,
which satisfy the following system of differential equations:

i 4+ TEa'? =0, k=12, (1.1)
hereinafter, as usually, we mean the summation over the repeating indices,
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are the Cristoffel symbols, and g is the tensor inverse to the metric one: g*g; = d.
We consider one of the coordinates as the function of the other along the geodesics and
rewrite the system (1.1) as a single second order differential equation

@—A(:B ) dy 3—|—A(3: ) dy 2+A(w ) dy + Ao(z,y) (1.2)
d.%’z_ 3 T, Y d.CE 2 y Y dl’ 1 Y dl’ o\r,Y), .
here u' = x, u? =y, and the coefficients A;(z,y), j =0,...,3, read

A3 =Tk,  Ay=2IL, -T2, A =TI, —2%,  Ay=-T%. (1.3)

The search of Riemannian metrics on two—dimensional surfaces, the geodesic equations of
which can be integrated by quadratures, is a classical problem. We recall the known integrability
criterion, which is usually formulated in the language of Hamiltonian mechanics.

As it is known, the geodesics satisfy the Euler — Lagrange equations
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for the Lagrangian L = % = %, that is, they are the extremals of the energy functional
S = [ Ldt. Applying the Legendre transform (u,a) — (u,p), where p = 8—5 are conjugate

B)
momenta, we rewrite (1.4) as the Hamiltonian system

oH OH

. 1 i
. Pe = {pe, H} = — H = -g"pip;, k=12, (1.5)
Pk

i = {1} = I )

with the canonical Poisson bracket {u’, v’} = {pi,p;} =0, {v’, p;} = o}
The first integral of the Hamiltonian system (1.5) is an arbitrary function F'(u,p), which is
preserved along the trajectories of (1.5). The first integral F' obeys the condition

or OH  OF 0H
ouk Op,  Opy, OuF

The Hamiltonian H is obviously a first integral of (1.5). If at the same time there exists
an additional first integral F., which is functionally independent with H, then the geodesic
flow (1.5) is called completely integrable, and in this case, by the Arnold — Liouville theorem
the geodesic equations can be integrated by quadratures [2|. There is a huge amount of works
devoted to the search of the first integrals; a main attention is paid to the polynomial integrals,
see, for instance, [3]-[6], [10], [L9] and the references therein. For instance, it is known that the
integrable metrics with an additional linear or quadratic first integral in an appropriate local
coordinate system read

F={FH}= = 0.

1) ds* = f(z)(dz® + dy?), Fy = po, (1.6)

2 2
2) ds? = (f(z) +g()(da® + dy?),  Fp=TAIP
f+yg

here f(x), g(y) are arbitrary functions. We note that even with an additional integral the direct
integration of geodesic equations is a separate, and generally speaking complicated problem. In
the most cases the geodesic equations are not polynomially integrable, see, for instance, [15].

The problem on integrable geodesic flows and their first integrals can be approached in
another way. The equations of form (1.2) with appropriate coefficients A; appear in many
various problems of mathematical physics, their solutions are often various special functions
[8]. Let us pose the question whether their exist two—dimensional metrics, the geodesics of
which satisfy the corresponding equation (1.2) for some prescribed special function. In the case
of the positive answer, we generally speaking get an entire family of metrics (see the details
below), the geodesic equations of which are integrated in terms of the chosen special function.
To the best of our knowledge, the issue on metrizability of equations of form (1.2), which are
of interest in mathematical physics, is being actively studied just recently, see 1], [9], [13].

It is clear that not each equation of form (1.2) determine the geodesics of some metric: the
corresponding metrizability criterion was obtained in [16], see also [11]. Tt reads as follows. We
consider a system of partial differential equations for the functions ¢,(z,y), 7 =1,2,3:

(0)e = 5 Aty — 240t
(s)y = 245ty — = Ant
)y +202)e = 5 Arn — 3 Aty — 24t
(s)a +202)y = 2450 — 3 A1t + S Aot

(1.7)
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If this system has a solution obeying A = 13 — 3 # 0, then Equation (1.2) determine
geodesics of the metric
UY1da® + 2odady + Ysdy?)
AZ
and the relations (1.3) are satisfied. In this case we say that Equation (1.2) is metrizable.
The system (1.7) possesses the following wonderful properties.

ds2:(

1) The space of solutions of system (1.7), that is the space of corresponding metrics, is a finite—
dimentional vector space. The geodesics of these metrics satisfy the same equation (1.2),
that is, they coincide as non—parametrized curves. Such metrics are called projectively
equivalent; they were studied in various works, see, for instance, [7], [12]. It is known for
a long time that the dimension of space of geodesically equivalent metrics does not exceed
6[17]

2) If the dimension of the space of solutions (1.7) exceeds 3, then the geodesic flow of each
of corresponding metric necessarily admits a linear in momenta first integral [11], see

also [18], [20].
In [1], the metrizability of Schrodinger equation

2
% —u(x)y =0 (1.8)
was studied. It was also proved that in the case of a finite gap potential u(x), the metric and
geodesics can be found explicitly in terms of the Baker — Akhiezer function.
In this work we study the equation of form
2
T4 @)Y+ gy = (1.9
as it is known, it is satisfied by many special functions under appropriate choice of f(x), g(x).
Our main results are as follows.

