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SEMIANALYTIC APPROXIMATION OF NORMAL

DERIVATIVE OF DOUBLE LAYER POTENTIAL NEAR AND

AT BOUNDARY OF TWO–DIMENSIONAL DOMAIN

D.Yu. IVANOV

Abstract. The normal derivatives (ND) of the double layer potential (DLP) are defined
on a boundary of a domain by hyper–singular integrals. This is why, it is impossible to
calculate ND DLP with a satisfactory accuracy either on the boundary or in its vicinity using
traditional quadrature formulas, which allow one to calculate ND DLP with a good accuracy
at a sufficient distance from the boundary. In the present paper, we obtain semi–analytical
approximations of ND DLP for the two–dimensional Laplace equation, which uniformly
converge with an almost cubic velocity in a closed near–boundary domain that includes
the boundary. For this purpose, we use exact integration over the smooth component of
the distance function near the observation point, an additive–multiplicative method for
extracting a singularity, and a piecewise quadratic interpolation of slowly varying functions.
We provide the results of calculating ND DLP in a closed near–boundary domain of a unit
circle, which confirm the uniform almost cubic convergence of the proposed approximations.

Keywords: quadratic formulas, analytic integration, double layer potential, uniform con-
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1. Introduction

The boundary element method (BEM), along with the finite element method (FEM) and
the finite difference method (FDM), is one of the main methods for the approximate solving
of boundary value problems [3, Sect. 2.5]. In the BEM, the discretization is performed only
on the boundary 𝜕Ω of a domain Ω, in contrast to the FEM and FDM, where it is necessary
to discretize the entire domain Ω. The BEM is based on the analytical method of boundary
integral equations (BIE) [16, Sect. 1.1]. In the framework of the BIE method, the solution
to the boundary value problem at any point 𝑥 ∈ Ω is sought in the form of the so–called
potential, which, using the integral operator, is expressed through the unknown density defined
on the boundary 𝜕Ω as a solution to the BIE. In two–dimensional problems, the potentials
are curvilinear integrals over the arc length 𝑠. The BIE operator is also expressed in terms
of the potentials and their derivatives defined on the boundary 𝜕Ω. For example, solutions of
the internal and external Dirichlet problems are expressed as a double layer potential (DLP),
where the density is a solution of the corresponding BIE of the second kind, the integral
operator of which also has the form of a DLP [10, Sect. 3.4]. Therefore, to implement the
BEM, an approximation of the potentials and their derivatives is required. For this purpose,
within the framework of the two–dimensional BEM, the curve 𝜕Ω is divided into arcs, the
so–called boundary elements (BE). On each BE, the density is approximated by a polynomial
coinciding with the density at the given nodes, that is, the piecewise polynomial interpolation is
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performed. The integrals arising on the BE cannot be calculated exactly in the general case. To
calculate them, quadrature formulas are used, usually these are the Gauss formulas [2, Ch. 3,
Sect. 5, Subsect. 3]. Gauss formulas allow one to attain a satisfactory accuracy if the potential
is calculated at a sufficient distance from the boundary 𝜕Ω. If the observation point 𝑥, at which
the potential is calculated, is located sufficiently close to the nodes of the Gauss formula, the
accuracy, as a rule, becomes unsatisfactory. This phenomenon, called the boundary layer effect
[32], is due to the fact that the kernel of the integral operator 𝐾(𝑥, 𝑥′) has a singularity at
𝑥 = 𝑥′ ∈ 𝜕Ω, and it is impossible to calculate the potential at the nodes of the Gauss formula.
The integrals on the GE are called singular (SI) if the observation point 𝑥 belongs to the BE,
and almost singular (ASI) if the point 𝑥 is sufficiently close to the BE [28].
The need for calculations near the boundary of the domain arises when solving problems in

thin–walled and multilayer structures, thin coatings, films, at the ends of cracks [23], [25], [31].
To calculate the SI and ASI, special methods are used, including semi–analytical ones [11]–[14],
[17], [23], [24], [27], [29], [30], [31]. One of such methods, outlined in [24], [27], [31] and proposed
for approximating two–dimensional potentials and their derivatives near and at the boundary
𝜕Ω, is based on the passage from the integration variable 𝑠 to the variable 𝜌 = (𝑟2−𝑑2) 1

2 , where
𝑟 and 𝑑 are the distances from the observation point 𝑥 to the integration point 𝑥′ ∈ 𝜕Ω and
to the curve 𝜕Ω, respectively. The integrals over 𝜌 are calculated exactly. For this purpose, a
multiplicative method of extracting a singularity is used: the integrand is split into two factors,
one of which, including the Jacobian, is a slowly varying function and is therefore approximated
by polynomials, while the other factor, singular or close to singular, is taken as a weight function.
This approach has two advantages. First, as it was shown in [4], it can be implemented for
any sufficiently smooth analytically defined curve 𝜕Ω since the integrals over the variable 𝜌
are calculated exactly in many known cases and depend on the curve 𝜕Ω only parametrically,
that is, the coordinate functions of the curve 𝜕Ω cannot fundamentally change the form of the
integrand. Second, there are no visible reasons preventing unbounded growth of approximation
order in the framework of this method. Indeed, the approximation order is determined by the
order of the polynomial in the numerator, therefore, the complexity of the integral does not
increase essentially while increasing the order of polynomial. We note that in the framework
of semi–analytical methods based on the approximation of integrals over the arc length 𝑠, the
unbounded growth of the approximation order is prevented by the fact that the powers of the
distance function 𝑟2𝑛 (𝑛 ∈ N) are in the denominator of the integrand. Indeed, in order to make
the exact integration possible, the function 𝑟2 is replaced by a polynomial in powers of 𝑠. Since
the polynomial is in the denominator, its degree cannot exceed two, otherwise obtaining an
analytical expression for the antiderivative becomes difficult. Therefore, linear approximation
of coordinate functions is mainly used [11]–[14], [17], [23], [29]. If the quadratic approximation
is employed, then the polynomial obtained instead of 𝑟2 is still truncated to a quadratic one
[30], and within this approach, usage of higher–degree polynomials to approximate coordinate
functions makes no sense.
In works of the author, by using exact integration with respect to the variable 𝜌, there

were obtained uniformly converging approximations of the thermal potential of a simple layer
potential (SLP) near the boundary of a two–dimensional domain [4], approximations of the
thermal DLP [5], approximations of the DLP for the Laplace equation [6], approximations of
the normal derivative of the thermal SLP [7], approximations of the DLP for the dissipative
Helmholtz equation [8], approximations of the ND SLP for the Laplace equation [9]. In the
present work, on the base of exact integration with respect to the variable 𝜌, we obtain uniformly
converging approximations of the ND DLP for the two–dimensional Laplace equation near and
at the boundary. The need to calculate the values of the ND DLP on the boundary 𝜕Ω arises
when solving various BIEs [10, Sects. 3.5–3.7, 3.9]. If the solution to the Dirichlet problem
is sought in the form of a DLP, then the ND DLP for the Laplace equation can be used to
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calculate the steady–state heat flux, the fluid velocity during steady flow, and the strength of
an electrostatic field. We note that the solution to the Dirichlet problem in the form of a DLP
has the advantage that stable BIEs of the second kind are used, whereas unstable BIEs of the
first kind are used when obtaining the solution to the Dirichlet problem using the SLP.
It is known that DLP with a continuous density generally speaking possesses no derivatives

at the boundary, but if the density is smooth enough, the ND DLP can be defined at the
boundary to a continuous function in the entire space [15, Sect. 2.5]. By the ND DLP on
the boundary we mean the values obtained by the continuous continuation of ND DLP from
the domain Ω. They can be calculated by using hyper–singular integrals, which exist only in
the sense of a finite Hadamard value, the integrand in which has the singularity 𝑟−2 [15, Sect.
1.6]. In [15, Sect. 13.6] the ND DLP on the boundary is approximately calculated on the
base of a semi–analytical approximation of such integrals at the support points, which are the
midpoints of the BE: at each BE the density is replaced by a constant function with a node at
the support point, and the integrals arising after this in the case of the Laplace equation are
calculated analytically by the discrete vortex method. It was shown in [21] that the ND DLP
on the boundary can be expressed in terms of less singular integrals that exist in the sense
of the Cauchy principal value. In [1], [22], the ND DLP, expressed in terms of such integrals,
was approximated at the support points being the midpoints of the BE on the base of the
quadrature formula of mean rectangles. The approximations of the ND DLP on the boundary
of a two–dimensional domain Ω obtained in [15, Sect. 13.6] and [1], [22] have errors 𝑂(ℎ lnℎ)

and 𝑂(ℎ
1
2 ), respectively, where ℎ is the length of the BE.

In the present work we construct the approximations for ND DLP in a closed near–boundary
domain, which includes the boundary and have the semi–width equalling to the third of radius
of Lyapunov circle. The integrals obtained as the result of continuation by continuity and
existing only in the sense of Hadamard finite value are approximated on the boundary. At the
first step, the boundary is divided into BEs of equal length and, for fixed 𝑑, we calculate the
approximations for the ND DLP at support points, the projections of which onto the curve
𝜕Ω coincide with the midpoints of the BEs. We employ the piecewise quadratic interpolation
(PQI) with three nodes at the ends and in the middle of the BE to approximate the density.
Exact integration with respect to 𝜌 is performed in some neighborhood of the projection of
each support point, where the Jacobian remains positive and bounded (not on the SI and ASI,
as in [24], [27], [31], but on arcs of fixed length). The integral with respect to 𝜌 is represented
as a sum of three integrals of different degrees of singularity, each of which is approximated
on the base of the above described multiplicative method of extracting a singularity. The PQI
is also used to approximate slowly changing factors in the integrands. To achieve the highest
approximation order, an additional discretization with respect to 𝜌 is performed in such a
way that the BEs with respect to 𝜌 are located symmetrically with respect to each support
point. Such additional discretization requires no additional values of the density. Outside the
neighborhoods where exact integration with respect to 𝜌 is performed, Gauss formulas of at
least fifth order are used to approximate the integrals arising after the PQI of the density. At
the second step, in order to double the number of reference points used without involving new
values of the density, all BEs are shifted by the half of BE length, and then, just as at the first
step, the approximations of the ND DLP are calculated at the reference points corresponding
to the midpoints of the new BEs. At the third step, for a fixed 𝑑, the PQI is performed
with respect to the variable 𝑠 with nodes at the reference points. This allows us to calculate
approximate values of the NP DLP at any point of the closed near–boundary domain described
by the curvilinear coordinates 𝑠 and 𝑑. We prove that the approximations of ND DLP obtained
in this way converge uniformly in the closed near–boundary domain at the rate 𝑂(ℎ3 lnℎ). The
final section presents the results of calculating ND DLP in a closed near–boundary domain of
a unit circle, which confirm the almost cubic rate of uniform convergence of semi–analytical
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approximations, and also demonstrate the impossibility of using exclusively Gaussian formulas
to approximate integrals arising under the interpolation of density.

2. Formulation of problem

Let Ω+ be a two–dimensional simply connected domain with a boundary 𝜕Ω. In the Cartesian
coordinates (𝑥1, 𝑥2) we define parametric equations of the curve 𝜕Ω: 𝑥1 = 𝑥̃1(𝑠), 𝑥2 = 𝑥̃2(𝑠).
The absolute value of the parameter 𝑠 is equal to the length of the arc beginning at some fixed
point and ending at the point 𝑥̃(𝑠) := (𝑥̃1(𝑠), 𝑥̃2(𝑠)), and it increases as the domain Ω+ is to the
left while passing the boundary 𝜕Ω. The functions 𝑥̃1(𝑠), 𝑥̃2(𝑠) (𝑠 ∈ R) are periodic with the
period 2𝑆, where 𝑆 is the half length of 𝜕Ω, and make a one–to–one correspondence between
the sets [−𝑆, 𝑆) and 𝜕Ω. In what follows we write 𝜕Ω ∈ 𝐶𝑛 if there exists continuous on the

closed set 𝐼𝑆 := [−𝑆, 𝑆] derivatives 𝑥̃(𝑙)𝑖 (𝑠) (𝑙 = 0, 𝑛, 𝑖 = 1, 2), and 𝑥̃
(𝑙)
𝑖 (−𝑆 + 0) = 𝑥̃

(𝑙)
𝑖 (𝑆 − 0).

