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ON ORBITS IN C4
OF 7–DIMENSIONAL LIE ALGEBRAS

POSSESSING TWO ABELIAN SUBALGEBRAS

A.V. LOBODA, R.S. AKOPYAN

Abstract. The paper focuses on the problem on description of holomorphically homoge-
neous real hypersurfaces of multidimensional complex spaces based on the properties of the
Lie algebras and their nilpotent and Abelian subalgebras corresponding to these manifolds.
Using classifications of a large family of 7–dimensional solvable non–decomposable Lie al-
gebras, earlier we studied the orbits of algebras with “strong” commutative properties. In
particular, it was established that a 7–dimensional Lie algebra with an Abelian subalgebra
of dimension 5 admits no Levi nondegenerate orbits in the space C4.

In the present paper we study all 82 types of solvable non–decomposable 7–dimensional
Lie algebras, which have exactly two 4–dimensional Abelian subalgebras and a 6–
dimensional nilradical. We prove that for 75 types of algebras, any 7–dimensional orbit
in C4 is either Levi–degenerate or can be reduced to a tubular manifold by a holomorphic
transformation. We provide all (up to local holomorphic coordinate transformations) real-
izations of 7 exceptional types of abstract Lie algebras as algebras of holomorphic vector
fields in C4. For most of these realizations, we give coordinate descriptions of orbits, which
are holomorphically homogeneous nondegenerate real hypersurfaces in this space.
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1. Introduction

In connection with the problem on description of holomorphically homogeneous real hyper-
surfaces if the space C4, in this paper we study orbits of 7–dimensional Lie algebras in this
space. We clarify that the case of a 4–dimensional complex space is the next one after ob-
taining the complete descriptions of locally holomorphically homogeneous hypersurfaces in the
spaces C2 and C3, see [5], [11], [12]. And the dimension 7 is the minimal possible dimension of
the Lie algebra of holomorphic vector fields on a homogeneous hypersurface in the space C4.
The family of abstract 7–dimensional Lie algebras is quite wide. A subfamily of such algebras

satisfying the solvability and non–decomposability conditions is described in four papers [13],
[14], [18], [19]; this subfamily contains 939 types of Lie algebras. In this paper we discuss
the Lie algebras from [18], which contains a complete description of 7–dimensional (solvable
non–decomposable) Lie algebras with 6–dimensional nilradicals. We note that this description
counts 594 types of Lie algebras.
The family of holomorphically homogeneous hypersurfaces in the space C4 also seems to be

quite wide, and therefore it is natural to consider individual subfamilies of such manifolds. We
refer, for example, to the works [15] and [16], in which Levi–degenerate but 𝑘–nondegenerate
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(for 𝑘 = 2, 3) homogeneous hypersurfaces in the complex spaces are studied, and, in particular,
in the spaces C4.
In [7] the question on estimating the number of different holomorphically homogeneous Levi

nondegenerate nontubular real hypersurfaces in this space was considered. The main result
of [7] states that the 7–dimensional Lie algebras from the list in [18] associated with Levi
nondegenerate non–tubular real hypersurfaces of C4 make a relatively small part of this list.
The present paper concretizes this qualitative statement and it is essentially a continuation of
[7]. The main goal of the paper is to select algebras admitting Levi nondegenerate orbits in C4

that are not reducible to tubes from the list of 7–dimensional Lie algebras in [18] containing
exactly two 4–dimensional Abelian subalgebras.
Such formulation of the problem is explained by the results of [6] and [9]. By virtue of

these results, for a 7–dimensional Lie algebra containing an Abelian subalgebra of dimension
5 or three Abelian subalgebras of dimension 4, any 7–dimensional orbit in C4 is either Levi
degenerate or holomorphically equivalent to a tubular hypersurface.
In this paper, we specify the number of 7–dimensional Lie algebras possessing 6–dimensional

nilradicals and containing exactly two 4–dimensional Abelian subalgebras. In total, there are
82 types of such algebras in [18].
The main result of this paper is the following statement.

Theorem 1.1. At most 7 of 82 types of 7–dimensional Lie algebras possessing 6–dimensional
nilradicals and two 4–dimensional Abelian subalgebras admit Levi nondegenerate 7–dimensional
orbits in the space C4 not reducible to tubes.

We note that the coordinate descriptions of most of these orbits were obtained in [8] and
they are given in Section 3 of this paper. All these hypersurfaces are Levi nondegenerate,
but the question of their possible reducibility (due to holomorphic transformations) to tubes
is more complicated. The authors do not yet have answers to this question; this explains the
clarification «at most» in the formulation of Theorem 1.1.

2. Nilradicals of 7–dimensional Lie algebras

The number of different 7–dimensional Lie algebras in [18], amounting to 594 types of such
algebras, seems excessive for a practical work with a list of such objects. At the same time,
all these almost 600 types are continuations of only 34 types of 6–dimensional nilpotent Lie
algebras. In [18], these 6–dimensional algebras are presented by their tables of commutation
relations in some (canonical) bases. The consideration of our article is even more simplified by
the fact that only 10 of the 34 types of 6–dimensional nilpotent algebras have 7–dimensional
continuations containing exactly two 4–dimensional Abelian subalgebras.

Remark 2.1. The reliability of such quantitative descriptions of the considered lists of Lie
algebras can be provided only by computer programs. Some of them have already been imple-
mented (see, for example, [3]), and several more computer algorithms and schemes for their
application to the discussed problem are being developed.

The list of 6–dimensional nilpotent Lie algebras form ones having in [18] the following codes:

[6, 1], [6, 9], [6, 13], [6, 18], [6, 21], [6, 22], [6, 23], [6, 24], [6, 26], [6, 29]. (2.1)

Below we provide non–trivial commutation relations in these algebras (in some canonical bases
𝑒1, . . . , 𝑒6):

Algebra [6, 1](7) : [𝑒3, 𝑒6] = 𝑒2, [𝑒4, 𝑒5] = 𝑒2, [𝑒4, 𝑒6] = 𝑒3, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 9](8) : [𝑒3, 𝑒5] = 𝑒2, [𝑒3, 𝑒6] = 𝑒1, [𝑒4, 𝑒5] = −𝑒1, [𝑒4, 𝑒6] = 𝑒2;

Algebra [6, 13](1) : [𝑒4, 𝑒5] = 𝑒1, [𝑒2, 𝑒6] = 𝑒1, [𝑒3, 𝑒6] = 𝑒2, [𝑒4, 𝑒6] = 𝑒3, [𝑒5, 𝑒6] = 𝑒4;
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Algebra [6, 18](7) : [𝑒2, 𝑒5] = 𝑒1, [𝑒3, 𝑒6] = 𝑒1, [𝑒4, 𝑒6] = 𝑒3, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 21](7) : [𝑒2, 𝑒4] = 𝑒1, [𝑒3, 𝑒6] = 𝑒1, [𝑒4, 𝑒6] = 𝑒2, [𝑒5, 𝑒6] = 𝑒3;

Algebra [6, 22](7) : [𝑒4, 𝑒5] = 𝑒1, [𝑒3, 𝑒6] = 𝑒2, [𝑒4, 𝑒6] = 𝑒3, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 23](10) : [𝑒3, 𝑒5] = 𝑒2, [𝑒3, 𝑒6] = 𝑒1, [𝑒4, 𝑒6] = 𝑒2, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 24](8) : [𝑒3, 𝑒5] = 𝑒1, [𝑒4, 𝑒5] = 𝑒1, [𝑒4, 𝑒6] = 𝑒2, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 26](9) : [𝑒3, 𝑒5] = 𝑒2, [𝑒4, 𝑒5] = 𝑒1, [𝑒4, 𝑒6] = 𝑒2, [𝑒5, 𝑒6] = 𝑒4;

Algebra [6, 29](18) : [𝑒2, 𝑒3] = 𝑒1, [𝑒4, 𝑒6] = 𝑒1, [𝑒5, 𝑒6] = 𝑒4.

We clarify that the number in the brackets after the code of each of these 6–dimensional Lie
algebras means the number of types of 7–dimensional Lie algebras possessing the given 6–
dimensional algebra as a nilradical (the sum of all ten numbers in the brackets makes the 82
types mentioned above).

