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ON HOMOCLINIC POINTS AND

TOPOLOGICAL ENTROPY OF CONTINUOUS MAPS

ON ONE–DIMENSIONAL RAMIFIED CONTINUA

E.N. MAKHROVA

Abstract. Let 𝑋 be a dendroid, 𝑓 : 𝑋 → 𝑋 be a continuous map, 𝑝 be a periodic point
of 𝑓 and let 𝑥 be a homoclinic point in 𝑋 to the periodic point 𝑝. We study the properties
of the homoclinic point 𝑥 and the unstable manifold of the point 𝑝. We investigate the
local structure of 𝑋 under which the existence of a homoclinic point implies the positive
topological entropy of 𝑓 . We also present differences in the properties of homoclinic points
and the unstable manifolds of periodic points for continuous maps defined on dendroids,
dendrites and finite trees.
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1. Introduction

By continuum we mean a non–empty compact connected metric space. Let𝑋 be a continuum,
𝑝 be an arbitrary point from 𝑋. If the connected components of boundaries of an arbitrary
neighbourhood 𝑈(𝑝) of the point 𝑝 in 𝑋 are singleton sets, then 𝑋 is called the one–dimensional

continuum, see, for example, [3, Ch. 2, Sect. 25, I].
At present, there is an increasing interest in dynamical systems on one–dimensional ramified

continua with a complex topological structure. This is due to the fact that these continua
appear, for example, as Julia sets in complicated dynamical systems [24], as limit sets of
dynamical systems with phase spaces of dimension not less than two [9], [10], as global attractors
of skew products and integrable mappings [15], [16], in problems of mathematical physics [7],
[13], etc.
In this paper we study homoclinic points, first discovered by H. Poincaré in problems of

celestial mechanics [6, Ch. XXXIII], for continuous mappings on one–dimensional ramified
continua such as dendroids; dendrites and finite trees are their special cases, see Definition 2.2.
The existence of homoclinic points for continuous mappings of a closed interval or finite trees
is equivalent to the positivity of topological entropy [2], [11]. At the same time, the presence
of homoclinic points in continuous mappings of dendrites, which are not finite trees, does not
imply that the topological entropy is positive or vanishes [2], [5], [14], [19], [21]. Moreover, the
complexity of the structure of one–dimensional ramified continua leads to the fact that even
homeomorphisms and monotone mappings defined on them exhibit properties not specific for
continuous mappings of a closed interval, see, for example, [21], [22]. This is why, an effective
approach to studying the dynamics of mappings on these continua is one that establishes such
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features of their topological structure that the mappings under consideration exhibit properties
similar to the properties of continuous mappings of closed intervals or finite trees. A similar
approach was first implemented for continuous mappings of dendrites in [12], as well as in [21],
[23].
Since the dendroids have a more complicated topological structure than dendrites, in this

paper we study conditions on the local structure of dendroids under which the existence of a
homoclinic point implies the positivity of topological entropy of mappings defined on them. In
addition, we study the properties of unstable manifold of a periodic point, which also depend on
the structure of the dendroid. We note that the properties of unstable manifold of continuous
mappings on finite trees were studied in [17].

2. Preliminaries and main results

We denote by N the set of natural numbers, by C the set of complex numbers and by i the
imaginary unit.
Let 𝑋 be a one–dimensional continuum with metric 𝑑, and 𝐴 be a subset of 𝑋. We denote

by diam𝐴 the diameter of set 𝐴, by card𝐴 the cardinality of set 𝐴; by 𝜕(𝐴) the boundary of
set 𝐴. By 𝐴(1) we denote the derived set, which is the set of all limit points of set 𝐴.
Following [2], a connected subset of the continuum 𝑋 whose closure is homeomorphic to the

segment [0; 1] on the real line R1 is called the arc.
The symbol [𝑥; 𝑦] denotes the arc with endpoints at the points 𝑥 and 𝑦, which contains these

points; we let (𝑥; 𝑦] = [𝑥; 𝑦] ∖ {𝑥}, [𝑥; 𝑦) = [𝑥; 𝑦] ∖ {𝑦}, (𝑥; 𝑦) = [𝑥; 𝑦]∖{𝑥; 𝑦}.
We shall employ the definition of the order of a point in the sense of Menger — Urysohn [4,

Ch. 6, Sect. 51].

Definition 2.1 ([4, Ch. 6, Sect. 51]). Let 𝑋 be a one-dimensional continuum, 𝑧 be a point
in 𝑋.

1) We say that the order of 𝑧 is finite if there exists n ∈ N such that for each neighborhood
𝑈(𝑧) of 𝑧 in 𝑋 there exists a neighborhood 𝑈1(𝑧) ⊂ 𝑈(𝑧) such that card 𝜕(𝑈1(𝑧)) = n, and
there is no subneighborhood 𝑈2(𝑧) ⊂ 𝑈1(𝑧) such that card 𝜕(𝑈2(𝑧)) < n1. In this case, we
say that the order of 𝑧 is equal to n (ord 𝑧 = n).

2) The order of a point 𝑧 is called infinite if for each number n ∈ N there exists a neigh-
borhood 𝑈(𝑧) of the point 𝑧 in 𝑋 such that for each neighborhood 𝑈1(𝑧) ⊂ 𝑈(𝑧) we have
card 𝜕(𝑈1(𝑧)) > n.

Points of finite order exceeding 2 and points of infinite order are called ramification points

of the continuum 𝑋. Points of order 1 are called endpoints of the continuum 𝑋. By 𝑅(𝑋)
(𝐸(𝑋)) we denote the set of ramification points (endpoints) of the continuum 𝑋.
A continuum 𝑋 is called unicoherent if for each subcontinua 𝐴 and 𝐵 in 𝑋 satisfying the

condition 𝐴 ∪𝐵 = 𝑋, the intersection 𝐴 ∩𝐵 is connected.
We note that each segment on the real line R1 is unicoherent, and a circle is not a unicoherent

set.
A continuum 𝑋 is hereditarily unicoherent if each subcontinuum 𝑌 in 𝑋 is unicoherent.
A continuum is called arcwise connected if any pair of its points can be connected by an arc.

Definition 2.2. A continuum 𝑋 is called a dendroid if 𝑋 is arcwise connected and heredi-
tarily unicoherent.
A locally connected dendroid is called a dendrite.
A dendrite with a finite set of endpoints is called a finite tree.

We mention the following properties of dendroids.

1Concerning the order relation on the set of cardinal numbers, see, for example, [1, Ch. 3]
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Lemma 2.1 ([20]). Let 𝑋 be a dendroid. Then

1) 𝑋 is a one–dimensional continuum;
2) 𝑋 contains no subsets homeomorphic to a circle;
3) each two distinct points 𝑥, 𝑦 in 𝑋 can be connected by a single arc [𝑥; 𝑦];
4) each subcontinuum of a dendroid is a dendroid.

Let 𝑝 be an arbitrary point in a dendroid 𝑋. Then 𝑋 ∖{𝑝} consists of one or more connected
components, which are called components of 𝑝.
It follows from the definition 2.1 that if the order of a point 𝑝 in a dendroid 𝑋 is finite, then

the number of components of 𝑝 is finite. The converse is not true for dendroids that are not
dendrites (see, e.g., [20]). For instance, in a dendroid

𝑋 = [0; i] ∪ [0; 1] ∪
∞⋃︁
𝑛=0

[︂
1

2𝑛
;
1

2𝑛
+ i

]︂
1,

which is not a dendrite, each point 𝑝 from [0; i] is by Definition 2.1 a ramification point of infinite
order, but the point 𝑝 has either one component (if 𝑥 = i) or two components (if 𝑝 ∈ [0; i)).
But if a dendroid 𝑋 is a dendrite, and the number of components of a point 𝑝 in 𝑋 is finite,
then it coincides with the order of the point 𝑝, see [4, Ch.6, Sect. 51, VI].
Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of 𝑋. A point 𝑝 in 𝑋 is called a periodic point of

𝑓 if there exists a natural number 𝑚 ⩾ 1 such that 𝑓𝑚(𝑝) = 𝑝; the smallest 𝑚 satisfying this
condition is called the period of periodic point 𝑝. If 𝑚 = 1, then 𝑝 is called a fixed point of 𝑓 .
The set of periodic (fixed) points of 𝑓 is denoted by Per(𝑓) (Fix(𝑓)).