We suppose that 𝜕Ω ∈ 𝐶2 unless otherwise is said.
By 𝐶(𝜕Ω) we denote the Banach space of 2𝑆–periodic continuous on the entire real axis R

real functions 𝑓(𝑠) with the norm

‖𝑓‖𝐶(𝜕Ω) := sup
𝑠∈𝐼𝑆

|𝑓(𝑠)| .

By 𝐶𝑛(𝜕Ω) (𝑛 ∈ Z+) we denote the Banach spaces of the functions 𝑓 ∈ 𝐶(𝜕Ω) having contin-
uous on the set 𝐼𝑆 derivatives 𝑓 (𝑙)(𝑠) (𝑙 = 1, 𝑛) with the norm

‖𝑓‖𝐶𝑛(𝜕Ω) :=
𝑛∑︁

𝑙=0

⃦⃦
𝑓 (𝑙)
⃦⃦
𝐶(𝜕Ω)

(𝐶0(𝜕Ω) = 𝐶(𝜕Ω)).

By 𝑒⃗(𝑠) we denote the unit vector directed along the tangential line to 𝜕Ω at the point 𝑥̃(𝑠) to
the side of increasing of the parameter 𝑠, while 𝑛⃗(𝑠) stands for the unit normal to the curve 𝜕Ω
at the point 𝑥̃(𝑠) directed inside the domain Ω+. The vectors 𝑒⃗(𝑠), 𝑛⃗(𝑠) form the right system
and their coordinates (𝑥1, 𝑥2) are calculated by means of the formulas 𝑒⃗(𝑠) = (𝑥̃′1(𝑠), 𝑥̃

′
2(𝑠)),

𝑛⃗(𝑠) = (−𝑥̃′2(𝑠), 𝑥̃′1(𝑠)).
We introduce local Cartesian coordinates (𝜉𝑠, 𝜂𝑠) with the origins at the points 𝑥̃(𝑠) and

the abscissa and ordinate axes directed along the vectors 𝑒⃗(𝑠) and 𝑛⃗(𝑠), respectively. The
points 𝑥̃𝑑(𝑠) (𝑑 ∈ R) with the local coordinates (𝜉𝑠, 𝜂𝑠) = (0, 𝑑) form the normal to the curve
𝜕Ω passing through 𝑥̃(𝑠) (𝑥̃0(𝑠) := 𝑥̃(𝑠)). There exists a set 𝐼𝐷 of form [−𝐷1, 0) ∪ (0, 𝐷2]
(𝐷1, 𝐷2 > 0) such that for (𝑠, 𝑑) ∈ T := 𝐼𝑆 × 𝐼𝐷 the correspondence between the points 𝑥̃(𝑠)
and 𝑥̃𝑑(𝑠) is one–to–one. For instance, 𝐼𝐷 = [−𝐷, 0) ∪ (0, 𝐷], where 𝐷 is the third of the radius
of the Lyapunov circle [18, Sect. 102]. Since 𝜕Ω ∈ 𝐶2, for a fixed 𝑑 ∈ 𝐼𝐷 the points 𝑥̃𝑑(𝑠) form
a closed curve 𝜕Ω𝑑 ∈ 𝐶1, and the normals 𝑥̃(𝑠)𝑥̃𝑑(𝑠) to the curves 𝜕Ω are also the normals to
the curve 𝜕Ω𝑑. The curves 𝜕Ω𝑑 are called the curves parallel to the curve 𝜕Ω.
On the set T we define the function 𝑢

𝑢(𝑠, 𝑑) :=

∫︁
𝐼𝑆

𝑔 𝑣(𝑠+ 𝜎) 𝑑𝜎. (2.1)

Here

𝑔(𝑠, 𝜎, 𝑑) := 𝜕𝑛⃗(𝑠)𝜕𝑛⃗(𝑠+𝜎) ln 𝑟
−1 = −2−1𝜕𝑛⃗(𝑠)

[︃(︀
𝜕𝑛⃗(𝑠+𝜎)𝑟

2
)︀

𝑟2

]︃
,

𝑣 ∈ 𝐶(𝜕Ω), 𝑟(𝑠, 𝜎, 𝑑) := |𝑟⃗| , 𝑟⃗(𝑠, 𝜎, 𝑑) :=
−−−−−−−−−→
𝑥̃𝑑(𝑠)𝑥̃(𝑠+ 𝜎);

the differentiations 𝜕𝑛⃗(𝑠) and 𝜕𝑛⃗(𝑠+𝜎) are made at the points 𝑥̃𝑑(𝑠) and 𝑥̃(𝑠+𝜎) in the directions
𝑛⃗(𝑠) and 𝑛⃗(𝑠 + 𝜎), respectively. We adopt that sometimes we do not write the variables of a
function if they are the same as in the definition of function. The function 𝑈 (𝑥̃𝑑(𝑠)) := (2𝜋)−1𝑢
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is ND DLP with the density 𝑣 in the near–boundary domain Ω𝐷 formed by the points 𝑥̃𝑑(𝑠) as
(𝑠, 𝑑) ∈ T.
By the known theorems [10, Sect. 2.5, Thms. 2.21, 2.23] the function 𝑈 (𝑥̃𝑑(𝑠)) can be defined

by the continuity at 𝑑 = 0, 𝑠 ∈ 𝐼𝑆. Here we obtain the approximations 𝑈̆ (𝑥̃𝑑(𝑠)) of the function
𝑈 (𝑥̃𝑑(𝑠)) uniformly converging on the set T with the rate 𝑂(ℎ3 lnℎ), that is, they satisfy the
estimates ⃒⃒⃒

𝑈̆ − 𝑈
⃒⃒⃒
⩽ 𝑐ℎ3 |lnℎ| ((𝑠, 𝑑) ∈ T), (2.2)

where 𝑐 is a positive constants independent of ℎ and (𝑠, 𝑑).

3. Some facts about quadratic interpolation

We consider a quadratic interpolation, which will be used, for some real function 𝑓(𝑧). Let
ℎ > 0, 𝑧0 ∈ R, 𝑧±1 := 𝑧0 ± ℎ. By 𝐶𝑘(𝐼ℎ) (𝑘 = 0, 1, . . .) we denote the Banach spaces of
continuous on the segment 𝐼ℎ ≡ [𝑧−1, 𝑧1] functions 𝑓(𝑧) having continuous on 𝐼ℎ derivatives
𝑓 (𝑙)(𝑧) (𝑙 = 1, 𝑘) with the norm

‖𝑓‖𝐶𝑘(𝐼ℎ)
≡

𝑘∑︁
𝑙=0

sup
𝑧∈𝐼ℎ

⃒⃒
𝑓 (𝑙)(𝑧)

⃒⃒
.

Let 𝑓 ∈ 𝐶0(𝐼ℎ). We define the Lagrange interpolation polynomial 𝑓(𝑧) with the equidistant
nodes 𝑧−1, 𝑧0, 𝑧1 [2, Ch. 2, Sect. 5]

𝑓(𝑧) := 𝑓(𝑧−1) + (𝑧 − 𝑧−1)𝑓1(𝑧−1, 𝑧1) + (𝑧 − 𝑧−1)(𝑧 − 𝑧1)𝑓2(𝑧−1, 𝑧1, 𝑧0).

Here 𝑓1(𝑧−1, 𝑧1), 𝑓2(𝑧−1, 𝑧1, 𝑧0) are separated distance of 1st and 2nd orders with non–coinciding
values of the variable [2, Ch. 2, Sect. 5, Subsect. 1]

𝑓1(𝑧−1, 𝑧1) :=
𝑓(𝑧1)− 𝑓(𝑧−1)

𝑧1 − 𝑧−1

,

𝑓2(𝑧−1, 𝑧1, 𝑧0) :=
𝑓1(𝑧1, 𝑧0)− 𝑓1(𝑧−1, 𝑧1)

𝑧0 − 𝑧−1

.

The separated differences are symmetric functions, that is, their values do not change under
each permutation of the variables [2, Ch. 2, Sect. 5, Subsect. 1, Prop. 3]. At the nodes,

the identities 𝑓(𝑧𝑚) = 𝑓(𝑧𝑚) (𝑚 = −1, 1) hold. For 𝑧 ∈ (𝑧−1, 𝑧0) ∪ (𝑧0, 𝑧1) the following two
formulas hold

𝑓(𝑧) = 𝑓(𝑧) + (𝑧 − 𝑧−1)(𝑧 − 𝑧1)(𝑧 − 𝑧0)𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0) (𝑓 ∈ 𝐶0(𝐼ℎ)), (3.1)

𝑓(𝑧) = 𝑓(𝑧) + (𝑧 − 𝑧−1)(𝑧 − 𝑧1)(𝑧 − 𝑧0)𝑓3(𝑧−1, 𝑧1, 𝑧0, 𝑧0)

+ (𝑧 − 𝑧−1)(𝑧 − 𝑧1)(𝑧 − 𝑧0)
2𝑓4(𝑧, 𝑧−1, 𝑧1, 𝑧0, 𝑧0) (𝑓 ∈ 𝐶1(𝐼ℎ)),

(3.2)

see the formulas for the residual term in the Newton interpolation formula [2, Ch. 2, Sect. 5,
Subsect. 3], [2, Ch. 2, Sect. 11, Subsect. 5]). Here 𝑓3, 𝑓4 are separated differences of 3rd and
4th orders, the variables of which coincide or can coincide

𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0) :=
𝑓2(𝑧−1, 𝑧1, 𝑧0)− 𝑓2(𝑧, 𝑧−1, 𝑧1)

𝑧0 − 𝑧
(𝑧 ∈ (𝑧−1, 𝑧0) ∪ (𝑧0, 𝑧1), 𝑓 ∈ 𝐶0(𝐼ℎ)),

𝑓3(𝑧𝑚, 𝑧−1, 𝑧1, 𝑧0) := lim
𝑧′→𝑧𝑚

𝑓3(𝑧
′, 𝑧−1, 𝑧1, 𝑧0) (𝑚 = −1, 1, 𝑓 ∈ 𝐶1(𝐼ℎ));

𝑓4(𝑧, 𝑧−1, 𝑧1, 𝑧0, 𝑧0) :=
𝑓3(𝑧−1, 𝑧1, 𝑧0, 𝑧0)− 𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0)

𝑧0 − 𝑧
(𝑧 ∈ (𝑧−1, 𝑧0) ∪ (𝑧0, 𝑧1), 𝑓 ∈ 𝐶1(𝐼ℎ)),

𝑓4(𝑧𝑚, 𝑧−1, 𝑧1, 𝑧0, 𝑧0) := lim
𝑧′→𝑧𝑚

𝑓4(𝑧
′, 𝑧−1, 𝑧1, 𝑧0, 𝑧0) (𝑚 = −1, 1, 𝑓 ∈ 𝐶2(𝐼ℎ)).
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For each 𝑧 ∈ [𝑧−1, 𝑧1] there exist 𝜁1(𝑧), 𝜁2(𝑧) ∈ [𝑧−1, 𝑧1] such that

𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0) = 6−1𝑓 (3)(𝜁1) (𝑓 ∈ 𝐶3 (𝐼ℎ)), (3.3)

𝑓4(𝑧, 𝑧−1, 𝑧1, 𝑧0, 𝑧0) = 24−1𝑓 (4)(𝜁2) (𝑓 ∈ 𝐶4 (𝐼ℎ)), (3.4)

see [2, Ch. 2, Sect. 5, Subsect. 3], [2, Ch. 2, Sect. 11, Subsect. 5]. By the formulas (3.1),
(3.3), we have the majorant estimate for interpolation error on the segment [𝑧−1, 𝑧1]:⃒⃒⃒

𝑓(𝑧)− 𝑓(𝑧)
⃒⃒⃒
⩽ 𝑐𝜆 sup

𝑧∈[𝑧−1,𝑧1]

⃒⃒
𝑓 (3)(𝑧)

⃒⃒
ℎ3

(︂
𝑧 ∈ [𝑧−1, 𝑧1], 𝑓 ∈ 𝐶3 (𝐼ℎ) , 𝑐𝜆 :=

√
3
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)︂
. (3.5)

The interpolation polynomial 𝑓(𝑧) can be also written as the sum

𝑓(𝑧) =
1∑︁

𝑚=−1

𝑓(𝑧𝑚)Λ
[𝑧−1,𝑧1]
𝑚 (𝑧) (𝑧 ∈ [𝑧−1, 𝑧1]), (3.6)

where

Λ[𝑧−1,𝑧1]
𝑚 (𝑧) :=

1∏︁
𝑗=−1 (𝑗 ̸=𝑚)

