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ON MULTIPLE INTERPOLATION OF PERIODIC

COMPLEX–VALUED FUNCTIONS

A.I. FEDOTOV

Absract. We obtain fully constructive results on construction of trigonometric interpo-
lation polynomials with multiple nodes. We construct polynomials interpolating periodic
complex–valued functions of a real variable. The polynomials are represented in general
form and in the form of expansions over fundamental polynomials. We provide examples
and discuss unresolved problems.
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1. Introduction

Algebraic interpolation polynomials with multiple nodes, called Hermite polynomials, are
well studied and successfully applied in practice to solve a wide range of problems. Their
trigonometric counterpart is much worse investigated. First studies of such polynomials began
apparently since the late 1930s. Lozinsky [1] considered the approximation of complex variable
functions regular within the unit circle and continuous on its boundary by Hermite — Fejér
interpolation polynomials with multiple nodes located on the unit circle.
Zeel [2], [3], summarizing the results of predecessors [4], [5], [6], [7], proved the existence

of trigonometric interpolation polynomials of arbitrary multiplicity 𝑚 ⩾ 0 on the system of
equidistant nodes for real–valued 2𝜋–periodic functions and indicated the way of threading the
corresponding fundamental polynomials. In addition, he obtained the conditions for uniform
convergence of such polynomials to the interpolated function depending on its smoothness and
the parity of 𝑚. Despite the fact that Zeel announced in his works the explicit construction of
trigonometric polynomials for multiple interpolation, the coefficients of such polynomials were
not calculated explicitly, but only equations for the coefficients were given.

In the deep and informative article [8] for an arbitrary permissible system of nodes (not nec-
essarily equidistant) Trigub provided an algorithm for finding, in finitely many steps, trigono-
metrical polynomial with given values of function and the values of all its derivatives at these
nodes. These values can be complex or real numbers. Moreover, the number of given values
in different nodes can vary. For the particular case when the number of nodes is 𝑚 and the
number of values in all these nodes are the same and equal to 𝑟 + 1, in [8, Lm. 2] there was
proved the existence of a unique interpolation trigonometric polynomial with the spectrum on
[𝑝, 𝑛], where 𝑛− 𝑝 = 𝑚(𝑟 + 1)− 1.

In this work we prove the existence of interpolation polynomials with multiple nodes. These
polynomials are represented as a power decomposition of the variable and as a fundamental
polynomial decomposition. All the results are completely constructive, that is, all the coeffi-
cients of the polynomials are calculated explicitly. We note that trigonometric interpolation
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polynomials with multiple nodes were applied for the approximate solution of singular integro-
differential equations only in the works of the author [9], [10].

2. Formulation of problem

As usually, by N and R we denote the sets of natural and real numbers, and the symbol N0

stands for the non–negative integer numbers.
We fix numbers𝑚,𝑛 ∈ N0 and denote by 𝐶𝑚 the set of 2𝜋–periodic complex–valued functions

having continuous derivatives of orders up to 𝑚. For 𝑚 = 0 by 𝐶 = 𝐶0 we denote the set of
2𝜋–periodic continuous complex–valued functions.
The problem of constructing a trigonometric interpolation polynomial with multiple nodes

consists in finding a polynomial 𝑥𝑚,𝑛 for a given function 𝑥 ∈ 𝐶𝑚 such that at grid nodes

∆𝑛 : 𝑡𝑘 =
2𝜋𝑘

2𝑛+ 1
, 𝑘 = 0, 1, . . . , 2𝑛,

the conditions
𝑥(𝜇)
𝑚,𝑛(𝑡𝑘) = 𝑥(𝜇)(𝑡𝑘), 𝜇 = 0, 1, . . . ,𝑚, 𝑘 = 0, 1, . . . , 2𝑛, (2.1)

are fulfilled.

3. Existence

We seek the required polynomial in the form

𝑥𝑚,𝑛(𝑡) =

(2𝑛+1)𝑚+2𝑛∑︁
𝑙=0

𝑑𝑙𝑒
𝑖𝑙𝑡, 𝑡 ∈ R, (3.1)

and the coefficients 𝑑𝑙, 𝑙 = 0, 1, . . . , (2𝑛+1)𝑚+2𝑛, are determined by the system of equations
(2.1).

Theorem 3.1. For all 𝑚,𝑛 ∈ N0 and each function 𝑥 ∈ 𝐶𝑚 there is a unique polynomial
(3.1) obeying (2.1).

Proof. We fix 𝑚,𝑛 ∈ N0 and a function 𝑥 ∈ 𝐶𝑚. We rewrite the system of equations (2.1) as

(2𝑛+1)𝑚+2𝑛∑︁
𝑙=0

𝑑𝑙(𝑖𝑙)
𝜇𝑒𝑖𝑙𝑡𝑘 = 𝑥(𝜇)(𝑡𝑘), 𝜇 = 0, 1, . . . ,𝑚, 𝑘 = 0, 1, . . . , 2𝑛. (3.2)

It is clear that for 𝑚 = 0 the system of equations (3.2) becomes the system of equations

2𝑛∑︁
𝑙=0

𝑑𝑙𝑒
𝑖𝑙𝑡𝑘 = 𝑥(𝑡𝑘), 𝑘 = 0, 1, . . . , 2𝑛. (3.3)

The matrix of the above system reads

𝑆0 =

⎛⎜⎜⎜⎝
1 1 · · · 1

1 𝑒𝑖
2𝜋

2𝑛+1 · · · 𝑒𝑖
4𝜋𝑛
2𝑛+1

...
...

...

1 𝑒𝑖
4𝜋𝑛
2𝑛+1 · · · 𝑒𝑖

8𝜋𝑛2

2𝑛+1

⎞⎟⎟⎟⎠ .

The determinant of this matrix is the Vandermonde determinant

|𝑆0| = 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛) =

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 1 . . . 1
𝛼0 𝛼1 . . . 𝛼2𝑛
...

...
...

...
𝛼2𝑛
0 𝛼2𝑛

1 . . . 𝛼2𝑛
2𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒ ̸= 0, 𝛼𝑘 = 𝑒

𝑖
2𝜋𝑘

2𝑛+ 1 , 𝑘 = 0, 1, . . . , 2𝑛,
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therefore, for 𝑚 = 0, the system of equations (3.3) is uniquely solvable for each function 𝑥 ∈ 𝐶.
For 𝑚 > 0 the matrix of equation (3.2) has the block structure

𝑆𝑚 =

⎛⎜⎜⎝
𝑆𝑚
0,0 𝑆𝑚

0,1 . . . 𝑆𝑚
0,𝑚

𝑆𝑚
1,0 𝑆𝑚

1,1 . . . 𝑆𝑚
1,𝑚

...
...

