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ON RECOVERING PROBLEM FOR STURM — LIOUVILLE

OPERATOR WITH TWO FROZEN ARGUMENTS

M.A. KUZNETSOVA

Abstract. Inverse spectral problems consist in recovering operators by their spectral char-

acteristics. The problem of recovering the Sturm— Liouville operator with one frozen ar-

gument by one spectrum was considered earlier in works by various authors. In this paper,

we study the uniqueness of recovering the operator with two frozen arguments and different

coefficients 𝑝, 𝑞 by the spectra of two boundary value problems. This case is significantly

more difficult than the case of one frozen argument since the operator is no longer a one–

dimensional perturbation. We prove that the operator with two frozen arguments can not

be recovered by two spectra in the general case. For the unique recovery, one has to impose

some conditions on the coefficients. We assume that the coefficients 𝑝 and 𝑞 are zero on

some interval and prove the uniqueness theorem. We also obtain formulas for regularized

traces of two spectra. The result is formulated in terms of the convergence of a certain

series, which allows us to avoid smoothness conditions for the coefficients.

Keywords: inverse spectral problem, frozen argument, nonlocal operator, Sturm — Liou-

ville operator, regularized trace formula, uniqueness theorem.
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1. Introduction

We consider the inverse spectral problem for the Sturm — Liouville operator with two frozen
arguments

ℓ𝑦 = −𝑦′′(𝑥) + 𝑝(𝑥)𝑦(𝑎) + 𝑞(𝑥)𝑦(𝑏), 𝑥 ∈ (0, 𝜋),

where 𝑝, 𝑞 ∈ 𝐿2(0, 𝜋) are complex–valued, and the parameters 𝑎, 𝑏 ∈ (0, 𝜋) are fixed and called
the frozen arguments. In contrast to pure differential operators studied in the framework of
classical theory of inverse spectral problems [3], [5], [14], [21], [34], the operator ℓ𝑦 is non–local.
Non–local operators possess specific spectral properties, see [9], [10], [12], [18], [28], [31], [33],
and require to develop methods different from ones in the classical theory of inverse spectral
problems.
In previous works, there were studied the Sturm — Liouville operators with one frozen argu-

ment, that is, in the case 𝑞 = 0, and with various boundary conditions, see [2], [9], [11], [13],
[15]–[17], [19], [25]–[28], [30], [32]. There was considered the inverse problem, which consisted
in recovering the coefficient 𝑝 by the spectrum of the operator. The most complete results were
obtained for the boundary conditions

𝑦(𝛼)(0) = 𝑦(𝛽)(𝜋) = 0,
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where 𝛼, 𝛽 ∈ {0, 1} denote the order of derivatives. In the rational case 𝑎
𝜋
∈ Q a part of the

spectrum can degenerate (since it is independent of 𝑝) and for the unique recovering of 𝑝 we
need additional data apart of the spectrum, see [13], [15], [16]. In the irrational case 𝑎

𝜋
/∈ Q

the degeneration phenomenon does not appear, and 𝑝 is uniquely recovered by the spectrum,
see [32]. Thus, for almost all 𝑎 ∈ (0, 𝜋) we have the unique recovering of one coefficient by one
spectrum.
A general approach to both cases was developed in [25] and [26], and later it was generalized

for the operators

ℓ̃𝑦 = −𝑦′′(𝑥) + 𝑝(𝑥)𝑦(𝑎) + 𝑟(𝑥)𝑦(𝑥),

see [27]. It was observed in [19] that the Sturm — Liouville operator with one frozen argument
is a one–dimensional perturbation of the differential operator ℓ0𝑦 = −𝑦′′, and there was studied
the inverse problem for the corresponding class of one–dimensional perturbations. Recently
there arose an interest to the operators with several frozen arguments taken with the same
coefficients [29]:

ℓ1𝑦 = −𝑦′′(𝑥) +
𝑚∑︁
𝑘=1

𝑦(𝑎𝑘)𝑝(𝑥), 𝑚 ∈ N.

They are one–dimensional perturbations of the type, which was studied in [19]. These operators
do not lead to a situation, which differs essentially from the case of a single frozen argument,
and the inverse spectral problems can be studied by the methods of the works [19], [25]–[27].
At the same time, the operator ℓ𝑦 is not a one–dimensional perturbation, and for this operator
there are no known methods in the theory of inverse spectral problems.
We introduce the boundary value problem ℒ𝑗(𝑝, 𝑞) with the index 𝑗 = 0, 1

ℓ𝑦 = 𝜆𝑦(𝑥), (1.1)

𝑦(𝑗)(0) = 𝑦(𝜋) = 0, (1.2)

and by {𝜆𝑛𝑗}𝑛⩾1 we denote its spectrum. We consider the following inverse problem.

Inverse problem 1.1. Given the spectra {𝜆𝑛0}𝑛⩾1 and {𝜆𝑛1}𝑛⩾1, find 𝑝 and 𝑞.

First of all, we are interesting in the uniqueness of solution to this inverse problem, that is,
whether different pairs (𝑝, 𝑞) always produce different pairs of spectra ({𝜆𝑛0}𝑛⩾1, {𝜆𝑛1}𝑛⩾1).
We immediately note that for 𝑎 = 𝑏 only the sum of 𝑝 and 𝑞 makes sense, and in this case
the solution to Inverse problem 1.1 is not unique. To exclude this situation, we impose the
restriction

0 < 𝑎 < 𝑏 < 𝜋. (1.3)

We shall show that for all 𝑎 and 𝑏 obeying (1.3), the solution to Inverse problem 1.1 is not
unique. For the unique determination of 𝑝 and 𝑞 we have to specify the formulation of the
inverse problem by prescribing an additional information. We suppose that the coefficients 𝑝
and 𝑞 simultaneously vanish on [0, 𝑏] or [𝑎, 𝜋]. Under this condition we shall prove a theorem
on the unique recovering of 𝑝 and 𝑞 by two spectra.
We shall also obtain the formula for the regularized traces of the spectra {𝜆𝑛𝑗}𝑛⩾1, 𝑗 = 0, 1. By

the regularized trace we mean the series of differences between the eigenvalues of two operators,
one being a perturbation of the other. From the physical point of view, this notion reflects the
measure of energy defect of a quantum system, see [4]. The basic results of theory of regularized
traces were provided in the survey [7].
The formulas for regularized traces of operators with a single frozen argument were obtained

in [20], [22]–[24] for an absolutely continuous coefficient 𝑝. In [22], under the conditions 𝑝 ∈
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𝑊 1
2 [0, 𝜋] and 𝑞 ≡ 0 it was proved that

∞∑︁
𝑛=1

(︂
𝜆𝑛𝑗 −

(︁
𝑛− 𝑗

2

)︁2)︂
= 𝑝(𝑎), 𝑗 = 0, 1.