𝑧 − 𝑧𝑗
𝑧𝑚 − 𝑧𝑗

(𝑚 = −1, 1),

see [2, Ch. 2, Sect. 2, Subsect. 1]. On the base of the formula (3.6) and the inequalities⃒⃒
Λ[𝑧−1,𝑧1]

𝑚 (𝑧)
⃒⃒
⩽ 1 (𝑧 ∈ [𝑧−1, 𝑧1], 𝑚 = 0, 2),

by means of the mean value theorem for 𝑧 ∈ [𝑧−1, 𝑧1] we obtain the estimates⃒⃒⃒
𝑓(𝑧)

⃒⃒⃒
⩽ 𝑐Λ,0 max

𝑚=−1,1
|𝑓 (𝑧𝑚)| (𝑓 ∈ 𝐶0 (𝐼ℎ) , 𝑐Λ,0 := 3), (3.7)⃒⃒⃒

𝑓(𝑧)− 𝑓(𝑧)
⃒⃒⃒
⩽ 𝑐𝜆,0 sup

𝑧∈[𝑧−1,𝑧1]

⃒⃒
𝑓 (1)(𝑧)

⃒⃒
ℎ (𝑓 ∈ 𝐶1 (𝐼ℎ) , 𝑐𝜆,0 := 3). (3.8)

For 𝑧 ∈ [𝑧−1, 𝑧1], for the derivatives 𝑓
(𝑗)(𝑧) (𝑗 = 1, 2) we have the formulas

𝑓 (1)(𝑧) =

(2𝑧 − 𝑧0 − 𝑧1)
𝑧−1∫︀
𝑧0

𝑓 (1)(𝜁)𝑑𝜁

(𝑧−1 − 𝑧0) (𝑧−1 − 𝑧1)
+

(2𝑧 − 𝑧0 − 𝑧−1)
𝑧1∫︀
𝑧0

𝑓 (1)(𝜁)𝑑𝜁

(𝑧1 − 𝑧0) (𝑧1 − 𝑧−1)
(𝑓 ∈ 𝐶1 (𝐼ℎ)),

𝑓 (2)(𝑧) =

2
𝑧−1∫︀
𝑧0

𝑓 (2)(𝜁) (𝑧−1 − 𝜁) 𝑑𝜁

(𝑧−1 − 𝑧0) (𝑧−1 − 𝑧1)
+

2
𝑧1∫︀
𝑧0

𝑓 (2)(𝜁) (𝑧1 − 𝜁) 𝑑𝜁

(𝑧1 − 𝑧0) (𝑧1 − 𝑧−1)
(𝑓 ∈ 𝐶2 (𝐼ℎ))

(3.9)

obtained by the representation (3.6) and the Taylor form with the residual term in the integral
form (TFETIF) [19, Sect. 318]. By the mean value theorem the formulas (3.9) allow us to
obtain the estimates for 𝑧 ∈ [𝑧−1, 𝑧1]⃒⃒⃒

𝑓 (𝑗)(𝑧)
⃒⃒⃒
⩽ 𝑐Λ,𝑗 sup

𝑧∈[𝑧−1,𝑧1]

⃒⃒
𝑓 (𝑗)(𝑧)

⃒⃒
(𝑓 ∈ 𝐶𝑗 ([𝑧−1, 𝑧1]) , 𝑗 = 1, 2), (3.10)⃒⃒⃒

𝑓 (𝑗)(𝑧)− 𝑓 (𝑗)(𝑧)
⃒⃒⃒
⩽ 𝑐𝜆,𝑗 sup

𝑧∈[𝑧−1,𝑧1]

⃒⃒
𝑓 (𝑗+1)(𝑧)

⃒⃒
ℎ (𝑓 ∈ 𝐶𝑗+1 ([𝑧−1, 𝑧1]) , 𝑗 = 1, 2), (3.11)

where 𝑐Λ,1 := 3, 𝑐Λ,2 := 2−1, 𝑐𝜆,1 := 4, 𝑐𝜆,2 := 2.
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4. Additive– multiplicative selection of singularity

Here we consider the possibility of passage from the integration variable 𝜎 to the integration
variable 𝜌 in the integrals (2.1), which will be used for the semi–analytic approximation of ND

DLP. Let 𝑟⃗0(𝑠, 𝜎) :=
−−−−−−−−→
𝑥̃(𝑠)𝑥̃(𝑠+ 𝜎), 𝑟0(𝑠, 𝜎) := |𝑟⃗0|. On the set Θ := 𝐼𝑆 × 𝐼𝑆 we define the

functions 𝜓𝑖(𝑠, 𝜎) (𝑖 = 0, 4): for 𝜎 ̸= 0 we let

𝜓𝑖 :=
𝜙𝑖

𝜎2
(𝑖 = 0, 2), 𝜓𝑖 :=

𝜙𝑖

𝜎
(𝑖 = 3, 4),

where

𝜙0(𝑠, 𝜎) := 𝑟20 = [𝑥̃1(𝑠+ 𝜎)− 𝑥̃1(𝑠)]
2 + [𝑥̃2(𝑠+ 𝜎)− 𝑥̃2(𝑠)]

2 ,

𝜙1(𝑠, 𝜎) := 2−1𝜕𝑛⃗(𝑠+𝜎)𝑟
2
0 = −𝑥̃′2(𝑠+ 𝜎) [𝑥̃1(𝑠+ 𝜎)− 𝑥̃1(𝑠)] + 𝑥̃′1(𝑠+ 𝜎) [𝑥̃2(𝑠+ 𝜎)− 𝑥̃2(𝑠)]

= (𝑛⃗(𝑠+ 𝜎) , 𝑟⃗0)R2 ,

𝜙2(𝑠, 𝜎) := 2−1𝜕𝑛⃗(𝑠)𝑟
2
0 = −𝑥̃′2(𝑠) [𝑥̃1(𝑠)− 𝑥̃1(𝑠+ 𝜎)] + 𝑥̃′1(𝑠) [𝑥̃2(𝑠)− 𝑥̃2(𝑠+ 𝜎)]

= − (𝑛⃗(𝑠), 𝑟⃗0)R2 ,

𝜙3(𝑠, 𝜎) := 2−1𝜕𝜎𝜙0 = 𝑥̃′1(𝑠+ 𝜎) [𝑥̃1(𝑠+ 𝜎)− 𝑥̃1(𝑠)] + 𝑥̃′2(𝑠+ 𝜎) [𝑥̃2(𝑠+ 𝜎)− 𝑥̃2(𝑠)]

= (𝑒⃗(𝑠+ 𝜎) , 𝑟⃗0)R2 ,

𝜙4(𝑠, 𝜎) := 𝜕𝜎𝜙2 = 𝑥̃′2(𝑠) 𝑥̃
′
1(𝑠+ 𝜎)− 𝑥̃′1(𝑠) 𝑥̃

′
2(𝑠+ 𝜎) = − (𝑛⃗(𝑠), 𝑒⃗(𝑠+ 𝜎))R2 ,

(·, ·)R2 is the scalar product in the Euclidean space R2), while for 𝜎 = 0 we let

𝜓0 = 𝜓3 := 1, 𝜓1 = 𝜓2 = 2−1𝜓4 := 2−1 (𝑥̃′2(𝑠) 𝑥̃
′′
1(𝑠)− 𝑥̃′1(𝑠) 𝑥̃

′′
2(𝑠)) = −2−1𝐾(𝑠).

Here 𝐾(𝑠) is the signed curvature [20, Subsect. 250] of the curve 𝜕Ω at the point 𝑥̃(𝑠). Similarly
to [8, Thm. 2.1] one can show that under the condition 𝜕Ω ∈ 𝐶𝑛+2 (𝑛 ∈ Z+) there exist
continuous on the set Θ derivative 𝜕𝑘𝑠 𝜕

𝑙
𝜎𝜓𝑖, 𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛 for 𝑖 = 0, 2, 4; 𝑘 = 0, 𝑛+ 1− 𝑙,

𝑙 = 0, 𝑛+ 1 for 𝑖 = 3.
The local coordinates (𝜉𝑠, 𝜂𝑠) of the points 𝑥̃𝑑(𝑠) and 𝑥̃(𝑠 + 𝜎) are equal to (0, 𝑑) and

((𝑒⃗(𝑠), 𝑟⃗0)R2 , (𝑛⃗(𝑠), 𝑟⃗0)R2) , respectively, and this is why

𝑟2 =
⃒⃒⃒−−−−−−−−−→
𝑥̃𝑑(𝑠)𝑥̃(𝑠+ 𝜎)

⃒⃒⃒2
= 𝑟20 − 2𝑑 (𝑛⃗(𝑠), 𝑟⃗0)R2 + 𝑑2.

On the set Υ := Θ× 𝐼𝐷 = 𝐼𝑆 × T we define the functions 𝜙′
0(𝑠, 𝜎, 𝑑), 𝜓

′
0(𝑠, 𝜎, 𝑑), 𝜓

′
1(𝑠, 𝜎, 𝑑):

𝜙′
0 := 𝑟2 − 𝑑2 = 𝜙0 + 2𝑑𝜙2, 𝜓′

0 := 𝜓0 + 2𝑑𝜓2, 𝜓′
1 := 𝜓3 + 𝑑𝜓4.

Since 𝜙′
0 ⩾ 0 for (𝑠, 𝜎, 𝑑) ∈ Υ (𝜙′

0 > 0 for 𝜎 ̸= 0, 𝜙′
0 = 0 for 𝜎 = 0) [8, Sect. 2], on the set Υ we

can define the function 𝜌′(𝑠, 𝜎, 𝑑):

𝜌′ :=
√︀
𝜙′
0, if 𝜎 ⩾ 0; 𝜌′ := −

√︀
𝜙′
0, if 𝜎 < 0.

Since

𝑟2 = 𝜙0 + 2𝑑𝜙2 + 𝑑2,

we have

2−1𝜕𝑛⃗(𝑠+𝜎)𝑟
2 = 𝜙1 + 𝑑𝜙5,

where

𝜙5(𝑠, 𝜎) := −𝑥̃′1(𝑠)𝑥̃′1(𝑠+ 𝜎)− 𝑥̃′2(𝑠)𝑥̃
′
2(𝑠+ 𝜎) and 𝜕𝑛⃗(𝑠+𝜎) ln 𝑟

−1 = − 𝜙1 + 𝑑𝜙5

𝜙0 + 2𝑑𝜙2 + 𝑑2
.

This is why for (𝑠, 𝜎, 𝑑) ∈ Υ (except for 𝑑 = 𝜎 = 0), the function 𝑔 = 𝜕𝑑𝜕𝑛⃗(𝑠+𝜎) ln 𝑟
−1 can be

written as

𝑔 = 𝑎1(𝜌
′, 𝑑) 𝛿1 + 𝑎2(𝜌

′, 𝑑) 𝛿2 + 𝑎3(𝜌
′, 𝑑) 𝛿3, (4.1)
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where

𝑎1(𝜌, 𝑑) :=
(︀
−𝜌2 + 𝑑2

)︀
𝐴−2, 𝑎2(𝜌, 𝑑) := 2𝑑𝜌2𝐴−2, 𝑎3(𝜌, 𝑑) := 𝜌4𝐴−2, 𝐴(𝜌, 𝑑) := 𝜌2 + 𝑑2,

𝛿1(𝑠, 𝜎) := 𝜙5, 𝛿2(𝑠, 𝜎, 𝑑) :=
𝜓1 + 𝜓2𝜙5

𝜓′
0

, 𝛿3(𝑠, 𝜎, 𝑑) :=
2𝜓1𝜓2

(𝜓′
0)

2 .

In what follows we suppose that the set 𝐼𝐷 = [−𝐷1, 0) ∪ (0, 𝐷2] (𝐷1, 𝐷2 > 0) is defined by
the conditions

(i) for (𝑠, 𝑑) ∈ T, the correspondence between the points 𝑥̃(𝑠) and 𝑥̃𝑑(𝑠) is one–to–one;
(ii) for (𝑠, 𝑑) ∈ T the inequalities 1− 𝑑𝐾(𝑠) > 0 hold.