Definition 2.3 ([11]). An unstable manifold of a periodic point 𝑝 of period 𝑚 of a continuous
mapping 𝑓 : 𝑋 → 𝑋 is a set of points 𝑊 𝑢(𝑝, 𝑓𝑚) of a dendroid 𝑋 such that for each point
𝑧 ∈ 𝑊 𝑢(𝑝, 𝑓𝑚) and an arbitrary neighborhood 𝑈(𝑝) of the point 𝑝 in 𝑋, which does not contain
the point 𝑧, there exists a natural number 𝑖 ⩾ 1 such that 𝑧 ∈ 𝑓 𝑖𝑚(𝑈(𝑝)).

Definition 2.4 ([11]). A stable manifold of a periodic point 𝑝 of period 𝑚 of a continuous
mapping 𝑓 : 𝑋 → 𝑋 is a set of points 𝑊 𝑠(𝑝, 𝑓𝑚) of a dendroid 𝑋 such that 𝜔(𝑧, 𝑓𝑚) = {𝑝} for
each point 𝑧 ∈ 𝑊 𝑠(𝑝, 𝑓𝑚), where 𝜔(𝑧, 𝑓𝑚) is the 𝜔–limit set of trajectory of point 𝑧 with respect
to the mapping 𝑓𝑚.

Definition 2.5 ([6]). A point 𝑧 ∈ 𝑋 is called a homoclinic point of the mapping
𝑓 : 𝑋 → 𝑋 if there exists a periodic point 𝑝 ∈ 𝑋 of period 𝑚 such that 𝑝 ̸= 𝑧, and
𝑧 ∈ 𝑊 𝑢(𝑝, 𝑓𝑚)

⋂︀
𝑊 𝑠(𝑝, 𝑓𝑚).

We recall the definition of topological entropy introduced first in [8].
Let 𝑋 be a compact topological space, 𝑓 : 𝑋 → 𝑋 be a continuous mapping, and 𝑈 be an

open cover of 𝑋. Since 𝑋 is compact, there exists a finite subcover of 𝑋. Denote by 𝑁(𝑈) the
cardinality of the smallest subcover extracted from 𝑈 . For any two covers 𝑈 , 𝑉 of 𝑋, we let

𝑈 ∨ 𝑉 = {𝐴 ∩𝐵, where 𝐴 ∈ 𝑈, 𝐵 ∈ 𝑉 }.

Definition 2.6 ([8]). The topological entropy ℎ(𝑓, 𝑈) of a mapping 𝑓 with respect to a cover
𝑈 is

lim
𝑛→∞

log 𝑁(𝑈 ∨ 𝑓−1(𝑈) ∨ . . . ∨ 𝑓−𝑛+1(𝑈))

𝑛
,

where 𝑓−𝑗(·) stands for the 𝑗th complete preimage of a set (·).
The topological entropy ℎ(𝑓) of mapping 𝑓 is sup

𝑈
ℎ(𝑓, 𝑈).

1The notation of a segment coincides with the notation of an arc since each segment on a plane is an arc
according to the previously introduced definition of the arc.
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We proceed to the main results of the work. The first theorem is a generalization of the
known properties of unstable manifold of a periodic point of continuous mappings defined on a
closed interval and a finite tree [11], [17].

Theorem 2.1. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a dendroid 𝑋, 𝑝 ∈ Per(𝑓), 𝑚 be
a period of the point 𝑝. Then

1) 𝑊 𝑢(𝑝, 𝑓𝑚) is invariant under 𝑓𝑚, that is, 𝑓𝑚(𝑊 𝑢(𝑝, 𝑓𝑚)) ⊆ 𝑊 𝑢(𝑝, 𝑓𝑚);
2) if in addition ord 𝑝 is finite and 𝑝 /∈ 𝑅(1)(𝑋), then 𝑊 𝑢(𝑝, 𝑓𝑚) is arcwise connected.

The next statement was proved in [17].

Lemma 2.2 ([17]). Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a finite tree 𝑋, point

𝑝 ∈ Fix(𝑓). If 𝑊 𝑢(𝑝, 𝑓) ∖𝑊 𝑢(𝑝, 𝑓) ̸= ∅, then 𝑊 𝑢(𝑝, 𝑓) ∖𝑊 𝑢(𝑝, 𝑓) ⊂ Per(𝑓).

In this paper we show that Lemma 2.2 fails for continuous mappings defined on a dendroid,
see Example 3.2.
In the next theorem we obtain local conditions on the structure of a dendroid, which ensure

an analogue of the assertion proved for continuous mappings of a closed interval [11].

Theorem 2.2. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a dendroid 𝑋 and let a fixed
point 𝑝 ∈ 𝑋 satisfy the following conditions:

1) 𝑝 /∈ 𝑅(1)(𝑋);
2) ord 𝑝 is finite.

Then for each point 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓), 𝑥 ̸= 𝑝, and for each neighborhood 𝑈(𝑝) of the point 𝑝 in 𝑋
there exist a point 𝑦 ∈ 𝑈(𝑝) ∩𝑊 𝑢(𝑝, 𝑓) and a natural number 𝑛 ⩾ 1 such that 𝑓𝑛(𝑦) = 𝑥.

In the paper we also show that the violation of at least one of Conditions 1) or 2) of Theo-
rem 2.2 destroys the statement of the theorem, see Examples 4.1 and 4.2.
Since each point of a finite tree satisfies Conditions 1), 2) of Theorem 2.2, we obtain the

following statement.

Corollary 2.1. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a finite tree 𝑋, 𝑝 ∈ Fix(𝑓).
Then for each point 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓), 𝑥 ̸= 𝑝, and for each neighborhood 𝑈(𝑝) of 𝑝 in 𝑋 there exist
a point 𝑦 ∈ 𝑈(𝑝) ∩𝑊 𝑢(𝑝, 𝑓) and a natural number 𝑛 such that 𝑓𝑛(𝑦) = 𝑥.

Since each homoclinic point to a periodic point 𝑝 of the mapping 𝑓 belongs to the unstable
manifold of the point 𝑝, by Theorem 2.2 we obtain the following statement.

Corollary 2.2. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a dendroid 𝑋, 𝑓 have a ho-
moclinic point 𝑥 ∈ 𝑋 to a periodic point 𝑝 ∈ 𝑋 of period 𝑚, and the following conditions
hold:

1) 𝑝 /∈ 𝑅(1)(𝑋);
2) ord 𝑝 is finite.

Then for each neighborhood 𝑈(𝑝) of the point 𝑝 there exist a homoclinic point 𝑦 ∈ 𝑈(𝑝) to the
periodic point 𝑝 and a natural number 𝑛 ⩾ 1 such that 𝑓𝑚𝑛(𝑦) = 𝑥.

Thus, if the assumptions of Corollary 2.2 are satisfied, in an arbitrary neighborhood of a
periodic point 𝑝 there exist an infinite number of homoclinic points of the mapping 𝑓 , which is
not true if at least one of the conditions 1) – 2) of this corollary is violated, see Examples 4.1
and 4.2 below.
In the next theorem we obtain local conditions on the structure of a dendroid, under which

the existence of a homoclinic point of the mapping 𝑓 implies the positivity of the topological
entropy.
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Theorem 2.3. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a dendroid 𝑋, and there exists
a homoclinic point 𝑥 ∈ 𝑋 to a periodic point 𝑝 ∈ 𝑋, where the point 𝑝 satisfies the following
conditions:

1) 𝑝 /∈ 𝑅(1)(𝑋);
2) ord 𝑝 is finite.

Then the topological entropy of the mapping 𝑓 is positive.

3. Proof of Theorem 2.1

To prove the theorem 2.1 we need the concept of an 𝑛–od, where 𝑛 ⩾ 3. The set of points
in the complex plane, the 𝑛–th power of which belongs to the segment [0; 1] is called the 𝑛–od.
We note that the 𝑛–od has a single ramification point 0.

Lemma 3.1. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of the dendroid 𝑋, 𝑝 ∈ Fix(𝑓). Then
𝑓(𝑊 𝑢(𝑝, 𝑓)) ⊆ 𝑊 𝑢(𝑝, 𝑓).

Proof. Let 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓) be a point. By Definition 2.3, for each neighborhood 𝑈(𝑝) of 𝑝 there
exists a natural number 𝑛 ⩾ 1 such that 𝑥 ∈ 𝑓𝑛(𝑈(𝑝)). Then 𝑓(𝑥) ∈ 𝑓𝑛+1(𝑈(𝑝)), that is,
𝑓(𝑥) ∈ 𝑊 𝑢(𝑝, 𝑓). The proof is complete.

Lemma 3.2. Let 𝑋 be a dendroid and a point 𝑝 in 𝑋 satisfy the conditions

1) 𝑝 /∈ 𝑅(1)(𝑋);
2) ord 𝑝 = 𝑛, where 𝑛 ∈ N.