Remark 2.2. The provided list differs from the similar one in [7]. For example, it does
not contain the algebra [6, 25], the 7–dimensional continuations of which contain a single 4–
dimensional Abelian subalgebra. The algebra [6, 25] appeared in the list in [7] due to an oversight,
which has now been corrected by rechecking (using computer algorithms) the structure of the
discussed algebras.

Remark 2.3. In the course of this rechecking, two 6–dimensional algebras [6, 21] and [6, 29],
not discussed in [7], are added to the list of 6–dimensional nilpotent algebras we are interesting in
this paper. Each of the 7–dimensional Lie algebras with the nilradical [6, 21] or [6, 29], contains
exactly two 4–dimensional Abelian subalgebras. Some of these 7–dimensional algebras admit
Levi nondegenerate 7–dimensional orbits in C4. However, all such hypersurfaces are reducible
to tubes by the same quadratic change of variables.

We clarify that the proof of the last statement for a large family of 18 types of 7–dimensional
algebras possessing the 6–dimensional algebra [6, 29] as a nilradical is presented in [4].
Below we discuss the remaining 64 of the mentioned 82 types of 7–dimensional Lie algebras.

In this case, we study in detail the realizations of a block of 7 types of algebras with the nilradical
[6, 21], which were not included in the descriptions of [7]. A separate Section 5 of the paper is
devoted to the second block of 8 types of algebras with the nilradical [6, 9]. For the algebras in
this block, the intersection of two 4–dimensional Abelian subalgebras is 2–dimensional, and not
3–dimensional (as for all other continuations of nilpotent algebras from the list (2.1)). The third
block includes the description of nondegenerate orbits not reducible to tubes of the remaining
49 types of aforementioned 7–dimensional Lie algebras; this description was obtained in [8].
The description of such orbits for Lie algebras from the three named blocks, together with

the assertion that they are absent for 18 types of continuations of the nilpotent algebra [6, 29],
constitutes a complete solution to the main problem formulated in the Introduction.
For a visual representation of the conclusions about the algebra [6, 21] and 7 types of its

7–dimensional continuations, we need the corresponding tables of commutation relations cor-
responding to these algebras. Table 1 provides the nontrivial commutators [𝑒𝑘, 𝑒𝑗] (𝑘 is the row
number of the table, 𝑗 is the column number) of the elements of the canonical basis for the
family (type) of Lie algebras [7, [6, 21], 1, 1] from [18].
The tables of commutation relations for the remaining six types of 7–dimensional Lie algebras

with a nilradical isomorphic to the algebra [6, 1] differ from Table 1 only in the last column
(and, accordingly, in the last row). Such columns for all 7–dimensional Lie algebras, which
have the codes [7, [6, 21], 1, 𝑘], 𝑘 = 1, . . . , 7, in [18], are given in Table 2.
In view of Tables 1 and 2 we easily see that each of the discussed algebras [7, [6, 21], 1, 𝑘] for

𝑘 = 1, . . . , 7 possesses two Abelian subalgebras 𝐼4 =< 𝑒1, 𝑒2, 𝑒3, 𝑒5 > and 𝐼 ′4 =< 𝑒1, 𝑒3, 𝑒4, 𝑒5 >.
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Table 1. Table of commutation relations for the family of Lie algebras
[7, [6, 21], 1, 1]. The parameter of the family is an arbitrary real number 𝑚
([𝑒4, 𝑒7] = 𝑚𝑒4).

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
𝑒1 (2𝑚+ 1)𝑒1
𝑒2 𝑒1 (𝑚+ 1)𝑒2
𝑒3 𝑒1 2𝑚𝑒3
𝑒4 −𝑒1 𝑒2 𝑒2 𝑚𝑒4
𝑒5 −𝑒2 𝑒3 (2𝑚− 1)𝑒5
𝑒6 −𝑒1 −𝑒2 −𝑒3 𝑒6
𝑒7 −(2𝑚+ 1)𝑒1 −(𝑚+ 1)𝑒2 −2𝑚𝑒3 −𝑚𝑒4 −(2𝑚− 1)𝑒5 −𝑒6

Table 2. The commutators [𝑒𝑗, 𝑒7] (𝑗 = 1, . . . , 6) for Lie algebras with the nil-
radical [6, 21] and codes [7, [6, 21], 1, 𝑘] (𝑘 = 1, . . . , 7). The columns of table are
headed by the last two symbols of the code of each type of algebra. The parameter
𝑚 is an arbitrary real number, 𝜀 = ±1.

Type of algebra [1, 1] [1, 2] [1, 3] [1, 4] [1, 5] [1, 6] [1, 7]
[𝑒1, 𝑒7] (2𝑚+ 1)𝑒1 2𝑒1 3𝑒1 2𝑒1 𝑒1 2𝑒1 3𝑒1
[𝑒2, 𝑒7] (𝑚+ 1)𝑒2 𝑒2 2𝑒2 𝑒2 𝑒2 𝑒2 2𝑒2 + 𝑒3
[𝑒3, 𝑒7] 2𝑚𝑒3 2𝑒3 2𝑒3 2𝑒3 2𝑒3 2𝑒3
[𝑒4, 𝑒7] 𝑚𝑒4 𝑒4 𝑒4 𝑒4 𝑒3 𝑒2 + 𝑒4 𝑒4 + 𝑒5
[𝑒5, 𝑒7] (2𝑚− 1)𝑒5 2𝑒5 𝑒5 𝜀𝑒1 + 2𝑒5 −𝑒5 𝑚𝑒1 + 2𝑒5 𝑒5
[𝑒6, 𝑒7] 𝑒6 𝜀𝑒5 + 𝑒6 𝑒2 + 𝑒6 −𝑒4 +𝑚𝑒5 + 𝑒6

Remark 2.4. The first of them is the Abelian ideal in each of the discussed 7–dimensional
algebras, while the second is just the Abelian subalgebra since [𝑒4, 𝑒6] = 𝑒2 /∈ 𝐼 ′4.

It is important to note that the intersection 𝐼4∩ 𝐼 ′4 of these subalgebras has the dimension 3.
Let us now briefly recall the scheme for describing nondegenerate orbits in C4 of 7–dimensional

Lie algebras presented in [7], which uses the existence of 6–dimensional nilradicals and two 4–
dimensional Abelian subalgebras.

1. Each of the discussed abstract 7–dimensional algebras is to be represented as an algebra
of holomorphic vector fields. For this, it is sufficient to realize a basis of the 7–dimensional
algebra by such fields. At the same time, all fields are to be tangent in the real sense to
some Levi nondegenerate hypersurface, which is the orbit of this algebra.

2. We denote by 𝑔7 and 𝑁6, respectively, any of the discussed 7–dimensional Lie algebras
and its 6–dimensional nilradical. It is convenient to begin the discussion of realization of
algebra 𝑔7 in the space C4 with the realization of basis 𝑁6 since such a problem does not
always have a solution.

3. If we succeed to realize the basis 𝑁6 in the form of holomorphic vector fields in C4, then
the discussion of representations of algebra 𝑔7 is reduced to the study of system of 6 linear
differential equations

[𝑒𝑘, 𝑒7] =
6∑︁

𝑗=1

𝛼𝑘𝑗𝑒𝑗 (2.2)

for the unknown field 𝑒7 with the known, from the table of commutation relations, coeffi-
cients 𝛼𝑘𝑗.
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4. The above described steps of the general scheme simplify significantly if the discussed 7–
dimensional algebra (and, in fact, its subalgebra 𝑁6) contains two 4–dimensional Abelian
subalgebras. According to the main lemma in [7], [17], the search for only nondegenerate
non–tubular orbits of 7–dimensional algebras in such a situation can be carried out by
assuming that the quadruple of basis fields of the nilpotent ideal 𝑁6 has a very simple
form. In particular, the equations of system (2.2) turn out to be ordinary differential
equations (and not partial differential equations).

5. At the final step the conditions

Re (𝑋(Φ)|𝑀) ≡ 0 (2.3)

of the real tangency of sought hypersurface 𝑀 by any field 𝑋 from the discussed algebra
𝑔7 are written as a system of 7 equations (according to the number of basis fields of the
algebra 𝑔7). This system is to be integrated.