Here we obtain the formulas for the regularized traces under more general conditions 𝑝, 𝑞 ∈
𝐿1[0, 𝜋] :

∞∑︁
𝑛=1

(︂
𝜆𝑛𝑗 −

(︁
𝑛− 𝑗

2

)︁2)︂
=

∞∑︁
𝑛=1

𝑠𝑛𝑗, 𝑗 = 0, 1, (1.4)

where 𝑠𝑛𝑗 are expressed in terms of the Fourier coefficients of the functions 𝑝 and 𝑞 over the
system of eigenfunctions of unperturbed operator −𝑦′′. The formula (1.4) is treated so that
either both series diverge or they converge to the same number. If 𝑝 is absolutely continuous in
the vicinity of the point 𝑎, and 𝑞 is absolutely continuous in the vicinity of the point 𝑏, then we
have the convergence to the number 𝑝(𝑎) + 𝑞(𝑏). The formulas for the regularized traces of the
operators with two frozen arguments can be also obtained from the results of works [6] and [8],
but this requires stronger restrictions for the coefficients.
The paper is organized as follows. In Section 2 we construct characteristic functions and

obtain asymptotic formulas for the spectra, see Theorem 2.1. In Section 3 we construct an
example of distinct pairs (𝑝, 𝑞), which lead to the same pair of spectra, see Theorem 3.1. In
Section 4 we specify the formulation of inverse problem and prove the uniqueness theorem,
see Theorem 4.1. In Section 5 we obtain the formulas for regularized traces of the spectra
{𝜆𝑛𝑗}𝑛⩾1, see Theorem 5.1. In Appendix we provide the details of proof of formula (2.3) for
the characteristic functions.

2. Characteristic functions

Let us obtain the characteristic functions for the boundary value problems ℒ𝑗(𝑝, 𝑞) with
𝑗 = 0, 1. It is known that for 𝑓 ∈ 𝐿2(0, 𝜋) each solution of the equation −𝑦′′(𝑥) + 𝑓(𝑥) = 𝜆𝑦(𝑥)
can be represented as

𝑦(𝑥) = 𝑥1
sin 𝜌𝑥

𝜌
+ 𝑥2 cos 𝜌𝑥+

𝑥∫︁
0

sin 𝜌(𝑥− 𝑡)

𝜌
𝑓(𝑡) 𝑑𝑡, 𝜌2 = 𝜆, 𝑥1, 𝑥2 ∈ C.

Letting 𝑓(𝑡) = 𝑥3𝑝(𝑡) + 𝑥4𝑞(𝑡), we obtain

𝑦(𝑥) = 𝑥1
sin 𝜌𝑥

𝜌
+ 𝑥2 cos 𝜌𝑥+ 𝑥3

𝑥∫︁
0

sin 𝜌(𝑥− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+ 𝑥4

𝑥∫︁
0

sin 𝜌(𝑥− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡. (2.1)

This function is a solution to Equation (1.1) if and only if 𝑦(𝑎) = 𝑥3 and 𝑦(𝑏) = 𝑥4. This
solution is non–trivial if and only if the vector (𝑥𝑗)

4
𝑗=1 is non–zero.
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Substituting the expression (2.1) into the conditions (1.2) with 𝑗 = 0, 1 and the identities
𝑦(𝑎) = 𝑥3, 𝑦(𝑏) = 𝑥4, we arrive at the system of linear equations

𝑥2−𝑗 = 0,

𝑥1
sin 𝜌𝜋

𝜌
+ 𝑥2 cos 𝜌𝜋 + 𝑥3

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+ 𝑥4

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡 = 0,

𝑥1
sin 𝜌𝑎

𝜌
+ 𝑥2 cos 𝜌𝑎+ 𝑥3

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+ 𝑥4

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡 = 𝑥3,

𝑥1
sin 𝜌𝑏

𝜌
+ 𝑥2 cos 𝜌𝑏+ 𝑥3

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+ 𝑥4

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡 = 𝑥4.

(2.2)

This system possesses a non–zero solution (𝑥𝑘)
4
𝑘=1 if and only if

∆𝑗(𝜆) :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝜙𝑗(𝜌, 𝜋)

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

𝜙𝑗(𝜌, 𝑎)

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡− 1

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

𝜙𝑗(𝜌, 𝑏)

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡− 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
= 0,

where we have employed the notation

𝜙𝑗(𝜌, 𝑧) =

{︃
𝜌−1 sin 𝜌𝑧, 𝑗 = 0,

cos 𝜌𝑧, 𝑗 = 1.

In what follows we indicate the dependence on 𝑝 and 𝑞 by the variables after the colon; thus,
∆𝑗(𝜆) = ∆𝑗(𝜆; 𝑝, 𝑞). This dependence can be omitted if we do not focus on particular values of
𝑝 and 𝑞.
For 𝑗 = 0, 1 the function ∆𝑗(𝜆) is the characteristic function of the boundary value problem

ℒ𝑗(𝑝, 𝑞) : the zeroes of this function coincide with the spectrum of the boundary value problem.
Since the Taylor expansions of entire functions 𝜌−1 sin 𝜌𝑧 and cos 𝜌𝑧 involve only even powers
of 𝜌, the functions ∆0 and ∆1 are entire in 𝜆.
Expanding the determinants, after calculations we obtain the representations

∆𝑗(𝜆) = 𝜙𝑗(𝜌, 𝜋) + 𝐴𝑗0(𝜆) + 𝐴𝑗1(𝜆) +𝐵𝑗(𝜆), 𝑗 = 0, 1, (2.3)

where

𝐴𝑗0(𝜆) = 𝐴𝑗0(𝜆; 𝑝) = 𝜙𝑗(𝜌, 𝑎)

𝜋∫︁
𝑎

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+

sin 𝜌(𝜋 − 𝑎)

𝜌

𝑎∫︁
0

𝜙𝑗(𝜌, 𝑡) 𝑝(𝑡) 𝑑𝑡,

𝐴𝑗1(𝜆) = 𝐴𝑗1(𝜆; 𝑞) = 𝜙𝑗(𝜌, 𝑏)

𝜋∫︁
𝑏

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡+

sin 𝜌(𝜋 − 𝑏)

𝜌

𝑏∫︁
0

𝜙𝑗(𝜌, 𝑡) 𝑞(𝑡) 𝑑𝑡,

(2.4)
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and 𝐵𝑗(𝜆) is defined as

𝐵𝑗(𝜆) = 𝐵𝑗(𝜆; 𝑝, 𝑞) =
sin 𝜌(𝜋 − 𝑏)

𝜌

(︃ 𝑎∫︁
0

𝜙𝑗(𝜌, 𝑡) 𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝜉 − 𝑎)

𝜌
𝑞(𝜉) 𝑑𝜉

−
𝑎∫︁

0

𝜙𝑗(𝜌, 𝜉) 𝑞(𝜉) 𝑑𝜉

𝑏∫︁
𝑎

sin 𝜌(𝑡− 𝑎)

