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ON DEGENERATE SOLUTIONS OF

SECOND ORDER ELLIPTIC EQUATIONS IN PLANE

A.B. ZAITSEV

Abstract. In the work we study conditions, under which a solution to a second order
partial differential equation in the unit disk on the plane degenerates. We prove that each
degenerate solution is either a polynomial of degree at most 2 or a linear combination of a
constant and the logarithm of a fractional–rational expression. In proof of the main result
we use the Taylor series expansion of the degenerate solution of the equation at an arbitrary
point and study the dependence of coefficients of resulting series on the coefficients at the
lower powers of the same series.
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1. Introduction

Let
𝐿 = 𝜕𝜕𝛽, (1.1)

where 𝜕 is the Cauchy — Riemann operator and 𝜕𝛽 = 𝜕
𝜕𝑥

+ 𝛽𝑖 𝜕
𝜕𝑦
, while 𝛽 ̸= ±1 is a non–zero

real number. In the present work we study the conditions, under which a solution 𝑢 to the
equation

𝐿𝑢 = 0 (1.2)

degenerates, that is, the set of its values in the complex plane has no internal points.
If 𝛽 = −1, Equation (1.2) is the Laplace equation, and the functions satisfying this equation

are harmonic. There exist rather many degenerate harmonic functions.
In particular, the real part of each complex–valued harmonic function is a real–valued har-

monic function. The latter property is not extended to the case 𝛽 ̸= −1: in this case, a solution
of Equation (1.2) can be real–valued in some domain only if it is a polynomial of degree at
most 2 in the variables 𝑥 and 𝑦.

If 𝛽 = 1, then Equation (1.2) reads 𝜕
2
𝑢 = 0, and the functions solving this equation are called

bi–analytic. If a bi–analytic function degenerates, then it is either equal to 𝐴(𝑒𝑖𝛼𝑧+ 𝑧)+𝐴1, or
to 𝐴(𝑧 − 𝑐)𝛾(𝑧 − 𝑐) + 𝐴1, where 𝐴, 𝐴1, 𝑐, 𝛼, 𝛾 are constants Im𝛼 = 0, |𝛾| = 1 [1, Thm. 1.11].
It follows from [2, Thm. 5] that if 𝛽 > 0, 𝛽 ̸= 1 and a solution 𝑢(𝑧) to Equation (1.2) is a

polynomial of degree exceeding 2, then the function 𝑢(𝑧) can not degenerate.

2. Main results and proofs

We introduce the following notation. Let

𝑧𝛽 = 𝑥+
𝑖

𝛽
𝑦 =

𝛽 + 1

2𝛽
𝑧 +

𝛽 − 1

2𝛽
𝑧.
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We define a linear mapping 𝑇𝛽 of the plane C by the formula 𝑇𝛽(𝑧) = 𝑧𝛽. Let a function 𝑢(𝑧)
satisfy Equation (1.2) in the domain 𝐷. Then

𝑢(𝑧) = 𝑓(𝑧)− 𝑓𝛽(𝑧𝛽), (2.1)

where the functions 𝑓 and 𝑓𝛽 are holomorphic in the domains 𝐷 and 𝑇𝛽(𝐷), respectively. We
denote by 𝐼𝑢(𝑧) the Jacobian of the mapping 𝑢(𝑧) at a point 𝑧 ∈ 𝐷. It is clear that

𝐼𝑢(𝑧) =

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑧

⃒⃒⃒⃒2
−
⃒⃒⃒⃒
𝜕𝑢

𝜕𝑧

⃒⃒⃒⃒2
.

If 𝐼𝑢(𝑧) = 0 and the identity (2.1) holds, then⃒⃒⃒⃒
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
− 1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
; (2.2)

see [2, Sect. 2], the corresponding arguing in the proof of Theorem 1 remains true also for
𝛽 > 0, 𝛽 ̸= 1.
Now we are in position to formulate the main result of work.