In the framework of this scheme, in [7, Thms. 1, 2], there were written the realizations in C4

of the bases of nilpotent 6–dimensional Lie algebras from the aforementioned list, see Step 2 in
the scheme. We mean the algebras different from [6, 21], [6, 29].
We specify that instead of the usual writing of holomorphic vector fields in C4 of type

𝑋 = 𝑎(𝑧)
𝜕

𝜕𝑧1
+ 𝑏(𝑧)

𝜕

𝜕𝑧2
+ 𝑐(𝑧)

𝜕

𝜕𝑧3
+ 𝑑(𝑧)

𝜕

𝜕𝑧4
,

hereafter we use its shortened form 𝑋 = (𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧), 𝑑(𝑧)). In view of this adoption, under
the assumption of the existence of nondegenerate non–tubular orbits for 7–dimensional contin-
uations of, for example, the Lie algebras [6, 1] and [6, 9], the bases of the realizations in C4 of
these 6–dimensional algebras, up to local holomorphic transformations, read

𝑒1 =(0, 0, 0, 1),

𝑒2 =(0, 0, 1, 0),

𝑒3 =(0, 0,−(𝑧1 + 𝐶3), 𝐷3),

𝑒4 =(0, 1, 0, 0),

𝑒5 =(0,−𝑧1, 𝑧2,−
1

2
𝐷3𝑧

2
1 +𝐷5),

𝑒6 =(1, 𝑧1(𝑧1 + 𝐶3),−𝑧2(𝑧1 + 𝐶3), 𝐷3𝑧2),

𝑒1 =(0, 0, 0, 1),

𝑒2 =(0, 0, 1, 0),

𝑒3 =(0, 1, 0, 0),

𝑒4 =(0, 𝑖𝜀, 𝑖𝜀𝑧1 + 𝐶4, 𝑧1 +𝐷4),

𝑒5 =(1, 0, 𝑧2, 0),

𝑒6 =(𝑖𝜀, 𝐵6, 𝐵6𝑧1 + 𝐶6, 𝑧2 +𝐷6),

(2.4)

respectively, with some complex constants 𝐵𝑘, 𝐶𝑘, 𝐷𝑘.
It is easy to obtain similar statements for the algebras [6, 21], [6, 29].

Proposition 2.1. Under the existence of nondegenerate non–tubular orbits for 7–
dimensional continuations of the Lie algebras [6, 21] and [6, 29], the bases of realizations in
C4 of these 6–dimensional algebras, up to local holomorphic transformations, read

𝑒1 =(0, 0, 0, 1),

𝑒2 =(0, 1, 0, 0),

𝑒3 =(0, 0, 1, 0),

𝑒4 =(0,−𝑧1 +𝐵4, 𝐶4, 𝑧2 + 𝐶4𝑧1),

𝑒5 =(0, 0,−𝑧1 + 𝐶5,−
1

2
𝑧21 + 𝐶5𝑧1 +𝐷5),

𝑒6 =(1, 0, 0, 𝑧3),

𝑒1 =(0, 0, 0, 1),

𝑒2 =(0, 1, 0, 0),

𝑒3 =(0, 𝐵3, 𝐶3, 𝑧2 + 𝐶3𝑧1),

𝑒4 =(0, 0, 1, 0),

𝑒5 =(0, 0,−𝑧1,−
1

2
𝑧21 +𝐷5),

𝑒6 =(1, 0, 0, 𝑧3),

(2.5)

respectively, where 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 are some complex constants.
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Proof. We note that the basis for the realization in C4 of the 6–dimensional Lie algebra [6, 21]
from the formulation of this proposition is constructed in [8, Proposition 2]. Here we present
the derivation of formulas for the basis of the algebra [6, 29] realized in C4.
The description of this algebra by commutation relations at the beginning of the section

shows that the 4-dimensional Abelian subalgebras of the nilpotent algebra [6, 29] are only
𝐼4 =< 𝑒1, 𝑒2, 𝑒4, 𝑒5 > and 𝐼 ′4 =< 𝑒1, 𝑒3, 𝑒4, 𝑒5 >. It can be verified that for each of the 18
continuations of [6, 29] to 7–dimensional Lie algebras described in [18], their 4–dimensional
Abelian subalgebras are also only 𝐼4 and 𝐼 ′4. We consider an ordered set 𝑒1, 𝑒4, 𝑒5, 𝑒2 of pairwise
commuting holomorphic vector fields tangent to a hypothetical nondegenerate hypersurface 𝑀
of the space C4. Then we apply Lemma 1 from [7] (or Lemma 4.1 from [6]) on three variants
of simplification of this set by holomorphic transformations. In two of these three variants of
the realization of [6, 29], it is possible to rectify (transform into differentiations with respect to
four independent variables 𝑧𝑘) the basis elements of the subalgebra 𝐼4 (the first variant), or the
subalgebra 𝐼 ′4 (the second variant). This implies the tubularity of hypersurface 𝑀 .
Since we discuss homogeneous hypersurfaces not reducible to tubes, the only way in which

such surfaces can exist is related with the simplification of the basis 𝐼4 to

𝑒1 = (0, 0, 0, 1), 𝑒4 = (0, 0, 1, 0), 𝑒2 = (0, 1, 0, 0), 𝑒5 = (0, 0, 𝑐5(𝑧1), 𝑑5(𝑧1))

by a holomorphic change of variables.
Now we consider the commutators of the fields 𝑒3, 𝑒6 with a triple of rectified fields 𝑒1, 𝑒2, 𝑒4.

Taking into account the non–trivial commutation relations [𝑒2, 𝑒3] = [𝑒4, 𝑒6] = 𝑒1 in the algebra
[6, 29], and the vanishing of the remaining commutators, we obtain the following simplified form
of these fields

𝑒3 = (𝑎3(𝑧1), 𝑏3(𝑧1), 𝑐3(𝑧1), 𝑧2 + 𝑑3(𝑧1)), 𝑒6 = (𝑎6(𝑧1), 𝑏6(𝑧1), 𝑐6(𝑧1), 𝑧3 + 𝑑6(𝑧1))

with some holomorphic functions 𝑎𝑘(𝑧1), 𝑏𝑘(𝑧1), 𝑐𝑘(𝑧1), 𝑑𝑘(𝑧1) of a single complex variable. The
third component of the latter non–trivial relation [𝑒5, 𝑒6] = 𝑒4 implies the inequality 𝑎6(𝑧1) ̸= 0.
The approaches of the works [1] and [10] then allow us to keep the rectified fields 𝑒1, 𝑒2, 𝑒4 and
to reduce the field 𝑒6 by a holomorphic change to 𝑒6 = (1, 0, 0, 𝑧3). After this, the simplification
of the fields 𝑒3 and 𝑒5 to the form stated in Proposition 2.1 becomes in fact trivial. The proof
is complete.

The formulas of type (2.4) and (2.5) allow us to proceed to subsequent Steps 3 and 4 of
the above scheme for describing Levi nondegenerate non–tubular orbits of the discussed 7–
dimensional Lie algebras. We specify that in [7] only separate steps of this scheme were realized
for some of the algebras we are interesting in. We shall discuss this issue systematically in the
next sections.