Then for each neighborhood 𝑈(𝑝) of a point 𝑝 in 𝑋 there exists a neighborhood 𝑈1(𝑝) ⊂ 𝑈(𝑝)

such that 𝑈1(𝑝) is either an arc (for 𝑛 = 1 or 2) or is homeomorphic to the 𝑛–od (for 𝑛 ⩾ 3).

Proof. Let 𝑈(𝑝) be an arbitrary neighborhood of 𝑝 in 𝑋. Since the order of 𝑝 is finite, it
follows from Definition 2.1 that the number of components of 𝑝 is 𝑛. We denote by 𝑋𝑖(𝑝) the
components of 𝑝, where 1 ⩽ 𝑖 ⩽ 𝑛. Since 𝑝 /∈ 𝑅(1)(𝑋), for every 1 ⩽ 𝑖 ⩽ 𝑛 there exists a point
𝛼𝑖 ∈ 𝑋𝑖(𝑝) ∩ 𝑈(𝑝) such that

(𝑝;𝛼𝑖] ∩𝑅(𝑋) = ∅.

We let 𝑌 =
𝑛⋃︀

𝑖=1

[𝑝;𝛼𝑖). Then 𝑌 is either an arc (for 𝑛 = 1 or 2) or is homeomorphic to the

𝑛–od (for 𝑛 ⩾ 3). If 𝑌 ⊆ 𝑈(𝑝), then we let 𝑈1(𝑝) = 𝑌 , and this case we arrive at the desired
statement.
We consider the case 𝑌 ⊈ 𝑈(𝑝). Since 𝑌 is an arc or is homeomorphic to the 𝑛–od, then 𝑌

is a locally connected continuum. Therefore, there exists a connected neighborhood 𝑈1(𝑝) ⊂
𝑌 ∩ 𝑈(𝑝). Then 𝑈1(𝑝) is either an arc (for 𝑛 = 1 or 2) or is homeomorphic to the 𝑛–od (for
𝑛 ⩾ 3). The proof is complete.

Lemma 3.3. Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of a dendroid 𝑋, 𝑝 ∈ Fix(𝑓), ord 𝑝
be finite, and 𝑝 /∈ 𝑅(1)(𝑋). Then 𝑊 𝑢(𝑝, 𝑓) is arcwise connected.

Proof. Since 𝑝 ∈ 𝑊 𝑢(𝑝, 𝑓), it is sufficient to show that for each point 𝑥 in 𝑊 𝑢(𝑝, 𝑓) ∖ {𝑝} there
exists an arc [𝑝;𝑥] such that [𝑝;𝑥] ⊆ 𝑊 𝑢(𝑝, 𝑓).
Since 𝑋 is a dendroid, by Property 3) of Lemma 2.1 there exists a unique arc [𝑝;𝑥] ⊂ 𝑋.

Let us show that each point 𝑧 in (𝑝;𝑥) belongs to 𝑊 𝑢(𝑝, 𝑓).
Let 𝑈(𝑝) be an arbitrary neighborhood of 𝑝 in 𝑋 that does not contain 𝑧. Since ord 𝑝 is finite

and 𝑝 /∈ 𝑅(1)(𝑋), by Lemma 3.2 there exists a neighborhood 𝑈1(𝑝) ⊂ 𝑈(𝑝) such that 𝑈1(𝑝) is
an arc or homeomorphic to the 𝑛-od.
Since 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓), by Definition 2.3 for a given neighborhood 𝑈1(𝑝) of 𝑝 there exists a

natural number 𝑘 ⩾ 1 such that 𝑥 ∈ 𝑓𝑘(𝑈1(𝑝)). Then there exists a point 𝑦 ∈ 𝑈1(𝑝) such that
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𝑓𝑘(𝑦) = 𝑥. Since 𝑦 ∈ 𝑈1(𝑝), by the choice of the neighborhood 𝑈1(𝑝) we have [𝑝; 𝑦] ⊂ 𝑈1(𝑝).
On the other hand, it follows from the continuity of 𝑓 that the set 𝑓𝑘([𝑝; 𝑦]) is connected and
contains the points 𝑝 and 𝑥. Therefore, [𝑝;𝑥] ⊆ 𝑓𝑘([𝑝; 𝑦]). Since 𝑧 ∈ (𝑝;𝑥), we obtain

𝑧 ∈ 𝑓𝑘([𝑝; 𝑦]) ⊂ 𝑓𝑘(𝑈1(𝑝)).

Since 𝑈1(𝑝) ⊂ 𝑈(𝑝), and 𝑈(𝑝) is an arbitrary neighborhood of the point 𝑝, we have 𝑧 ∈ 𝑊 𝑢(𝑝, 𝑓).
The proof is complete.

Theorem 2.1 is implied by Lemmas 3.1 and 3.3. If ord 𝑝 is not finite, then Lemma 3.3 fails.
The idea of the next example belongs to the referee.

Example 3.1. Let 𝐼𝑛 =

[︂
1

2𝑛
;
1

2𝑛
+ i

]︂
, where 𝑛 ⩾ 0. On the dendroid

𝑋 = [0; i] ∪ [0; 1] ∪
∞⋃︁
𝑛=0

𝐼𝑛

we define the mapping 𝑓 : 𝑋 → 𝑋 as follows

1) 𝑓(𝑥) = 𝑥 if 𝑥 ∈ [0; i] ∪ 𝐼0;
2) 𝑓(𝑥) = 2𝑥 if 𝑥 ∈

[︀
0; 1

2

]︀
;

3) 𝑓(𝑥) = 1 if 𝑥 ∈
[︀
1
2
; 1
]︀
;

4) 𝑓 : 𝐼𝑛+1 → 𝐼𝑛 is a linear homeomorphism with the following property: for each point 𝑥 in
𝐼𝑛+1, the identity Im𝑥 = Im 𝑓(𝑥) holds, where Im(·) is the imaginary part of (·). Then
𝑓(𝐼𝑛+1) = 𝐼𝑛 for every integer 𝑛 ⩾ 0.

The constructed mapping 𝑓 is continuous, the unstable manifold of any fixed point 𝑥 from (0, i]
is not connected. We note that according to Definition 2.1 the order of each point 𝑥 ∈ (0; i] is
infinite.

In conclusion of this section, we show that Lemma 2.2 fails for a continuous mapping defined
on a dendroid.

Example 3.2. Let

𝑋 = [0; 1] ∪
+∞⋃︁
𝑗=0

𝐼𝑗, where 𝐼𝑗 =
[︁
0; exp

(︁ 𝜋

2𝑗
i
)︁]︁

, 𝑗 ⩾ 0.

At each point 𝑥 of (0; 1], the continuum 𝑋 is not locally connected. Therefore, 𝑋 is a dendroid,
which is not a dendrite.
To define the mapping 𝑓 : 𝑋 → 𝑋, we need two auxiliary mappings. The first of them,

ℎ𝑗 : 𝐼𝑗 → [0; 1] (𝑗 ⩾ 1), is defined by the formula

ℎ𝑗(𝑥) = 𝑥 · exp
(︁
− 𝜋

2𝑗
i
)︁

for any point 𝑥 ∈ 𝐼𝑗, 𝑗 ⩾ 1.

We note that ℎ𝑗 is a homeomorphism, and ℎ𝑗(𝐼𝑗) = [0; 1].
We define the second auxiliary mapping 𝑔𝑗 : 𝐼𝑗 → 𝐼𝑗 (𝑗 ⩾ 1) by letting

𝑔𝑗(𝑥) = ℎ−1
𝑗 (

√︁
ℎ𝑗(𝑥)) for any point 𝑥 ∈ 𝐼𝑗, 𝑗 ⩾ 1.

We note that

Per(𝑔𝑗) = Fix(𝑔𝑗) =
{︁
0; exp

(︁ 𝜋

2𝑗
i
)︁}︁

for each number 𝑗 ⩾ 1 and for any point 𝑥 in 𝐼𝑗 ∖
{︁
0, exp

(︁ 𝜋

2𝑗
i
)︁}︁

the 𝜔–limit set 𝜔(𝑥, 𝑔𝑗) of

trajectory of point 𝑥 with respect to the mapping 𝑔𝑗 is the fixed point exp
(︁ 𝜋

2𝑗
i
)︁
.

We define the mapping 𝑓 : 𝑋 → 𝑋 as follows:
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1) 𝑓(𝑥) = 𝑥 if 𝑥 ∈ [−1; 0];

2) 𝑓(𝑥) = 𝑔𝑗(𝑥) · exp
(︁ 𝜋

2𝑗
i
)︁
if 𝑥 ∈ 𝐼𝑗 for all 𝑗 ⩾ 1;

3) 𝑓(𝑥) =
√
𝑥 if 𝑥 ∈ [0; 1].