𝜌
𝑝(𝑡) 𝑑𝑡

)︃

+
sin 𝜌(𝑏− 𝑎)

𝜌

(︃ 𝑎∫︁
0

𝜙𝑗(𝜌, 𝑡) 𝑝(𝑡) 𝑑𝑡

𝜋∫︁
𝑏

sin 𝜌(𝜋 − 𝜉)

𝜌
𝑞(𝜉) 𝑑𝜉

−
𝑎∫︁

0

𝜙𝑗(𝜌, 𝜉) 𝑞(𝜉) 𝑑𝜉

𝜋∫︁
𝑏

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

)︃

+ 𝜙𝑗(𝜌, 𝑎)

(︃ 𝜋∫︁
𝑏

sin 𝜌(𝜋 − 𝜉)

𝜌
𝑞(𝜉) 𝑑𝜉

𝑏∫︁
𝑎

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

−
𝜋∫︁

𝑏

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝑏− 𝜉)

𝜌
𝑞(𝜉) 𝑑𝜉

)︃

+ 𝜙𝑗(𝜌, 𝑎)
sin 𝜌(𝜋 − 𝑏)

𝜌

𝑏∫︁
𝑎

𝑏∫︁
𝑎

sin 𝜌(𝜉 − 𝑡)

𝜌
𝑞(𝜉) 𝑝(𝑡) 𝑑𝑡 𝑑𝜉;

(2.5)

for more detail see the Appendix. The representation (2.3) shows that∆𝑗(𝜆) are entire functions
of order 1

2
and type 𝜋. By means of the standard method based on applying the Rouché theorem,

see [21], we prove the following theorem.

Theorem 2.1. For 𝑗 = 0, 1 the asymptotic formulas hold

𝜆𝑛𝑗 =
(︁
𝑛− 𝑗

2

)︁2
+ κ𝑛𝑗, {κ𝑛𝑗}𝑛⩾1 ∈ ℓ2.

In what follows some properties of the terms in the representation (2.3) play an important
role. The terms 𝐴𝑗0(𝜆; 𝑝) and 𝐴𝑗1(𝜆; 𝑞) depend linearly on 𝑝 and 𝑞, respectively. The term
𝐵𝑗(𝜆; 𝑝, 𝑞) depends bilinearly in 𝑝 and 𝑞. The formula (2.5) shows that this dependence is anti-
symmetric: 𝐵𝑗(𝜆; 𝑝, 𝑞) = −𝐵𝑗(𝜆; 𝑞, 𝑝); the pairs of antisymmetric terms are united in brackets
in (2.5). Because of this, if 𝑝 = 𝑞, then 𝐵𝑗(𝜆; 𝑝, 𝑞) = 0. By the bilinearity this implies

𝐵𝑗(𝜆; 𝑞, 𝛼𝑞) = 0, 𝛼 ∈ C. (2.6)

By (2.5) we also see that 𝐵𝑗(𝜆; 𝑝, 𝑞) = 0 if[︃
𝑝(𝑥) ≡ 0, 𝑞(𝑥) ≡ 0, 𝑥 ∈ [𝑎, 𝜋],

𝑝(𝑥) ≡ 0, 𝑞(𝑥) ≡ 0, 𝑥 ∈ [0, 𝑏].
(2.7)

The construction of characteristic function for the boundary value problem ℒ0 was considered
in [29] in the particular case 𝑝 = 𝑞. Under this condition, 𝐵𝑗(𝜆) = 0 and our representation (2.3)
is consistent with the obtained there formula. One more case when 𝐵𝑗(𝜆) = 0 is 𝑞 = 0. Under
this condition we also have 𝐴𝑗1(𝜆) = 0, and the formula (2.3) gives the representation for the
characterstic function of the operator with one frozen argument, which is consistent with the
one obtained earlier, see [13], [15], [16].
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3. Non–uniqueness of solution to inverse problem 1.1

In this section we construct different pairs of coefficients (𝑝, 𝑞), which produce the same pairs

of spectra
(︁
{𝜆𝑛0}𝑛⩾1, {𝜆𝑛1}𝑛⩾1

)︁
. This will prove the non–uniqueness of solution of Inverse

problem 1.1.
We continue the functions 𝑝 and 𝑞 to R ∖ [0, 𝜋] by zero. Following the lines of proof of

Lemma 1 in [16], we obtain the representations

𝐴0(𝜆; 𝑝, 𝑞) := 𝐴00(𝜆) + 𝐴01(𝜆) =
1

2

𝜋∫︁
0

cos 𝜌𝑡

𝜌2
𝑊0(𝑡)𝑑𝑡,

𝐴1(𝜆; 𝑝, 𝑞) := 𝐴10(𝜆) + 𝐴11(𝜆) =
1

2

𝜋∫︁
0

sin 𝜌𝑡

𝜌
𝑊1(𝑡)𝑑𝑡,

(3.1)

where

𝑊𝑗(𝑡; 𝑝, 𝑞) =(−1)𝑗+1𝑝(𝑡+ 𝑎− 𝜋) + (−1)𝑗+1𝑝(𝜋 − 𝑡+ 𝑎)

+ (−1)𝑗𝑝(𝜋 − 𝑎+ 𝑡) + 𝑝(𝜋 − 𝑎− 𝑡)

+ (−1)𝑗+1𝑞(𝑡+ 𝑏− 𝜋) + (−1)𝑗+1𝑞(𝜋 − 𝑡+ 𝑏)

+ (−1)𝑗𝑞(𝜋 − 𝑏+ 𝑡) + 𝑞(𝜋 − 𝑏− 𝑡), 𝑡 ∈ [0, 𝜋], 𝑗 = 0, 1.

Lemma 3.1. We let 𝑇 = min{𝑎, 𝑏− 𝑎, 𝜋 − 𝑏}. Let 𝐺(𝑡) ∈ 𝐿2(R) be an arbitrary even non–

trivial function, which vanishes identically outside the segment [−𝑇, 𝑇 ]. Then for the functions

𝑠(𝑡) = 𝐺(𝑏− 𝑡), 𝑟(𝑡) = −𝐺(𝑎− 𝑡) (3.2)

we have 𝐴𝑗(𝜆; 𝑠, 𝑟) = 0, 𝑗 = 0, 1.

Proof. For 𝑡 ∈ [0, 𝜋] we introduce the functions

𝑢0(𝑡; 𝑝, 𝑞) :=
𝑊0(𝑡) +𝑊1(𝑡)

2
=𝑝(𝜋 − 𝑎− 𝑡) + 𝑞(𝜋 − 𝑏− 𝑡),

𝑢1(𝑡; 𝑝, 𝑞) :=
𝑊0(𝑡)−𝑊1(𝑡)

2
=− 𝑝(𝑡+ 𝑎− 𝜋)− 𝑝(𝜋 − 𝑡+ 𝑎) + 𝑝(𝜋 − 𝑎+ 𝑡)

− 𝑞(𝑡+ 𝑏− 𝜋)− 𝑞(𝜋 − 𝑡+ 𝑏) + 𝑞(𝜋 − 𝑏+ 𝑡).