3. Necessary conditions for existence of nondegenerate orbits

For 7–dimensional continuations of seven nilpotent algebras

[6, 1], [6, 13], [6, 18], [6, 22], [6, 23], [6, 24], [6, 26], (3.1)

being the main object of study in [7], the above scheme for investigating of orbits was completely
realized in [8]. Using combined computer–manual algorithms, the system of differential equa-
tions (2.2) was investigated for 49 types of 7–dimensional Lie algebras possessing 6–dimensional
algebras from the list (3.1) as nilradicals. However, the format of paper [8] and its focus primar-
ily on the algorithmic side of the problem did not allow us to present (and discuss) important
intermediate results. One of them is the following statement, which is of an independent math-
ematical interest.
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Proposition 3.1. Among the 49 types of Lie algebras possessing a 6–dimensional nilradical
of one of the types (3.1) and two Abelian 4–dimensional subalgebras, at most 9 types can have
nondegenerate non–tube–reducible orbits in C4. By holomorphic changes of coordinates, the
bases of such algebras, realized as algebras of vector fields in C4, can be reduced to

[7, [6, 1], 1, 1] (Im𝐷3 ̸= 0) : [7, [6, 13], 1, 1] :

𝑒1 = (0, 0, 0, 1), 𝑒1 = (0, 0, 0, 1),

𝑒2 = (0, 0, 1, 0), 𝑒2 = (0, 0, 1, 0),

𝑒3 = (0, 0,−𝑧1, 𝐷3), 𝑒3 = (0, 0,−𝑧1,−
1

2
𝑧21),

𝑒4 = (0, 1, 0, 0), 𝑒4 = (0, 1, 0, 0),

𝑒5 = (0,−𝑧1, 𝑧2,−
1

2
𝐷3𝑧

2
1), 𝑒5 = (0,−𝑧1,

1

3
𝑧31 , 𝑧2),

𝑒6 = (1, 𝑧21 ,−𝑧1𝑧2, 𝐷3𝑧2), 𝑒6 = (1,
5

6
𝑧31 ,−𝑧1𝑧2, 𝑧3 −

1

2
𝑧21𝑧2),

𝑒7 = (𝑧1, 3𝑧2, 5𝑧3, 4𝑧4);

[7, [6, 18], 1, 1] (𝑎 = 3, 𝐵5 ∈ R ∖ {0}) : [7, [6, 22], 1, 1] (𝑎 = 1, Im𝐷3 ̸= 0) :

𝑒1 = (0, 0, 0, 1), 𝑒1 = (0, 0, 0, 1),

𝑒2 = (0, 1, 0, 0), 𝑒2 = (0, 0, 1, 0),

𝑒3 = (0, 0, 1, 0), 𝑒3 = (0, 0,−𝑧1, 𝐷3),

𝑒4 = (0, 0,−𝑧1,−
1

2
𝑧21), 𝑒4 = (0, 1, 0, 0),

𝑒5 = (0, 𝑖𝐵5,
1

2
𝑧21 , 𝑧2 +

1

3
𝑧31), 𝑒5 = (0,−𝑧1,

1

3
𝑧31 , 𝑧2),

𝑒6 = (1, 0, 0, 𝑧3), 𝑒6 = (1,−𝐷3𝑧1,−𝑧1𝑧2, 𝐷3𝑧2),

𝑒7 = (𝑧1, 3𝑧2, 5𝑧3, 6𝑧4); 𝑒7 = (𝑧1, 2𝑧2, 4𝑧3, 3𝑧4);

[7, [6, 23], 1, 1] (𝑎 = 2, 𝐷4 ∈ R ∖ {0}) : [7, [6, 24], 1, 2] (𝐶3 ∈ R ∖ {0}) :
𝑒1 = (0, 0, 0, 1), 𝑒1 = (0, 0, 0, 1),

𝑒2 = (0, 0, 1, 0), 𝑒2 = (0, 0, 1, 0),

𝑒3 = (0, 1, 0, 0), 𝑒3 = (0, 0, 𝑖𝐶3,−𝑧1),

𝑒4 = (0, 0,−𝑧1, 𝑖𝐷4), 𝑒4 = (0, 1, 0, 0),

𝑒5 = (0, 𝑖𝐷4, 𝑧2 +
1

2
𝑧21 , 0), 𝑒5 = (1, 0, 0, 𝑧2),

𝑒6 = (1, 0, 0, 𝑧2), 𝑒6 = (0, 𝑧1, 𝑧2,
1

2
𝑧21),

𝑒7 = (𝑧1, 2𝑧2, 4𝑧3, 3𝑧4); 𝑒7 = (𝑧1, 𝑧2, 𝑧3, 2𝑧4);

[7, [6, 24], 1, 4] (𝜀 = ±1, 𝐶3 ∈ R ∖ {0}) : [7, [6, 24], 1, 5] (Im𝐶3 ̸= 0) :

𝑒1 = (0, 0, 0, 1), 𝑒1 = (0, 0, 0, 1),

𝑒2 = (0, 0, 1, 0), 𝑒2 = (0, 0, 1, 0),

𝑒3 = (0, 0, 𝑖𝐶3,−𝑧1), 𝑒3 = (0, 0, 𝐶3,−𝑧1),

𝑒4 = (0, 1, 0, 0), 𝑒4 = (0, 1, 0, 0),

𝑒5 = (1, 0, 0, 𝑧2), 𝑒5 = (1, 0, 0, 𝑧2),
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𝑒6 = (0, 𝑧1, 𝑧2,
1

2
𝑧21), 𝑒6 = (0, 𝑧1, 𝑧2,

1

2
𝑧21),

𝑒7 = (𝑧1, 𝑧2, 𝑧3 + 𝜀𝑧1, 2𝑧4); 𝑒7 = (𝑧1, 𝑧2, 𝑧3 + 𝐶3𝑧1, 2𝑧4 −
1

2
𝑧21);

[7, [6, 26], 1, 1] (𝑎 =
1

2
, 𝐷3 ∈ R ∖ {0}) :

𝑒1 = (0, 0, 0, 1),

𝑒2 = (0, 0, 1, 0),

𝑒3 = (0, 0,−𝑧1, 𝑖𝐷3),

𝑒4 = (0, 1, 0, 0),

𝑒5 = (1, 0, 0, 𝑧2),

𝑒6 = (0, 𝑧1, 𝑧2,
1

2
𝑧21),

𝑒7 = (
1

2
𝑧1,

3

2
𝑧2,

5

2
𝑧3, 2𝑧4).

The significant reduction in the potential number of Levi nondegenerate non–tubular orbits
fixed in Proposition 3.1 was illustrated in [8] by the example of continuations of the algebra
[6, 21]. According to Tables 1 and 2 in Section 1, there are 7 types of such continuations
[7, [6, 21], 1, 𝑘], 𝑘 ∈ {1, . . . , 7}. We present here the assertion from [8] about the orbits of these
algebras.

Proposition 3.2. The realizations of algebras in the family [7, [6, 21], 1, 𝑘] in C4 that have
nondegenerate non–tubular orbits are possible only for 𝑘 ∈ {1, 3, 7}. In this case, in accordance
with the formulas (2.5), the basis fields 𝑒1, 𝑒2, 𝑒3 of the algebras under discussion have (in
suitable coordinates) the form

𝑒1 = (0, 0, 0, 1), 𝑒2 = (0, 1, 0, 0), 𝑒3 = (0, 0, 1, 0), (3.2)

while the fields 𝑒4, 𝑒5, 𝑒6, 𝑒7 are determined by the formulas

[7, [6, 21], 1, 1] (𝑚,𝐵7, 𝐷7 ∈ R;𝐶4, 𝐶7 ∈ C; 𝑚 · 𝐶4 = 0) :

𝑒4 = (0,−𝑧1, 𝐶4, 𝑧2 + 𝐶4𝑧1),

𝑒5 = (0, 0,−𝑧1,−
1

2
𝑧21),

𝑒6 = (1, 0, 0, 𝑧3),

𝑒7 = (𝑧1, (𝑚+ 1)𝑧2 + 𝑖𝐵7, 2𝑚𝑧3 + 𝐶7, (2𝑚+ 1)𝑧4 + 𝐶7𝑧1 + 𝑖𝐷7),

(3.3)

[7, [6, 21], 1, 3] (𝜀 = ±1;𝐷6 ∈ C) :
𝑒4 = (0,−𝑧1, 0, 𝑧2),

𝑒5 = (0, 0,−𝑧1,−
1

2
𝑧21),

𝑒6 = (1, 0, 0, 𝑧3 +𝐷6),

𝑒7 = (𝑧1, 2𝑧2, 2𝑧3 −
𝜀

2
𝑧21 , 3𝑧4 −

𝜀

3
𝑧31 − 2𝐷6𝑧1).