...
...

𝑆𝑚
𝑚,0 𝑆𝑚

𝑚,1 . . . 𝑆𝑚
𝑚,𝑚

⎞⎟⎟⎠
with the matrices

𝑆𝑚
𝜇,𝜈 =

⎛⎜⎜⎝
𝛽𝜇
𝜈,0 𝛽𝜇

𝜈,1 · · · 𝛽𝜇
𝜈,2𝑛

𝛽𝜇
𝜈,0𝛼0 𝛽𝜇

𝜈,1𝛼1 · · · 𝛽𝜇
𝜈,2𝑛𝛼2𝑛

...
...

...
𝛽𝜇
𝜈,0𝛼

2𝑛
0 𝛽𝜇

𝜈,1𝛼
2𝑛
1 . . . 𝛽𝜇

𝜈,2𝑛𝛼
2𝑛
2𝑛

⎞⎟⎟⎠ ,

where

𝛽𝜈,𝑗 = 𝑖((2𝑛+ 1)𝜈 + 𝑗), 𝑗 = 0, 1, . . . , 2𝑛, 𝜇, 𝜈 = 0, 1, . . . ,𝑚,

and we adopt 00 =1. Their determinants are equal to

|𝑆𝑚
𝜇,𝜈 | = 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)

2𝑛∏︁
𝑗=0

𝛽𝜇
𝜈,𝑗, 𝜇, 𝜈 = 0, 1, . . . ,𝑚,

therefore, the determinant of 𝑆𝑚 is equal to

|𝑆𝑚| = 𝑉 𝑚+1(𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝑉 (𝛾0, 𝛾1, . . . , 𝛾𝑚) ̸= 0, 𝛾𝜈 =
2𝑛∏︁
𝑗=0

𝛽𝜈,𝑗, 𝜈 = 0, 1, . . . ,𝑚.

The arbitrary choice of the numbers 𝑚, 𝑛 and the function 𝑥 implies the statement of the
theorem and completes the proof.

4. Explicit form

Theorem 3.1 is a generalization of Theorem 1 from [3] to the case of complex–valued func-
tions. Moreover, although in [3] the explicit form of the desired polynomial was declared, the
coefficients were not calculated explicitly, but only their existence was proved. Here we find
explicitly the coefficients of the polynomial (3.1). In order to do this, we denote

𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚), 𝜇, 𝜈 = 0, 1, . . . ,𝑚.

The Viète’s formulas express the coefficients of reduced polynomials
𝑚∏︁

𝜇=0
𝜇̸=𝜈

(𝜂 − 𝜂𝜇) =
𝑚∑︁

𝜇=0

(−1)𝑚−𝜇𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚)𝜂
𝜇, 𝜈 = 0, 1, . . . ,𝑚,

in terms of its roots 𝜂𝜇, 𝜇 = 0, 1, . . . , 𝜈 − 1, 𝜈 + 1, . . . ,𝑚. Here the parameter 𝜈 specifies, which
of the root from the list 𝜂0, 𝜂1, . . . , 𝜂𝑚 is skipped. In particular, for 𝜇 = 0,

𝐵0,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚) =
𝑚∏︁
𝜉=0
𝜉 ̸=𝜈

𝜂𝜉, 𝜈 = 0, 1, . . . ,𝑚, (4.1)

for 𝜇 = 𝑚− 1 for we have

𝐵𝑚−1,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚) =
𝑚∑︁
𝜉=0
𝜉 ̸=𝜈

𝜂𝜉, 𝜈 = 0, 1, . . . ,𝑚,
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and for 𝜇 = 𝑚

𝐵𝑚,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚) = 1, 𝜈 = 0, 1, . . . ,𝑚.

Using the Viète’s formulas, we find particular determinants of the system of equations (3.3).
In order to do this, we need the next lemma.

Lemma 4.1. For each number 𝑚 ∈ N0 and each Vandermonde determinant

𝑉 (𝜂0, 𝜂1, . . . , 𝜂𝑚) =

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 1 . . . 1
𝜂0 𝜂1 . . . 𝜂𝑚
...

...
...

...
𝜂𝑚0 𝜂𝑚1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒ (4.2)

the identities hold

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

1 . . . 1 1 . . . 1
𝜂0 . . . 𝜂𝜈−1 𝜂𝜈+1 . . . 𝜂𝑚
...

...
...

...
...

...

𝜂𝜇−1
0 . . . 𝜂𝜇−1

𝜈−1 𝜂𝜇−1
𝜈+1 . . . 𝜂𝜇−1

𝑚

𝜂𝜇+1
0 . . . 𝜂𝜇+1

𝜈−1 𝜂𝜇+1
𝜈+1 . . . 𝜂𝜇+1

𝑚
...

...
...

...
...

...
𝜂𝑚0 . . . 𝜂𝑚𝜈−1 𝜂𝑚𝜈+1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
=

(−1)𝑚−𝜈𝑉 (𝜂0, 𝜂1 . . . , 𝜂𝑚)

𝜔′
𝑚(𝜂𝜈)

𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚), (4.3)

where

𝜔𝑚(𝜂) =
𝑚∏︁

𝜈=0

(𝜂 − 𝜂𝜈), 𝜇, 𝜈 = 0, 1, . . . ,𝑚.

Proof. We expand the determinant (4.2) along the 𝜈th column

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 1 . . . 1
𝜂0 𝜂1 . . . 𝜂𝑚
...

...
...

...
𝜂𝑚0 𝜂𝑚1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒ =(−1)𝜈

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝜂0 . . . 𝜂𝜈−1 𝜂𝜈+1 . . . 𝜂𝑚
𝜂20 . . . 𝜂2𝜈−1 𝜂2𝜈+1 . . . 𝜂𝑚
...

...
...

...
...

𝜂𝑚0 . . . 𝜂𝑚𝜈−1 𝜂𝑚𝜈+1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒

+ (−1)1+𝜈

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 . . . 1 1 . . . 1
𝜂20 . . . 𝜂2𝜈−1 𝜂2𝜈+1 . . . 𝜂2𝑚
...