The constructed mapping 𝑓 is continuous and Per(𝑓) = Fix(𝑓) = [−1; 0] ∪ {1}.
We are going to show that each point 𝑦 in 𝐼𝑗 ∖

{︁
0, exp

(︁ 𝜋

2𝑗
i
)︁}︁

(𝑗 ⩾ 1) belongs to 𝑊 𝑢(0, 𝑓).

Let 𝑈(0) be a neighborhood of 0, which does not contain 𝑦, and let 𝑥 be an arbitrary point in

𝑈(0) ∩ (𝐼𝑗 ∖ {0}). Since 𝜔(𝑥, 𝑔𝑗) =
{︁
exp

(︁ 𝜋

2𝑗
i
)︁}︁

, there exists a natural number 𝑛 ⩾ 1 such that

𝑔𝑛𝑗 (𝑥) ∈
(︁
𝑦; exp

(︁ 𝜋

2𝑗
i
)︁)︁

. Then

𝑦 ∈ 𝑔𝑛𝑗 (𝑈(0) ∩ 𝐼𝑗).

Item 2) of the construction of mapping 𝑓 implies that 𝑦 ∈ 𝑓𝑛(𝑈(0) ∩ 𝐼𝑗+𝑛). Therefore,
𝑦 ∈ 𝑓𝑛(𝑈(0)). Thus,

𝑋 ∖
∞⋃︁
𝑗=1

{︁
exp

(︁ 𝜋

2𝑗
i
)︁}︁

⊂ 𝑊 𝑢(0, 𝑓).

Since 𝑓(𝐼1) = 𝐼0, by Lemma 3.1 (−1; 0] ⊂ 𝑊 𝑢(0, 𝑓). Since for each neighborhood 𝑈(0) of the
point 0 obeying 𝑈(0) ∩ 𝐸(𝑋) = ∅ and any natural number 𝑛 ⩾ 1 the condition

𝑓𝑛(𝑈(0)) ∩ 𝐸(𝑋) = ∅

is satisfied, we find 𝑊 𝑢(0, 𝑓) ∩𝐸(𝑋) = ∅. Summarizing the above facts, we obtain the identity

𝑊 𝑢(0, 𝑓) = 𝑋 ∖ 𝐸(𝑋).

Then 𝑊 𝑢(0, 𝑓)∖𝑊 𝑢(0, 𝑓) = 𝐸(𝑋), and each point exp
(︁ 𝜋

2𝑗
i
)︁
, 𝑗 ⩾ 1, in 𝐸(𝑋) is not a periodic

point of the mapping 𝑓 .

4. Proof of Theorem 2.2

Suppose that the statement of Theorem 2.2 is false. Then there exist a point 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓)
and a neighborhood 𝑈(𝑝) of 𝑝 in 𝑋 that does not contain 𝑥 satisfying the condition

𝑓𝑛(𝑈(𝑝) ∩𝑊 𝑢(𝑝, 𝑓)) ∩ {𝑥} = ∅ for each 𝑛 ∈ N. (4.1)

Let 𝑟 = ord 𝑝, where 𝑟 ∈ N. Since the order of 𝑝 is finite and 𝑝 /∈ 𝑅(1)(𝑋), by Lemma 3.2

there exists a neighborhood 𝑈1(𝑝) ⊂ 𝑈(𝑝) such that 𝑈1(𝑝) is either an arc (if 𝑟 = 1 or 2) or is

homeomorphic to the 𝑟–od (if 𝑟 ⩾ 3). Put 𝑌 = 𝑈1(𝑝).
Since 𝑝, 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓), by Lemma 3.3 we have [𝑝;𝑥] ⊆ 𝑊 𝑢(𝑝, 𝑓). Therefore,

[𝑝;𝑥] ∩ 𝑌 ⊆ 𝑊 𝑢(𝑝, 𝑓). (4.2)

Hence, there exists at least one component of the point 𝑝 in 𝑌 that contains points from
𝑊 𝑢(𝑝, 𝑓).
On the other hand, since 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓), it follows from (4.1), the condition 𝑌 ⊂ 𝑈(𝑝) and

the connectivity of 𝑊 𝑢(𝑝, 𝑓) that there exists at least one component of 𝑝 in 𝑌 that does not
contain points from 𝑊 𝑢(𝑝, 𝑓). Taking into consideration (4.2), we obtain that the order of 𝑝 is
greater than 1, that is, 𝑟 ⩾ 2.
Let 𝑠 be the number of components of 𝑝 that do not contain points from 𝑊 𝑢(𝑝, 𝑓). Then

1 ⩽ 𝑠 ⩽ 𝑟 − 1. Denote by 𝑌𝑖1(𝑝), . . . , 𝑌𝑖𝑠(𝑝) the components of 𝑝 in 𝑌 , for which

𝑌𝑖𝑗(𝑝) ∩𝑊 𝑢(𝑝, 𝑓) = ∅, 1 ⩽ 𝑗 ⩽ 𝑠, (4.3)
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and 𝑌𝑖𝑠+1(𝑝), . . . , 𝑌𝑖𝑟(𝑝) are the components of point 𝑝, for which

𝑌𝑖𝑗(𝑝) ∩𝑊 𝑢(𝑝, 𝑓) ̸= ∅, 𝑠+ 1 ⩽ 𝑗 ⩽ 𝑟.

Since 𝑊 𝑢(𝑝, 𝑓) is connected, 𝑌𝑖𝑗(𝑝)∩𝑊 𝑢(𝑝, 𝑓) is also connected (𝑠+1 ⩽ 𝑗 ⩽ 𝑟). This is why
without loss of generality we suppose that

𝑌𝑖𝑗(𝑝) ⊆ 𝑊 𝑢(𝑝, 𝑓), 𝑠+ 1 ⩽ 𝑗 ⩽ 𝑟. (4.4)

Otherwise, using the local connectivity of 𝑌 and connectivity of𝑊 𝑢(𝑝, 𝑓), we choose a connected

subneighborhood 𝑈0(𝑝) ⊂ 𝑈1(𝑝) such that all components of the point 𝑝 in 𝑈0(𝑝) containing
points from 𝑊 𝑢(𝑝, 𝑓) belong entirely to 𝑊 𝑢(𝑝, 𝑓).
By continuity of 𝑓 and the local connectivity of the continuum 𝑌 , there exists a connected

neighborhood 𝑈2(𝑝) of the point 𝑝 such that 𝑈2(𝑝) ⊂ 𝑈1(𝑝), and

𝑓(𝑈2(𝑝)) ⊂ 𝑈1(𝑝). (4.5)

Since 𝑈2(𝑝) is a connected neighborhood and 𝑈2(𝑝) ⊂ 𝑈1(𝑝), then 𝑈2(𝑝) is either an arc (if
𝑟 = 1 or 2) or is homeomorphic to the 𝑟–od (if 𝑟 ⩾ 3). Therefore, 𝑌𝑖𝑗(𝑝) ∩ 𝜕(𝑈2(𝑝)) a singleton
set for each 1 ⩽ 𝑗 ⩽ 𝑟. We let 𝛼𝑗 = 𝑌𝑖𝑗(𝑝) ∩ 𝜕(𝑈2(𝑝)) for 1 ⩽ 𝑗 ⩽ 𝑠. By (4.3), 𝛼𝑗 /∈ 𝑊 𝑢(𝑝, 𝑓),
1 ⩽ 𝑗 ⩽ 𝑠. Therefore, there exists a neighborhood 𝑈3(𝑝) of the point 𝑝 such that 𝑈3(𝑝) ⊂ 𝑈2(𝑝),
and

𝑓 𝑗(𝑈3(𝑝)) ∩ {𝛼1, . . . , 𝛼𝑠} = ∅, 𝑗 ⩾ 1. (4.6)

We are going to show that 𝑓𝑛(𝑈3(𝑝)) ∩ {𝑥} = ∅ for each number 𝑛 ⩾ 1. We suppose the
contrary, then there exist a point 𝑦 ∈ 𝑈3(𝑝) and 𝑛0 ∈ N such that 𝑓𝑛0(𝑦) = 𝑥. Since 𝑥 /∈ 𝑈(𝑝),
and 𝑈3(𝑝) ⊂ 𝑈2(𝑝) ⊂ 𝑈1(𝑝) ⊂ 𝑈(𝑝), we have 𝑥 /∈ 𝑈3(𝑝). Thus, 𝑦 ∈ 𝑈3(𝑝), and 𝑥 /∈ 𝑈3(𝑝).
Therefore, there exists a natural number 𝑘 ⩾ 1 such that

{𝑦, 𝑓(𝑦), . . . , 𝑓𝑘−1(𝑦)} ⊂ 𝑈3(𝑝), 𝑓𝑘(𝑦) /∈ 𝑈3(𝑝).