(3.3)

We note that 𝑠 and 𝑟 vanish identically outside [0, 𝜋], and this is why in (3.3) we can formally
replace 𝑝 by 𝑠 and 𝑞 by 𝑟. We are going to prove that 𝑢0(𝑡; 𝑠, 𝑟) = 𝑢1(𝑡; 𝑠, 𝑟) = 0.
Indeed,

𝑢0(𝑡; 𝑠, 𝑟) = 𝑠(𝜋 − 𝑎− 𝑡) + 𝑟(𝜋 − 𝑏− 𝑡)
(3.2)
= 𝐺(𝑏− 𝜋 + 𝑎+ 𝑡)−𝐺(𝑎− 𝜋 + 𝑏+ 𝑡) = 0.

In 𝑢1(𝑡; 𝑠, 𝑟) we group the terms as follows

𝑢1(𝑡; 𝑠, 𝑟) =−
(︀
𝑠(𝑡+ 𝑎− 𝜋) + 𝑟(𝜋 − 𝑡+ 𝑏)

)︀
−
(︀
𝑠(𝜋 − 𝑡+ 𝑎) + 𝑟(𝑡+ 𝑏− 𝜋)

)︀
+
(︀
𝑠(𝜋 − 𝑎+ 𝑡) + 𝑟(𝜋 − 𝑏+ 𝑡)

)︀
.

Applying (3.2) to each pair of terms and using the parity of the function 𝐺(𝑡), we arrive at the
identity 𝑢1(𝑡; 𝑠, 𝑟) = 0.
The identities 𝑢0(𝑡; 𝑠, 𝑟) = 𝑢1(𝑡; 𝑠, 𝑟) = 0 imply 𝑊0(𝑡; 𝑠, 𝑟) = 0 and 𝑊1(𝑡; 𝑠, 𝑟) = 0. By (3.1)

we obtain 𝐴𝑗(𝜆; 𝑠, 𝑟) = 0 for 𝑗 = 0, 1.
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Theorem 3.1. Different pairs of coefficients

(𝑝, 𝑞) = (−𝑟, 𝑠+ 𝑟) and (𝑝, 𝑞) = (−𝑠− 𝑟, 𝑠)

produce the same pairs of spectra
(︁
{𝜆𝑛0}𝑛⩾1, {𝜆𝑛1}𝑛⩾1

)︁
. Thus, Inverse problem 1.1 can not have

a unique solution.

Proof. Since 𝐺 in Lemma 3.1 is a non–trivial function, the same is true for 𝑠 and 𝑟, and this
is why (−𝑟, 𝑠 + 𝑟) ̸= (−𝑠 − 𝑟, 𝑠). Let 𝑗 = 0, 1. By the linearity of 𝐴𝑗0(𝜆; 𝑝) and 𝐴𝑗1(𝜆; 𝑞) with
respect to 𝑝 and 𝑞 we have

𝐴𝑗(𝜆;−𝑟, 𝑠+ 𝑟)− 𝐴𝑗(𝜆;−𝑠− 𝑟, 𝑠) = 𝐴𝑗0(𝜆;−𝑟) + 𝐴𝑗1(𝜆; 𝑠+ 𝑟)− 𝐴𝑗0(𝜆;−𝑠− 𝑟)− 𝐴𝑗1(𝜆; 𝑠)

= 𝐴𝑗0(𝜆; 𝑠) + 𝐴𝑗1(𝜆; 𝑟) = 𝐴𝑗(𝜆; 𝑠, 𝑟) = 0,

where the latter identity holds due to Lemma 3.1. Thus,

𝐴𝑗(𝜆;−𝑟, 𝑠+ 𝑟) = 𝐴𝑗(𝜆;−𝑠− 𝑟, 𝑠).

Using the property (2.6) and the bilinearity of 𝐵𝑗(𝜆; 𝑝, 𝑞) with respect to 𝑝 and 𝑞, we obtain

𝐵𝑗(𝜆;−𝑟, 𝑠+ 𝑟) = 𝐵𝑗(𝜆;−𝑟, 𝑠) = 𝐵𝑗(𝜆;−𝑠− 𝑟, 𝑠).

By the formula (2.3) we have ∆𝑗(𝜆;−𝑟, 𝑠 + 𝑟) = ∆𝑗(𝜆;−𝑠 − 𝑟, 𝑠). This means that the pairs
(𝑝, 𝑞) = (−𝑟, 𝑠+ 𝑟) and (𝑝, 𝑞) = (−𝑠− 𝑟, 𝑠) give the same spectrum {𝜆𝑛𝑗}𝑛⩾1.

If we choose some function 𝐺 obeying the assumptions of Lemma 3.1, then in Theorem 3.1 we
obtain particular pairs of the coefficients (𝑝, 𝑞).

Example 3.1. Let 𝑎 = 𝜋
4
and 𝑏 = 𝜋

2
. Then the function

𝐺(𝑡) = 𝜒[−𝑇,𝑇 ](𝑡), 𝑇 =
𝜋

4
, 𝜒𝑆(𝑡) :=

{︃
1, 𝑡 ∈ 𝑆,

0, 𝑡 /∈ 𝑆,

obeys the assumptions of Lemma 3.1. We find 𝑠(𝑡) = 𝜒[𝜋
4
; 3𝜋
4
](𝑡) and 𝑟(𝑡) = −𝜒[0;𝜋

2
](𝑡). By

Theorem 3.1 the following pairs of coefficients (𝑝, 𝑞) produce the same pair of spectra

𝑝(𝑡) = 𝜒[0;𝜋
2
](𝑡), 𝑞(𝑡) = 𝜒[𝜋

4
; 3𝜋
4
](𝑡)− 𝜒[0;𝜋

2
](𝑡);

𝑝(𝑡) = −𝜒[𝜋
4
; 3𝜋
4
](𝑡) + 𝜒[0;𝜋

2
](𝑡), 𝑞(𝑡) = 𝜒[𝜋

4
; 3𝜋
4
](𝑡).