(3.4)
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[7, [6, 21], 1, 7] (𝑚,𝐷4, 𝐷6 ∈ R;𝐷7 ∈ C) :
𝑒4 = (0,−𝑧1, 0, 𝑧2 + 𝑖𝐷4),

𝑒5 = (0, 0,−𝑧1,−
1

2
𝑧21),

𝑒6 = (1, 0, 0, 𝑧3 + 𝑖𝐷6),

𝑒7 = (𝑧1, 2𝑧2 +
1

2
𝑧21 , 𝑧2 + 2𝑧3 −

𝑚

2
𝑧21 , 3𝑧4 −

𝑚

3
𝑧31 +𝐷7𝑧1).

(3.5)

Proof. All discussions related to this proposition naturally fall into two parts. In the first of
them we derive the formulas (3.3), (3.4) and (3.5) obtained by routine calculations using the
Maple package according to the scheme described in Section 2. The second part is related to
obtaining contradictions that arise when trying to implement the same scheme for algebras of
the discussed family for 𝑘 ∈ {2, 4, 5, 6}.
For instance, for 𝑘 = 2 according to the formulas of proposition 2.1, the first five basis fields

of the algebra [6, 21] have a zero first component. When calculating the preliminary form of
the components of the field 𝑒7 for this algebra, we use the form of the fields 𝑒1, 𝑒2, 𝑒3, 𝑒6 and
the column of Table 2 describing the commutators [𝑒𝑗, 𝑒7] in the algebra [7, [6, 21], 1, 2]. This
yields the following description of the field

𝑒7 = (𝐴7, 𝑧2 +𝐵7, 2𝑧3 + 𝐶7, 2𝑧4 + 𝐶7𝑧1 +𝐷7) (3.6)

with some complex constants 𝐴7, 𝐵7, 𝐶7, 𝐷7. The values of these constants and, first of all, the
parameter 𝐴7 should satisfy two more necessary conditions, namely, the commutation relations
[𝑒4, 𝑒7] = 𝑒4 and [𝑒5, 𝑒7] = 𝑒5. In view of (3.6), the second component of the first of these
relations reads

(−𝑧1 +𝐵4) + 𝐴7 = (−𝑧1 +𝐵4).

This means that the first component of the field 𝑒7 turns out to be zero for 𝑘 = 2. The same
reasoning (not affecting the commutator [𝑒5, 𝑒7]) remains valid for 𝑘 = 4. For 𝑘 = 6 we similarly
arrive at the conclusion 𝐴7 = 1, so that for the basis field 𝑒*7 = 𝑒7 − 𝑒6 of the realization of the
algebra [7, [6, 21], 1, 6] we again obtain a zero first component.
It is easy to see that the presence of six basis vector fields with zero 𝑧1–component in the

7-dimensional Lie algebra in the space C4 leads, by the identity (2.2), to the independence
of equation of any of its orbits of three complex variables 𝑧2, 𝑧3, 𝑧4. Thus, the result of the
procedure aimed at finding nondegenerate orbits for the 7–dimensional algebras [7, [6, 21], 1, 𝑘]
with 𝑘 = 2, 4, 6 turns out to be only degenerate hypersurfaces.
Another algebra corresponding to the case 𝑘 = 5 also does not admit realizations on nonde-

generate non–tubular hypersurfaces of the space C4. Here the formula, similar to (3.6), has the
form

𝑒7 = (𝑧1 + 𝐴7, 𝑧1 + 𝑧2 +𝐵7, 𝐶7, 𝑧4 + 𝐶7𝑧1 +𝐷7).

In this case, according to Table 2, the relation [𝑒4, 𝑒7] = 𝑒3 should be satisfied for this algebra.
However, the third components of both fields 𝑒4 and 𝑒7 are constants, and therefore this com-
ponent is equal to zero for their commutator. This contradicts the form 𝑒3 = (0, 0, 1, 0) and,
as a consequence, the existence of realizations of the algebra [7, [6, 21], 1, 5] with the discussed
properties. The proof is complete.

4. Tubular orbits of discussed algebras

Propositions 3.1 and 3.2 justify the qualitative result of [7] on a «small» number of Lie
algebras possessing the orbits with two properties

A) nondegeneracy,
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B) irreducibility to tubes.

In this case, the reduction from 56 considered types of Lie algebras in two blocks to 9 + 3
written out specific types of bases is a significant advance in the discussed problem. However,
in this section we shall show that the estimate of 12 is also incomplete and too overestimated.
Let us formulate precise statements that allow us to make such a conclusion.

Proposition 4.1 ([8]). All nondegenerate orbits in C4 of 7–dimensional Lie algebras of four
types

[7, [6, 18], 1, 1], [7, [6, 24], 1, 2], [7, [6, 24], 1, 4] [7, [6, 24], 1, 5]

from Proposition 3.1 are holomorphically equivalent to tubular manifolds.

Proposition 4.2. All regular 7–dimensional orbits of the algebras [7, [6, 21], 1, 𝑘] in Propo-
sition 3.2 are holomorphically equivalent to tubular manifolds.

The proofs of these statements can be obtained by direct integration of systems of partial
differential equations corresponding to the above written bases of realizations of all algebras
from Propositions 3.1 and 3.2. The procedure of such integration gives visual descriptions of
the orbits of these algebras, but it is quite tedious. Here we shall provide an arguing, which
proves in a general way (without detailed calculations) the tubular character of the studied
orbits of all three types of Lie algebras from Proposition 4.2.

Proof. Up to a translation of the variable 𝑧*3 = 𝑧3 +𝐷6, the bases of all three types, defined by
formulas (3.2), (3.3), (3.4) and (3.5), can be represented in a unified generalized form

𝑒1 =(0, 0, 0, 1), 𝑒5 = (0, 0,−𝑧1,−
1

2
𝑧21),

𝑒2 =(0, 1, 0, 0), 𝑒6 = (1, 0, 0, 𝑧3),

𝑒3 =(0, 0, 1, 0), 𝑒7 = (𝑧1, 𝑇2(𝑧), 𝑇3(𝑧), 𝑇4(𝑧)),

𝑒4 =(0,−𝑧1, 𝐶4, 𝑇1(𝑧)),

(4.1)

where 𝑇𝑘(𝑧) are some holomorphic functions of 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4), the exact form of which is
not essential for the subsequent discussions.
We clarify that the orbit in the space C4 of the Lie algebra with such a basis can, generally

speaking, have a dimension less than 7. The existence of precisely the 7-dimensional orbit 𝑀
passing through the point 𝑄 ∈ C4 is guaranteed (due to the Frobenius theorem [2]) by the
condition of completeness of rank of the (7×8)–matrix formed by the real and imaginary parts
of components of basis fields of algebra at the point 𝑄.
We note that the presence of three rectified fields in this algebra means that the defining

function of each orbit of the algebra is independent of the three real variables 𝑥𝑘 = Re 𝑧𝑘
(𝑘 = 2, 3, 4). This allows us to simplify the check of completeness of the rank by removing from
the mentioned (7 × 8)–matrix three rows (and, accordingly, three columns) corresponding to
these fields. The resulting matrix of dimensions (4× 5) for the basis described by the formulas
(4.1) reads ⎛⎜⎜⎝

0 0 −𝑦1 𝐶42 𝑡1
0 0 0 𝑦1 𝑥1𝑦1
1 0 0 0 𝑦3
𝑥1 𝑦1 𝑡2 𝑡3 𝑡4

⎞⎟⎟⎠ , (4.2)

where 𝑥1 = Re 𝑧1, 𝑦𝑘 = Im 𝑧𝑘, 𝑡𝑘 = Im𝑇𝑘, 𝐶42 = Im𝐶4.
It is clear that for 𝑦1 = 0 the rows of matrix (4.2) are linearly dependent, so that the orbits

of algebra (4.1) passing through the points of the space C4 with zero coordinate Im 𝑧1 are not
regular hypersurfaces. And for 𝑦1 ̸= 0 the 4th–order minor of the matrix (4.1), obtained by
discarding its last column and equal to −𝑦31, is nonzero. This ensures the full rank of matrix
(4.2) and the set of fields (4.1).
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The set of Equations (2.3) for 7 fields (4.1) is a system of linear equations with respect to 8
partial derivatives

𝜕Φ

𝜕𝑥𝑘

,
𝜕Φ

𝜕𝑦𝑘
, 𝑘 = 1, 2, 3, 4.