For instance, 𝐼𝐷 = [−𝐷, 0) ∪ (0, 𝐷], since at the same time 1 − 𝑑𝐾(𝑠) ⩾
2

3
((𝑠, 𝑑) ∈ T) [8,

Sect. 2]. We can ensure an arbitrary smoothness for the functions 𝛿𝑖 in (𝑠, 𝜎) by an appropriate
smoothness of the boundary 𝜕Ω. Indeed, since

𝜓0(𝑠, 0) = 1, 𝜓2(𝑠, 0) = −2−1𝐾(𝑠),

we have
𝜓′
0(𝑠, 0, 𝑑) = 1− 𝑑𝐾(𝑠) > 0 for (𝑠, 𝑑) ∈ T.

Moreover, 𝜓′
0 =

𝜙′
0

𝜎2
> 0 for (𝑠, 𝜎, 𝑑) ∈ Υ, 𝜎 ̸= 0. This is why 𝜓′

0 > 0 on the set Υ, under

the condition 𝜕Ω ∈ 𝐶𝑛+2 (𝑛 ∈ Z+) there exist continuous on the set Υ derivatives 𝜕𝑘𝑠 𝜕
𝑙
𝜎𝛿𝑖

(𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛, 𝑖 = 1, 3).
We also note that 𝜓3(𝑠, 0) = 1, 𝜓4(𝑠, 0) = −𝐾(𝑠). Therefore,

𝜓′
1(𝑠, 0, 𝑑) = 1− 𝑑𝐾(𝑠) > 0 for (𝑠, 𝑑) ∈ T,

and the next statement is true.

Theorem 4.1 (cf. [4, Thm. 5]). Let 𝜕Ω ∈ 𝐶2. Then there exists a sufficiently small number
Σ0 > 0 such that on the set Υ′ := 𝐼𝑆 × Ξ× 𝐼𝐷, where Ξ := [−Σ0,Σ0], the function

𝛿0(𝑠, 𝜎, 𝑑) := (𝜕𝜎𝜌
′)
−1

=

√︀
𝜓′
0

𝜓′
1

is defined everywhere and positive.

It is obvious that the number Σ0 is not unique. In particular, we can obtain the number
Σ0 as follows. For a fixed 𝑠 ∈ 𝐼𝑆 by E𝑠 we denote a closed arc of the curve 𝜕Ω bounded by
two parallel straight lines located at the distance 𝐷 from the straight line 𝑥̃−𝐷(𝑠)𝑥̃𝐷(𝑠) and
𝑥̃(𝑠) ∈ E𝑠. The set of values 𝜎, for which 𝑥̃(𝑠 + 𝜎) ∈ E𝑠, we denote by Ξ𝑠, the boundaries of
Ξ𝑠 are denoted Σ′

𝑠, Σ
′′
𝑠 , and then Ξ𝑠 = [Σ′

𝑠,Σ
′′
𝑠 ], Σ

′
𝑠 ⩽ −𝐷, Σ′′

𝑠 ⩾ 𝐷; 𝑥̃(𝑠 − Σ′
𝑠), 𝑥̃(𝑠 + Σ′′

𝑠) is
the boundaries of the arc E𝑠, see Figure. 1. By [4, Thm. 5] as the number Σ0 we can take the
smallest of the values inf

𝑠∈𝐼𝑆
|Σ′

𝑠|, inf
𝑠∈𝐼𝑆

Σ′′
𝑠 .

Figure 1. Construction of the arc E𝑠.
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The function 𝛿0,which is the Jacobian of passage from the integration variable 𝜎 to the
integration variable 𝜌 = 𝜌′ can be also made arbitrarily smooth in (𝑠, 𝜎) by an appropriate
smoothness of the curve 𝜕Ω: under the condition 𝜕Ω ∈ 𝐶𝑛+2 (𝑛 ∈ Z+) there exist continuous
on the set Υ derivatives 𝜕𝑘𝑠 𝜕

𝑙
𝜎𝛿0 (𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛).

Corollary 4.1. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. Then for each fixed (𝑠, 𝑑) ∈ T the func-
tions 𝜌𝑠,𝑑(𝜎) := 𝜌′ diffeomorphically, with the smoothness 𝐶𝑛+1, map the set Ξ onto the sets

Ξ̃𝑠,𝑑 := 𝜌𝑠,𝑑(Ξ). The functions 𝜎′(𝑠, 𝜌, 𝑑) := 𝜎̃𝑠,𝑑(𝜌) (𝜎̃𝑠,𝑑(𝜌) is the inverse function for 𝜌𝑠,𝑑(𝜎)),
𝛿′0(𝑠, 𝜌, 𝑑) := 𝛿0 (𝑠, 𝜎̃𝑠,𝑑(𝜌), 𝑑), 𝛿

′
𝑖(𝑠, 𝜌, 𝑑) := 𝛿𝑖 (𝑠, 𝜎̃𝑠,𝑑(𝜌), 𝑑) 𝛿

′
0 (𝑖 = 1, 3) have continuous on the

set Υ̃′ :=
{︁
(𝑠, 𝜌, 𝑑) : 𝑠 ∈ 𝐼𝑆, 𝜌 ∈ Ξ̃𝑠,𝑑, 𝑑 ∈ 𝐼𝐷

}︁
derivatives 𝜕𝑘𝜌𝜕

𝑙
𝑠𝜎

′ (𝑘 = 0, 𝑛− 𝑙 + 1, 𝑙 = 0, 𝑛),

𝜕𝑘𝑠 𝜕
𝑙
𝜌𝛿

′
𝑖 (𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛, 𝑖 = 0, 3).

By the identities (4.1) and Corollary 4.1, on the set T the function 𝑢 can be represented as

the sum 𝑢 =
4∑︀

𝑖=1

𝑢𝑖, where

𝑢𝑖(𝑠, 𝑑) :=

∫︁
Ξ̃𝑠,𝑑

𝑎𝑖𝑤
′
𝑖 𝑑𝜌 (𝑖 = 1, 3), 𝑢4(𝑠, 𝑑) :=

∫︁
𝐼𝑆∖Ξ

𝑤4𝑑𝜎,

𝑤′
𝑖(𝑠, 𝜌, 𝑑) := 𝛿′𝑖𝑣(𝑠+𝜎̃𝑠,𝑑(𝜌)) (𝑖 = 1, 3), 𝑤4(𝑠, 𝜎, 𝑑) := 𝑔 𝑣(𝑠+𝜎). Here the integrands 𝑎𝑖 (𝑖 = 1, 3)

have a singularity at 𝑑 = 𝜌 = 0, while for the functions 𝑤′
𝑖 (𝑖 = 1, 3) we can ensure an arrbitrary

smoothness in (𝑠, 𝜌) by an appropriate smoothness of the boundary curve 𝜕Ω and the density
𝑣: under the conditions 𝜕Ω ∈ 𝐶𝑛+2, 𝑣 ∈ 𝐶𝑛(𝜕Ω) (𝑛 ∈ Z+) there exist continuous on the set
Υ̃′ derivatives 𝜕𝑘𝑠 𝜕

𝑙
𝜌𝑤

′
𝑖 (𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛, 𝑖 = 1, 3). The integrand 𝑤4 can be also made

arbitrarily smooth in (𝑠, 𝜎) by an appropiate smoothness of 𝜕Ω and 𝑣: since 𝑟 ⩾ 𝜌′ > 0 for
𝜎 ̸= 0, (𝑠, 𝑑) ∈ T, under the conditions 𝜕Ω ∈ 𝐶𝑛+2, 𝑣 ∈ 𝐶𝑛(𝜕Ω) (𝑛 ∈ Z+) there exist continuous

derivatives 𝜕𝑘𝑠 𝜕
𝑙
𝜎𝑤4 (𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛) for 𝜎 ∈ 𝐼𝑆 ∖ [−Σ0,Σ0], (𝑠, 𝑑) ∈ T.

5. Description of semi–analytical approximations

for ND DLP near and at boundary of domain

Since 𝜌𝑠,𝑑(0) = 0 for (𝑠, 𝑑) ∈ T, by Corollary 4.1 there exist the numbers

P := min{−P−,P+}, P− := sup
(𝑠,𝑑)∈T

𝜌𝑠,𝑑(−Σ0) < 0, P+ := inf
(𝑠,𝑑)∈T

𝜌𝑠,𝑑(Σ0) > 0.

Since 𝜎̃𝑠,𝑑(0) = 0 for (𝑠, 𝑑) ∈ T, by Corollary 4.1 there exists a number

Σ1 := min {−Σ−,Σ+} ,
where

Σ− := sup
(𝑠,𝑑)∈T

𝜎̃𝑠,𝑑(−P) < 0, Σ+ := inf
(𝑠,𝑑)∈T

𝜎̃𝑠,𝑑(P) > 0.

By definition,
𝜌𝑠,𝑑 ([−Σ1,Σ1]) ⊆ [−P,P] ⊆ Ξ̃𝑠,𝑑 ((𝑠, 𝑑) ∈ T).

Let 𝐿 ∈ N,
ℎ(𝐿) :=

𝑆

2𝐿+ 1
, 𝑠𝑙 := 𝑙ℎ (𝑙 ∈ Z).

We note that 𝑠𝑙 ∈ 𝐼𝑆 for 𝑙 = −2𝐿− 1, 2𝐿+ 1 and 𝑥̃(𝑠𝑙+4𝐿+2) = 𝑥̃(𝑠𝑙) for all 𝑙 ∈ Z, in particular,
𝑥̃(𝑠−2𝐿−1) = 𝑥̃(𝑠2𝐿+1). In introduce the sets 𝐼𝐿 consisting of the points 𝑠2𝑙 for 𝑙 = −𝐿,𝐿 and

the sets T𝐿 := 𝐼𝐿 × 𝐼𝐷. We take a sufficiently large number 𝐿0 ∈ N such that ℎ ∈
(︂
0,

Σ1

3

]︂
for

𝐿 ⩾ 𝐿0.
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Let 𝐿 ⩾ 𝐿0. On the set T𝐿 we define the functions

P′(𝑠, 𝑑) := max
{︀
−P′

−,P
′
+

}︀
, P′

−(𝑠, 𝑑) := 𝜌𝑠,𝑑(𝑠−2𝐿′−1), P′
+(𝑠, 𝑑) := 𝜌𝑠,𝑑(𝑠2𝐿′+1),

Σ′
−(𝑠, 𝑑) := 𝜎̃𝑠,𝑑(−P′), Σ′

+(𝑠, 𝑑) := 𝜎̃𝑠,𝑑(P
′).

The values of function 𝐿′(𝑠, 𝑑) ∈ N are such that 𝑠2𝐿′+1 ⩽ Σ1, 𝑠2𝐿′+3 > Σ1. By definition,

[−P′,P′] ⊆ [−P,P] ⊆ Ξ̃𝑠,𝑑 ((𝑠, 𝑑) ∈ T𝐿).

On Figure 2 the segment [−P′,P′] is obtained under the assumptions

−P− > P+, −Σ− < Σ+, −P′
− < P′

+.

Moreover, by the definition,[︀
Σ′

−,Σ
′
+

]︀
⊇ [𝑠−2𝐿′−1, 𝑠2𝐿′+1] ⊇

[︂
−3Σ1

5
,
3Σ1

5

]︂
((𝑠, 𝑑) ∈ T𝐿),

since

𝑠2𝐿′+3 = (2𝐿′ + 3)ℎ > Σ1, and 𝑠2𝐿′+1 = (2𝐿′ + 1)ℎ >
(2𝐿′ + 1)Σ1

2𝐿′ + 3
⩾

3Σ1

5
for 𝐿′ ∈ N.

Thus, for all (𝑠, 𝑑) ∈ T𝐿, 𝐿 ⩾ 𝐿0 the segment [−P′,P′] is always in the domain, in which we
can pass from the integration variable 𝜎 to the integration variable 𝜌 = 𝜌′, and the boundaries

of the set 𝐼𝑆∖ [Σ′
−,Σ

′
+] do not approach the zero point closer than by the fixed distance

3Σ1

5
.