The direct substitution of each pair (𝑝, 𝑞) into the formulas (2.3)–(2.5) justifies that the char-
acteristic functions coincide

∆0(𝜆; 𝑝, 𝑞) =
1

𝜌
sin 𝜌𝜋 +

1

2𝜌3

(︁
− 3 sin 𝜌𝜋 + 5 sin

3𝜌𝜋

4
− 2 sin

𝜌𝜋

2
+ sin

𝜌𝜋

4

)︁
+

1

𝜌5

(︃
sin

𝜌𝜋

2

[︁
cos

𝜌𝜋

4
− 1
]︁2

+ 2 sin
𝜌𝜋

4

[︁
cos

𝜌𝜋

4
− 1
]︁[︁

cos
𝜌𝜋

2
− cos

𝜌𝜋

4

]︁)︃
,

∆1(𝜆; 𝑝, 𝑞) = cos 𝜌𝜋 +
1

2𝜌2

(︁
− 3 cos 𝜌𝜋 + 3 cos

3𝜌𝜋

4
+ cos

𝜌𝜋

4
− 1
)︁

+
1

𝜌4

(︃
sin

𝜌𝜋

2
sin

𝜌𝜋

4

[︁
1− cos

𝜌𝜋

4

]︁
+ sin2 𝜌𝜋

4

[︁
cos

𝜌𝜋

4
− cos

𝜌𝜋

2

]︁
+ cos

𝜌𝜋

4

[︁
cos

𝜌𝜋

4
− cos

𝜌𝜋

2

]︁[︁
1− cos

𝜌𝜋

4

]︁)︃
.
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4. Inverse problem with additional conditions

We consider Inverse problem 1.1 under additional conditions for 𝑝 and 𝑞.

Inverse problem 4.1. It is known that the pair of functions (𝑝, 𝑞) satisfies the condi-

tons (2.7). Given the spectra {𝜆𝑛0}𝑛⩾1 and {𝜆𝑛1}𝑛⩾1, recover 𝑝 and 𝑞.

We are going to prove the uniqueness of solution to Inverse problem 4.1. Apart of the bound-
ary value problems ℒ0(𝑝, 𝑞) and ℒ1(𝑝, 𝑞), we consider the boundary value problems ℒ0(𝑝, 𝑞) and

ℒ1(𝑝, 𝑞) with some coefficients 𝑝, 𝑞 ∈ 𝐿2(0, 𝜋). For 𝑗 = 0, 1 by {𝜆̃𝑛𝑗}𝑛⩾1 we denote the spectrum
of the boundary value problem ℒ𝑗(𝑝, 𝑞).

Theorem 4.1. Let the functions 𝑝, 𝑞, 𝑝 and 𝑞 obey one of the following two conditions:

1. Each function vanishes on [𝑎, 𝜋];
2. Each function vanishes on [0, 𝑏].

Then the identities {𝜆𝑛0}𝑛⩾1 = {𝜆̃𝑛0}𝑛⩾1 and {𝜆𝑛1}𝑛⩾1 = {𝜆̃𝑛1}𝑛⩾1 imply that 𝑝 = 𝑝 and 𝑞 = 𝑞.

We shall need the next lemma.

Lemma 4.1. The characteristic functions are uniquely recovered by the spectra

∆𝑗(𝜆) = 𝜋1−𝑗

∞∏︁
𝑘=1

𝜆𝑛𝑗 − 𝜆

(𝑛− 𝑗
2
)2
, 𝑗 = 0, 1.

The proof of the lemma is standard, see the proof of Theorem 1.1.4 in [21]. In the proof, the
asymptotic formulas of Theorem 2.1 are applied as well as the formulas

∆0(𝜆) =
sin 𝜌𝜋

𝜌
+𝑂

(︁𝑒|𝜏 |𝜋
𝜌2

)︁
, ∆1(𝜆) = cos 𝜌𝜋 +𝑂

(︁𝑒|𝜏 |𝜋
𝜌

)︁
, 𝜏 = Im 𝜌,

which are implied by (2.3)–(2.5).

Proof of Theorem 4.1. It follows from Lemma 4.1 that

∆𝑗(𝜆; 𝑝, 𝑞) = ∆𝑗(𝜆; 𝑝, 𝑞), 𝑗 = 0, 1.

Since 𝐵𝑗(𝜆; 𝑝, 𝑞) = 𝐵𝑗(𝜆; 𝑝, 𝑞) = 0, in the representation (2.3) we have 𝐴𝑗(𝜆; 𝑝, 𝑞) = 𝐴𝑗(𝜆; 𝑝, 𝑞),
and in (3.1) we obtain 𝑊𝑗(𝑡; 𝑝, 𝑞) = 𝑊𝑗(𝑡; 𝑝, 𝑞), 𝑗 = 0, 1. This yields

𝑢𝑗(𝑡; 𝑝, 𝑞) = 𝑢𝑗(𝑡; 𝑝, 𝑞), 𝑗 = 0, 1. (4.1)

We denote 𝑝 = 𝑝− 𝑝 and 𝑞 = 𝑞 − 𝑞. It follows from (3.3) and (4.1) that

𝑝(𝜋 − 𝑎− 𝑡) + 𝑞(𝜋 − 𝑏− 𝑡) = 0,

−𝑝(𝑡+ 𝑎− 𝜋)− 𝑝(𝜋 − 𝑡+ 𝑎) + 𝑝(𝜋 − 𝑎+ 𝑡)

−𝑞(𝑡+ 𝑏− 𝜋)− 𝑞(𝜋 − 𝑡+ 𝑏) + 𝑞(𝜋 − 𝑏+ 𝑡) = 0,

(4.2)

where 𝑡 ∈ [0, 𝜋]. Considering the first identity in (4.2) for 𝑡 ∈ [0, 𝜋 − 𝑎], after the change of
variable 𝑧 = 𝜋 − 𝑎− 𝑡 we get

𝑝(𝑧) + 𝑞(𝑧 + 𝑎− 𝑏) = 0, 𝑧 ∈ [0, 𝜋 − 𝑎]. (4.3)

For the sake of definiteness we suppose that 𝑝, 𝑞, 𝑝 and 𝑞 are zero on [0, 𝑏]. Considering the
second identity in (4.2) for 𝑡 ∈ [0, 𝑎], in view of the identity 𝑝 = 𝑞 = 0 on [0, 𝑏] we obtain
𝑝(𝜋− 𝑎+ 𝑡) + 𝑞(𝜋− 𝑏+ 𝑡) = 0. The change of variable 𝑧 = 𝜋− 𝑎− 𝑡 gives the identity (4.3) for
𝑧 ∈ [𝜋 − 𝑎, 𝜋]. Thus, we arrive at the formula

𝑝(𝑧) + 𝑞(𝑧 + 𝑎− 𝑏) = 0, 𝑧 ∈ [0, 𝜋]. (4.4)
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Similarly, the second identity in (4.2) for 𝑡 ∈ [𝑏, 𝜋] gives 𝑝(𝜋 − 𝑡 + 𝑎) + 𝑞(𝜋 − 𝑡 + 𝑏) = 0, and
after the change of variable we obtain

𝑝(𝑧 + 𝑎− 𝑏) + 𝑞(𝑧) = 0, 𝑧 ∈ [𝑏, 𝜋]. (4.5)

Since 𝑝 = 𝑞 = 0 on [0, 𝑏], considering 𝑏 ⩽ 𝑧 ⩽ min(2𝑏− 𝑎, 𝜋) in the formulas (4.4) and (4.5), we
arrive at the identities 𝑝(𝑧) = 𝑞(𝑧) = 0. Repeating this step, by the induction we prove

𝑝 = 𝑞 = 0, 𝑏+ (𝑘 − 1)(𝑏− 𝑎) ⩽ 𝑧 ⩽ min(𝑏+ 𝑘(𝑏− 𝑎), 𝜋), 𝑘 = 1, . . . , 𝑛,

where 𝑛 ∈ N is the smallest number such that 𝑏 + 𝑛(𝑏 − 𝑎) ⩾ 𝜋. These identities mean that
𝑝 = 𝑞 = 0 on [𝑏, 𝜋], and this proves the theorem. The case, when 𝑝, 𝑞, 𝑝 and 𝑞 vanish identically
on [𝑎, 𝜋], is considered in the same way. The proof is complete.