Then by the embedding 𝑈3(𝑝) ⊂ 𝑈2(𝑝) and (4.5) we obtain 𝑓𝑘(𝑦) ∈ 𝑈1(𝑝). Hence, taking into
consideration that 𝑈1(𝑝) ⊂ 𝑈(𝑝), 𝑥 /∈ 𝑈(𝑝), we get 𝑘 < 𝑛0.
Thus,

𝑓𝑘(𝑦) ∈ 𝑈1(𝑝) ∖ 𝑈3(𝑝) ⊂
𝑟⋃︁

𝑗=1

𝑌𝑖𝑗(𝑝) ∖ 𝑈3(𝑝).

Then, in view of the conditions: 𝑝 ∈ Fix(𝑓), and 𝑓 is continuous mapping, we obtain

𝑓𝑘([𝑝; 𝑦]) ∩ 𝜕𝑈3(𝑝) ̸= ∅.
By (4.6),

𝑓𝑘([𝑝; 𝑦]) ∩ {𝛼1, . . . , 𝛼𝑠} = ∅.
Therefore,

𝑓𝑘(𝑦) ∈
𝑟⋃︁

𝑗=𝑠+1

𝑌𝑖𝑗(𝑝) ∖ 𝑈3(𝑝).

Then, taking into account (4.4), we obtain that 𝑓𝑘(𝑦) ∈ 𝑊 𝑢(𝑝, 𝑓). Hence,

𝑥 ∈ 𝑓𝑛0−𝑘(𝑈3(𝑝) ∩𝑊 𝑢(𝑝, 𝑓)),

which contradicts (4.1) since 𝑈3(𝑝) ⊂ 𝑈(𝑝). Thus, 𝑓𝑛(𝑈3(𝑝)) ∩ {𝑥} = ∅ for each 𝑛 ⩾ 1. The
latter contradicts the condition 𝑥 ∈ 𝑊 𝑢(𝑝, 𝑓). The proof of Theorem 2.2 is complete.
The following two examples show that the statement of Theorem 2.2 fails if at least one of

Conditions 1), 2) is not satisfied. In Example 4.1 we construct a continuous mapping on the
continuum 𝑋1, on which Condition 1) is not satisfied, and in Example 4.2 we do a continuous
mapping on the continuum 𝑋2, on which Condition 2) is violated.
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Example 4.1. 1. Construction of the continuum 𝑋1.

For each integer 𝑘 ⩾ 0, let 𝐼𝑘 =

[︂
1

2𝑘
;
1

2𝑘
+

i

2𝑘

]︂
be vertical segments, whose lengths tend to 0

as 𝑘 → +∞. We define the dendroid

𝑍 = [0; 1] ∪
∞⋃︁
𝑘=0

𝐼𝑘,

which is a dendrite. The dendrite 𝑍 has a countable number of ramification points, the order of
each ramification point is 3, and 0 ∈ 𝑅(1)(𝑍). The segment [0; 1] is called the base of dendrite
𝑍.
For each 𝑗 ∈ N, we denote by 𝑍𝑗 the dendrite obtained from dendrite 𝑍 by contraction in all

directions by
1

2𝑗+1
times and shifting along the segment [0; 1] by

1

2𝑗
to the right. As a result, the

base of dendrite 𝑍𝑗 coincides with the segment

[︂
1

2𝑗
;

3

2𝑗+1

]︂
(𝑗 ⩾ 1). Each vertical segment of

dendrite 𝑍𝑗 obtained by the contraction and shift of segment 𝐼𝑘 is denoted by 𝐼
(𝑗)
𝑘 , where 𝑗 ⩾ 1,

𝑘 ⩾ 0. We observe

lim
𝑗→∞

diam𝑍𝑗 = 0. (4.7)

Let

𝐽𝑘 =

[︂
1; 1 +

1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁]︂

,

where 𝑘 ⩾ 1, and 𝑌 =
∞⋃︀
𝑘=1

𝐽𝑘. The continuum 𝑌 is a dendrite and has a single ramification

point 1 of infinite order.
We define the continuum

𝑋1 = [0; 1] ∪
∞⋃︁
𝑗=1

𝑍𝑗 ∪ 𝑌,

see Figure 1. By (4.7), the continuum 𝑋1 is locally connected, therefore 𝑋1 is a dendrite. We
note that the dendrite 𝑋1 has a countable number of ramification points, and 0 ∈ 𝑅(1)(𝑋1).

Figure 1. Dendrite 𝑋1

2. Define the mapping 𝑓 : 𝑋1 → 𝑋1 as follows:

1) 𝑓(0) = 0.
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2) For each 𝑗 ⩾ 2, we let 𝑓(𝑥) = 𝑥+
1

2𝑗
for 𝑥 ∈ 𝑍𝑗. As a result, each dendrite of 𝑍𝑗 (𝑗 ⩾ 2)

is shift by
1

2𝑗
units to the right along the interval [0; 1], and 𝑓(𝐼

(𝑗)
𝑘 ) = 𝐼

(𝑗−1)
𝑘+1 for all 𝑘 ⩾ 0.

Thus, 𝑓(𝑍𝑗) ⊂ 𝑍𝑗−1 for each 𝑗 ⩾ 2. We note that each segment[︂
1

2𝑗
;

3

2𝑗+1

]︂
,

which is the base of dendrite 𝑍𝑗, is mapped onto the segment

[︂
1

2𝑗−1
;

5

2𝑗+1

]︂
(𝑗 ⩾ 2).

3) For each number 𝑗 ⩾ 1 we define the linear homeomorphism

𝑓 :

[︂
3

2𝑗+2
;
1

2𝑗

]︂
→

[︂
5

2𝑗+2
;

1

2𝑗−1

]︂
so that 𝑓

(︂
3

2𝑗+2

)︂
=

5

2𝑗+2
, 𝑓

(︂
1

2𝑗

)︂
=

1

2𝑗−1
;

4) 𝑓(𝑥) = 1 if 𝑥 ∈
[︂
3

4
; 1

]︂
.

5) We define 𝑓 : 𝑍1 → 𝑌 such that

𝑓

(︂[︂
1

2
;
3

4

]︂)︂
= 1,

𝑓 : 𝐼
(1)
𝑘 → 𝐽𝑘+1 is a linear homeomorphism with the property: 𝑓(𝐼

(1)
𝑘 ) = 𝐽𝑘+1 for each

𝑘 ⩾ 0. Then 𝑓(𝑍1) = 𝑌 .
6) For each number 𝑘 ⩾ 2, we define a linear homeomorphism 𝑓 : 𝐽𝑘 → 𝐽𝑘−1 such that

𝑓

(︂
1 +

1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁)︂

= 1 +
1

2𝑘−1
exp

(︁ 𝜋

2𝑘−1
i
)︁
, 𝑓(0) = 0.

Then 𝑓(𝐽𝑘) = 𝐽𝑘−1.
7) Let 𝑓 : 𝐽1 → [0; 1] be a linear homomorphism such that

𝑓(1) = 1, 𝑓

(︂
1 +

1

2
exp

(︁𝜋
2
i
)︁)︂

= 0.

The mapping 𝑓 is continuous, Per(𝑓) = Fix(𝑓) = {0; 1}. It follows from Item 2) of con-
structing the mapping 𝑓 that

𝑓 𝑗−1(𝐼
(𝑗)
𝑘 ) = 𝐼

(1)
𝑘+𝑗−1, 𝑗 ⩾ 2 and 𝑘 ⩾ 0.

Then, taking into account Item 5) of constructing the mapping 𝑓 , we obtain the identities

𝑓 𝑗(𝐼
(𝑗)
𝑘 ) = 𝑓(𝑓 𝑗−1(𝐼

(𝑗)
𝑘 )) = 𝑓(𝐼

(1)
𝑘+𝑗−1) = 𝐽𝑘+𝑗, where 𝑗 ⩾ 1, 𝑘 ⩾ 0.