In the truncated version associated with the matrix (4.2) this system is linear with respect to
five derivatives

𝜕Φ

𝜕𝑥1

,
𝜕Φ

𝜕𝑦𝑘
, 𝑘 = 1, 2, 3, 4.

For the Lie algebra with a basis (4.1), we consider the value of the derivative
𝜕Φ

𝜕𝑦4
at some

point of the regular orbit 𝑀 in the space C4. This derivative cannot vanish because then at this
point (due to the difference from zero of the minor considered above) all 8 partial derivatives
would be zero. This contradicts the regularity of the discussed orbit.

Employing the inequality
𝜕Φ

𝜕𝑦4
̸= 0, we can write the equation of the discussed orbit 𝑀 (near

a fixed point) in a form resolved with respect to 𝑦4

𝑦4 = 𝐹 (𝑥1, 𝑦1, 𝑦2, 𝑦3). (4.3)

Then for the defining function of 𝑀 we have

Φ = −𝑦4 + 𝐹 (𝑥1, 𝑦1, 𝑦2, 𝑦3) and
𝜕Φ

𝜕𝑦4
= −1.

For a point 𝑄 ∈ C4 with a nonzero coordinate 𝑦1 and the 7–dimensional orbit of the algebra
(4.1) defined by Equation (4.3) and passing through this point, we consider the relations (2.3)
corresponding to the second and third rows of the matrix (4.2). They read

𝜕𝐹 (𝑥1, 𝑦1, 𝑦2, 𝑦3)

𝜕𝑦3
= 𝑥1,

𝜕𝐹 (𝑥1, 𝑦1, 𝑦2, 𝑦3)

𝜕𝑥1

= 𝑦3.

This means that any 7–dimensional regular orbit in the space C4 for algebras with a basis of
the form (4.1) can be described by the equation

𝑦4 = 𝑥1𝑦3 +𝐺(𝑦1, 𝑦2) (4.4)

with some analytical function of two variables 𝐺. Adding and subtracting the expression 𝑥3𝑦1
to the right hand side of the resulting equation and taking into consideration the identity

Im(𝑧1𝑧3) = 𝑥1𝑦3 + 𝑥3𝑦1,

after the holomorphic change of variables 𝑧*3 = −𝑖𝑧3, 𝑧
*
4 = 𝑧4−𝑧1𝑧3 we obtain a tubular equation

of the surface (4.4)

𝑦*4 = 𝑦1𝑦
*
3 +𝐺(𝑦1, 𝑦2).

The proof is complete.

5. Orbits of algebras with nilradical [6, 9]

We proceed to the presentation of a result similar to Propositions 3.1 and 3.2 and related to
the algebra [6, 9]. First of all, we supplement the list of commutation relations of this algebra,
given in Section 1, with commutators of the basis fields of this 6–dimensional algebra with the
field 𝑒7 within each of its eight 7–dimensional continuations. We present this information in
the form of the following tables.
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Table 3. Table of commutation relations for the Lie algebras [7, [6, 9], 1, 𝑘] (𝑘 =
1, 2, 3, 4). The parameters of individual algebras are arbitrary real numbers 𝑚,
𝑛.

Type of algebra [7, [6, 9], 1, 1] [7, [6, 9], 1, 2] [7, [6, 9], 1, 3] [7, [6, 9], 1, 4]
[𝑒1, 𝑒7] 2𝑒1 − 2𝑚𝑒2 −2𝑒2 2𝑒1
[𝑒2, 𝑒7] 2𝑚𝑒1 + 2𝑒2 2𝑒1 2𝑒2
[𝑒3, 𝑒7] (𝑛+ 1)𝑒3 −𝑚𝑒4 𝑚𝑒3 − 𝑒4 𝑒3
[𝑒4, 𝑒7] 𝑚𝑒3 + (𝑛+ 1)𝑒4 𝑒3 +𝑚𝑒4 𝑒4
[𝑒5, 𝑒7] (1− 𝑛)𝑒5 +𝑚𝑒6 −𝑚𝑒5 + 𝑒6 −𝑒5 2𝑒5
[𝑒6, 𝑒7] −𝑚𝑒5 + (1− 𝑛)𝑒6 𝑒5 +𝑚𝑒6 −𝑒6 𝑒1 + 2𝑒6

Table 4. Table of commutation relations for the Lie algebras [7, [6, 9], 2, 𝑘] (𝑘 =
1, 2) and [7, [6, 9], 3, 𝑘] (𝑘 = 1, 2). The parameters are 𝑚,𝑛, 𝑝 ∈ R, 𝜀 = ±1.

Type of algebra [7, [6, 9], 2, 1] [7, [6, 9], 2, 2] [7, [6, 9], 3, 1] [7, [6, 9], 3, 2]
[𝑒1, 𝑒7] 2𝑒1 − 2𝑚𝑒2 −2𝑒2 2𝑚𝑒1 − 2𝑛𝑒2 2𝑚𝑒1 + 2𝑒2
[𝑒2, 𝑒7] 2𝑚𝑒1 + 2𝑒2 2𝑒1 2𝑛𝑒1 + 2𝑚𝑒2 −2𝑒1 + 2𝑚𝑒2
[𝑒3, 𝑒7] 𝑒3 −𝑚𝑒4 −𝑒4 (𝑚+ 𝑝)𝑒3 − (𝑛+ 𝜀)𝑒4 4𝑒4
[𝑒4, 𝑒7] 𝑚𝑒3 + 𝑒4 𝑒3 (𝑛+ 𝜀)𝑒3 + (𝑚+ 𝑝)𝑒4 −4𝑒3
[𝑒5, 𝑒7] 𝜀𝑒3 + 𝑒5 +𝑚𝑒6 𝜀𝑒3 + 𝑒6 (𝑚− 𝑝)𝑒5 + (𝑛− 𝜀)𝑒6 2𝑚𝑒5 + 2𝑒6
[𝑒6, 𝑒7] −𝜀𝑒4 +𝑚𝑒5 + 𝑒6 −𝜀𝑒4 − 𝑒5 −(𝑛− 𝜀)𝑒5 + (𝑚− 𝑝)𝑒6 𝑒1 − 2𝑒5 + 2𝑚𝑒6

Proposition 5.1. Among the 8 types of 7–dimensional Lie algebras in the list in [18],
which possess 6–dimensional nilradical [6, 9], at most 3 types can have nondegenerate non–
tube–reducible orbits in C4. For all realizations of these three types, the basis fields 𝑒1, . . . , 𝑒5
have, up to holomorphic changes of coordinates, the following general form (𝜀 = ±1):

𝑒1 = (0, 0, 0, 1), 𝑒2 = (0, 0, 1, 0), 𝑒3 = (0, 1, 0, 0), 𝑒4 = (0, 𝑖𝜀, 𝑖𝜀𝑧1, 𝑧1), 𝑒5 = (1, 0, 𝑧2, 0).