Figure 2. The scheme of obtaining the segments [−P′,P′]

On the sets [−P′,P′] ((𝑠, 𝑑) ∈ T𝐿) we define the sets of points {𝜌𝑠,𝑑,2𝑙+1}2𝐿
′+1

𝑙=−2𝐿′−2, which

consist of the points 𝜌𝑠,𝑑(𝑠2𝑙+1) (𝑙 = −𝐿′ − 1, 𝐿′) and their mirror symmetries with respect to
the point 𝜌 = 0:

{𝜌𝑠,𝑑,2𝑙+1}2𝐿
′+1

𝑙=−2𝐿′−2 := {±𝜌𝑠,𝑑(𝑠2𝑙+1)}𝐿
′

𝑙=−𝐿′−1 , 𝜌𝑠,𝑑,2𝑙−1 ⩽ 𝜌𝑠,𝑑,2𝑙+1

for 𝑙 = −2𝐿′ − 1, 2𝐿′ + 1, (𝑠, 𝑑) ∈ T𝐿, see Figure 3. We also define the sets of points

{𝜌𝑠,𝑑,2𝑙}2𝐿
′+1

𝑙=−2𝐿′−1:

𝜌𝑠,𝑑,2𝑙 := 2−1 (𝜌𝑠,𝑑,2𝑙−1 + 𝜌𝑠,𝑑,2𝑙+1) ,

and we denote by ℎ′𝑠,𝑑,𝑙 the lengths of segments [𝜌𝑠,𝑑,−2𝑙−1, 𝜌𝑠,𝑑,−2𝑙+1] (𝑙 = −2𝐿′ − 1, 2𝐿′ + 1). By
definition,

2𝐿′+1⋃︁
𝑙=−2𝐿′−1

[𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1] = [−P′,P′] ;
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the segments [𝜌𝑠,𝑑,−2𝑙−1, 𝜌𝑠,𝑑,−2𝑙+1] and [𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1] are symmetric with respect to the point
𝜌𝑠,𝑑,0 = 0: 𝜌𝑠,𝑑,−(2𝑙+1) = −𝜌𝑠,𝑑,2𝑙+1, ℎ

′
𝑠,𝑑,−𝑙 = ℎ′𝑠,𝑑,𝑙 (𝑙 = 0, 2𝐿′ + 1, (𝑠, 𝑑) ∈ T𝐿).

Figure 3. Sets of points {𝜌𝑠,𝑑,2𝑙+1}2𝐿
′+1

𝑙=−2𝐿′−2 and {𝜌𝑠,𝑑(𝑠2𝑙+1)}𝐿
′

𝑙=−𝐿′−1 for 𝐿
′ = 2

We define PQA 𝑣 of the density 𝑣 ∈ 𝐶(𝜕Ω) in the variable 𝑠 on the segments [𝑠2𝑙−1, 𝑠2𝑙+1]
with the nodes at points 𝑠2𝑙−1, 𝑠2𝑙, 𝑠2𝑙+1:

𝑣(𝑠) :=
1∑︁

𝑚=−1

𝑣(𝑠2𝑙+𝑚)Λ
[𝑠2𝑙−1,𝑠2𝑙+1]
𝑚 (𝑠) (𝑠 ∈ [𝑠2𝑙−1, 𝑠2𝑙+1] , 𝑙 = −𝐿,𝐿).

We define the functions 𝑤̃′
𝑖(𝑠, 𝜌, 𝑑) := 𝛿′𝑖𝑣(𝑠 + 𝜎̃𝑠,𝑑(𝜌)) (𝑖 = 1, 3), 𝑤̃4(𝑠, 𝜎, 𝑑) := 𝑔 𝑣(𝑠 + 𝜎). We

denote by 𝑤̂′
𝑖(𝑠, 𝜌, 𝑑) the PQA of functions 𝑤̃′

𝑖 (𝑖 = 1, 3) in the variable 𝜌 on the segments
[𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1] with nodes at points 𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙, 𝜌𝑠,𝑑,2𝑙+1:

𝑤̂′
𝑖(𝑠, 𝜌, 𝑑) := 𝑤̂′

𝑖,𝑙

(︀
𝜌 ∈ [𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1] , 𝑙 = −2𝐿′ − 1, 2𝐿′ + 1, (𝑠, 𝑑) ∈ T𝐿

)︀
,

𝑤̂′
𝑖,𝑙(𝑠, 𝜌, 𝑑) :=

⎧⎨⎩
1∑︀

𝑚=−1

𝑤̃′
𝑖(𝑠, 𝜌𝑠,𝑑,2𝑙+𝑚, 𝑑) Λ

[𝜌𝑠,𝑑,2𝑙−1,𝜌𝑠,𝑑,2𝑙+1]
𝑚 (𝜌) (𝜌𝑠,𝑑,2𝑙−1 < 𝜌𝑠,𝑑,2𝑙+1),

𝑤̃′
𝑖(𝑠, 𝜌𝑠,𝑑,2𝑙, 𝑑) (𝜌𝑠,𝑑,2𝑙−1 = 𝜌𝑠,𝑑,2𝑙+1).

We denote by 𝑤̂4,𝑙 the approximations of integrals
𝛽𝑠,𝑑,2𝑙+1∫︀
𝛽𝑠,𝑑,2𝑙−1

𝑤̃4(𝑠, 𝜎, 𝑑)𝑑𝜎 on the base of the Gauss

formulas with 𝛾 nodes

𝑤̂4,𝑙(𝑠, 𝑑) := ℎ′′𝑠,𝑑,𝑙

𝛾∑︁
𝑗=1

𝜂𝑗𝑤̃4(𝑠, 𝛽𝑠,𝑑,𝑙,𝑗, 𝑑) (𝑙 = −𝐿,𝐿, (𝑠, 𝑑) ∈ T𝐿).

Here

ℎ′′𝑠,𝑑,𝑙 := 2−1 (𝛽𝑠,𝑑,2𝑙+1 − 𝛽𝑠,𝑑,2𝑙−1) , 𝛽𝑠,𝑑,𝑙,𝑗 := 𝛽𝑠,𝑑,𝑙 + ℎ′′𝑠,𝑑,𝑙𝑧𝑗,

𝛽𝑠,𝑑,𝑙 := 2−1(𝛽𝑠,𝑑,2𝑙−1 + 𝛽𝑠,𝑑,2𝑙+1) (𝑙 = −𝐿,𝐿);
𝛽𝑠,𝑑,2𝑙−1 := min

{︀
𝑠2𝑙−1,Σ

′
−
}︀
, for 𝑙 = −𝐿, 0,

𝛽𝑠,𝑑,2𝑙+1 := max
{︀
𝑠2𝑙+1,Σ

′
+

}︀
for 𝑙 = 0, 𝐿 ((𝑠, 𝑑) ∈ T𝐿);

𝑧𝑗 are the roots of the polynomial

(︂
𝑑𝛾

𝑑𝑧𝛾

)︂(︀
𝑧2 − 1

)︀𝛾
on the interval (−1, 1); the weight coeffi-

cients 𝜂𝑗 obey the conditions
𝛾∑︀

𝑗=1

𝜂𝑗 = 2, 𝜂𝑗 > 0 [2, Ch. 3, Sect. 5]. By definition,

𝐿⋃︁
𝑙=−𝐿

[𝛽𝑠,2𝑙−1, 𝛽𝑠,2𝑙+1] = 𝐼𝑆 ∖ [Σ′
−,Σ

′
+], (𝑠, 𝑑) ∈ T𝐿.
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The semi–analytic approximations 𝑢̂(𝑠, 𝑑) of function 𝑢(𝑠, 𝑑) are defined on the sets T𝐿 by

means of sums 𝑢̂ :=
4∑︀

𝑖=1

𝑢̂𝑖, where

𝑢̂𝑖(𝑠, 𝑑) :=

∫︁
[−P′,P′]

𝑎𝑖𝑤̂
′
𝑖𝑑𝜌 ((𝑠, 𝑑) ∈ T𝐿, 𝑖 = 1, 3), (5.1)

𝑢̂4(𝑠, 𝑑) :=
𝐿∑︁

𝑙=−𝐿

𝑤̂4,𝑙 ((𝑠, 𝑑) ∈ T𝐿). (5.2)

Theorem 5.1. Let 𝜕Ω ∈ 𝐶2, 𝑣 ∈ 𝐶(𝜕Ω), 𝐿 ∈ N, 𝐿 ⩾ 𝐿0. Then the function 𝑢̂(𝑠, 𝑑) is
continuous on the set T𝐿 and can be defined by continuity for 𝑑 = 0 that makes it continuous
on the set T𝐿.

Proof. The observation point can differ from the nodes in the Gauss formula since 𝑟 > 0
for 𝜎 ∈ 𝐼𝑆 ∖ [𝑠−2𝐿′−1, 𝑠2𝐿′+1], (𝑠, 𝑑) ∈ T𝐿, and this is why the function 𝑢̂4 can be defined by
continuity for 𝑑 = 0 to a continuous function on the set T𝐿 by means of the formula (5.2).
The functions 𝑢̂𝑖 (𝑖 = 1, 3) can be represented as the sums

𝑢̂𝑖 :=
2𝐿′+1∑︁

𝑙=−2𝐿′−1

𝐽𝑖,𝑙, where 𝐽𝑖,𝑙(𝑠, 𝑑) :=

𝜌𝑠,𝑑,2𝑙+1∫︁
𝜌𝑠,𝑑,2𝑙−1

𝑎𝑖𝑤̂
′
𝑖,𝑙𝑑𝜌.

In their turn, the integrals 𝐽𝑖,𝑙 for (𝑠, 𝑑) ∈ T𝐿, 𝜌𝑠,𝑑,2𝑙−1 < 𝜌𝑠,𝑑,2𝑙+1 can be represented as the
sums

𝐽𝑖,𝑙 =
2∑︁

𝑗=0

𝐴𝑖,𝑗,𝑙𝛾𝑖,𝑗,𝑙, where 𝐴𝑖,𝑗,𝑙(𝑑) :=

𝜌𝑠,𝑑,2𝑙+1∫︁
𝜌𝑠,𝑑,2𝑙−1

𝑎𝑖𝜌
𝑗𝑑𝜌;

𝛾𝑖,𝑗,𝑙(𝑠, 𝑑) are the coefficients of the Lagrange polynomilas 𝑤̂′
𝑖,𝑙 = 𝛾𝑖,0,𝑙 + 𝛾𝑖,1,𝑙𝜌 + 𝛾𝑖,2,𝑙𝜌

2, which

are continuous on the set T𝐿 functions. The functions 𝐴𝑖,𝑗,𝑙 for (𝑠, 𝑑) ∈ T𝐿 are calculated by
the identities

𝐴𝑖,𝑗,𝑙(𝑑) = 𝐴𝑖,𝑗(𝜌𝑠,𝑑,2𝑙+1, 𝑑)− 𝐴𝑖,𝑗(𝜌𝑠,𝑑,2𝑙−1, 𝑑) (𝑗 = 0, 2, 𝑙 = −2𝐿′ − 1, 2𝐿′ + 1, 𝑖 = 1, 3), (5.3)

where

𝐴1,0(𝜌, 𝑑) := 𝜌𝐴−1,

𝐴1,1(𝜌, 𝑑) := −𝑑2𝐴−1 − 2−1 ln𝐴,

𝐴1,2(𝜌, 𝑑) := −𝜌− 𝑑2𝜌𝐴−1 + 2𝑑 arctan
(︁𝜌
𝑑

)︁
;

𝐴2,0(𝜌, 𝑑) := −𝑑𝜌𝐴−1 + arctan
(︁𝜌
𝑑

)︁
,

𝐴2,1(𝜌, 𝑑) := 𝑑3𝐴−1 + 𝑑 ln𝐴,

𝐴2,2(𝜌, 𝑑) := 2𝑑𝜌+ 𝑑3𝜌𝐴−1 − 3𝑑2 arctan
(︁𝜌
𝑑

)︁
;

𝐴3,0(𝜌, 𝑑) := 2𝜌+ 𝑑2𝜌𝐴−1 − 3𝑑 arctan
(︁𝜌
𝑑

)︁
,

𝐴3,1(𝜌, 𝑑) := 𝜌2 − 𝑑4𝐴−1 − 2𝑑2 ln𝐴,

𝐴3,2(𝜌, 𝑑) :=
2𝜌3

3
− 4𝑑2𝜌− 𝑑4𝜌𝐴−1 + 5𝑑3 arctan

(︁𝜌
𝑑

)︁
.