Theorem 2.1. Let a function 𝑢(𝑧) satisfy Equation (1.2) in some domain 𝐷, 𝛽 ∈ R ∖
{0;±1}, and degenerate. Then either 𝑢(𝑧) is polynomial of degree at most 2 or

𝑢(𝑧) = 𝑐1 + 𝑐2 ln
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
,

where 𝑐, 𝑐1, 𝑐2 are some complex numbers.

To prove this theorem, we shall need the following lemmas.

Lemma 2.1. In the vicinity of an arbitrary point 𝑐 ∈ C there exists at most one degenerate

solution to Equation (1.2) with prescribed coefficients at the monomials of degree up to 3 in the

Taylor expansions of this solution about the point 𝑐 under the condition that the gradient of this

solution at the point 𝑐 is non–zero.

Lemma 2.2. Let a function 𝑢(𝑧) satisfies the conditions

1. 𝑢(𝑧) is a solution to Equation (1.2) in the vicinity of the point 0;
2. 𝑢(𝑧) = 𝑓(𝑧)− 𝑓𝛽(𝑧𝛽), where

𝑓(𝑧) = 𝑐0 +
∞∑︁
𝑘=1

𝑐𝑘𝑧
𝑘, 𝑓𝛽(𝑧𝛽) =

∞∑︁
𝑘=1

𝑐𝛽,𝑘𝑧
𝑘
𝛽, 𝑐1 ̸= 0, 𝑐𝛽,1 ̸= 0.

Then the coefficients at the polynomials of degree at most 𝑛 − 1 in the Taylor expansion of

function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
about the point 0 are uniquely determined by the coefficients 𝑐𝑘 and 𝑐𝛽,𝑘,

𝑘 = 1, 2, . . . , 𝑛. And vice versa, the coefficients 𝑐𝑘, 𝑘 = 2, . . . , 𝑛 and 𝑐𝛽,𝑘, 𝑘 = 1, 2, . . . , 𝑛, are
uniquely determined by the coefficients at the monomials of degree at most 𝑛− 1 in the Taylor

expansion of the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
in the vicinity of the point 0 and by the coefficient 𝑐1.

Lemma 2.3. Let 𝑢(𝑧) = 𝑓(𝑧) − 𝑓𝛽(𝑧𝛽) be a degenerate solution to Equation (1.2) in the

vicinity of point 0, and the gradient of function 𝑢(𝑧) at the point 0 is non–zero. Then there

exists at most one function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
with prescribed coefficients at monomials of degree at most

2 in the Taylor expansion of this function about the point 0.
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Proof of Lemma 2.2. In the vicinity of the point 0 we have 𝑓 ′(𝑧) =
∞∑︀
𝑘=1

𝑘𝑐𝑘𝑧
𝑘−1, therefore,

ln 𝑓 ′(𝑧) = ln 𝑐1 + ln

(︃
1 +

∞∑︁
𝑘=2

𝑘
𝑐𝑘
𝑐1
𝑧𝑘−1

)︃

= ln 𝑐1 +
∞∑︁
𝑙=1

(−1)𝑙−1

𝑙

(︃
∞∑︁
𝑘=1

(𝑘 + 1)
𝑐𝑘+1

𝑐1
𝑧𝑘

)︃𝑙

= ln 𝑐1 +
∞∑︁
𝑙=1

𝑑𝑙𝑧
𝑙,

where

𝑑1 =
2𝑐2
𝑐1

, 𝑑𝑙 =
(𝑙 + 1)𝑐𝑙+1

𝑐1
+ 𝜀𝑙, 𝑙 = 2, 3, . . . , (2.3)

the constants 𝜀𝑙 depends only on the coefficients 𝑐1, . . . , 𝑐𝑙, 𝑙 = 2, 3, . . . .
Using similar arguing, we obtain that