The two remaining fields of each algebra are described by the following formulas:

[7, [6, 9], 1, 1] (𝑚 ∈ R, 𝑛 ⩾ 0;𝐵𝑘, 𝐶𝑘, 𝐷𝑘, 𝐵̂7 ∈ C; 𝑛 ·𝐵6 = 0) :

𝑒6 = (𝑖𝜀, 𝐵6, 𝐵6𝑧1 + 𝐶6, 𝑧2 +𝐷6), 𝑒7 = (𝑎7(𝑧), 𝑏7(𝑧), 𝑐7(𝑧), 𝑑7(𝑧)),
(5.1)

where

𝑎7(𝑧) = (𝑖𝜀𝑚+ 1− 𝑛)𝑧1, 𝑏7(𝑧) = (𝑛+ 1− 𝑖𝜀𝑚)𝑧2 +𝑚𝐵6𝑧1 +𝐵7,

𝑐7(𝑧) = −𝑖𝜀𝑚𝑧1𝑧2 + 2𝑧3 − 2𝑚𝑧4 +𝑚𝐵6𝑧
2
1 + 𝐵̂7𝑧1 + 𝐶7,

𝑑7(𝑧) = −𝑚𝑧1𝑧2 + 2𝑚𝑧3 + 2𝑧4 +𝑚𝐷6𝑧1 +𝐷7;

and

[7, [6, 9], 1, 2] (𝑚 ⩾ 0;𝐵𝑘, 𝐶𝑘, 𝐷𝑘, 𝐵̂7 ∈ C; 𝑚 ·𝐵6 = 0) :

𝑒6 = (𝑖𝜀, 𝐵6, 𝐵6𝑧1 + 𝐶6, 𝑧2), 𝑒7 = (𝑎7(𝑧), 𝑏7(𝑧), 𝑐7(𝑧), 𝑑7(𝑧)),
(5.2)

where

𝑎7(𝑧) = −(𝑚− 𝑖𝜀)𝑧1, 𝑏7(𝑧) = (𝑚− 𝑖𝜀)𝑧2 +𝐵6𝑧1 + 2𝐶6,

𝑐7(𝑧) = −2𝑧4 − 𝑖𝜀𝑧1𝑧2 +𝐵6𝑧
2
1 + 𝑖𝑚𝜀𝐶6𝑧1, 𝑑7(𝑧) = 2𝑧3 − 𝑧1𝑧2;

and

[7, [6, 9], 1, 3] (𝐷6 ∈ C, 𝐶7, 𝐷7 ∈ R) :
𝑒6 = (𝑖𝜀, 0,−𝑖𝜀𝐷6, 𝑧2 +𝐷6), 𝑒7 = (−𝑧1, 𝑧2 +𝐷6, 𝐷6𝑧1 + 𝐶7, 𝐷7).

(5.3)
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Proof. As in the proof of Proposition 3.2, the arguing can be split into two parts.
In one of them, we obtain the formulas (5.1)–(5.3) for the basis fields 𝑒6, 𝑒7 of each of the

three families admitting the realizations in C4, which satisfy the necessary conditions A) and
B). This part of the proof is based on the formulas (2.4) common to all algebras with nilradical
[6,9].
For instance, for the algebra [7, [6, 9], 1, 3], the consideration of four commutation relations

[𝑒𝑗, 𝑒7], 𝑗 = 1, 2, 3, 5, leads us to the preliminary formula

𝑒7 = (−(𝑧1 + 𝐴7), 𝑧2 +𝐵7, 𝐵7𝑧1 + 𝐶7, 𝐷7) (5.4)

with some complex constants 𝐴7, 𝐵7, 𝐶7, 𝐷7.
It remains to write out the components of two relations [𝑒4, 𝑒7] = 𝑒4 and [𝑒6, 𝑒7] = −𝑒6 to

clarify the possible values of these constants as well as some of the parameters in the formulas
(2.4) for the fields 𝑒4, 𝑒6. For instance, calculating the commutator [𝑒4, 𝑒7], we find

[𝑒4, 𝑒7] = 𝑖𝜀(0, 1, 0, 0) + (𝑧1 + 𝐴7)(0, 0, 𝑖𝜀, 1).

Equating the components of this vector field to the components of 𝑒4, we obtain the identities

𝐴7 = 𝐷4, 𝐶4 = 𝑖𝜀𝐷4. (5.5)

In the same way by the relation [𝑒6, 𝑒7] = −𝑒6 we obtain the following necessary conditions for
its validity

𝐵6 = 0, 𝐶6 = −𝑖𝜀𝐵7, 𝐵7 = 𝐷6. (5.6)

Substituting the formulas (5.5) and (5.6) into (2.4) and (5.4), in view of the possibility to
replace the field 𝑒7 by 𝑒7− (Re𝐶7)𝑒2− (Re𝐷7)𝑒1), we get the desired statement for the algebra
[7, [6, 9], 1, 3]. Similar procedure for the families of algebras [7, [6, 9], 1, 1] and [7, [6, 9], 1, 2] leads
us, after much more extensive calculations, to the stated formulas for the basis fields of these
algebras.
The second part of the proof is related to the remaining Lie algebras having the nilradical

[6, 9] and to obtaining conclusions for them, which contradict the discussed necessary conditions
A) and B) of nondegeneracy and irreducibility to tubes (see Section 4). For illustration, here
we provide a discussion for one of these algebras, namely, for [7, [6, 9], 1, 4].
For this algebra, the commutators of the four fields 𝑒1, 𝑒2, 𝑒3, 𝑒5 with the field 𝑒7 are described

by the last column of Table 3 (the components of these fields are given in the formulas (2.4)).
Due to these clarifications, for the field 𝑒7 we obtain the following preliminary form

𝑒7 = (2𝑧1 + 𝐴7, 𝐵7, 2𝑧3 +𝐵7𝑧1 + 𝐶7, 2𝑧4 +𝐷7) (5.7)

with some complex constants 𝐴7, 𝐵7, 𝐶7, 𝐷7.
Now we consider the commutation relation [𝑒6, 𝑒7] = 𝑒1+2𝑒6. In view of (5.7) and the formula

𝑒6 = (𝑖𝜀, 𝐵6, 𝐵6𝑧1 + 𝐶6, 𝑧2 +𝐷6) in (2.4) the left hand side of this relation in the vector form
reads

𝑖𝜀

⎛⎜⎜⎝
2
0
𝐵7

0

⎞⎟⎟⎠+ (𝐵6𝑧1 + 𝐶6)

⎛⎜⎜⎝
0
0
2
0

⎞⎟⎟⎠+ (𝑧2 +𝐷6)

⎛⎜⎜⎝
0
0
0
2

⎞⎟⎟⎠− (2𝑧1 + 𝐴7)

⎛⎜⎜⎝
0
0
𝐵6

0

⎞⎟⎟⎠−𝐵7

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
Then, in component notation, the considered relationship becomes the system of four scalar
equations

2𝑖𝜀 = 2𝑖𝜀, 0 = 2𝐵6,

𝑖𝜀𝐵7 + 2(𝐵6𝑧1 + 𝐶6)−𝐵6(2𝑧1 + 𝐴7) = 2(𝐵6𝑧1 + 𝐶6),

2(𝑧2 +𝐷6)−𝐵7 = 2(𝑧2 +𝐷6) + 1.
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By the second equation in the last two equalities, we arrive at contradicting conditions

𝐵7 = 0 and 𝐵7 = −1.

This means that it is impossible to realize the algebra [7, [6, 9], 1, 4] in C4 satisfying the necessary
conditions for the existence of at least one nondegenerate non–tubular orbit in this realization.
The algebras of the families [7, [6, 9], 2, 𝑘] (𝑘 = 1, 2) and [7, [6, 9], 3, 𝑘] (𝑘 = 1, 2) are discussed

similarly. The proof is complete.

Proposition 5.2. For any values of the parameters in the formulas (5.3), all real hypersur-
faces of the space C4, which are orbits of holomorphic realizations of the algebra [7, [6, 9], 1, 3],
turn out to be Levi–degenerate.

Proof. The presence of a triple of rectified fields in the basis (5.3) means that the defining
function of the orbit is independent of the variables 𝑥𝑘 = Re 𝑧𝑘 (𝑘 = 1, 2, 3). The system of 4
equations for the defining function Φ(𝑥1, 𝑦1, 𝑦2, 𝑒3, 𝑦4) of any of the sought orbits corresponding
to the remaining basis fields reads

𝑒4 : 𝜀
𝜕Φ

𝜕𝑦2
+ 𝜀𝑥1

𝜕Φ

𝜕𝑦3
+ 𝑦1

𝜕Φ

𝜕𝑦4
= 0,

𝑒5 :
𝜕Φ

𝜕𝑥1

+ (𝑦2 −𝐷62)
𝜕Φ

𝜕𝑦3
= 0,

𝑒6 : 𝜀
𝜕Φ

𝜕𝑦1
− 𝜀𝐷61

𝜕Φ

𝜕𝑦3
+ 𝑦2

𝜕Φ

𝜕𝑦4
= 0,

𝑒7 : −𝑥1
𝜕Φ

𝜕𝑥1

− 𝑦1
𝜕Φ

𝜕𝑦1
+ 𝑦2

𝜕Φ

𝜕𝑦2
+ (𝐶72 +𝐷61𝑦1 +𝐷62𝑥1)

𝜕Φ

𝜕𝑦3
+𝐷72

𝜕Φ

𝜕𝑦4
= 0.