They yield

𝑓 𝑗(𝑍𝑗) =
∞⋃︁
𝑖=𝑗

𝐽𝑖, 𝑗 ⩾ 1. (4.8)

We are going to show that the unstable manifold 𝑊 𝑢(0, 𝑓) of the point 0 is the set [0; 1]∪ 𝑌 .
It follows from Items 2) – 3) of the construction of mapping 𝑓 that each point 𝑥 ∈ (0; 1] belongs
to 𝑊 𝑢(0, 𝑓). Let us show that each point 𝑒 from 𝑌 ∖ {1} belongs to 𝑊 𝑢(0, 𝑓). Let 𝑈(0) be an
arbitrary neighborhood of the point 0 in 𝑋1 that does not contain the point 1. By (4.7) there
exists a natural number 𝑗0 ⩾ 1 such that 𝑍𝑗0 ⊂ 𝑈(0). According to the construction of the
dendrite 𝑌 , there exists a natural number 𝑘0 ⩾ 1 such that 𝑒 ∈ 𝐽𝑘0. If 𝑘0 ⩾ 𝑗0, then, by (4.8),
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𝑒 ∈ 𝑓 𝑗0(𝑈(0)). If 𝑘0 < 𝑗0, then by the choice of 𝑗0, (4.8) and Item 6) of the construction of
mapping 𝑓 we obtain

𝑓 2𝑗0−𝑘0(𝑈(0)) ⊃ 𝑓 𝑗0−𝑘0(𝑓 𝑗0(𝑍𝑗0)) ⊃ 𝑓 𝑗0−𝑘0(
∞⋃︁

𝑖=𝑗0

𝐽𝑖) ⊃ 𝑓 𝑗0−𝑘0(𝐽𝑗0) = 𝐽𝑘0 ∋ 𝑒.

Thus, 𝑒 ∈ 𝑊 𝑢(0, 𝑓). Therefore,
[0; 1] ∪ 𝑌 ⊆ 𝑊 𝑢(0, 𝑓). (4.9)

It follows from Item 2) of constructing the mapping 𝑓 that 𝑓−𝑘−1(𝐼
(𝑗)
𝑘 ) = ∅ for 𝑗 ⩾ 1, 𝑘 ⩾ 0.

Hence, by (4.9) we obtain
𝑊 𝑢(0, 𝑓) = [0; 1] ∪ 𝑌.

Thus, for each neighborhood 𝑈(0) of the point 0 in 𝑋 that does not contain the point 1 we
have 𝑈(0) ∩𝑊 𝑢(0, 𝑓) ⊂ [0; 1). But for each point 𝑥 ∈ 𝑌 ∖ {1} and each natural number 𝑛 ⩾ 1
we have 𝑓−𝑛(𝑥) ∩ [0; 1) = ∅. Hence, for an arbitrary point 𝑥 ∈ 𝑌 ∖ {1} we have

+∞⋃︁
𝑛=1

𝑓−𝑛(𝑥) ∩ (𝑈(0) ∩𝑊 𝑢(0, 𝑓)) = ∅.

Thus, if Condition 1) of Theorem 2.2 is violated, then the statement of Theorem 2.2 fails.
In conclusion, we note that by Item 7) of the construction of the mapping 𝑓 , each endpoint

1+
1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁
, 𝑘 ⩾ 1, of the continuum 𝑌 is a homoclinic point of the mapping 𝑓 to the fixed

point 0. But none of them has homoclinic points among their preimages in the neighborhood
𝑈(0) of the point 0. Thus, Corollary 2.2 fails if its Condition 1) is violated.

Example 4.2. Let us construct the continuum 𝑋2. For each natural 𝑘 ⩾ 1 we let

𝐼𝑘 =

[︂
0;

1

2𝑘−1
exp

(︁ 𝜋

2𝑘
i
)︁]︂

.

As in Example 4.1 we define

𝐽𝑘 =

[︂
1; 1 +

1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁]︂

,

where 𝑘 ⩾ 1. We observe that

lim
𝑘→∞

diam 𝐼𝑘 = lim
𝑘→∞

diam 𝐽𝑘 = 0. (4.10)

We let

𝑋2 = [0; 1] ∪
∞⋃︁
𝑘=1

(𝐼𝑘 ∪ 𝐽𝑘),

see Figure 2.
By (4.10) the continuum 𝑋2 is locally connected. Therefore, 𝑋2 is a dendrite with only two

ramification points 0 and 1 of infinite order.

We denote 𝑌 =
⋃︀
𝑘⩾1

𝐽𝑘, and let 𝑒𝑘 = 1 +
1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁
be the endpoints of the continuum 𝑌 ,

𝑘 ⩾ 1.
We proceed to constructing the mapping 𝑓 : 𝑋2 → 𝑋2.

1) Let 𝑓(𝑧) = 𝑧 if 𝑧 ∈ [0; 1].

2) Let 𝑓 :

[︂
0;

i

2

]︂
→ [0; 1] be a linear homeomorphism such that

𝑓(0) = 0, 𝑓

(︂
i

2

)︂
= 1.
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Figure 2. Dendrite 𝑋2

3) To define the mapping 𝑓 :

[︂
i

2
; i

]︂
→ 𝑌 , we denote 𝑧𝑘 =

(︂
1

2
+

1

2𝑘

)︂
i, 𝑘 ⩾ 1. We note that

lim
𝑘→∞

𝑧𝑘 =
i

2
.

For all 𝑘 ⩾ 1, we define a linear homeomorphism 𝑓 : [𝑧𝑘; 𝑧𝑘+1] → [𝑒𝑘; 𝑒𝑘+1] such
that 𝑓(𝑧𝑘) = 𝑒𝑘, 𝑓(𝑧𝑘+1) = 𝑒𝑘+1. Then 𝑓([𝑧𝑘; 𝑧𝑘+1]) = 𝐽𝑘 ∪ 𝐽𝑘+1, (𝑘 ⩾ 1). Therefore,

𝑓

(︂[︂
i

2
; i

]︂)︂
= 𝑌.

4) To define the mapping 𝑓 : 𝐼𝑘+1 → 𝐼𝑘 (𝑘 ⩾ 1), we divide each segment 𝐼𝑘 into 2 equal parts

and denote by 𝐼
(1)
𝑘 the half that contains the point 0, and by 𝐼

(2)
𝑘 the other half. We let

𝑓(𝑧) = 2𝑧 · exp
(︁ 𝜋

2𝑘+1
i
)︁
, if 𝑧 ∈ 𝐼

(1)
𝑘+1 for all 𝑘 ⩾ 1. (4.11)

Then 𝑓(𝐼
(1)
𝑘+1) = 𝐼

(1)
𝑘 for 𝑘 ⩾ 1. On each segment

𝐼
(2)
𝑘+1 =

[︂
1

2𝑘+1
exp

(︁ 𝜋

2𝑘+1
i
)︁
;
1

2𝑘
exp

(︁ 𝜋

2𝑘+1
i
)︁]︂

(𝑘 ⩾ 1)

we define the linear homeomorphism

𝑓 : 𝐼
(2)
𝑘+1 →

[︂
1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁
;

3

2𝑘+1
exp

(︁ 𝜋

2𝑘
i
)︁]︂

such that

𝑓

(︂
1

2𝑘+1
exp

(︁ 𝜋

2𝑘+1
i
)︁)︂

=
1

2𝑘
exp

(︁ 𝜋

2𝑘
i
)︁
, 𝑓

(︂
1

2𝑘
exp

(︁ 𝜋

2𝑘+1
i
)︁)︂

=
3

2𝑘+1
exp

(︁ 𝜋

2𝑘
i
)︁
,

and the distance between any two points from 𝐼
(2)
𝑘+1 is preserved, that is, for all points 𝑥, 𝑦

in 𝐼
(2)
𝑘+1 the identity 𝑑(𝑥, 𝑦) = 𝑑(𝑓(𝑥), 𝑓(𝑦)) holds. Then 𝑓(𝐼

(2)
𝑘+1) ⊂ 𝐼

(2)
𝑘 , or, more precisely,

the segment 𝐼
(2)
𝑘+1 is mapped only into the half of segment 𝐼

(2)
𝑘 . Then for each endpoint

1

2𝑘−1
exp

(︁ 𝜋

2𝑘
i
)︁
belonging to 𝐼𝑘 the condition is satisfied:

𝑓𝑘−1

(︂
1

2𝑘−1
exp

(︁ 𝜋

2𝑘
i
)︁)︂

= 𝑧𝑘, 𝑘 ⩾ 2. (4.12)
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Thus, by (4.11) and (4.12) we obtain the identity

𝑓𝑘−1 (𝐼𝑘) = [0; 𝑧𝑘], 𝑘 ⩾ 2. (4.13)

5) For each 𝑘 ⩾ 1, we define a linear homeomorphism 𝑓 : 𝐽𝑘+1 → 𝐽𝑘 such that 𝑓(𝑒𝑘+1) = 𝑒𝑘,
𝑓(1) = 1.

6) Let 𝑓 : 𝐽1 → [0; 1] be a linear homeomorphism such that 𝑓(𝑒1) = 0, 𝑓(1) = 1.