5. Formulas for regularized traces

For 𝑛 ⩾ 1 we let

𝑎𝑛0 =
2

𝜋
sin𝑛𝑎

𝜋∫︁
0

sin𝑛𝑡 𝑝(𝑡) 𝑑𝑡, 𝑎𝑛1 =
2

𝜋
cos
(︁
𝑛− 1

2

)︁
𝑎

𝜋∫︁
0

cos
(︁
𝑛− 1

2

)︁
𝑡 𝑝(𝑡) 𝑑𝑡,

𝑏𝑛0 =
2

𝜋
sin𝑛𝑏

𝜋∫︁
0

sin𝑛𝑡 𝑞(𝑡) 𝑑𝑡, 𝑏𝑛1 =
2

𝜋
cos
(︁
𝑛− 1

2

)︁
𝑏

𝜋∫︁
0

cos
(︁
𝑛− 1

2

)︁
𝑡 𝑞(𝑡) 𝑑𝑡

and introduce the numbers 𝑠𝑛𝑗 = 𝑎𝑛𝑗 + 𝑏𝑛𝑗, 𝑗 = 0, 1.

Theorem 5.1. Let 𝑝, 𝑞 ∈ 𝐿1[0, 𝜋] and 𝑗 = 0, 1. The series
∞∑︀
𝑛=1

(︂
𝜆𝑛𝑗 −

(︁
𝑛− 𝑗

2

)︁2)︂
converges

if and only if the series
∞∑︀
𝑛=1

𝑠𝑛𝑗 does. In the convergence case the formula (1.4) holds.

To prove this theorem, we shall need the following lemma.

Lemma 5.1. Let 𝑐 < 𝑑 and 𝑓 ∈ 𝐿1[𝑐, 𝑑]. Then

𝑑∫︁
𝑐

𝑒𝑖𝜌(𝑡−𝑐)𝑓(𝑡) 𝑑𝑡 = 𝑜
(︀
𝑒|𝜏 |(𝑑−𝑐)

)︀
,

𝑑∫︁
𝑐

𝑒𝑖𝜌(𝑑−𝑡)𝑓(𝑡) 𝑑𝑡 = 𝑜
(︀
𝑒|𝜏 |(𝑑−𝑐)

)︀
, 𝜌 → ∞, (5.1)

where 𝜏 = Im 𝜌.

Proof. By the change of variable both identities in (5.1) are reduced to the asymptotic formula

𝐼(𝜌) :=

𝑧∫︁
0

𝑒𝑖𝜌𝑡𝑔(𝑡) 𝑑𝑡 = 𝑜
(︀
𝑒|𝜏 |𝑧

)︀
, 𝜌 → ∞, (5.2)

where 𝑧 = 𝑑 − 𝑐 > 0 and 𝑔 ∈ 𝐿1[0, 𝑧]. To prove (5.2), we consider an arbitrary 𝜀 > 0. There
exists a continuously differentiable function 𝑔 ∈ 𝐶(1)[0, 𝑧] such that

𝑧∫︁
0

|𝑔(𝑡)− 𝑔(𝑡)| 𝑑𝑡 < 𝜀

2
.

Denoting

𝐼1(𝜌) =

𝑧∫︁
0

𝑒𝑖𝜌𝑡𝑔(𝑡) 𝑑𝑡,
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we find ⃒⃒⃒⃒
⃒⃒

𝑧∫︁
0

𝑒𝑖𝜌𝑡𝑔(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ⩽

𝑧∫︁
0

⃒⃒
𝑒𝑖𝜌𝑡
⃒⃒
|𝑔(𝑡)− 𝑔(𝑡)| 𝑑𝑡+ |𝐼1(𝜌)| ⩽ 𝑒|𝜏 |𝑧

𝜀

2
+ |𝐼1(𝜌)|. (5.3)

Integrating by parts in 𝐼1(𝜌), we obtain

|𝐼1(𝜌)| ⩽ |𝜌|−1𝑀𝜀𝑒
|𝜏 |𝑧, 𝑀𝜀 = 2 sup

𝑡∈[0,𝑧]
|𝑔(𝑡)|+

𝜋−𝑎∫︁
0

|𝑔′(𝑡)| 𝑑𝑡.

For sufficiently large |𝜌| > 2𝜀−1𝑀𝜀 we have |𝐼1(𝜌)| ⩽ 𝑒|𝜏 |𝑧 𝜀
2
. Applying this estimate to the right

hand side in (5.3), for an arbitrary 𝜀 > 0 we obtain the inequality

|𝐼(𝜌)| ⩽ 𝜀𝑒|𝜏 |𝑧, |𝜌| > 2𝜀−1𝑀𝜀,

which implies (5.2). The proof is complete.

Proof of Theorem 5.1. For the sake of definiteness we consider the case 𝑗 = 0; the arguing for
𝑗 = 1 is similar. We denote

𝑆(𝜆) =
sin 𝜌𝜋

𝜌
, Γ𝑁 =

{︁
𝜆 ∈ C : |𝜆| =

(︁
𝑁 +

1

2

)︁2}︁
, 𝑁 ∈ N.

Then

𝐼𝑁 :=
𝑁∑︁

𝑛=1

(𝜆𝑛0 − 𝑛2) =
1

2𝜋𝑖

∫︁
Γ𝑁

𝜆

(︂
ln

∆0(𝜆)

𝑆(𝜆)

)︂′

𝑑𝜆. (5.4)

For 𝜆 ∈ Γ𝑁 we estimate

∆0(𝜆)

𝑆(𝜆)
= 1 + 𝑓(𝜆), 𝑓(𝜆) :=

𝐴00(𝜆) + 𝐴01(𝜆) +𝐵0(𝜆)

𝑆(𝜆)
.