Therefore, by means of the identities (5.3) and 𝛾2,0,0 = 0 the integrals 𝐽𝑖,𝑙 can be defined for
𝑑 = 0 to continuous on the set T𝐿 functions, and then by the formulas (5.1) the functions
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𝑢̂𝑖 (𝑖 = 1, 3) can be defined to continuous on the set T𝐿 functions. At the same time the
integral 𝐽1,0(𝑠, 0) exists only in the sense of Hadamard finite value [25, Frm. (1.6.6)], the
integral 𝐽1,1(𝑠, 0) does only in the sense of Cauchy principal value; the other integrals 𝐽𝑖,𝑙(𝑠, 0)
are converging improper integrals. The proof is complete.

We introduce the PQA 𝑣′ of the density 𝑣 ∈ 𝐶(𝜕Ω) in the variable 𝑠 on the segments [𝑠2𝑙, 𝑠2𝑙+2]
with the nodes at the points 𝑠2𝑙, 𝑠2𝑙+1, 𝑠2𝑙+2:

𝑣′(𝑠) :=
1∑︁

𝑚=−1

𝑣(𝑠2𝑙+1+𝑚)Λ
[𝑠2𝑙,𝑠2𝑙+2]
𝑚 (𝑠)

(︀
𝑠 ∈ [𝑠2𝑙, 𝑠2𝑙+2] , 𝑙 = −𝐿,𝐿

)︀
.

We introduce the sets 𝐼 ′𝐿 consisting of the points 𝑠2𝑙+1 for 𝑙 = −𝐿,𝐿 and the set T′
𝐿 := 𝐼 ′𝐿× 𝐼𝐷.

By means of the functions 𝑣′, on the sets T′
𝐿 the approximations 𝑢̂′(𝑠, 𝑑) of function 𝑢 in the

same way how on the sets T𝐿 the approximations 𝑢̂(𝑠, 𝑑) were defined by means of the functions
𝑣. Similar to Theorem 5.1 we define the functions 𝑢̂′ at 𝑑 = 0 to continuous ones on the sets
T

′
𝐿.

The semi–analytic approximations 𝑈̆ (𝑥̃𝑑(𝑠)) of ND DLP 𝑈 (𝑥̃𝑑(𝑠)), which can be calculated
at each point 𝑥̃𝑑(𝑠) of a closed near–boundary domain Ω𝐷 under the condition 𝑣 ∈ 𝐶(𝜕Ω), are

defined by the formula 𝑈̆ := (2𝜋)−1𝑢̆, where

𝑢̆(𝑠, 𝑑) := 𝑢̂′(𝑠2𝑙−1, 𝑑)Λ
[𝑠2𝑙−1,𝑠2𝑙+1]
−1 (𝑠) + 𝑢̂(𝑠2𝑙, 𝑑)Λ

[𝑠2𝑙−1,𝑠2𝑙+1]
0 (𝑠) + 𝑢̂′(𝑠2𝑙+1, 𝑑)Λ

[𝑠2𝑙−1,𝑠2𝑙+1]
1 (𝑠), (5.4)

𝑑 ∈ 𝐼𝐷, 𝑠 ∈ [𝑠2𝑙−1, 𝑠2𝑙+1], 𝑙 = −𝐿,𝐿. The values of functions 𝑢̂, 𝑢̂′ for 𝑑 = 0, which are used
here, can be obtained via the continuous extension in accordance with Theorem 5.1.

6. Justification of possibility of tangential interpolation of

ND DLP near and at boundary of domain

In this section we prove the uniform convergence of the interpolants of the ND DLP with
respect to the variable 𝑠 in the closed near–boundary domain Ω𝐷. In order to do this, we first
obtain conditions for the existence and continuity of the tangent derivatives of the ND DLP in
the domain Ω𝐷.
Let 𝜌− < 0, 𝜌+ > 0 be constants such that [𝜌−, 𝜌+] ⊆ [P−,P+]. By 𝜎−, 𝜎+ we denote the

functions 𝜎−(𝑠, 𝑑) := 𝜎̃𝑠,𝑑(𝜌−), 𝜎+(𝑠, 𝑑) := 𝜎̃𝑠,𝑑(𝜌+). By Corollary 4.1 the functions −𝜎−, 𝜎+
are positive on the set T. According to the identities (4.1), for (𝑠, 𝑑) ∈ T the function 𝑢 can be

represented as the sum 𝑢 =
4∑︀

𝑖=1

𝑢𝑖, where

𝑢𝑖(𝑠, 𝑑) :=

𝜌+∫︁
𝜌−

𝑎𝑖𝑤
′
𝑖𝑑𝜌 (𝑖 = 1, 3), 𝑢4(𝑠, 𝑑) :=

∫︁
𝐼𝑆∖[𝜎−,𝜎+]

𝑤4𝑑𝜎. (6.1)

Theorem 6.1. Let 𝜕Ω ∈ 𝐶𝑛+4, 𝑣 ∈ 𝐶𝑛+2(𝜕Ω), 𝑛 ∈ Z+. Then the function 𝑢(𝑠, 𝑑) is
continuous on the set T and can be defined at 𝑑 = 0 to a continuous on the set T function.
On the set T, the function 𝑢(𝑠, 𝑑) defined to a continuous one, possesses the derivatives 𝜕𝑙𝑠𝑢
(𝑙 = 1, 𝑛), which are continuous on the sets T and 𝐼𝑆 for 𝑑 = 0. There exists uniformly in
𝑠 ∈ 𝐼𝑆 converging limits

lim
𝑑→±0

𝜕𝑙𝑠𝑢(𝑠, 𝑑) = ±𝜋
(︀
𝜕𝑙𝑠𝑤

′
2

)︀
(𝑠, 0, 0) + 𝜕𝑙𝑠𝑢(𝑠, 0) (𝑙 = 1, 𝑛, 𝑠 ∈ 𝐼𝑆), (6.2)

by means of which the derivatives 𝜕𝑙𝑠𝑢 (𝑙 = 1, 𝑛) can be defined to continuous either on the set
𝐼𝑆 × [0, 𝐷2] or on the set 𝐼𝑆 × [−𝐷1, 0] functions.
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Proof. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑣 ∈ 𝐶𝑛(𝜕Ω), 𝑛 ∈ Z+. Since 𝑟 > 0 for 𝜎 ∈ 𝐼𝑆 ∖ [𝜎−, 𝜎+], (𝑠, 𝑑) ∈ T, there

exist continuous derivatives 𝜕𝑙𝑠𝑤4 (𝑙 = 0, 𝑛) for 𝜎 ∈ 𝐼𝑆 ∖ [𝜎−, 𝜎+], (𝑠, 𝑑) ∈ T and according to
Corollary 4.1 the derivatives 𝜕𝑙𝑠𝜎−, 𝜕

𝑙
𝑠𝜎+ (𝑙 = 0, 𝑛) are continuous on the set T. This is why

the function 𝑢4 can be defined for 𝑑 = 0 to a continuous on T function means of corresponding
integrals (6.1), and then there exist continuous on the set T derivatives 𝜕𝑙𝑠𝑢4 (𝑙 = 1, 𝑛), which
can be represented as the linear combinations of the integrals∫︁

𝐼𝑆∖[𝜎−,𝜎+]

𝜕𝑙𝑠𝑤4𝑑𝜎

and the expressions of form

𝜕𝑙−𝑘
𝑠 𝑤4(𝑠, 𝜎±, 𝑑)𝜕

𝑘
𝑠𝜎± (𝑘 = 1, 𝑙, 𝑙 = 1, 𝑛).

The functions 𝑎𝑖 (𝑖 = 1, 3) are continuous for 𝑑 ∈ 𝐼𝐷, 𝜌 ∈ R. By Corollary 4.1 the derivatives
𝜕𝑙𝑠𝑤

′
𝑖 (𝑙 = 0, 𝑛, 𝑖 = 1, 3) are continuous on the set Υ̃′. This is why the functions 𝑢𝑖(𝑠, 𝑑)

(𝑖 = 1, 3) defined by the corresponding integrals (6.1) are continuous on the set T, and there
exist continuous on T derivatives

𝜕𝑙𝑠𝑢𝑖 =

𝜌+∫︁
𝜌−

𝑎𝑖𝜕
𝑙
𝑠𝑤

′
𝑖 𝑑𝜌 (𝑙 = 1, 𝑛, 𝑖 = 1, 3).

For 𝑑 ∈ 𝐼𝐷, 𝜌 ∈ R (except for 𝑑 = 𝜌 = 0) the function 𝑎3 is continuous and bounded:
|𝑎3| ⩽ 1, this is why the function 𝑢3 can be defined for 𝑑 = 0 to a continuous on T function
by the corresponding integrals (6.1), and then the derivatives 𝜕𝑙𝑠𝑢3 (𝑙 = 0, 𝑛) are continuous on
the set T and are calculated by the integrals

𝜕𝑙𝑠𝑢3 =

𝜌+∫︁
𝜌−

𝑎3𝜕
𝑙
𝑠𝑤

′
3 𝑑𝜌.

For each fixed 𝜀 ∈ (0, 𝜌+] ∩ (0,−𝜌−] we have uniformly in 𝑠 ∈ 𝐼𝑆 converging limits

lim
𝑑→0

−𝜀∫︁
𝜌−

𝑎2𝜕
𝑙
𝑠𝑤

′
2𝑑𝜌 = lim

𝑑→0

𝜌+∫︁
𝜀

𝑎2𝜕
𝑙
𝑠𝑤

′
2𝑑𝜌 = 0 (𝑙 = 0, 𝑛). (6.3)

We also have uniformly in 𝑠 ∈ 𝐼𝑆 converging limits

lim
𝜀→+0

⎛⎝ lim
𝑑→±0

𝜀∫︁
−𝜀

𝑎2𝜕
𝑙
𝑠𝑤

′
2𝑑𝜌

⎞⎠ (𝑠) = 2 lim
𝜀→+0

(︂
lim
𝑑→±0

(︀
𝜕𝑙𝑠𝑤

′
2

)︀
(𝑠, 𝜌𝑠,𝑑,𝜀, 𝑑)𝐴2,0(𝜀, 𝑑)

)︂
= ±𝜋

(︀
𝜕𝑙𝑠𝑤

′
2

)︀
(𝑠, 0, 0) (𝑙 = 0, 𝑛),

(6.4)

where 𝜌𝑠,𝑑,𝜀 is some point in the segment [−𝜀, 𝜀], the exact location of which depends (𝑠, 𝑑) ∈ T.
By the identities (6.3), (6.4) there exist uniformly in 𝑠 ∈ 𝐼𝑆 converging limits

lim
𝑑→±0

𝜕𝑙𝑠𝑢2(𝑠, 𝑑) = ±𝜋
(︀
𝜕𝑙𝑠𝑤

′
2

)︀
(𝑠, 0, 0) (𝑙 = 0, 𝑛). (6.5)

In view of the identities (6.5) and 𝑤′
2(𝑠, 0, 0) = 𝛿′2(𝑠, 0, 0) = 0 (𝑠 ∈ 𝐼𝑆) the function 𝑢2 becomes

continuous on the set T if we define being zero for 𝑑 = 0, 𝑠 ∈ 𝐼𝑆. This agrees with the formula
(6.1) since 𝑎2(𝜌, 0) = 0 for 𝜌 ̸= 0.
Let 𝜕Ω ∈ 𝐶𝑛+4, 𝑣 ∈ 𝐶𝑛+2(𝜕Ω), 𝑛 ∈ Z+. Using TFETIF, we represent the function 𝑤

′
1 as the

sum
𝑤′

1 = 𝑤′
1,0 + 𝑤′

1,1𝜌+ 𝑤′
1,2𝜌

2 ((𝑠, 𝑑) ∈ T, 𝜌 ∈ [𝜌−, 𝜌+]), (6.6)
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where

𝑤′
1,0(𝑠, 𝑑) := 𝑤′

1(𝑠, 0, 𝑑), 𝑤′
1,1(𝑠, 𝑑) := (𝜕𝜌𝑤

′
1) (𝑠, 0, 𝑑),

𝑤′
1,2(𝑠, 𝜌, 𝑑) := 𝜌−2

𝜌∫︁
0

(︀
𝜕2𝜌𝑤

′
1

)︀
(𝑠, 𝜍, 𝑑) (𝜌− 𝜍) 𝑑𝜍 (𝜌 ̸= 0),

𝑤′
1,2(𝑠, 0, 𝑑) := 2−1

(︀
𝜕2𝜌𝑤

′
1

)︀
(𝑠, 0, 𝑑).