ln 𝑓 ′
𝛽(𝑧𝛽) = ln 𝑐𝛽,1 +

∞∑︁
𝑙=1

𝑑𝛽,𝑙𝑧
𝑙
𝛽,

where

𝑑𝛽,1 =
2𝑐𝛽,2
𝑐𝛽,1

, 𝑑𝛽,𝑙 =
(𝑙 + 1)𝑐𝛽,𝑙+1

𝑐𝛽,1
+ 𝜀𝛽,𝑙, 𝑙 = 2, 3, . . . , (2.4)

the constants 𝜀𝛽,𝑙 depend only on the coefficients 𝑐𝛽,1, . . . , 𝑐𝛽,𝑙, 𝑙 = 2, 3, . . . .
Thus, in the vicinity of the point 0 we have

ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
= 𝑑0 −

(︃
∞∑︁
𝑙=1

𝑑𝑙𝑧
𝑙

)︃
+

∞∑︁
𝑙=1

𝑑𝛽,𝑙𝑧
𝑙
𝛽,

where 𝑑0 = ln
𝑐𝛽,1
𝑐1
. Together with (2.3) and (2.4) this imply that the coefficients 𝑑0, 𝑑𝑘 and 𝑑𝛽,𝑘,

𝑘 = 1, 2, . . . , 𝑛− 1, are determined uniquely by the coefficients 𝑐𝑘 and 𝑐𝛽,𝑘, 𝑘 = 1, 2, . . . , 𝑛, and
vice versa, the coefficients 𝑐𝑘, 𝑘 = 2, . . . , 𝑛, and 𝑐𝛽,𝑘, 𝑘 = 1, 2, . . . , 𝑛, are uniquely determined
by the coefficients 𝑑0, 𝑐1, 𝑑𝑘 and 𝑑𝛽,𝑘, 𝑘 = 1, 2, . . . , 𝑛− 1. The proof is complete.

Proof of Lemma 2.1. Let 𝑢(𝑧) be a degenerate solution of Equation (1.2) in the vicinity of the
point 𝑐 and the gradient of 𝑢(𝑧) at the point 𝑐 do not vanish. Without loss of generality we
suppose that 𝑐 = 0 and that in the vicinity of 0 the Taylor expansion of 𝑢(𝑧) reads

𝑢(𝑧) = 𝑎0 + 𝑥+ 𝛼𝑦 +
∞∑︁
𝑛=2

(𝑎𝑛𝑧
𝑛 + 𝑏𝑛𝑧

𝑛
𝛽 ),

where 𝛼 is some real number.
By means of elementary calculations we obtain that the sum of monomials of third degree

in the Taylor series of function 𝐼𝑢(𝑧) in the vicinity of the point 0 is equal to

4

(︂
Re 𝑎4 +

Re 𝑏4
𝛽

− 𝛼(Im 𝑎4 + Im 𝑏4) + 𝑙30

)︂
𝑥3

− 12

(︂
Im 𝑎4 +

Im 𝑏4
𝛽2

+ 𝛼

(︂
Re 𝑎4 +

Re 𝑏4
𝛽

)︂
+ 𝑙21

)︂
𝑥2𝑦

− 12

(︂
Re 𝑎4 +

Re 𝑏4
𝛽3

− 𝛼(Im 𝑎4 +
Im 𝑏4
𝛽2

) + 𝑙12

)︂
𝑥𝑦2

+ 4

(︂
Im 𝑎4 +

Im 𝑏4
𝛽4

+ 𝛼

(︂
Re 𝑎4 +

Re 𝑏4
𝛽3

)︂
+ 𝑙03

)︂
𝑦3,

where the numbers 𝑙30, 𝑙21, 𝑙12, 𝑙03 depend only on the coefficients 𝛼, 𝑎2, 𝑎3, 𝑏2, 𝑏3.