Theorem 1.1 (Bessel function). Equation (1.9) for
1 72 — ao?
f(ZE) = ;7 g(l’) = 72 ) o€ IR7 (110)

1s metrizable. Namely, there exists a 6—parametric family of two—dimensional metrics, the
geodesics of which satisfy (1.9), (1.10) and possess a linear in momenta first integral.

Theorem 1.2 (Hypergeometric function). Fquation (1.9) for
c—(a+b+1)x ab

1s metrizable.  Namely, there exists a 6—parametric family of two—dimensional metrics, the

geodesics of which satisfy (1.9), (1.11) and possess a linear in momenta first integral.

a,b,c € R, (1.11)

We also consider the equation
d2
d—;; =ay* +by+c, a,b,c € R, (1.12)

which is satisfied, in particular, by the Weierstrass elliptic function.

Theorem 1.3 (Weierstrass elliptic function). Equation (1.12) is metrizable. Namely, there
erists a 2-parametric family of two-dimensional metrics, the geodesics of which satisfy (1.12)
and possess a linear tn momenta first integral. At the same time, there exists one more tran-
scendental integral, that s, the geodesic flow is superintegrable.
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2. BESSEL FUNCTION

Proof of Theorem 1.1. The Bessel function [3] satisfies the equation

d? d
xzd—x‘z + x% + (2% — a?)y =0, (2.1)

here a € R is an arbitrary parameter called the order. For Equation (2.1) we have

1 2 _ 2
Az = Ay =0, Ay =——, Aoz—x Zay
x x
and therefore, the system (1.7) becomes
2 2y(a? — 2?)
(¥1)2 + 3—x¢1 + Tiﬁz =0, (¥3)y =0,

(2.2)
2 .2 4
(V1)y + 2(2)z — 3%% + wws =0, (V3)z + 2(1h2)y — 3—x¢3 = 0.

This immediately implies that ¥5(z,y) = l(z). Integrating the fourth equation of system (2.2),
we find s :

2
Yala,y) = S20(x) = 21'(x) + s(a),
where s(x) is an arbitrary function. Integrating the third equation in (2.2), we obtain
1
Ui(z,y) = 5 {247 (92° — 9a° + 8) I(z)+3x(62y () +y(4s(x)—byl' (x) — 125" (x)+3zyl" ()},

where y(x) is an arbitrary function. After that the first equation in (2.2) becomes
Ro(z) + Ri(z)y + Ry(2)y” = 0,
where
Ry = 362°y(x) + 542° (x),
Ry = —1082°s"(x) — 3627 (z) — 122(92* — 9a” + 1)s(z),
Ry = 272" (z) — 272%1" (z) + 92(122% — 120® + 7)l'(x) — 4(92% — 360> + 16)I(x).
The general solution of the system Ry = R; = Ry =0 1is

y(z) = — s(z) ==

[(z) = s (ng]i(l') + cado(2)Y,(2) + %Yj(m)) ,

wl—=

(c1Ja() + Yo (),

here J,(z) and Y, (z) are the Bessel functions of first and second kind. Thus, all functions
U (z,y), Ya(z,y), ¥3(x,y) are found and therefore, the sought metric coefficients are recovered
by the formulas

g1 = La g12 = L, g22 = L

(1ibs — 3)? (Y1tps —13)? (1ihs — ¥3)?

The coefficients of metric depend on 6 arbitrary parameters cg,...,c5. Thus, we have con-
structed a 6—parametric family of projectively equivalent metrics. Therefore, the geodesic flow
of each metric in this family possesses a linear first integral |141]. The proof is complete. m

(2.3)

We note that in the case of arbitrary constants co, ..., c5 the constructed metric coefficients
are rather cumbersome and, in contrast to the metric (1.6), in this case it is not so easy to
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provide the linear first integral explicitly. For instance, in the partial case co = ¢4 = ¢5 = 0 we
have

co+y(xdo1(x) — ady(z)) (—2¢1 + c3xyJo_1(x) — csyad,(x))

gu(z,y) = 22(c} — cocs)?JA () |
(x ) _ c1 + 03y04Ja(x) - C3$y=]a—1($) (x ) — ‘s
9122, Y 2(3 — cocs)2J3(x) ; 922\, Y (2 — coc3)2J2(z)

The Gaussian curvature of this metric is zero. It seems that generally for all values of the
parameters co, . .., cs all constructed metrics are planar.