(5.8)

The solution to the second, shortest of these equations is the function

Φ = 𝐹 (𝑦3 − 𝑥1(𝑦2 −𝐷62), 𝑦1, 𝑦2, 𝑦4). (5.9)

Denoting the arguments of this function, respectively, by 𝑡1, 𝑡2, 𝑡3, 𝑡4, we substitute (5.9)
into the three remaining equations of the system (5.8). In the new variables, the equation
corresponding to the field 𝑒4 becomes

𝜀
𝜕𝐹

𝜕𝑡3
+ 𝑦1

𝜕𝐹

𝜕𝑡4
= 0,

and its solution is 𝐹 = 𝐺(𝑡1, 𝑡2, 𝑡4 − 𝜀𝑡2𝑡3). In the new variables 𝑠1 = 𝑡1, 𝑠2 = 𝑡2, 𝑠3 = 𝑡4 − 𝜀𝑡2𝑡3
two latter equations of the studied system are written as

𝜀

(︂
𝜕𝐺

𝜕𝑠2
−𝐷61

𝜕𝐺

𝜕𝑠1

)︂
= 0, (𝐶72 +𝐷61)

𝜕𝐺

𝜕𝑠1
− 𝑠2

𝜕𝐺

𝜕𝑠2
+𝐷72

𝜕𝐺

𝜕𝑠3
= 0.

In the variables 𝜉1 = 𝑠1+𝐷61𝑠2, 𝜉2 = 𝑠3 the solution to the system of these two equations reads

𝐺 = 𝜙(𝐷72𝜉1 − 𝐶72𝜉2)

with an arbitrary analytic function of one variable. This means that the solution of initial
system of four equations is described by the formula

Φ = 𝐷72𝜉1 − 𝐶72𝜉2 = 𝐴 = 𝑐𝑜𝑛𝑠𝑡.

Returning back to the original variables, we get the general solution to the system (5.8)

𝑦2(𝜀𝐶72𝑦1 −𝐷72𝑥1) + (𝛼𝑥1 + 𝛽𝑦1 + 𝛾𝑦3 + 𝛿𝑦4)− 𝐴 = 0 (5.10)

with some real coefficients in the linear part. If in this formula at least one of the pair of
coefficients (𝛾, 𝛿) vanishes, then the final equation (5.10) of the hypersurface in C4 turns out
to be independent of one of complex variables. This means that the obtained surface can be
represented as a direct product of the complex plane C and some 5–dimensional manifold, and
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hence, holomorphic degeneracy and, as a consequence, Levi–degeneracy. But even if this pair
has a nonzero coefficient, the linear combination 𝛾𝑧3+𝛿𝑧4, considered as a new complex variable
𝑧*3 , allows us to state the independence of equation (5.2) of the variable 𝑧*4 = 𝑧4. Thus, in this
case too, the surface (5.2) is Levi–degenerate. The proof is complete.

In the same way it is possible to integrate two types of algebras [7, [6, 9], 1, 1] and [7, [6, 9], 1, 2]
for all values of the involved parameters. However, the resulting formulas (both intermediate
and final), describing the orbits of these algebras, are excessively cumbersome. In this regard,
here we give only two examples of homogeneous hypersurfaces corresponding to these algebras
and obtained by integrating them for some particular values of the parameters.

Example 5.1. The orbits of algebras [7, [6, 9], 1, 1] defined by the formulas (5.1) for

𝐵6 = 𝐶6 = 𝐷6 = 𝐵7 = 𝐵̂7 = 𝐶7 = 𝐷7 = 0, 𝑛 = 0, 𝑚 ̸= 0,

are reduced by holomorphic transformations to the surfaces with the equations

(𝑦3 − 𝑥1𝑦2)
2 + (𝑦4 − 𝜀𝑦1𝑦2)

2 = exp

(︂
2

𝑚
arctan

(︂
𝑦4 − 𝜀𝑦1𝑦2
𝑦3 − 𝑥1𝑦2

)︂)︂
.

Example 5.2. The orbits of algebras [7, [6, 9], 1, 2] defined by the formulas (5.2) for 𝐵6 =
𝐶6 = 0, are reduced by holomorphic transformations to Levi nondegenerate hypersurface with
the equation

(𝑦3 − 𝑥1𝑦2)
2 + (𝑦4 − 𝜀𝑦1𝑦2)

2 = 1

independently of the admissible values of 𝑚.

It is easy to verify, for example, by using symbolic computations, that such generalizations of
planar logarithmic spirals (in Example 5.1) and circles (Example 5.2) are Levi nondegenerate
hypersurfaces of the space C4 at general points.

6. Final conclusions

The main conclusion of the article is the main result, Theorem 1.1 formulated in the Intro-
duction. As specific additions to this theorem, we specify that the 7 mentioned types are the
five types of Lie algebras from Proposition 3.1 and the two types of algebras in Proposition 5.1.
For the last two types, in Section 5 we give examples of orbits corresponding to some particular
values of the parameters included in the descriptions of the algebras; the algebras of these types
contain the nilradical [6, 9].
The first five types of 7–dimensional Lie algebras associated with the nilradicals [6, 1], [6, 13],

[6, 22], [6, 23], [6, 26], are integrated in [8] for all possible values of the parameters, which de-
scribe the realizations of these algebras in C4. Here we provide a description of all such Levi
nondegenerate (not reducible to tubes) integral manifolds that are holomorphically homoge-
neous real hypersurfaces of the 4–dimensional complex space.

Theorem 6.1 ([8]). Each nondegenerate non–tubular orbit of a 7–dimensional algebra that
has a 6–dimensional nilradical of one of the types (3.1) is described up to holomorphic changes
of coordinates by an equation of one of the following 5 types (𝐴, 𝐵, 𝐶, 𝐷, 𝑄, 𝑅 are some real
constants):

[7, [6, 1], 1, 1] : 𝑦4 = 2𝑦1𝑦2 + (𝑥4
1 − 2𝑥2

1𝑦
2
1) +

2

𝑦1
(2𝑦3 − 𝑥2

1𝑦2)

+
2

𝑦21
+𝑄 ·

(︁
𝑥1𝑦2 −

2

3
𝑥3
1𝑦1

)︁
+𝑅 · 𝑦41;

[7, [6, 13], 1, 1] : 𝑦4 = 𝑥1𝑦3 +
1

3
𝑥1𝑦2(3𝑥

2
1 − 𝑦21) +

5

36
𝑥2
1𝑦1(−3𝑥4

1 + 3𝑥2
1𝑦

2
1 − 𝑦41)−𝐵𝑦71 −

1

2

𝑦22
𝑦1
;
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[7, [6, 22], 1, 1] : 𝑦4 =
𝐵

3
𝑦1𝑦2 +

𝐴𝐵

3
𝑥1(𝑥

2
1 − 𝑦21) +

𝐵2

6
𝑥2
1𝑦1

− 1

𝑦1

(︁𝐵2

4
𝑥4
1 +𝐵𝑥2

1𝑦2 +𝐵𝑦3 +
1

2
𝑦22

)︁
+ 𝐶𝑦31;

[7, [6, 23], 1, 1] : 𝑦3 = 𝐵𝑦41 − 2𝑥1𝑦1𝑦2 + 2𝑦1𝑦4 − 𝑦22;

[7, [6, 26], 1, 1] : 𝑦3 = 𝑦1𝑦4 + 𝑥1𝑦1𝑦2 ±
𝑦22
𝑦1

+𝐵𝑦51.

Completing the discussion of 64 considered types of 7–dimensional Lie algebras we clarify
that the question of whether the property B) is satisfied or not for the hypersurfaces from the
7 families obtained remains open and it requires an additional study.
In conclusion, we give another version of a brief formulation of the results of paper:

among 10 nilpotent 6–dimensional Lie algebras containing two 4–dimensional Abelian subalge-
bras, at most six algebras have 7-dimensional (non–decomposable solvable) continuations with
Levi nondegenerate 7–dimensional orbits in the space C4, which are not reducible to tubes.
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