12 A.B. ZAITSEV

If 𝑢(𝑧) is a degenerate function, then 𝐼𝑢(𝑧) = 0 in the vicinity of the point 0. We thus have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re 𝑎4 +
Re 𝑏4
𝛽

− 𝛼 (Im 𝑎4 + Im 𝑏4) + 𝑙30 = 0,

𝛼

(︂
Re 𝑎4 +

Re 𝑏4
𝛽

)︂
+ Im 𝑎4 +

Im 𝑏4
𝛽2

+ 𝑙21 = 0,

Re 𝑎4 +
Re 𝑏4
𝛽3

− 𝛼

(︂
Im 𝑎4 +

Im 𝑏4
𝛽2

)︂
+ 𝑙12 = 0,

𝛼

(︂
Re 𝑎4 +

Re 𝑏4
𝛽3

)︂
+ Im 𝑎4 +

Im 𝑏4
𝛽4

+ 𝑙03 = 0.

We have obtained a system of linear equations with the unknowns Re 𝑎4, Re 𝑏4, Im 𝑎4, Im 𝑏4.
Its determinant is equal to⃒⃒⃒⃒

⃒⃒⃒⃒1
1
𝛽

−𝛼 −𝛼

𝛼 𝛼
𝛽

1 1
𝛽2

1 1
𝛽3 −𝛼 −𝛼

𝛽2

𝛼 𝛼
𝛽3 1 1

𝛽4

⃒⃒⃒⃒
⃒⃒⃒⃒ = (︂ 1

𝛽3
− 1

𝛽

)︂
(1 + 𝛼2)

(︂
1

𝛽2
+ 𝛼2 − 1

𝛽4
− 𝛼2

𝛽2

)︂

=

(︂
1

𝛽3
− 1

𝛽

)︂
(1 + 𝛼2)

(︂
1

𝛽2
+ 𝛼2)(1− 1

𝛽2

)︂
̸= 0

since 𝛽 ̸= ±1. This is why the system is uniquely solvable with respect to Re 𝑎4, Re 𝑏4, Im 𝑎4,
Im 𝑏4, that is, the coefficients 𝑎4 and 𝑏4 are uniquely determined for the given coefficients 𝛼, 𝑎2,
𝑎3, 𝑏2, 𝑏3.
We proceed by induction. Suppose that all coefficients 𝑎𝑖 and 𝑏𝑖, 𝑖 = 4, . . . , 𝑛− 1, 𝑛 > 4, are

uniquely determined by the coefficients 𝛼, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3. We denote

𝑓(𝑧) = 𝑎0 +
1 + 𝛼𝛽𝑖

1− 𝛽
𝑧 +

∞∑︁
𝑘=2

𝑎𝑘𝑧
𝑘, 𝑓𝛽(𝑧𝛽) =

𝛽(1 + 𝛼𝑖)

1− 𝛽
𝑧𝛽 −

∞∑︁
𝑘=2

𝑏𝑘𝑧
𝑘
𝛽.

Then 𝑢(𝑧) = 𝑓(𝑧)− 𝑓𝛽(𝑧𝛽). Since 𝐼𝑢(𝑧) = 0 in the vicinity of the point 0, we have⃒⃒⃒⃒
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
− 1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
for all neighbourhoods of the point 0. Then the function ln

𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
, defined and satisfying Equa-

tion (1.2) in the vicinity of the point 0, also degenerates. By Lemma 2.2 all terms of the Taylor

series of function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
in the vicinity of the point 0 are determined up to the third power.

Since the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
is also a degenerate solution to Equation (1.2), by the induction

assumption we uniquely determine the coefficients at the monomials of degree at most 𝑛− 1 in
the Taylor expansion of this function. Applying once again Lemma 2.2, we uniquely determine
the coefficients 𝑎𝑛 and 𝑏𝑛. Thus, 𝑢(𝑧) is uniquely determined by the coefficients 𝑎0, 𝛼, 𝑎2, 𝑎3,
𝑏2, 𝑏3. The proof is complete.

Proof of Lemma 2.3. Suppose that we are given the coefficients at the monomials of degree

at most 2 in the Taylor expansion of the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
about the point 0. It follows from

Lemma 2.2 that in this case the coefficients at the monomials of degree at most 3 in the Taylor
expansion of function 𝑢(𝑧) about the point 0 are determined uniquely if 𝑢(0) = 0, 𝑓 ′(0) = 1.