In the standard way, see [21], it can be proved that

|𝑆(𝜆)| ⩾ 𝐶
𝑒|𝜏 |𝜋

|𝜌|
, 𝜆 ∈ Γ𝑁 . (5.5)

Since

sin 𝜌𝜉 =
𝑒𝑖𝜌𝜉 − 𝑒−𝑖𝜌𝜉

2𝑖
, cos 𝜌𝜉 =

𝑒𝑖𝜌𝜉 + 𝑒−𝑖𝜌𝜉

2
,

we can apply Lemma 5.1 to each integral in (2.4) and (2.5). This leads us to the asymptotics

𝐴00(𝜆) = 𝑜
(︁𝑒|𝜏 |𝜋

𝜌2

)︁
, 𝐴01(𝜆) = 𝑜

(︁𝑒|𝜏 |𝜋
𝜌2

)︁
, 𝐵0(𝜆) = 𝑜

(︁𝑒|𝜏 |𝜋
𝜌3

)︁
. (5.6)

Thus, by (5.5) and (5.6) we have 𝑓(𝜆) = 𝑜(𝜌−1), 𝜆 ∈ Γ𝑁 , and for large 𝑁 the increment of
the argument of ∆0(𝜆)/𝑆(𝜆) on the contour Γ𝑁 is equal to 0. Integrating by parts in (5.4), we
arrive at the formula

𝐼𝑁 = − 1

2𝜋𝑖

∫︁
Γ𝑁

ln
(︁
1 + 𝑓(𝜆)

)︁
𝑑𝜆.

Applying the Taylor expansion to ln(1 + 𝑓(𝜆)), in view of the identities

𝑓(𝜆) = 𝑜(𝜌−1) and
𝐵0(𝜆)

𝑆(𝜆)
= 𝑜(𝜌−2)
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we obtain

𝐼𝑁 = − 1

2𝜋𝑖

∫︁
Γ𝑁

(︂
𝐴00(𝜆)

𝑆(𝜆)
+

𝐴01(𝜆)

𝑆(𝜆)
+ 𝑜
(︁ 1

𝜌2

)︁)︂
𝑑𝜆 = −

𝑁∑︁
𝑛=1

Res
𝜆=𝑛2

𝐴00(𝜆)

𝑆(𝜆)
−

𝑁∑︁
𝑛=1

Res
𝜆=𝑛2

𝐴01(𝜆)

𝑆(𝜆)
+ 𝑜(1).

Calculating

Res
𝜆=𝑛2

𝐴00(𝜆)

𝑆(𝜆)
= −𝑎𝑛0, Res

𝜆=𝑛2

𝐴01(𝜆)

𝑆(𝜆)
= −𝑏𝑛0,

we arrive at the formula

𝐼𝑁 =
𝑁∑︁

𝑛=1

𝑠𝑛0 + 𝑜(1).

Sending 𝑁 to ∞, we complete the proof.

The trigonometric systems of functions {
√︀

𝜋
2
sin𝑛𝑡}𝑛⩾1 and {

√︀
𝜋
2
cos(𝑛 − 1

2
)𝑡}𝑛⩾1 are or-

thonormalized bases in 𝐿2(0, 𝜋) since these are the systems of eigenfunctions of the unperturbed
operator −𝑦′′ with the boundary conditions (1.2) for 𝑗 = 0 and 𝑗 = 1, respectively. The series
∞∑︀
𝑛=1

𝑎𝑛𝑗 is the Fourier series of function 𝑝 at the point 𝑎, the series
∞∑︀
𝑛=1

𝑏𝑛𝑗 is the Fourier series of

function 𝑞 at the point 𝑏. There are several convergence tests at a point for the Fourier series
of function 𝑓, see [1]. In particular, it is sufficient to claim the absolute continuity of 𝑓 in
the vicinity of a point to ensure that the series converges to the value of 𝑓 at this point. If
𝑝 ∈ 𝐴𝐶[𝑎− 𝜀, 𝑎+ 𝜀] and 𝑞 ∈ 𝐴𝐶[𝑏− 𝜀, 𝑏+ 𝜀] for some 𝜀 > 0, then

∞∑︁
𝑛=1

𝑎𝑛𝑗 = 𝑝(𝑎),
∞∑︁
𝑛=1

𝑏𝑛𝑗 = 𝑞(𝑏),

and
∞∑︁
𝑛=1

(︂
𝜆𝑛𝑗 −

(︁
𝑛− 𝑗

2

)︁2)︂
= 𝑝(𝑎) + 𝑞(𝑏),

which agrees with the results of the previous works [20], [22]. We note that the convergence of

series in (1.4) can hold even if the series
∞∑︀
𝑛=1

𝑎𝑛𝑗 and
∞∑︀
𝑛=1

𝑏𝑛𝑗 diverge.

Example 5.1. Let 𝑗 = 0, 𝑎 = 𝜋
3
and 𝑏 = 𝜋 − 𝑎. We take functions 𝑝, 𝑞 ∈ 𝐿2(0, 𝜋) such that

𝜋∫︁
0

𝑝(𝑡) sin𝑛𝑡 𝑑𝑡 =
𝜋

2𝑛
sgn

(︀
sin𝑛𝑎

)︀
, 𝑛 ⩾ 1, 𝑞(𝑡) = −𝑝(𝜋 − 𝑡).

Then 𝑎𝑛0 =
√
3

2𝑛
for 𝑛, which is not a multiple of 3, and 𝑎𝑛0 = 0 otherwise. At the same time,

∞∑︁
𝑛=1

𝑎𝑛0 =

√
3

2

∞∑︁
𝑘=1

(︂
1

3𝑘 − 2
+

1

3𝑘 − 1

)︂
>

√
3

2

∞∑︁
𝑘=1

1

3𝑘
,

and the series diverges. On the other hand, using the properties 𝑏 = 𝜋−𝑎 and 𝑞(𝑡) = −𝑝(𝜋− 𝑡),

we obtain 𝑏𝑛0 = −𝑎𝑛0 and 𝑠𝑛0 = 0, 𝑛 ⩾ 1. Thus, the series
∞∑︀
𝑛=1

𝑎𝑛0 and
∞∑︀
𝑛=1

𝑏𝑛0 diverge and

∞∑︀
𝑛=1

𝑠𝑛0 = 0. By Theorem 5.1 we arrive at the formula

∞∑︁
𝑛=1

(𝜆𝑛0 − 𝑛2) = 0.

The latter identity holds once 𝑏 = 𝜋 − 𝑎 and 𝑞(𝑡) = −𝑝(𝜋 − 𝑡).
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Appendix: proof of formula (2.3)

For the sake of definiteness we consider the case 𝑗 = 0. Expanding the determinant along the
third column and then along the second column, we obtain

∆0(𝜆) = 𝐷00 +𝐷01 +𝐷10 +𝐷11,

where

𝐷00 :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
sin 𝜌𝜋

𝜌
0 0

sin 𝜌𝑎

𝜌
−1 0

sin 𝜌𝑏

𝜌
0 −1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ , 𝐷11 :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

sin 𝜌𝜋

𝜌

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑏

𝜌

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
,

𝐷01 :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

sin 𝜌𝜋

𝜌

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡 0

sin 𝜌𝑎

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡 0

sin 𝜌𝑏

𝜌

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡 −1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
, 𝐷10 :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

sin 𝜌𝜋

𝜌
0

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝜌
−1

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑏

𝜌
0

𝑏∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
.