The constructed mapping 𝑓 is continuous, Per(𝑓) = Fix(𝑓) = [0; 1].
We are going to show that

𝑊 𝑢(0, 𝑓) = [0; 1] ∪ 𝑌 ∪
∞⋃︁
𝑘=1

𝐼
(1)
𝑘 .

First let us show that each point 𝑒 of the continuum 𝑌 belongs to 𝑊 𝑢(0, 𝑓). Let 𝑒 ∈ 𝐽𝑘 (𝑘 ⩾ 1),
and 𝑈(0) be an arbitrary neighborhood of 0 that does not contain 1. By (4.10) there exists a
natural number 𝑗0 ⩾ 𝑘 such that 𝐼𝑗0 ⊂ 𝑈(0). Applying (4.13), we obtain the identity

𝑓 𝑗0−1(𝐼𝑗0) = [0; 𝑧𝑗0 ].

Then, by virtue of points 2) and 3) of the definition of the mapping 𝑓 , we have

𝑓 𝑗0(𝐼𝑗0) = 𝑓(𝑓 𝑗0−1(𝐼𝑗0)) = 𝑓([0; 𝑧𝑗0 ]) = 𝑓

(︂[︂
0;

i

2

]︂
∪
[︂
i

2
; 𝑧𝑗0

]︂)︂
= [0; 1] ∪

∞⋃︁
𝑘=𝑗0

𝐽𝑘 ⊃ 𝐽𝑗0 ,

and by Item 5)

𝑓 2𝑗0−𝑘(𝐼𝑗0) = 𝑓 𝑗0−𝑘(𝑓 𝑗0(𝐼𝑗0)) ⊃ 𝑓 𝑗0−𝑘(𝐼𝑗0) = 𝐽𝑘.

Therefore, 𝑓 2𝑗0−𝑘(𝑈(0)) ∩ {𝑒} ≠ ∅. The above reasoning yield

[0; 1] ∪ 𝑌 ∪
∞⋃︁
𝑘=1

𝐼
(1)
𝑘 ⊂ 𝑊 𝑢(0, 𝑓).

Let us show that

(︂
i

2
; i

]︂
∩𝑊 𝑢(0, 𝑓) = ∅. Let 𝑥 be any point from

(︂
i

2
; i

]︂
. Then there exists a

natural number 𝑘0 ⩾ 1 such that 𝑥 ∈ (𝑧𝑘0+1; 𝑧𝑘0 ]. We choose a neighborhood 𝑈(0) of the point
0 such that

𝑈(0) ∩ 𝐼
(2)
𝑘0+1 = ∅. (4.14)

By (4.13) and Item 3) of the definition of mapping 𝑓

𝑓 𝑗(𝐼𝑘) ∩ (𝑧𝑘0+1; 𝑧𝑘0 ] = ∅, 𝑘 ⩾ 𝑘0 + 1, 𝑗 ⩾ 1. (4.15)

It follows from the condition (4.14) that 𝑈(0) ∩ 𝐼
(2)
𝑘 = ∅ for 1 ⩽ 𝑘 ⩽ 𝑘0. Then, by (4.11),

𝑓𝑘−1(𝑈(0) ∩ 𝐼𝑘) ⊂
[︂
0;

i

2

]︂
for 2 ⩽ 𝑘 ⩽ 𝑘0.

Hence, by Item 2) of the definition of mapping 𝑓 we obtain

𝑓 𝑗(𝑈(0) ∩ 𝐼𝑘) ∩ (𝑧𝑘0+1; 𝑧𝑘0 ] = ∅, 𝑗 ⩾ 1, 2 ⩽ 𝑘 ⩽ 𝑘0. (4.16)

Since 𝑈(0) ∩ 𝐼1 ⊂ [0; i], according to Items 1) and 2) of the definition of mapping 𝑓

𝑓 𝑗(𝑈(0) ∩ 𝐼1) ∩ (𝑧𝑘0+1; 𝑧𝑘0 ] = ∅, 𝑗 ⩾ 1. (4.17)
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It follows from (4.15), (4.16) and (4.17) that 𝑓 𝑗(𝑈(0)) ∩ {𝑥} = ∅ for each point 𝑥 ∈
(︂
i

2
; i

]︂
.

Thus,

(︂
i

2
; i

]︂
∩𝑊 𝑢(0, 𝑓) = ∅. Therefore, for all 𝑗 ⩾ 1

𝑓−𝑗

(︂(︂
i

2
; i

]︂)︂
∩𝑊 𝑢(0, 𝑓) = ∅.

Hence, by Item 3) of the construction of mapping 𝑓 , for each point 𝑒 ∈ 𝑌 ∖{1} and an arbitrary
neighborhood 𝑈(0) of the point 0 that does not contain 1, the following condition is satisfied:

+∞⋃︁
𝑗=1

𝑓−𝑗(𝑒) ∩ (𝑊 𝑢(0, 𝑓) ∩ 𝑈(0)) = ∅.

Thus, if Condition 2) of Theorem 2.2 is not satisfied, the statement of this theorem fails.
We also note that each endpoint 𝑒 of the continuum 𝑌 is a homoclinic point to the fixed point

0, but among the preimages of the point 𝑒 there are no homoclinic points to the fixed point 0,
that is, Corollary 2.2 also fails if its Condition 2) is violated.

5. Proof of Theorem 2.3

To prove Theorem 2.3, we need the notion of a horseshoe adapted to the considered case,
which goes back to Smale [25], as well as auxiliary statements.

Definition 5.1. We say that the mapping 𝑓 : 𝑋 → 𝑋 of a continuum 𝑋 has a horseshoe if
there exist disjoint subcontinua 𝐴,𝐵 ⊂ 𝑋 such that

𝑓(𝐴) ∩ 𝑓(𝐵) ⊃ 𝐴 ∪𝐵.

The following theorem is a direct consequence of Definitions 2.6 and 5.1, see, for example,
[2].

Theorem 5.1 ([2]). Let 𝑓 : 𝑋 → 𝑋 be a continuous mapping of 𝑋, and let 𝑓 be a horseshoe.
Then the topological entropy of 𝑓 is positive.

We shall need the following property of topological entropy.

Lemma 5.1 ([8]). For each continuous mapping 𝑓 : 𝑋 → 𝑋 of a compact topological space
𝑋 and each natural number 𝑛 ⩾ 1 the identity

ℎ(𝑓𝑛) = 𝑛 · ℎ(𝑓)
holds, where ℎ(·) is the topological entropy of the mapping (·).

Proof of Theorem 2.3. To prove the positivity of topological entropy of 𝑓 , we use Theorem 5.1
and Lemma 5.1. Let us show the existence of a horseshoe for some iteration of 𝑓 .
Let 𝑥 be a homoclinic point to a periodic point 𝑝 of period 𝑚, 𝑈(𝑝) be an arbitrary neigh-

borhood of 𝑝 in 𝑋 that does not contain 𝑥. Denote by 𝑟 = ord 𝑝, where 𝑟 ∈ N. Since ord 𝑝
is finite, 𝑝 /∈ 𝑅(1)(𝑋), by Lemma 3.2 there exists a neighborhood 𝑈1(𝑝) of 𝑝 in 𝑋 such that

𝑈1(𝑝) ⊂ 𝑈(𝑝), and 𝑈1(𝑝) is either an arc (for 𝑟 = 1 or 2) or is homeomorphic to 𝑟–od (for
𝑟 ⩾ 3).
By Corollary 2.2 there exist a homoclinic point 𝑥1 ∈ 𝑈1(𝑝) to a periodic point 𝑝 and a natural

number 𝑛1 such that 𝑓𝑚𝑛1(𝑥1) = 𝑥. Since 𝑈1(𝑝) is a locally connected continuum, there exists
a connected neighborhood 𝑈2(𝑝) ⊂ 𝑈1(𝑝) of 𝑝 such that 𝑥1 /∈ 𝑈2(𝑝). Again by Corollary 2.2
there exists a homoclinic point 𝑥2 ∈ 𝑈2(𝑝) to a periodic point 𝑝 and a natural number 𝑛2 such
that 𝑓𝑚𝑛2(𝑥2) = 𝑥1. We repeat the above reasoning (𝑟 + 1) times. As a result, we construct
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connected neighborhoods 𝑈𝑘(𝑝) of the point 𝑝 (1 ⩽ 𝑘 ⩽ 𝑟+1), homoclinic points {𝑥1, . . . , 𝑥𝑟+1}
and natural numbers {𝑛1, . . . , 𝑛𝑟+1} with the following properties

1) 𝑈𝑘+1(𝑝) ⊂ 𝑈𝑘(𝑝) for each 1 ⩽ 𝑘 ⩽ 𝑟;
2) 𝑥𝑘+1 ∈ 𝑈𝑘+1(𝑝), but 𝑥𝑘 /∈ 𝑈𝑘+1(𝑝) for all 1 ⩽ 𝑘 ⩽ 𝑟;
3) 𝑓𝑚𝑛𝑘+1(𝑥𝑘+1) = 𝑥𝑘 for 1 ⩽ 𝑘 ⩽ 𝑟.