By Lemma 2.1 this yields the uniqueness of function 𝑢(𝑧), and hence, of ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
. The proof is

complete.
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Proof of Theorem 2.1. Without loss of generality we suppose that

𝑢(𝑧) = 𝑓(𝑧)− 𝑓𝛽(𝑧𝛽)

is a degenerate solution of Equation (1.2) in the vicinity of the point 0, and the gradient of the
function 𝑢(𝑧) at the point 0 is non–zero. It has been established in the proof Lemma 2.1 that

in this case the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
is also a degenerate solution of this equation in the vicinity of

the point 0. We denote 𝑔(𝑧) = ln 𝑓 ′(𝑧), 𝑔𝛽(𝑧𝛽) = ln 𝑓 ′(𝑧). Then

ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
= 𝑔𝛽(𝑧𝛽)− 𝑔(𝑧).

If the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
is constant, then the functions 𝑓 ′(𝑧) and 𝑓 ′

𝛽(𝑧𝛽) are also constant and

the function 𝑢(𝑧) is linear.

If the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
is non–constant, without loss of generality we can suppose that

𝑔′(0) ̸= 0, 𝑔′𝛽(0) ̸= 0. Applying Lemma 2.3 and arguing as in the proof of this lemma, we obtain

that the function ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
is determined uniquely by the linear part of its Taylor expansion

about the point 0.
Let

ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
= 𝜎0 + 𝜎1𝑧 − 𝜎2𝑧𝛽 + . . .

in the vicinity of the point 0. If the function ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
is constant, then the functions 𝑔′(𝑧) and

𝑔′𝛽(𝑧𝛽) are also constants and therefore, the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
is also linear. Since this function

degenerates, the set of its values lies on some straight line. Then the set of values of the function
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
lies either on a straight line or on a circle centered at the point 0 or on a spiral. At the

same time, the set of values of this function lies on a circle centered at the point 1+𝛽
2

̸= 0. Thus,

the function
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
can take only a discrete set of values and hence, it is constant. Then the

functions 𝑓 ′(𝑧) and 𝑓 ′
𝛽(𝑧𝛽) are also constant and therefore, the function 𝑢(𝑧) is linear.

If the function ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
is non–constant, without loss of generality we suppose that 𝜎1 ̸=

0, 𝜎2 ̸= 0. Since the function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
degenerates, the function ln

𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
does, too. But the

Jacobian of the latter function vanishes identically in the vicinity of the point 0 and hence,⃒⃒⃒⃒
𝜎2

𝜎1

− 1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
.

This is why 𝜎1 =
𝛾
𝑐
, 𝜎2 =

𝛾
𝑇𝛽𝑐

, where 𝛾 and 𝑐 are some complex constants. Since the function

ln
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
= ln

𝑐

𝑇𝛽𝑐
− 𝑧

𝑐
+

𝑧𝛽
𝑇𝛽𝑐

+ . . .

degenerates, we can suppose that

ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
= 𝛾0 + 𝛾1 ln

𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
,

where 𝛾0 and 𝛾1 are some complex constants, and we can prove that for some 𝛾0 and 𝛾1 there
exist corresponding functions 𝑓 and 𝑓𝛽, and hence, a function 𝑢(𝑧) being a degenerate solution
to Equation (1.2). Since the parameters 𝑐, 𝛾0 and 𝛾1 determine completely the linear part of

Taylor expansion of the function ln
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
, the above proven facts imply that in this case there

are no other degenerate solutions of this equation in the vicinity of the point 0.



14 A.B. ZAITSEV

We have
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
= 𝑒𝛾0

(︂
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐

)︂𝛾1

.

The left hand side of the latter identity satisfies the condition⃒⃒⃒⃒
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
− 1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
.

At the same time, ⃒⃒⃒⃒
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
− 1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
.