The derivatives 𝜕𝑙𝑠𝑤
′
1,𝑗 (𝑙 = 0, 𝑛, 𝑗 = 0, 2) are continuous by Corollary 4.1: 𝜕𝑙𝑠𝑤

′
1,0, 𝜕

𝑙
𝑠𝑤

′
1,1 on

the set T, 𝜕𝑙𝑠𝑤
′
1,2 on the set Υ̃′. In accordance with the formulas (6.1), (6.6), for (𝑠, 𝑑) ∈ T we

represent the function 𝑢1 as the sum

𝑢1 =
2∑︁

𝑗=0

𝑢1,𝑗,

where

𝑢1,𝑗(𝑠, 𝑑) := 𝑤′
1,𝑗𝐴1,𝑗, 𝐴1,𝑗(𝑑) :=

𝜌+∫︁
𝜌−

𝑎1𝜌
𝑗 𝑑𝜌 (𝑗 = 0, 1), 𝑢1,2(𝑠, 𝑑) :=

𝜌+∫︁
𝜌−

𝑎1𝜌
2𝑤′

1,2 𝑑𝜌.

The functions 𝐴1,0(𝑑), 𝐴1,1(𝑑) can be defined for 𝑑 = 0 to continuous on the set 𝐼𝐷 functions

since −𝜌−, 𝜌+ > 0 and 𝐴1,𝑗(𝑑) = 𝐴1,𝑗(𝜌+, 𝑑)−𝐴1,𝑗(𝜌−, 𝑑) (𝑗 = 0, 1). We note that the obtained

in this way values 𝐴1,𝑗(0) (𝑗 = 0, 1) coincide respectively with the integral 𝐴1,0(0) in the sense

of Hadamard finite value, see the definion in [15, Frm. (1.6.5)] and with the integral 𝐴1,1(0) in
the sense of the Cauchy principle value. Let

𝑢1,𝑗(𝑠, 0) := 𝐴1,𝑗(0)𝑤
′
1,𝑗(𝑠, 0) (𝑠 ∈ 𝐼𝑆, 𝑗 = 0, 1).

Then the derivatives 𝜕𝑙𝑠𝑢1,𝑗 are continuous on T since

𝜕𝑙𝑠𝑢1,𝑗 = 𝐴1,𝑗𝜕
𝑙
𝑠𝑤

′
1,𝑗 (𝑙 = 0, 𝑛, 𝑗 = 0, 1).

We consider the representation of form

𝑢1,2 = 𝑢1,2,1 + 𝑢1,2,2,

where

𝑢1,2,𝑘(𝑠, 𝑑) :=

𝜌+∫︁
𝜌−

𝑎1,𝑘𝑤
′
1,2 𝑑𝜌 ((𝑠, 𝑑) ∈ T, 𝑘 = 1, 2) ,

𝑎1,1(𝜌, 𝑑) := −𝜌4𝐴−2, 𝑎1,2(𝜌, 𝑑) := 𝑑2𝜌2𝐴−2.

Taking into consideration that 𝑎1,1(𝜌, 0) = −1, 𝑎1,2(𝜌, 0) = 0 for 𝜌 ̸= 0, we define the functions
𝑢1,2,𝑘 for 𝑑 = 0:

𝑢1,2,1(𝑠, 0) := −
𝜌+∫︁

𝜌−

𝑤′
1,2

⃒⃒
𝑑=0

𝑑𝜌, 𝑢1,2,2(𝑠, 0) := 0 (𝑠 ∈ 𝐼𝑆).

Then the derivatives

𝜕𝑙𝑠𝑢1,2,1 =

𝜌+∫︁
𝜌−

𝑎1,1𝜕
𝑙
𝑠𝑤

′
1,2 𝑑𝜌 (𝑙 = 0, 𝑛)

exist and continuous on the set T since |𝑎1,1| ⩽ 1 for 𝑑 ∈ 𝐼𝐷, 𝜌 ∈ R except for 𝑑 = 𝜌 = 0. For
𝑑 ̸= 0, 𝑠 ∈ 𝐼𝑆 the function 𝑎1,2 does not change the sign on the integration segments [𝜌−, 𝜌+],
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and this is why by the mean value theorem 𝜕𝑙𝑠𝑢1,2,2 = 2−1𝑑𝐴2𝜕
𝑙
𝑠𝑤

′(𝑠, 𝜌𝑠,𝑑,𝑙, 𝑑). Here 𝜌𝑠,𝑑,𝑙 is some

point in [𝜌−, 𝜌+], the locatio of which depends on 𝑑, 𝑠, 𝑙; 𝐴2(𝑑) := 𝐴2,0(𝜌+, 𝑑)−𝐴2,0(𝜌−, 𝑑) is a
uniformly bounded in 𝑑 ∈ 𝐼𝐷 function. Therefore, as 𝑑→ 0, the values

𝜕𝑙𝑠𝑢1,2,2 =

𝜌+∫︁
𝜌−

𝑎1,2𝜕
𝑙
𝑠𝑤

′
1,2 𝑑𝜌

tend to the values 𝜕𝑙𝑠𝑢1,2,2(𝑠, 0) = 0 (𝑙 = 0, 𝑛) uniformly in 𝑠 ∈ 𝐼𝑆, that is, the derivatives 𝜕
𝑙
𝑠𝑢1,2,2

exist and continuous on the set T.
Thus, let

𝑢1(𝑠, 0) :=
1∑︁

𝑗=0

𝐴1,𝑗(0)𝑤
′
1,𝑗(𝑠, 0) + 𝑢1,2,1(𝑠, 0) (𝑠 ∈ 𝐼𝑆).

Then the function 𝑢1 and derivatives 𝜕𝑙𝑠𝑢1 (𝑙 = 1, 𝑛) are continuous on the set T. Finally, let

𝑢(𝑠, 0) := 𝑢1(𝑠, 0) + 𝑢3(𝑠, 0) + 𝑢4(𝑠, 0) (𝑠 ∈ 𝐼𝑆),

where 𝑢3(𝑠, 0), 𝑢4(𝑠, 0) are calculated by the corresponding integrals (6.1). Then by the above
proven facts the derivatives 𝜕𝑙𝑠𝑢(𝑠, 0) (𝑙 = 1, 𝑛) are continuous in 𝑠 ∈ 𝐼𝑆, the function 𝑢 is
continuous on the set T, and due uniformly in 𝑠 ∈ 𝐼𝑆 converging limits (6.5) there exist
uniformly in 𝑠 ∈ 𝐼𝑆 converging limits (6.2). These limits allow us to define the derivatives 𝜕𝑙𝑠𝑢
(𝑙 = 1, 𝑛) to continuous either on the set 𝐼𝑆 × [0, 𝐷2] or on the set 𝐼𝑆 × [−𝐷1, 0] functions. The
proof is complete.

We note that the possibility of defining ND DLP on the boundary of domain by continuity
was obtained in the known theorems [10, Sect. 2.5, Thms. 2.21, 2.23].
Let 𝜕Ω ∈ 𝐶4, 𝑣 ∈ 𝐶2(𝜕Ω). On the set T we define PQA 𝑢̈ of the function 𝑢 in the variable

𝑠 on the segments [𝑠2𝑙−1, 𝑠2𝑙+1] with the nodes at the points 𝑠2𝑙−1, 𝑠2𝑙, 𝑠2𝑙+1:

𝑢̈(𝑠, 𝑑) :=
1∑︁

𝑚=−1

𝑢(𝑠2𝑙+𝑚, 𝑑)Λ
[𝑠2𝑙−1,𝑠2𝑙+1]
𝑚 (𝑠) (𝑑 ∈ 𝐼𝐷, 𝑠 ∈ [𝑠2𝑙−1, 𝑠2𝑙+1] , 𝑙 = −𝐿,𝐿). (6.7)

The used values of function 𝑢(𝑠, 𝑑) for 𝑑 = 0, 𝑠 ∈ 𝐼𝑆 are obtained by the continuation by
continuity.

Theorem 6.2. Let 𝐿 ∈ N, 𝜕Ω ∈ 𝐶7, 𝑣 ∈ 𝐶5(𝜕Ω). Then, as 𝐿 → ∞, the functions 𝑢̈(𝑠, 𝑑)
converge to the functions 𝑢(𝑠, 𝑑) defined for 𝑑 = 0 by continuity, uniformly in (𝑠, 𝑑) ∈ T with
at least cubic rate.

Proof. By the estimate (3.5) and Theorem 6.1 the inequalities hold

|𝑢̈− 𝑢| ⩽ 𝑐𝜆ℎ
3 sup
(𝑠,𝑑)∈T

⃒⃒
𝜕3𝑠𝑢
⃒⃒

((𝑠, 𝑑) ∈ T). (6.8)

The proof is complete.

7. Proof of uniform convergence of semi–analytic approximations of

ND DLP near and at boundary of domain

On the sets T𝐿 we define the approximations 𝑢̃ of function 𝑢

𝑢̃(𝑠, 𝑑) :=

∫︁
𝐼𝑆

𝑔𝑣(𝑠+ 𝜎) 𝑑𝜎.
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Theorem 7.1. Let 𝜕Ω ∈ 𝐶4, 𝑣 ∈ 𝐶(𝜕Ω), 𝐿 ∈ N, 𝐿 ⩾ 𝐿0. Then the function 𝑢̃(𝑠, 𝑑) is
continuous on the set T𝐿 and can be defined for 𝑑 = 0 to a continuous on the set T𝐿 function.

Proof. The proof follows the lines of the proof of Theorem 6.1. We point out special moments.
Since the continuity is to be proved only on the set T𝐿, as 𝜌−, 𝜌+ we take the quantities

sup
(𝑠,𝑑)∈T

𝜌𝑠,𝑑(−ℎ) < 0, inf
(𝑠,𝑑)∈T

𝜌𝑠,𝑑(ℎ) > 0.

We represent the function 𝑢̃ as the sum 𝑢̃ =
4∑︀

𝑖=1

𝑢̃𝑖, where the functions 𝑢̃𝑖 (𝑖 = 1, 4) are similar

to the functions 𝑢𝑖 (𝑖 = 1, 4):

𝑢̃𝑖(𝑠, 𝑑) :=

𝜌+∫︁
𝜌−

𝑎𝑖𝑤̃
′
𝑖 𝑑𝜌 (𝑖 = 1, 3), 𝑢̃4(𝑠, 𝑑) :=

∫︁
𝐼𝑆∖[𝜎−,𝜎+]

𝑤̃4𝑑𝜎 ((𝑠, 𝑑) ∈ T𝐿).

The end points of segments [𝑠2𝑙−1, 𝑠2𝑙+1] are the nodes of PQA and this is why the function
𝑣(𝑠), as well as 𝑣(𝑠), is continuous on the set 𝐼𝑆. The identity

lim
𝑑→±0

𝑢̃2(𝑠, 𝑑) = 0,

which is similar to (6.5) for 𝑙 = 0, holds on the set 𝐼𝐿 since

𝑤̃′
2(𝑠, 0, 0) = 𝛿′2(𝑠, 0, 0) = 0 for 𝑠 ∈ 𝐼𝐿.

An identity similar to (6.6) holds for 𝜌 ∈ [𝜌−, 𝜌+], (𝑠, 𝑑) ∈ T𝐿 for the function 𝑤̃′
1 under the

condition 𝑣 ∈ 𝐶(𝜕Ω), which is weaker than the condition 𝑣 ∈ 𝐶2(𝜕Ω) for the function 𝑤′
1 since

for all 𝑣 ∈ 𝐶(𝜕Ω), 𝑠 ∈ 𝐼𝐿 the function 𝑣(𝑠 + 𝜎) is quadratic in the variable 𝜎 ∈ [−ℎ, ℎ]. The
proof is complete.

Theorem 7.2. Let 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝜕Ω ∈ 𝐶4. Then the functions 𝑢(𝑠, 𝑑), 𝑢̃(𝑠, 𝑑) defined by
continuity for 𝑑 = 0, obey the estimates for (𝑠, 𝑑) ∈ T𝐿

|𝑢− 𝑢̃| ⩽ 𝐶1 ‖𝑣‖𝐶4(𝜕Ω) ℎ
3 ln (2𝐿+ 1) ((𝑠, 𝑑) ∈ T𝐿), (7.1)

where 𝐶1 is a positive constant independent of 𝐿 and (𝑠, 𝑑).