...
...

...
...

𝜂𝑚0 . . . 𝜂𝑚𝜈−1 𝜂𝑚𝜈+1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝜂𝜈 + . . .

+ (−1)𝑚+𝜈

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 . . . 1 1 . . . 1
𝜂0 . . . 𝜂𝜈−1 𝜂𝜈+1 . . . 𝜂𝑚
...

...
...

...
...

𝜂𝑚−1
0 . . . 𝜂𝑚−1

𝜈−1 𝜂𝑚−1
𝜈+1 . . . 𝜂𝑚−1

𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝜂𝑚𝜈 ,

(4.4)
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and we get a polynomial of order 𝑚 in the variable 𝜂𝜈 . On the other hand, the determinant
(4.2) is equal to⎛⎜⎜⎝

1 1 . . . 1
𝜂0 𝜂1 . . . 𝜂𝑚
...

...
...

...
𝜂𝑚0 𝜂𝑚1 . . . 𝜂𝑚𝑚

⎞⎟⎟⎠ =
∏︁

0⩽𝑞<𝑝⩽𝑚

(𝜂𝑝 − 𝜂𝑞) =
𝜈−1∏︁
𝑞=0

(𝜂𝜈 − 𝜂𝑞)
𝑚∏︁

𝑝=𝜈+1

(𝜂𝑝 − 𝜂𝜈)
∏︁

0⩽𝑞<𝜈
𝜈<𝑞⩽𝑚

(𝜂𝑝 − 𝜂𝑞)

=(−1)𝑚−𝜈

𝜈−1∏︁
𝑞=0

(𝜂𝜈 − 𝜂𝑞)
𝑚∏︁

𝑝=𝜈+1

(𝜂𝜈 − 𝜂𝑝)
∏︁

0⩽𝑞<𝜈
𝜈<𝑞⩽𝑚

(𝜂𝑝 − 𝜂𝑞)

=(−1)𝑚−𝜈
∏︁
𝑝=0
𝑝̸=𝜈

(𝜂𝜈 − 𝜂𝑝)
∏︁

0⩽𝑞<𝜈
𝜈<𝑞⩽𝑚

(𝜂𝑝 − 𝜂𝑞)

=(−1)𝑚−𝜈𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚)

·
𝑚∑︁

𝜇=0

(−1)𝑚−𝜇𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚)𝜂
𝜇
𝜈

=𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚)
𝑚∑︁

𝜇=0

(−1)𝜇+𝜈𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚)𝜂
𝜇
𝜈 .

(4.5)

Equating the coefficients in the polynomials (4.4) and (4.5) at the like degrees of 𝜂𝜈 , we get the
identities⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

1 . . . 1 1 . . . 1
𝜂0 . . . 𝜂𝜈−1 𝜂𝜈+1 . . . 𝜂𝑚
...

...
...

...
...

...

𝜂𝜇−1
0 . . . 𝜂𝜇−1

𝜈−1 𝜂𝜇−1
𝜈+1 . . . 𝜂𝜇−1

𝑚

𝜂𝜇+1
0 . . . 𝜂𝜇+1

𝜈−1 𝜂𝜇+1
𝜈+1 . . . 𝜂𝜇+1

𝑚
...

...
...

...
...

...
𝜂𝑚0 . . . 𝜂𝑚𝜈−1 𝜂𝑚𝜈+1 . . . 𝜂𝑚𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
= 𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚)𝐵𝜇,𝜈(𝜂0, 𝜂1, . . . , 𝜂𝑚), (4.6)

where 𝜇, 𝜈 = 0, 1, . . . ,𝑚. Since

𝑉 (𝜂0, 𝜂1, . . . , 𝜂𝑚) =𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚)
𝜈−1∏︁
𝑝=0

(𝜂𝜈 − 𝜂𝑝)
𝑚∏︁

𝑝=𝜈+1

(𝜂𝑝 − 𝜂𝜈)

=(−1)𝑚−𝜈𝜔′
𝑚(𝜂𝜈)𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚), 𝜈 = 0, 1, . . . ,𝑚,

we have

𝑉 (𝜂0, . . . , 𝜂𝜈−1, 𝜂𝜈+1, . . . , 𝜂𝑚) =
(−1)𝑚−𝜈𝑉 (𝜂0, 𝜂1, . . . , 𝜂𝑚)

𝜔′
𝑚(𝜂𝜈)

, 𝜈 = 0, 1, . . . ,𝑚. (4.7)

Sudstituting (4.7) to (4.6), we arrive at the identities (4.3).

To calculate explicitly the coefficients 𝑑𝑙, 𝑙 = 0, 1, . . . , (2𝑛 + 1)𝑚 + 2𝑛, we need to solve the
system of equations

𝑆𝑚d𝑇 = a𝑇 , d = (𝑑0, 𝑑1, . . . , 𝑑(2𝑛+1)𝑚+2𝑛),

a = (𝑥(𝑡0), 𝑥(𝑡1), . . . , 𝑥(𝑡2𝑛), 𝑥
′(𝑡0), . . . , 𝑥

𝑚(𝑡2𝑛)),
(4.8)

with respect to the vector d.
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We denote by |𝑆𝑚
𝑙 | the partial determinant of the system of equations (4.8), which is obtained

from the determinant |𝑆𝑚| by replacing the column number 𝑙 of the matrix 𝑆𝑚 by the vector
a𝑇 . Let us calculate first the necessary parameters by 𝑙

𝜈 =

[︂
𝑙

2𝑛+ 1

]︂
, 0 ⩽ 𝜈 ⩽ 𝑚, 𝑟 = 𝑙 − (2𝑛+ 1)𝜈, 0 ⩽ 𝑟 ⩽ 2𝑛,

where [ · ] denotes the integer part of a number. The 𝜈 parameter indicates that the right
hand side vector a𝑇 goes through the matrices 𝑆𝑚

0,𝜈 , 𝑆
𝑚
1,𝜈 , . . . , 𝑆

𝑚
𝑚,𝜈 of the matrix 𝑆𝑚, and the

parameter 𝑟 indicates that in these matrices the 𝑟th column is replaced by the column

a𝑇
𝑗 = (𝑥(𝑡0), 𝑥(𝑡1), . . . , 𝑥(𝑡2𝑛))

𝑇

in the matrix 𝑆𝑚
𝑗,𝜈 , 𝑗 = 0, 1, . . . ,𝑚. The resulting modified matrices are denoted by 𝑆𝑚

0,𝜈 , 𝑆
𝑚
1,𝜈 ,

. . . , 𝑆𝑚
𝑚,𝜈 . The explicit form of coefficients 𝑑𝑙, 𝑙 = 0, 1, . . . , (2𝑛 + 1)𝑚 + 2𝑛, is provided by the

next theorem.