Since 1+𝛽
2

̸= 0, the set of points
(︁

𝑧−𝑐
𝑧𝛽−𝑇𝛽𝑐

)︁𝛾1
lies on some circumference if and only if 𝛾1 = ±1.

Thus, either
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
= 𝛽

𝑧𝛽 − 𝑇𝛽𝑐

𝑧 − 𝑐
(𝛾1 = −1, 𝛾0 = ln 𝛽),

or
𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
=

𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
(𝛾1 = 1, 𝛾0 = 0).

In the first case we have

𝑔′(𝑧) = 𝛾2(𝑧 − 𝑐), 𝑔′𝛽(𝑧𝛽) = 𝛽𝛾2(𝑧𝛽 − 𝑇𝛽𝑐),

where 𝛾2 is some non–zero complex constant. Therefore,

ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
= 𝑔𝛽(𝑧𝛽)− 𝑔(𝑧) = 𝛾3 +

𝛾2
2
(𝛽(𝑧𝛽 − 𝑇𝛽𝑐)

2 − (𝑧 − 𝑐)2),

where 𝛾3 is some non–zero complex constant. Since the polynomial

𝛽(𝑧𝛽 − 𝑇𝛽𝑐)
2 − (𝑧 − 𝑐)2

takes only real values, the set of values of function ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
lies on some straight line. But, as

it has been shown above, in this case the function 𝑢(𝑧) is linear.
If

𝑔′𝛽(𝑧𝛽)

𝑔′(𝑧)
=

𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
,

then

𝑔′(𝑧) =
𝛾4

𝑧 − 𝑐
, 𝑔′𝛽(𝑧𝛽) =

𝛾4
𝑧𝛽 − 𝑇𝛽𝑐

,

where 𝛾4 is some non–zero complex constant. Therefore,

ln
𝑓 ′
𝛽(𝑧𝛽)

𝑓 ′(𝑧)
= 𝑔𝛽(𝑧𝛽)− 𝑔(𝑧) = 𝛾5 + 𝛾4 ln

𝑧𝛽 − 𝑇𝛽𝑐

𝑧 − 𝑐
,

where 𝛾5 is some non–zero complex constant. Reproducing the above arguing with 𝑔(𝑧) replaced
by 𝑓(𝑧) and 𝑔𝛽(𝑧) replaced by 𝑓𝛽(𝑧), we obtain that either

𝑢(𝑧) = 𝛾6 + 𝛾7((𝑧 − 𝑐)2 − 𝛽(𝑧𝛽 − 𝑇𝛽𝑐)
2),

where 𝛾6, 𝛾7 are some complex constants, and then 𝑢(𝑧) is a polynomial of the second degree,
or

𝑢(𝑧) = 𝑐1 + 𝑐2 ln
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
,

where 𝑐1, 𝑐2 are some complex constants. The proof is complete.
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Corollary 2.1. Let a function 𝑢(𝑧) satisfies Equation (1.2) in some domain 𝐷, 𝛽 ∈ R ∖
{0;±1}, and degenerates. Then the set of values of function 𝑢(𝑧) is either constant, or a

straight line, or, in the case 𝛽 < 0, the curve

𝑧 = 𝑐1 + 𝑐2

⎛⎝ln

⎛⎝1 + 𝛽

2
cos𝜙+

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙

⎞⎠+ 𝑖𝜙

⎞⎠ , 0 < 𝜙 < 4𝜋,

while in the case 𝛽 > 0 it is the curve

𝑧 = 𝑐1 + 𝑐2

⎛⎝ln

⎛⎝1 + 𝛽

2
cos𝜙±

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙

⎞⎠+ 𝑖𝜙

⎞⎠ ,

𝜋 − arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
⩽ 𝜙 ⩽ 𝜋 + arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
,

where 𝑐, 𝑐1, 𝑐2 are some complex constants.