It is clear that 𝐷00 =
sin 𝜌𝜋

𝜌
, which gives the first term in (2.3). We consider 𝐷01 :

𝐷01 =
sin 𝜌𝑎

𝜌

𝜋∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡− sin 𝜌𝜋

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

=
sin 𝜌𝑎

𝜌

𝜋∫︁
𝑎

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡+

1

𝜌2

𝑎∫︁
0

[︀
sin 𝜌𝑎 sin 𝜌(𝜋 − 𝑡)− sin 𝜌𝜋 sin 𝜌(𝑎− 𝑡)

]︀
𝑝(𝑡) 𝑑𝑡.

In what follows we shall need the trigonometric formulas

sin𝛼 sin(𝛽 − 𝛾)− sin 𝛽 sin(𝛼− 𝛾) = sin 𝛾 sin(𝛽 − 𝛼),

sin𝛼 cos(𝛽 − 𝛾)− cos 𝛽 sin(𝛼− 𝛾) = sin 𝛾 cos(𝛽 − 𝛼).
(5.7)

Applying the first formula from (5.7), we obtain

sin 𝜌𝑎 sin 𝜌(𝜋 − 𝑡)− sin 𝜌𝜋 sin 𝜌(𝑎− 𝑡) = sin 𝜌𝑡 sin 𝜌(𝜋 − 𝑎),

and we arrive at the identity 𝐷01 = 𝐴00(𝜆). In the same way we find 𝐷10 = 𝐴01(𝜆).
We let 𝐵0(𝜆) = 𝐷11 and reduce 𝐵0(𝜆) to the needed form (2.5). We expand the determinant

𝐷11 along the second and third columns by splitting the integrals into the sums

𝜋∫︁
0

=

𝑎∫︁
0

+

𝑏∫︁
𝑎

+

𝜋∫︁
𝑏

,

𝑏∫︁
0

=

𝑎∫︁
0

+

𝑏∫︁
𝑎

.
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We write out the term, which contains the integrals of the functions 𝑝 and 𝑞 only on the
segments [0, 𝑎] :

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

sin 𝜌𝜋

𝜌

𝑎∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑎∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑏

𝜌

𝑎∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑎∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
. (5.8)

From the first row we deduct the second one multiplied by cos 𝜌(𝜋−𝑎), and from the third row
we deduct the second one multiplied by cos 𝜌(𝑏− 𝑎). Denoting

𝑥1 =
sin 𝜌(𝜋 − 𝑎)

𝜌
, 𝑥3 =

sin 𝜌(𝑏− 𝑎)

𝜌
,

we obtain ⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑥1 cos 𝜌𝑎 𝑥1

𝑎∫︁
0

cos 𝜌(𝑎− 𝑡)𝑝(𝑡) 𝑑𝑡 𝑥1

𝑎∫︁
0

cos 𝜌(𝑎− 𝑡)𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

𝑥3 cos 𝜌𝑎 𝑥3

𝑎∫︁
0

cos 𝜌(𝑎− 𝑡)𝑝(𝑡) 𝑑𝑡 𝑥3

𝑎∫︁
0

cos 𝜌(𝑎− 𝑡)𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
= 0,

since the first and third rows are linearly dependent. Thus, the determinant (5.8) is equal to
zero and in (2.5) there is no term involving as factors the integral of the function 𝑝 over [0, 𝑎]
and the integral of the function 𝑞 over [0, 𝑎].
We write out the term, which involves as factors the integral of 𝑝 over [0, 𝑎] and the integral

of 𝑞 over [𝑎, 𝑏] :

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

sin 𝜌𝜋

𝜌

𝑎∫︁
0

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝜋 − 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝜌

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡 0

sin 𝜌𝑏

𝜌

𝑎∫︁
0

sin 𝜌(𝑏− 𝑡)

𝜌
𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝑏− 𝑡)

𝜌
𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
.
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We multiply the third row by cos 𝜌(𝜋 − 𝑏) and deduct it from the first one, then we multiply
the second row by cos 𝜌(𝑏− 𝑎) and deduct it from the third row. We obtain

sin 𝜌(𝜋 − 𝑏)

𝜌3

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

cos 𝜌𝑏

𝑎∫︁
0

cos 𝜌(𝑏− 𝑡)𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

cos 𝜌(𝑏− 𝑡)𝑞(𝑡) 𝑑𝑡

sin 𝜌𝑎

𝑎∫︁
0

sin 𝜌(𝑎− 𝑡)𝑝(𝑡) 𝑑𝑡 0

sin 𝜌(𝑏− 𝑎) cos 𝜌𝑎 sin 𝜌(𝑏− 𝑎)

𝑎∫︁
0

cos 𝜌(𝑎− 𝑡)𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝑏− 𝑡)𝑞(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

=
sin 𝜌(𝜋 − 𝑏)

𝜌3

(︃ 𝑏∫︁
𝑎

cos 𝜌(𝑏− 𝜉)𝑞(𝜉) 𝑑𝜉

𝑎∫︁
0

[︀
sin 𝜌𝑎 sin 𝜌(𝑏− 𝑡)− sin 𝜌𝑏 sin 𝜌(𝑎− 𝑡)

]︀
𝑝(𝑡) 𝑑𝑡

−
𝑏∫︁

𝑎

sin 𝜌(𝑏− 𝜉)𝑞(𝜉) 𝑑𝜉

𝑎∫︁
0

[︀
sin 𝜌𝑎 cos 𝜌(𝑏− 𝑡)− cos 𝜌𝑏 sin 𝜌(𝑎− 𝑡)

]︀
𝑝(𝑡) 𝑑𝑡

)︃
.

Applying the formulas (5.7) to the terms in square brackets, we arrive at the expression

sin 𝜌(𝜋 − 𝑏)

𝜌3

𝑎∫︁
0

sin 𝜌𝑡 𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

(︀
sin 𝜌(𝑏− 𝑎) cos 𝜌(𝑏− 𝜉)− cos 𝜌(𝑏− 𝑎) sin 𝜌(𝑏− 𝜉)

)︀
𝑞(𝜉) 𝑑𝜉

=
sin 𝜌(𝜋 − 𝑏)

𝜌3

𝑎∫︁
0

sin 𝜌𝑡 𝑝(𝑡) 𝑑𝑡

𝑏∫︁
𝑎

sin 𝜌(𝜉 − 𝑎) 𝑞(𝜉) 𝑑𝜉

that gives the first term in the first brackets in (2.5). The other terms in the expansion of the
determinant 𝐷11 can be considered in the same way.
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