Theorem 4.1. For all numbers 𝑚,𝑛 ∈ N0 and each function 𝑥 ∈ 𝐶𝑚 the coefficients 𝑑𝑙,
𝑙 = 0, 1, . . . , (2𝑛+ 1)𝑚+ 2𝑛, of the polynomial (3.1) are equal to

𝑑𝑙 =
1

𝜔′
2𝑛(𝛼𝑙)

2𝑛∑︁
𝑘=0

(−1)𝑘𝑥(𝑡𝑘)𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

𝜔2𝑛(𝛼) =
2𝑛∏︁
𝑙=0

(𝛼− 𝛼𝑙), 𝑙 = 0, 1, . . . , 2𝑛,

(4.9)

for 𝑚 = 0, 𝑛 ⩾ 0;

𝑑𝑙 =
1

𝜔′
𝑚(𝛽𝑙,0)

𝑚∑︁
𝜇=0

(−1)𝑚+𝜇𝑥(𝜇)(𝑡0)𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0),

𝜔𝑚(𝛽) =
𝑚∏︁

𝜇=0

(𝛽 − 𝛽𝜇,0), 𝑙 = 0, 1, . . . ,𝑚,

(4.10)

for 𝑚 ⩾ 0, 𝑛 = 0;

𝑑𝑙 =
1

𝜔′
𝑚(𝛾𝜈)𝜔

′
2𝑛(𝛼𝑟)

𝑚∑︁
𝜇=0

2𝑛∑︁
𝑘=0

(−1)𝑚+𝜇+𝑘𝑥(𝜇)(𝑡𝑘)

·
2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑘𝐵𝜇,𝜈(𝛾0, 𝛾1, . . . , 𝛾𝑚)𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

𝜔𝑚(𝛾) =
𝑚∏︁

𝜇=0

(𝛾 − 𝛾𝜈), 𝑙 = 0, 1, . . . , (2𝑛+ 1)𝑚+ 2𝑛,

(4.11)

for 𝑚 > 0, 𝑛 > 0.

Proof. For 𝑚 = 0, 𝑛 ⩾ 0 the determinant |𝑆0| is equal to

|𝑆0| = 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛),
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and the determinants |𝑆0
𝑙 | are equal to

|𝑆0
𝑙 | =

⃒⃒⃒⃒
⃒⃒⃒⃒ 1 . . . 1 𝑥(𝑡0) 1 . . . 1
𝛼0 . . . 𝛼𝑙−1 𝑥(𝑡1) 𝛼𝑙+1 . . . 𝛼2𝑛
...

...
...

...
...

...
𝛼2𝑛
0 . . . 𝛼2𝑛

𝑙−1 𝑥(𝑡2𝑛) 𝛼2𝑛
𝑙+1 . . . 𝛼2𝑛

2𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒

=
2𝑛∑︁
𝑘=0

(−1)𝑙+𝑘𝑥(𝑡𝑘)𝑉 (𝛼0, . . . , 𝛼𝑙−1, 𝛼𝑙=1, . . . , 𝛼2𝑛)𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛)

=
𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)

𝜔′
2𝑛(𝛼𝑙)

2𝑛∑︁
𝑘=0

(−1)𝑙+𝑘𝑥(𝑡𝑘)𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛).

Hence,

𝑑𝑙 =
|𝑆0

𝑙 |
|𝑆0|

=
1

𝜔2𝑛(𝛼𝑙)

2𝑛∑︁
𝑘=0

(−1)𝑘𝑥(𝑡𝑘)𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

𝜔(𝛼) =
2𝑛∏︁
𝑙=0

(𝛼− 𝛼𝑙), 𝑙 = 0, 1, . . . , 2𝑛.

For 𝑛 = 0, 𝑚 ⩾ 0, the determinant |𝑆𝑚| is equal to

|𝑆𝑚| =

⎛⎜⎜⎝
1 1 . . . 1

𝛽0,0 𝛽1,0 . . . 𝛽𝑚,0
...

...
...

...
𝛽0,0 𝛽𝑚

1,0 . . . 𝛽𝑚
𝑚,0

⎞⎟⎟⎠ = 𝑉 (𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0),

and the determinants |𝑆𝑚
𝑙 | are equal to

|𝑆𝑚
𝑙 | =

⎛⎜⎜⎝
1 . . . 1 𝑥(𝑡0) 1 . . . 1

𝛽0,0 . . . 𝛽𝑙−1,0 𝑥′(𝑡0) 𝛽𝑙+1,0 . . . 𝛽𝑚,0
...

...
...

...
...

...
𝛽𝑚
0,0 . . . 𝛽𝑚

𝑙−1,0 𝑥(𝑚)(𝑡0) 𝛽𝑚
𝑙+1,0 . . . 𝛽𝑚

𝑚,0

⎞⎟⎟⎠
=

𝑚∑︁
𝜇=0

(−1)𝑙+𝜇𝑥(𝜇)(𝑡0)𝑉 (𝛽0,0, . . . , 𝛽𝑙−1,0, 𝛽𝑙+1,0, . . . , 𝛽𝑚,0)𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0)

=
𝑉 (𝛽0, 0, 𝛽1,0, . . . , 𝛽𝑚,0)

𝜔′
𝑚(𝛽𝑙,0)

𝑚∑︁
𝜇=0

(−1)𝑚+𝜇𝑥(𝜇)(𝑡0)𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0,...,𝛽𝑚,0).

Therefore,

𝑑𝑙 =
1

𝜔′
𝑚(𝛽𝑙,𝑜)

𝑚∑︁
𝜇=0

(−1)𝑚+𝜇𝑥(𝜇)(𝑡0)𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0),

𝜔𝑚(𝛽) =
𝑚∏︁
𝑙=0

(𝛽 − 𝛽𝑙,0), 𝑙 = 0, 1, . . . ,𝑚.