Proof. If 𝑢(𝑧) is a degenerate polynomial of the first degree, then it reads

𝑢(𝑧) = 𝑐(𝛼1𝑥+ 𝛼2𝑦), 𝑐 ∈ C, 𝛼1, 𝛼2 ∈ R,

and hence, the set of its values is a straight line.
If 𝑢(𝑧) is a polynomial of the second degree, then by means of the parallel translation it is

reduced to the form

𝑢(𝑧) = 𝛾1 + 𝛾2(𝑧
2 + 𝑏𝑧2𝛽),

where 𝛾1 and 𝛾2 are some complex constants. At the same time, if 𝑢(𝑧) is a degenerate poly-
nomial, then 𝐼𝑢(𝑧) = 0 for all 𝑧 ∈ C. In this case the identity (2.2) becomes⃒⃒⃒⃒

𝑏
𝑧𝛽
𝑧

+
1 + 𝛽

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2

⃒⃒⃒⃒
for all 𝑧 ∈ C.
Since ⃒⃒⃒⃒

𝑧𝛽
𝑧

− 1 + 𝛽

2𝛽

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1− 𝛽

2𝛽

⃒⃒⃒⃒
for all 𝑧 ∈ C, we obtain 𝑏 = −𝛽, and hence,

𝑢(𝑧) = 𝛾1 + 𝛾2(𝑧
2 − 𝛽𝑧2𝛽) = 𝛾1 + 𝛾2

(︂
(1− 𝛽)𝑥2 +

(︂
1

𝛽
− 1

)︂
𝑦2
)︂
.

Thus, the set of values of 𝑢(𝑧) is a straight line.
Now let

𝑢(𝑧) = 𝑐1 + 𝑐2 ln
𝑧 − 𝑐

𝑧𝛽 − 𝑇𝛽𝑐
,

where 𝑐1, 𝑐2 are some complex constant. The set of values of function 𝑧−𝑐
𝑧𝛽−𝑇𝛽𝑐

is a circumference

of radius
⃒⃒
1−𝛽
2

⃒⃒
centered at the point 1+𝛽

2
. For 𝛽 < 0, in the polar coordinates, this circumference

is expressed by the equation

𝑟 =
1 + 𝛽

2
cos𝜙+

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙, 0 ⩽ 𝜙 ⩽ 2𝜋,

the function 𝑢(𝑧) is defined and satisfies Equation (1.2) in the domain C ∖ Γ, where

Γ = {𝑦 = Im 𝑐, 𝑥 ⩾ 0}.
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The increment of the argument of expression 𝑧−𝑐
𝑧𝛽−𝑇𝛽𝑐

under the total passage in the positive

direction of the circumference centered at the point 𝑐 is equal to 4𝜋, and hence, the set of
values of this function is the curve

𝑧 = 𝑐1 + 𝑐2

⎛⎝ln

⎛⎝1 + 𝛽

2
cos𝜙+

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙

⎞⎠+ 𝑖𝜙

⎞⎠ , 0 < 𝜙 < 4𝜋.

Similarly, for 𝛽 > 0, in the polar coordinates this circumference is expressed by the equation

𝑟 =
1 + 𝛽

2
cos𝜙±

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙,

𝜋 − arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
⩽ 𝜙 ⩽ 𝜋 + arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
,

the function 𝑢(𝑧) is defined and satisfies Equation (1.2) in the domain C ∖ {𝑐}, and hence, the
set of values of this function is the curve

𝑧 = 𝑐1 + 𝑐2

⎛⎝ln

⎛⎝1 + 𝛽

2
cos𝜙±

√︃(︂
1− 𝛽

2

)︂2

−
(︂
1 + 𝛽

2

)︂2

sin2 𝜙

⎞⎠+ 𝑖𝜙

⎞⎠ ,

𝜋 − arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
⩽ 𝜙 ⩽ 𝜋 + arcsin

⃒⃒⃒⃒
1− 𝛽

1 + 𝛽

⃒⃒⃒⃒
.

The proof is complete.
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