Since the order of 𝑝 is 𝑟, there exist distinct homoclinic points 𝑥𝑖, 𝑥𝑗 ∈ {𝑥1, . . . , 𝑥𝑟+1} that
lie on the same component of 𝑝. Let 𝑖 < 𝑗 for the sake of definiteness. Since 𝑈𝑖(𝑝) and 𝑈𝑗(𝑝)

are connected neighborhoods, and 𝑈𝑗(𝑝) ⊂ 𝑈𝑖(𝑝) ⊂ 𝑈1(𝑝), then 𝑈𝑖(𝑝) and 𝑈𝑗(𝑝) are either arcs
or homeomorphic to 𝑟–od. Then by Properties 1) – 3) we obtain

𝑥𝑗 ∈ (𝑝;𝑥𝑖), and 𝑓𝑚(𝑛𝑖+1+...+𝑛𝑘+...+𝑛𝑗)(𝑥𝑗) = 𝑥𝑖, where 𝑖+ 1 ⩽ 𝑘 ⩽ 𝑗.

Let 𝑔 = 𝑓𝑚(𝑛𝑖+1+...+𝑛𝑘+...+𝑛𝑗), 𝑦 = 𝑥𝑗. Then 𝑔(𝑝) = 𝑝, 𝑦 ∈ (𝑝; 𝑔(𝑦)). Therefore, by the
continuity of the mapping 𝑔

𝑔([𝑝; 𝑦]) ⊇ [𝑔(𝑝); 𝑔(𝑦)] = [𝑝; 𝑔(𝑦)] ⊃ [𝑝; 𝑦]. (5.1)

Since 𝑦 is a homoclinic point to a fixed point 𝑝, by definitions 2.4 and 2.5 𝜔(𝑦, 𝑔) = {𝑝}.
Therefore, for any neighborhood 𝑈(𝑝) of 𝑝 that does not contain 𝑦, there exists a natural
number 𝑠 ⩾ 2 such that 𝑔𝑠(𝑦) ∈ 𝑈(𝑝). Then

𝑦 ∈ (𝑔𝑠(𝑦); 𝑔(𝑦)). (5.2)

We denote by 𝑉 the component of 𝑦 that contains 𝑔(𝑦). Then it follows from (5.2) that

𝑔(𝑦) ∈ 𝑉, 𝑔𝑠(𝑦) ̸∈ 𝑉.

Therefore, there exists a natural number 2 ⩽ 𝑗0 ⩽ 𝑠 such that

𝑔𝑗(𝑦) ∈ 𝑉 for any 1 ⩽ 𝑗 ⩽ 𝑗0 − 1, 𝑔𝑗0(𝑦) ̸∈ 𝑉.

Then the points 𝑔𝑗0(𝑦) and 𝑔𝑗0−1(𝑦) lie on different components of 𝑦, that is,

𝑦 ∈ (𝑔𝑗0(𝑦); 𝑔𝑗0−1(𝑦)). (5.3)

It follows from the continuity of the mapping 𝑔 that

𝑔𝑗0−1([𝑦; 𝑔(𝑦)]) ⊇ [𝑔𝑗0−1(𝑦); 𝑔𝑗0−1(𝑔(𝑦))] = [𝑔𝑗0−1(𝑦); 𝑔𝑗0(𝑦)].

Taking into account (5.3), we obtain that

𝑔𝑗0−1([𝑦; 𝑔(𝑦)]) ⊃ [𝑔𝑗0−1(𝑦); 𝑦].

This inclusion yields
𝑔(𝑔𝑗0−1([𝑦; 𝑔(𝑦)]) ⊃ 𝑔([𝑔𝑗0−1(𝑦); 𝑦]),

that is,
𝑔𝑗0([𝑦; 𝑔(𝑦)]) ⊃ [𝑔𝑗0(𝑦); 𝑔(𝑦)].

Hence, by (5.3),

𝑔𝑗0([𝑦; 𝑔(𝑦)]) ⊃ [𝑔𝑗0(𝑦); 𝑔(𝑦)] ⊃ [𝑦; 𝑔(𝑦)].

Let ℎ = 𝑔𝑗0 . Then ℎ([𝑦; 𝑔(𝑦)]) ⊃ [𝑦; 𝑔(𝑦)]. But then

ℎ𝑗([𝑦; 𝑔(𝑦)]) ⊃ [𝑦; 𝑔(𝑦)], 𝑗 ⩾ 1. (5.4)

It follows from (5.1) that there exists a point 𝑦1 ∈ (𝑝; 𝑦) such that 𝑔(𝑦1) = 𝑦. Then

𝑔([𝑝; 𝑦1]) ⊇ [𝑝; 𝑦] ⊃ [𝑝; 𝑦1].

Therefore, there exists a point 𝑦2 ∈ (𝑝; 𝑦1) such that 𝑔(𝑦2) = 𝑦1. We repeat the above reasoning
𝑗0 times. As a result, we construct a set of points {𝑦1, . . . , 𝑦𝑗0} with the following properties:

𝑔(𝑦1) = 𝑦, 𝑔(𝑦𝑗) = 𝑦𝑗−1, and 𝑦𝑗 ∈ (𝑝; 𝑦𝑗−1) for 2 ⩽ 𝑗 ⩽ 𝑗0.
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We let 𝑢 = 𝑦𝑗0 , 𝑣 = 𝑦𝑗0−1. Then [𝑢; 𝑣] ∩ [𝑦; 𝑔(𝑦)] = ∅ and

ℎ([𝑢; 𝑣]) = 𝑔𝑗0([𝑢; 𝑣]) ⊇ [𝑔𝑗0(𝑢); 𝑔𝑗0(𝑣)] = [𝑦; 𝑔(𝑦)], (5.5)

Since 𝑦 is a homoclinic point of 𝑓 , by Definition 2.4, 𝜔(𝑦, 𝑓𝑚) = {𝑝}. Since 𝑝 ∈ Fix(𝑓𝑚),
we have 𝜔(𝑦, ℎ) = {𝑝}. Therefore, for each neighborhood 𝑈(𝑝) of 𝑝 satisfying the condition
𝑈(𝑝) ∩ {𝑢} = ∅, there exists a natural number 𝑗1 such that for each 𝑗 ⩾ 𝑗1 the condition
ℎ𝑗(𝑦) ∈ 𝑈(𝑝) is satisfied. Therefore,

𝑢 ∈ (ℎ𝑗(𝑦); 𝑦), 𝑗 ⩾ 𝑗1.

Then, taking into consideration (5.4), we get

ℎ𝑗([𝑦; 𝑔(𝑦)]) ⊃ [𝑢; 𝑔(𝑦)] ⊃ [𝑢; 𝑣] ∪ [𝑦; 𝑔(𝑦)], 𝑗 ⩾ 𝑗1. (5.6)

Therefore, by (5.5) we obtain

ℎ𝑗1+1([𝑢; 𝑣]) ⊃ ℎ𝑗1([𝑦; 𝑔(𝑦)]) ⊃ [𝑢; 𝑣] ∪ [𝑦; 𝑔(𝑦)]. (5.7)

It follows from (5.6) and (5.7) that the mapping ℎ𝑗1+1 has a horseshoe ([𝑢; 𝑣], [𝑦; 𝑔(𝑦)]).
According to Theorem 5.1, the mapping ℎ has a positive topological entropy. By Lemma 5.1

the topological entropy of 𝑓 is also positive. The proof is complete.

The author expresses her gratitude to the referee of the careful reading of work and made
comments.

BIBLIOGRAPHY

1. P.S. Aleksandrov. Introduction to Set Theory and General Topology. Nauka, Moscow (1977). (in
Russian).

2. L.S. Efremova and E.N. Makhrova. One–dimensional dynamical systems // Russ. Math. Surv.
76:5, 821–881 (2021). https://doi.org/10.1070/RM9998

3. K. Kuratowski. Topology. I. Academic Press, New York; PWN–Polish Scientific Publishers,
Warszawa (1966).

4. K. Kuratowski. Topology. II. Academic Press, New York; PWN–Polish Scientific Publishers,
Warszawa (1968).

5. E.N. Makhrova. Homoclinic points and topological entropy of a continuous mapping of a dendrite

// J. Math. Sci., New York 158:2, 241–248 (2009). https://doi.org/10.1007/s10958-009-9392-4
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