For 𝑚 > 0, 𝑛 > 0 the determinant |𝑆𝑚| is equal to

|𝑆𝑚| = 𝑉 𝑚+1(𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝑉 (𝛾0, 𝛾1, . . . , 𝛾𝑚),
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and the determinants |𝑆𝑚
𝑙 | are equal to

|𝑆𝑚
𝑙 | =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
|𝑆𝑚

0,0| . . . |𝑆𝑚
0,𝜈 | . . . |𝑆𝑚

0,𝑚|
|𝑆𝑚

1,0| . . . |𝑆𝑚
1,𝜈 | . . . |𝑆𝑚

1,𝑚|
...

...
...

...
...

|𝑆𝑚
𝑚,0| . . . |𝑆𝑚

𝑚,𝜈 | . . . |𝑆𝑚
𝑚,𝑚|

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛) . . . |𝑆𝑚

0,𝜈 | . . . 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)

𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝛾0 . . . |𝑆𝑚
1,𝜈 | . . . 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝛾𝑚

...
...

...
...

𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝛾
𝑚
0 . . . |𝑆𝑚

1,𝜈 | . . . 𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝛾
𝑚
𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

=𝑉 𝑚(𝛼0, 𝛼1, . . . , 𝛼2𝑛)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1 . . . |𝑆𝑚

0,𝜈 | . . . 1

𝛾0 . . . |𝑆𝑚
1,𝜈 | . . . 𝛾𝑚

...
...

...
...

𝛾𝑚
0 . . . |𝑆𝑚

1,𝜈 | . . . 𝛾𝑚
𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

=𝑉 𝑚(𝛼0, 𝛼1, . . . , 𝛼2𝑛)

·
𝑚∑︁

𝜇=0

(−1)𝜈+𝜇|𝑆𝑚
𝜇,𝜈 |𝑉 (𝛾0, . . . , 𝛾𝜈−1, 𝛾𝜈+1, . . . , 𝛾𝑚)𝐵𝜇,𝜈(𝛾0, 𝛾1, . . . , 𝛾𝑚)

=
𝑉 𝑚(𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝑉 (𝛾0, 𝛾1, . . . , 𝛾𝑚)

𝜔′
𝑚(𝛾𝜈)

𝑚∑︁
𝜇=0

(−1)𝑚+𝜇|𝑆𝑚
𝜇,𝜈 |𝐵𝜇,𝜈(𝛾0, 𝛾1, . . . , 𝛾𝑚).

(4.12)

We proceed to calculating the determinants |𝑆𝑚
𝜇,𝜈 |, 𝜇, 𝜈 = 0, 1, . . . ,𝑚,

|𝑆𝑚
𝜇,𝜈 | =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝛽𝜇
𝜈,𝑜 . . . 𝑥(𝜇)(𝑡0) . . . 𝛽𝜇

𝜈,2𝑛

𝛽𝜇
𝜈,0𝛼0 . . . 𝑥(𝜇)(𝑡1) . . . 𝛽𝜇

𝜈,2𝑛𝛼2𝑛
...

...
...

...
...

𝛽𝜇
𝜈,0𝛼

2𝑛
0 . . . 𝑥(𝜇)(𝑡2𝑛) . . . 𝛽𝜇

𝜈,2𝑛𝛼
2𝑛
2𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

=
2𝑛∑︁
𝑘=0

(−1)𝑘𝑥(𝜇)(𝑡𝑘)
2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑗

𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)

𝜔′
2𝑛(𝛼𝑟)

𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛)

=
𝑉 (𝛼0, 𝛼1, . . . , 𝛼2𝑛)

𝜔′
2𝑛(𝛼𝑟)

2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑗

2𝑛∑︁
𝑘=0

(−1)𝑘𝑥(𝜇)(𝑡𝑘)𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛).

(4.13)

By these identities and (4.12) we get

|𝑆𝑚
𝑙 | =𝑉 𝑚+1(𝛼0, 𝛼1, . . . , 𝛼2𝑛)𝑉 (𝛾0, 𝛾1, . . . , 𝛾𝑚)

𝜔′
𝑚(𝛾𝜈)𝜔

′
2𝑛(𝛼𝑟)

·
𝑚∑︁

𝜇=0

2𝑛∑︁
𝑘=0

(−1)𝑚+𝜇+𝑘𝑥(𝜇)(𝑡𝑘)
2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑗𝐵𝜇,𝜈(𝛾0, 𝛾1, . . . , 𝛾𝑚)𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

and this means that coefficients 𝑑𝑙 are equal to

𝑑𝑙 =
1

𝜔′
𝑚(𝛾𝜈)𝜔

′
2𝑛(𝛼𝑟)

𝑚∑︁
𝜇=0

2𝑛∑︁
𝑘=0

(−1)𝑚+𝜇+𝑘𝑥(𝑚𝑢)(𝑡𝑘)
2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑗𝐵𝜇,𝜈(𝛾0.𝛾1, . . . , 𝛾𝑚)𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

where 𝑙 = 0, 1, . . . , (2𝑛+ 1)𝑚+ 2𝑛. The proof is complete.
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5. Fundamental polynomials

The polynomial 𝑥𝑚,𝑛, written as (3.1), is inconvenient for applications. It is better to rewrite
it via fundamental polynomials, that is, the polynomials 𝑢𝜇,𝑘, 𝜇 = 0, 1, . . . ,𝑚, 𝑘 = 0, 1, . . . , 2𝑛,
of form (3.1) satisfying the conditions

𝑢
(𝜈)
𝜇,𝑘(𝑡𝑟) =

{︃
1, (𝜇− 𝜈)2 + (𝑘 − 𝑟)2 = 0,

0, (𝜇− 𝜈)2 + (𝑘 − 𝑟)2 > 0,
𝜇, 𝜈 = 0, 1, . . . ,𝑚, 𝑘, 𝑟 = 0, 1, . . . , 2𝑛. (5.1)

In terms of these polynomials, the polynomial 𝑥𝑚,𝑛 can be written as

𝑥𝑚,𝑛(𝑡) =
𝑚∑︁

𝜇=0

2𝑛∑︁
𝑘=0

𝑥(𝜇)(𝑡𝑘)𝑢𝜇,𝑘(𝑡), 𝑡 ∈ R. (5.2)