3. HYPERGEOMETRIC FUNCTION

Proof of Theorem 1.2. The hypergeometric function o F(a, b; c; x) [8] solves the equation

d*y dy
x(l—x)@—l—(c—(a—l—b—i—l)x)%—abyzo, (3.1)
here a, b, ¢ are arbitrary constants. Sequentially integrating the second, fourth and third
equation in the system (1.7), we get

bs(z, y) =l(x), () = 2(c —39(;?_19;; 1))
Yy

1 (z,y) :m{2y(20(3 +¢) — 9abr — 4(a + b+ 4)cx

+ (2a® + 13ab + 2b* + 10a + 10b + 8)2°)l(x) + 3z(x — 1)
-(4s(z)(—c+z(a+b+1)) = by(—c+z(a+ b+ 1))l'(x)
+3x(r = 1)(yl"(z) — 45'(2)))} + ().

The remaining equation in (1.7) becomes

Yo
i(e) = L (@) + s(a),

Ro(z) + Ry (z)y + Ry(z)y* = 0.

Integrating the relations Ry = Ry = Ry = 0, we obtain
(@) =doz ¥ (z — 1)
e 2 (atbti—c)

s(x) =(=1)" 2 5 (x—-1) 5 {(=1)diz3Fi(a, b;c; )
—dyroFi(1+a—c,14+b—c¢;2—c;x)},

Uz) =(=1)7227 5 (x — 1)"HIBL(1)%dyad Fy (a, b5 ¢; 7)°
— (=1)%dgry Fi(a,b;c;0) o Fi(14+a—c,14+b—¢;2 —c; 1)
+dszsFi(14+a—c,1+b—c;2—cx),

here dy, ..., ds are arbitrary constants.

Thus, all the functions ¥, (z,y), ¥ (z,y), ¥3(x, y) have been found. The corresponding metric
coeflicients are found by the formulas (2.3) and, as in the case of the Bessel function, they have
a rather cumbersome form. As the result we obtain a 6-parametric family of projectively
equivalent metrics (which seem to be planar), and in view of the results obtained in [11] this
implies the existence of the linear integral. The proof is complete. O
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4.  WEIERSTRASS ELLIPTIC FUNCTION
The Weierstrass elliptic function g(z) solves the equation [8]

(9)? = 49® + g20° + 019 + 9o,

where gg, g1, g2 are arbitrary constants. Differentiating this equation in 2z and simplifying, we
obtain

o = 607 + g2+ 2

2
Proof of Theorem 1.3. Here we study the metrizability of a bit more general equation
d2
d_xg = ay® + by +c, (4.1)

where a, b, ¢ are arbitrary constants. Integrating the system (1.7), we finally get

d
Yy (z,y) = dy — 30 (2ay® +3by +6¢)y, oz, y) =0,  Ps(z,y) = do,
that is, by (2.3),

p —1
gi1 = da2 (dl — EO (2@y2 + 3by + 6C) y) y g12 = Oa

d —2
Go2 = dgl (d1 — 30 (2ay2 + 3by + 66) y) )

here dy, d; are arbitrary constants. The Gaussian curvature K of this metric is

2

K = % (do(a®y* + 2aby® + 6acy® — 3¢”) — 3d1(2ay + b)) .

We rewrite the geodesic equations of metric (4.2) in the Hamiltonian form (1.5). Since the
components of the metric g;; depend only on y, the coordinate z is cyclic and therefore, the
function F; = p; together with the Hamiltonian H is the first integral of (1.5). We are going
to show how to project F; onto the first integral of Equation (4.1). We employ the inverse
Legendre transform and express p;, po as functions of x, y, , y. The function J = %
obviously also the first integral. Replacing in J the momenta p;, ps by their expressionls in
terms of the velocities &, ¥ and using the relation y, = % = %, we finally get the autonomous

dx
first integral

is

L(x,y,y2) = 3y; — 2ay° — 3by” — by
of Equation (4.1).

Equation (4.1) admits one more first integral. While searching for it, we follow the ideas
of [13], where a similar equation was considered. By the definition, the first integral I(z,y, u)
of Equation (4.1) satisfies the relation

I+ Lu+ I,(ay® + by + ¢) = 0,
where u = y,. Suppose that I =z + f(y,u), then
uf, + (ay* + by + ) fu = —1.
The characteristic equation reads
dy du df

w o al+by+c -1
The first identity implies immediately udu = (ay® + by + ¢)dy, that is,

3y2 — 2ay® — 3by* — 6cy = ko,



ON METRIZABILITY OF SOME SPECIAL FUNCTIONS 7

where kg is an arbitrary constant; this is exactly the integral I; constructed above. In view of
this, the relation udf = —dy yields

dy
- | |
\/% + %ayS + by? + 2cy

Therefore, the first integrals of Equation (4.1) are found in quadratures and they read

d
I = 3y — 2ay® — 3by* — 6y, ]gzx—/ Y .
\/% + %ayB‘ + by? + 2cy
Thus, the geodesic flow of metric (4.2) is superintegrable. The proof is complete. O
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