Theorem 5.1. For all numbers 𝑚,𝑛 ∈ N0 and each function 𝑥 ∈ 𝐶𝑚 the coefficients

𝑑𝑙,𝜇,𝑘, 𝑙 = 0, 1, . . . , (2𝑛+ 1)𝑚+ 2𝑛, 𝜇 = 0, 1, . . . ,𝑚, 𝑘 = 0, 1, . . . , 2𝑛,

of the fundamental polynomials

𝑢𝜇,𝑘(𝑡) =

(2𝑛+1)𝑚+2𝑛∑︁
𝑙=0

𝑑𝑙,𝜇,𝑘𝑒
𝑖𝑙𝑡, 𝑡 ∈ R,

in the interpolation polynomials (5.2) are equal to

𝑑𝑙,0,𝑘 =
(−1)𝑘

𝜔′
2𝑛(𝛼𝑙)

𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛), 𝑙 = 0, 1, . . . , 2𝑛; (5.3)

for 𝑚 = 0, 𝑛 ⩾ 0;

𝑑𝑙,𝜇,0 =
(−1)𝑚+𝜇

𝜔′
𝑚(𝛽𝑙,0)

𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0), 𝑙 = 0, 1, . . . ,𝑚, (5.4)

for 𝑛 = 0, 𝑚 ⩾ 0;

𝑑𝑙,𝜇,𝑘 =
(−1)𝑚+𝜇+𝑘

𝜔′
𝑚(𝛾𝜈)𝜔

′
2𝑛(𝛼𝑟)

2𝑛∏︁
𝑗=0
𝑗 ̸=𝑟

𝛽𝜇
𝜈,𝑗𝐵𝜇,𝜈(𝛾0, 𝛾1, . . . , 𝛾𝑚)𝐵𝑘,𝑟(𝛼0, 𝛼1, . . . , 𝛼2𝑛),

𝜈 =

[︂
𝑙

2𝑛+ 1

]︂
, 𝑟 = 𝑙 − (2𝑛+ 1)𝜈, 𝑙 = 0, 1, . . . , (2𝑛+ 1)𝑚+ 2𝑛,

(5.5)

for 𝑚 > 0, 𝑛 > 0.

Proof. The polynomials 𝑢𝜇,𝑘 are special cases of the polynomials (3.1) under the conditions
(5.1). These conditions mean that for each pair, (𝜇, 𝑘), 𝜇 = 0, 1, . . . ,𝑚, 𝑘 = 0, 1, . . . , 2𝑛, the
vector in the right hand sides of the system of equations (4.8) consists of (2𝑛+ 1)𝑚+ 2𝑛 zeros
and one unity located at the (2𝑛+ 1)𝜇+ 𝑘-th place.

According to Theorem 4.1 with 𝑚 = 0, 𝑛 ⩾ 0, we have 𝜇 = 0, and the parameter 𝑘 is fixed
by location of the unity in a vector of right hand sides of the system of equations (4.8). At the
same time, 𝑙 ranges as 𝑙 = 0, 1, . . . , 2𝑛. Fixing the value of parameter 𝑘 in the identity (4.9),
we get the formula (5.3).

For 𝑛 = 0, 𝑚 ⩾ 0, we have 𝑘 = 0, and the parameter 𝜇 is fixed by location of the unity in
the vector in the right hand side of the system of equations (4.8). In this case, the parameter
𝑙 ranges as 𝑙 = 0, 1, . . . ,𝑚. Fixing the value of parameter 𝜇 in the identity (4.10), we get the
formula (5.4).

For 𝑚 ⩾ 0, 𝑛 ⩾ 0, both the parameters 𝜇 and 𝑘 are fixed by the position of the unity in
the vector in the right hand side of the system of equations (4.8), and parameter 𝑙 ranges as
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𝑙 = 0, 1, . . . , (2𝑛+1)𝑚+2𝑛. Fixing the parameters 𝜇 and 𝑘 in the identity (4.11) and calculating
the parameters 𝜈 and 𝑟 by 𝑙, we get the formula (5.5). The proof is complete.

6. Examples and discussion of results

In Theorems 4.1 and 5.1, the formulas (4.9), (5.3) for 𝑚 = 0, 𝑛 ⩾ 0 and the formulas (4.10),
(5.4) for 𝑛 = 0, 𝑚 ⩾ 0 are provided separately. These cases are interesting due to the facts
that the formula (4.9) generalizes the Lagrange trigonometric interpolation polynomial to the
case of complex–valued functions of real variable, while the formula (4.10) allows to construct
periodic analogues of the partial sums of the Maclaurin series for the same functions.

Let 𝑚 = 0. We fix 𝑛 ∈ N0 and we are going to construct the fundamental polynomials for
different values of the parameter 𝑘 = 0, 1, . . . , 2𝑛. By the formula (5.3), the coefficients of the
polynomials 𝑢0,𝑘 are equal to

𝑑𝑙,0,𝑘 =
(−1)𝑘

𝜔′
2𝑛(𝛼𝑙)

𝐵𝑘,𝑙(𝛼0, 𝛼1, . . . , 𝛼2𝑛), 𝑙 = 0, 1, . . . , 2𝑛,

hence,

𝑢0,𝑘(𝑡) =
2𝑛∑︁
𝑙=0

𝑑𝑙,0,𝑘𝑒
𝑖𝑙𝑡, 𝑘 = 0, 1, . . . , 2𝑛.

This allows us to write the interpolation polynomial 𝑥0,𝑛 for the values of the function 𝑥 ∈ 𝐶
at the nodes ∆𝑛

𝑥0,𝑛(𝑡) =
2𝑛∑︁
𝑘=0

𝑥(𝑡𝑘)𝑢0,𝑘(𝑡), 𝑡 ∈ R. (6.1)

Let us calculate explicitly the polynomials 𝑢0,𝑘, 𝑘 = 0, 1, . . . , 2𝑛. Using the formula (5.3), we
find

𝑢0,𝑘(𝑡) =
1

2𝑛+ 1

2𝑛∑︁
𝑗=0

𝑒𝑖𝑗(𝑡−𝑡𝑘) =
1− 𝑒𝑖(2𝑛+1)(𝑡−𝑡𝑘)

(2𝑛+ 1)(1− 𝑒𝑖(𝑡−𝑡𝑘))
, 𝑘 = 0, 1, . . . , 2𝑛, 𝑡 ∈ R. (6.2)

The expression (6.2) is a complex analogue of the Dirichlet kernel in the periodic Lagrange
interpolation polynomial. Substituting (6.2) into (6.1), we get

𝑥0,𝑛(𝑡) =
1

2𝑛+ 1

2𝑛∑︁
𝑘=0

𝑥(𝑡𝑘)
1− 𝑒𝑖(2𝑛+1)(𝑡−𝑡𝑘)

1− 𝑒𝑖(𝑡−𝑡𝑘)
, 𝑡 ∈ R.

A more interesting case is for 𝑛 = 0, 𝑚 ⩾ 0. In this case, the polynomials

𝑥𝑚,0(𝑡) =
𝑚∑︁

𝜇=0

𝑥(𝜇)(𝑡0)𝑢𝜇,0(𝑡), 𝑚 ∈ N0, 𝑡 ∈ R, (6.3)

are partial sums of the Maclaurin–type series for periodic functions 𝑥 ∈ 𝐶∞. The term “Maclau-
rin type” means here that the polynomials 𝑢𝜇,0, 𝜇 = 0, 1, . . . ,𝑚, are not algebraic, but periodic,
like the function 𝑥 ∈ 𝐶𝑚.
Let 𝑛 = 0. We fix 𝑚 ∈ N0 and we are going to construct the fundamental polynomials

for different values of the parameter 𝜇 = 0, 1, . . . ,𝑚. By the formula (5.4), the coefficients of
polynomial 𝑢𝜇,0 are equal to

𝑑𝑙,𝜇,0 =
(−1)𝑚+𝜇

𝜔′
𝑚(𝛽𝑙,0)

𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, . . . , 𝛽𝑚,0), 𝑙 = 0, 1, . . . ,𝑚,
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and hence,

𝑢𝜇,0(𝑡) =
𝑚∑︁
𝑙=0

𝑑𝑙,𝜇,0𝑒
𝑖𝑙𝑡, 𝜇 = 0, 1, . . . ,𝑚.

Let us calculate the explicit form of polynomials (6.1) for several values of 𝑚.
Let 𝑚 = 0, then 𝑙 = 𝜇 = 0, 𝜔′

0(𝛽0,0) = 𝐵0,0(𝛽0,0) = 1, hence, 𝑢0,0(𝑡) = 1, and

𝑥0,0(𝑡) = 𝑥(𝑡0), 𝑡 ∈ R.

For 𝑚 = 1 we find

𝛽𝑜,𝑜 = 0, 𝛽1,0 = 𝑖, 𝜔′
1(𝛽0,0) = −𝑖, 𝜔′

1(𝛽1,0) = 𝑖,

𝐵0,0(𝛽0,0, 𝛽1,0) = 𝑖, 𝐵1,0(𝛽0,0, 𝛽1,0) = 1, 𝐵0,1(𝛽0,0, 𝛽1,0) = 0, 𝐵1,1(𝛽0,0, 𝛽1,0) = 1,

and therefore,

𝑑0,0,0 = 1, 𝑑1,0,0 = 0, 𝑑0,1,0 = 𝑖, 𝑑1, 1, 0 = −𝑖.

The polynomials 𝑢𝜇,0, 𝜇 = 0, 1, read as

𝑢0,0(𝑡) = 1, 𝑢1,0(𝑡) = 𝑖− 𝑖𝑒𝑖𝑡,

and the polynomial 𝑥1,0 is

𝑥1,0(𝑡) = 𝑥(𝑡0) + 𝑥′(𝑡0)(𝑖− 𝑖𝑒𝑖𝑡), 𝑡 ∈ R.

For 𝑚 = 2 we get

𝛽0,0 = 0, 𝛽1,0 = 𝑖, 𝛽2,0 = 2𝑖,

𝜔′
2(𝛽0,0) = −2, 𝜔′

2(𝛽1,0) = 1, 𝜔′
2(𝛽2,0) = −2,

𝐵0,0(𝛽0,0, 𝛽1,0, 𝛽2,0) = −2, 𝐵0,1(𝛽0,0, 𝛽1,0, 𝛽2,0) = 0, 𝐵0,2(𝛽0,0, 𝛽1,0, 𝛽2,0) = 0,

𝐵1,0(𝛽0,0, 𝛽1,0, 𝛽2,0) = 3𝑖, 𝐵1,1(𝛽0,0, 𝛽1,0, 𝛽2,0) = 2𝑖, 𝐵1,2(𝛽0,0, 𝛽1,0, 𝛽2,0) = 𝑖,

𝐵2,0(𝛽0,0, 𝛽1,0, 𝛽2,0) = 1, 𝐵2,1(𝛽0,0, 𝛽1,0, 𝛽2,0) = 1, 𝐵2,2(𝛽0,0, 𝛽1,0, 𝛽2,0) = 1,

and therefore,

𝑑0,0,0 = 1, 𝑑1,0,0 = 0, 𝑑2,0,0 = 0, 𝑑0,1,0 =
3

2
𝑖, 𝑑1,1,0 = −2𝑖,

𝑑2,1,0 =
1

2
𝑖, 𝑑0,2,0 = −1

2
, 𝑑1,2,0 = 1, 𝑑2,2,0 = −1

2
.

The polynomials 𝑢𝜇,0, 𝜇 = 0, 1, 2, read

𝑢0,0(𝑡) = 1, 𝑢1,0(𝑡) =
3

2
𝑖− 2𝑖𝑒𝑖𝑡 +

1

2
𝑖𝑒𝑖2𝑡, 𝑢2,0(𝑡) = −1

2
+ 𝑒𝑖𝑡 − 1

2
𝑒𝑖2𝑡,

and the polynomial 𝑥2,0 reads

𝑥2,0(𝑡) = 𝑥(𝑡0) + 𝑥′(𝑡0)

(︂
3

2
𝑖− 2𝑖𝑒𝑖𝑡 +

1

2
𝑖𝑒𝑖2𝑡

)︂
− 𝑥′′(𝑡0)

(︂
1

2
− 𝑒𝑖𝑡 +

1

2
𝑒𝑖2𝑡

)︂
, 𝑡 ∈ R.

Now we take 𝑚 = 3. Let us find the values of parameters in the formulas (5.4). The
coefficients 𝛽𝜇,0, 𝜇 = 0, 1, 2, 3, are equal to

𝛽0,0 = 0, 𝛽1,0 = 𝑖, 𝛽2,0 = 2𝑖, 𝛽3,0 = 3𝑖,

thus,

𝜔′
3(𝛽0,0) = 6𝑖, 𝜔′

3(𝛽1,0) = −2𝑖, 𝜔′
3(𝛽2,0) = 2𝑖, 𝜔′

3(𝛽3,0) = −6𝑖.
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Let us calculate the values of the functions 𝐵𝜇,𝑙(𝛽0,0, 𝛽1,0, 𝛽2,0, 𝛽3,0), 𝜇, 𝑙 = 0, 1, 2, 3. For the sake
of brevity, we shall omit the vector (𝛽0,0, 𝛽1,0, 𝛽2,0, 𝛽3,0) in the variables of the function 𝐵𝜇,𝑙

𝐵0,0 = −6𝑖, 𝐵0,1 = 0, 𝐵0,2 = 0, 𝐵0,3 = 0,

𝐵1,0 = −11, 𝐵1,1 = −6, 𝐵1,2 = −3, 𝐵1,3 = −2,

𝐵2,0 = −6𝑖, 𝐵2,1 = 5𝑖, 𝐵2,2 = 4𝑖, 𝐵2,3 = 3𝑖,

𝐵3,0 = 1, 𝐵3,1 = 1, 𝐵3,2 = 1, 𝐵3,3 = 1.

This allows us to calculate the coefficients 𝑑𝑙,𝜇,0, 𝜇, 𝑙 = 0, 1, 2, 3,

𝑑0,0,0 = 1, 𝑑1,0,0 = 0, 𝑑2,0,0 = 0, 𝑑3,0,0 = 0,

𝑑0,1,0 =
11

6
𝑖, 𝑑1,1,0 = −3𝑖, 𝑑2,1,0 =

3

2
𝑖, 𝑑3,1,0 = −1

3
𝑖,

𝑑0,2,0 = −1, 𝑑1,2,0 =
5

2
, 𝑑2,2,0 = −2, 𝑑3,2,0 =

1

2
,

𝑑0,3,0 = −1

6
𝑖, 𝑑1,3,0 =

1

2
𝑖, 𝑑2,3,0 = −1

2
𝑖, 𝑑3,3,0 =

1

6
𝑖.

The fundamental polynomials 𝑢𝜇,0, 𝜇 = 0, 1, 2, 3, read

𝑢0,0(𝑡) = 1, 𝑢1,0(𝑡) =
11

6
𝑖− 3𝑖𝑒𝑖𝑡 +

3

2
𝑖𝑒𝑖2𝑡 − 1

3
𝑖𝑒𝑖3𝑡,

𝑢2,0(𝑡) = −1 +
5

2
𝑒𝑖𝑡 − 2𝑒𝑖2𝑡 +

1

2
𝑒𝑖3𝑡, 𝑢3,0(𝑡) = −1

6
𝑖+

1

2
𝑖𝑒𝑖𝑡− 1

2
𝑖𝑒𝑖2𝑡 +

1

6
𝑖𝑒𝑖3𝑡,

and the polynomial 𝑥3,0 reads

𝑥3,0(𝑡) =𝑥(𝑡0) + 𝑥′(𝑡0)

(︂
11

6
𝑖− 3𝑖𝑒𝑖𝑡 +

3

2
𝑖𝑒𝑖2𝑡 − 1

3
𝑖𝑒𝑖3𝑡

)︂
− 𝑥′′(𝑡0)(1−

5

2
𝑒𝑖𝑡 + 2𝑒𝑖2𝑡 − 1

2
𝑒𝑖3𝑡)

− 𝑥′′′(𝑡0)

(︂
1

6
𝑖− 1

2
𝑒𝑖𝑡 +

1

2
𝑖𝑒𝑖2𝑡 − 1

6
𝑖𝑒𝑖3𝑡

)︂
, 𝑡 ∈ R.

The given examples show that in contrast to the non–periodic polynomials of the usual
Maclaurin series, in the periodic series of the Maclaurin type, the addition of one more term
requires the recalculation of all previous terms.

We proceed to the case 𝑚 > 0, 𝑛 > 0. In [10], the author has already used the interpolation
polynomials 𝑥1,𝑛, 𝑛 = 0, 1, . . . , of the first multiplicity as an approximation aggregate for the
exact solving of singular integro–differential equations with the Hilbert kernel. Here, we give
an example of a Hermite — Fejér type polynomial of order 𝑚 = 2. By Hermite — Fejér
polynomials, we mean trigonometric polynomials with multiple nodes, the derivatives of which
at the interpolation nodes may, unlike traditional Hermite — Fej’er polynomials, be non–zero.

We fix 𝑛 ∈ N0 and𝑚 = 2 and construct the polynomial 𝑥2,𝑛. Using the results of constructing
such polynomials for the cases 𝑚 = 0, 𝑛 ⩾ 0 and 𝑛 = 0, 𝑚 ⩾ 0, one can immediately write out
the explicit form of such polynomials:

𝑥2,𝑛 =
1

(2𝑛+ 1)3

2𝑛∑︁
𝑘=0

(︂
𝑥(𝑡𝑘) + 𝑥′(𝑡𝑘)

(︂
3

2
𝑖− 2𝑖𝑒𝑖(𝑡−𝑡𝑘) +

1

2
𝑖𝑒𝑖2(𝑡−𝑡𝑘)

)︂

−𝑥′′(𝑡𝑘)

(︂
1

2
− 𝑒𝑖(𝑡−𝑡𝑘) +

1

2
𝑒𝑖2(𝑡−𝑡𝑘)

)︂)︂(︂
1− 𝑒𝑖(2𝑛+1)(𝑡−𝑡𝑘)

(1− 𝑒𝑖(𝑡−𝑡𝑘))

)︂3

.

The results of this paper can be developed in different directions. First of all, it is natural to
generalize the construction of multiple interpolation polynomials to the case of fractional order
derivatives. For this purpose, we can use fractional derivatives defined by the author in [9]. The
results of constructing trigonometric polynomials of multiple interpolation over unequal nodes
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is also of interest. It is important to establish the approximative properties of such polynomials
in different functional spaces.

It was shown in [3] that in the case of multiple interpolation of periodic real–valued functions,
the interpolation polynomials converge to the interpolated function in the space 𝐶𝑚 for odd
𝑚 and do not converge for even 𝑚. This property is likely preserved for the complex–valued
functions considered in this paper. Finally, it is interesting to consider the problem of multiple
interpolation over an even number of nodes. Due to the multiplicity of interpolation polynomials
of this type for the same function, we expect interesting results in this case.
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