Proof. Let 𝑣 ∈ 𝐶4(𝜕Ω). According to the identities (4.1), for (𝑠, 𝑑) ∈ T𝐿 the functions 𝑢, 𝑢̃ can
be represented as the sums

𝑢 =
3∑︁

𝑖=1

𝑢𝑖, 𝑢̃ =
3∑︁

𝑖=1

𝑢̃𝑖 (𝑖 = 1, 3),

where

𝑢𝑖(𝑠, 𝑑) :=

∫︁
𝐼𝑠

𝑎𝑖(𝜌
′, 𝑑)𝑤𝑖 𝑑𝜎, 𝑢̃𝑖(𝑠, 𝑑) :=

∫︁
𝐼𝑠

𝑎𝑖(𝜌
′, 𝑑)𝑤̃𝑖 𝑑𝜎, (7.2)

𝑤𝑖(𝑠, 𝜎, 𝑑) := 𝛿𝑖𝑣(𝑠+ 𝜎), 𝑤̃𝑖(𝑠, 𝜎, 𝑑) := 𝛿𝑖𝑣(𝑠+ 𝜎) (𝑖 = 1, 3).

The function 𝑎3(𝜌
′, 𝑑) is bounded for (𝑠, 𝑑) ∈ T, 𝜎 ∈ 𝐼𝑆: |𝑎3(𝜌′, 𝑑)| ⩽ 1. This is why in view of

the inequalities (3.5) we have the estimates

|𝑢̃3 − 𝑢3| ⩽ 𝑐3 ‖𝑣‖𝐶3(𝜕Ω) ℎ
3 sup
(𝑠,𝜎,𝑑)∈ϒ′

|𝛿3| ((𝑠, 𝑑) ∈ T𝐿), 𝑐3 := 2𝑆𝑐𝜆. (7.3)

There exist positive constants

𝑐′𝜌 := inf
(𝑠,𝜎,𝑑)∈ϒ

√︀
𝜓′
0, 𝑐′′𝜌 := sup

(𝑠,𝜎,𝑑)∈ϒ

√︀
𝜓′
0, 𝑐𝜌 :=

𝑐′′𝜌
𝑐′𝜌
.
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For (𝑠, 𝑑) ∈ T the inequalities hold∫︁
𝐼𝑆

|𝑎2(𝜌′, 𝑑)| 𝑑𝜎 ⩽
∫︁
𝐼𝑆

2 |𝑑|
(︀
𝜎𝑐′′𝜌
)︀2[︁(︀

𝑐′𝜌𝜎
)︀2

+ 𝑑2
]︁2𝑑𝜎 ⩽

2𝑐2𝜌
𝑐′𝜌

sup
𝑑∈𝐼𝐷

⃒⃒
𝐴2,0(𝑐

′
𝜌𝑆, |𝑑|)

⃒⃒
.

In view of the inequalities (3.5), we obtain the estimates

|𝑢̃2 − 𝑢2| ⩽ 𝑐2 ‖𝑣‖𝐶3(𝜕Ω) ℎ
3 ((𝑠, 𝑑) ∈ T𝐿), (7.4)

where

𝑐2 :=
2𝑐𝜆𝑐

2
𝜌

𝑐′𝜌
sup
𝑑∈𝐼𝐷

⃒⃒
𝐴2,0(𝑐

′
𝜌𝑆, |𝑑|)

⃒⃒
sup

(𝑠,𝜎,𝑑)∈ϒ′
|𝛿2| .

Letting

𝑧 = 𝑠+ 𝑠2𝑙 + 𝑡, 𝑓(𝑧) = 𝑣(𝑠+ 𝑠2𝑙 + 𝑡), 𝑧−1 = 𝑠+ 𝑠2𝑙−1,

𝑧1 = 𝑠+ 𝑠2𝑙+1, 𝑧0 = 𝑠+ 𝑠2𝑙, 𝑓(𝑧) = 𝑣(𝑠+ 𝑠2𝑙 + 𝑡)

in the formula (3.1), we arrive at the identities

𝑣(𝑠+ 𝑠2𝑙 + 𝑡)− 𝑣(𝑠+ 𝑠2𝑙 + 𝑡) = 𝑣3,𝑙𝑡 𝜔,

where

𝜔(𝑡) := (𝑡+ ℎ) (𝑡− ℎ) , 𝑣3,𝑙(𝑠, 𝑡) := 𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0), 𝑠 ∈ 𝐼𝐿, 𝑡 ∈ [−ℎ, ℎ], 𝑙 = −𝐿,𝐿.

We use TFETIF to get

𝛿1 − 𝛿1,0 = 𝛿1,1𝜎,

where

𝛿1,0(𝑠) := 𝛿1(𝑠, 0) = −1, 𝛿1,1(𝑠, 𝜎) := 𝜎−1

𝜎∫︁
0

(𝜕𝜎𝛿1) (𝑠, 𝜍)𝑑𝜍

for 𝜎 ̸= 0, 𝛿1,1(𝑠, 0) := (𝜕𝜎𝛿1) (𝑠, 0). We can write the deviation 𝑢1 − 𝑢̃1 for (𝑠, 𝑑) ∈ T𝐿 as

𝑢1 − 𝑢̃1 =
𝐿∑︁

𝑙=−𝐿

ℎ∫︁
−ℎ

(𝑔1,𝑙𝛿1(𝑠, 𝑠2𝑙 + 𝑡) + 𝑔2,𝑙𝛿1,1(𝑠, 𝑠2𝑙 + 𝑡)− 𝑔3,𝑙 𝑡) 𝑣3,𝑙𝜔 𝑑𝑡, (7.5)

where

𝑔1,𝑙(𝑠, 𝑡, 𝑑) := [(𝑎1(𝜌
′, 𝑑)− 𝑎1(𝜎, 𝑑)) 𝑡]𝜎=𝑠2𝑙+𝑡 ,

𝑔2,𝑙(𝑡, 𝑑) := [𝑎1(𝜎, 𝑑)𝜎𝑡]𝜎=𝑠2𝑙+𝑡 , 𝑔3,𝑙(𝑡, 𝑑) := [𝑎1(𝜎, 𝑑)]𝜎=𝑠2𝑙+𝑡 .

On the base of TFETIF

𝜓′
0 − 𝜓0,0 = 𝜓0,1𝜎 + 2𝑑𝜓2,

where

𝜓0,0(𝑠) := 𝜓0(𝑠, 0) = 1, 𝜓0,1(𝑠, 𝜎) := 𝜎−1

𝜎∫︁
0

(𝜕𝜎𝜓0) (𝑠, 𝜍)𝑑𝜍

for 𝜎 ̸= 0,

𝜓0,1(𝑠, 0) := (𝜕𝜎𝜓0) (𝑠, 0),

and the identity (𝜌′)2 = 𝜎2𝜓′
0 for (𝑠, 𝑑) ∈ T, 𝜎 ∈ 𝐼𝑆 we have the identities

𝑎1(𝜌
′, 𝑑)− 𝑎1(𝜎, 𝑑) = (𝜓0,1𝜎 + 2𝑑𝜓2) 𝑏, 𝑏(𝑠, 𝜎, 𝑑) :=

𝜓′
0𝜎

6 − (𝜓′
0 + 1) 𝑑2𝜎4 − 3𝑑4𝜎2

(𝜎2 + 𝑑2)2 (𝜎2𝜓′
0 + 𝑑2)2

.
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Moreover, ⃒⃒⃒⃒
𝑡

𝜎

⃒⃒⃒⃒
⩽ (2𝑙 − 1)−1

for 𝜎 = 𝑠±2𝑙 + 𝑡, 𝑡 ∈ [−ℎ, ℎ], 𝑙 = 1, 𝐿; for (𝑠, 𝑑) ∈ T, 𝜎 ∈ 𝐼𝑆 the absolute value of function
(𝜓0,1𝜎 + 2𝑑𝜓2) 𝑏𝜎 is bounded by some positive constant 𝑐′1 and |𝑎1(𝜎, 𝑑)𝜎2| ⩽ 1 for (𝜎, 𝑑) ∈ T.
This is why for (𝑠, 𝑑) ∈ T𝐿, 𝑡 ∈ [−ℎ, ℎ] we have the inequalities

|𝑔1,0| ⩽ 𝑐′1, |𝑔2,0| ⩽ 1; |𝑔1,𝑙| ⩽ (2 |𝑙| − 1)−1 𝑐′1, |𝑔2,𝑙| ⩽ (2 |𝑙| − 1)−1 (±𝑙 = 1, 𝐿). (7.6)

We also have the relations

𝐿∑︁
𝑙=1

2(2𝑙 − 1)−1 ⩽ ln (2𝐿+ 1) ,

ℎ∫︁
−ℎ

|𝜔| 𝑑𝑡 = 4

3
ℎ3. (7.7)

There exist positive constants 𝑐0 := sup
(𝑠,𝜎)∈Θ

|𝛿1|, 𝑐1 := sup
(𝑠,𝜎)∈Θ

|𝛿1,1|. By the formulas (7.6), (7.7),

(3.3) we obtain the estimates

𝐿∑︁
𝑙=−𝐿

⃒⃒⃒⃒
⃒⃒

ℎ∫︁
−ℎ

(𝑔1,𝑙𝛿1 + 𝑔2,𝑙𝛿1,1) 𝑣3,𝑙𝜔 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑐1,1 ‖𝑣‖𝐶3(𝜕Ω) ln (2𝐿+ 1)ℎ3 ((𝑠, 𝑑) ∈ T𝐿), (7.8)

where 𝑐1,1 :=
4

9
(𝑐′1𝑐0 + 𝑐1).

Since 𝜔(−𝑡) = 𝜔(𝑡) and 𝑔3,−𝑙(−𝑡, 𝑑) = 𝑔3,𝑙(𝑡, 𝑑) (𝑡 ∈ [−ℎ, ℎ], 𝑙 = 1, 𝐿), and the signs of the
functions 𝑔3,𝑙, 𝜔 do not change as 𝑡 ∈ [−ℎ, ℎ], in view of the formula (3.3) and the mean value
theorem for (𝑠, 𝑑) ∈ T𝐿, 𝑙 = 1, 𝐿 we have the identities

ℎ∫︁
−ℎ

𝑔3,−𝑙𝑣3,−𝑙𝑡𝜔 𝑑𝑡+

ℎ∫︁
−ℎ

𝑔3,𝑙𝑣3,𝑙𝑡𝜔 𝑑𝑡 =

ℎ∫︁
−ℎ

(𝑣3,𝑙(𝑠, 𝑡)− 𝑣3,−𝑙(𝑠,−𝑡)) 𝑡𝑔3,𝑙𝜔 𝑑𝑡

=6−1
(︀
𝑣(3)(𝑠+ 𝑠2𝑙 + 𝜁𝑙)− 𝑣(3)(𝑠− 𝑠2𝑙 − 𝜁𝑙)

)︀
𝜁𝑙

ℎ∫︁
−ℎ

𝑔3,𝑙𝜔 𝑑𝑡,

(7.9)

where 𝜁𝑙(𝑠, 𝑑) ∈ [−ℎ, ℎ]. For (𝑠, 𝑑) ∈ T𝐿, 𝑙 = 1, 𝐿 the inequalities hold⃒⃒
𝑣(3)(𝑠+ 𝑠2𝑙 + 𝜁𝑙)− 𝑣(3)(𝑠− 𝑠2𝑙 − 𝜁𝑙)

⃒⃒
⩽ ‖𝑣‖𝐶4(𝜕Ω) 2(2𝑙 + 1)ℎ,

|𝑔3,𝑙| ⩽ (2𝑙 − 1)−2ℎ−2, |𝜁𝑙| ⩽ ℎ,
(2𝑙 + 1)

(2𝑙 − 1)
⩽ 3.

(7.10)

By the relations (7.7), (7.9), (7.10) we get the estimates⃒⃒⃒⃒
⃒⃒ ∑︁
𝑙=−𝐿,−1, 1,𝐿

ℎ∫︁
−ℎ

𝑔3,𝑙𝑡𝑣3,𝑙𝜔 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑐1,2 ‖𝑣‖𝐶4(𝜕Ω) ln (2𝐿+ 1)ℎ3 ((𝑠, 𝑑) ∈ T𝐿), 𝑐1,2 :=

2

3
. (7.11)

Comparing the Newton formulas (3.1), (3.2) and letting 𝑧 = 𝑠 + 𝑡, 𝑧−1 = 𝑠− ℎ, 𝑧1 = 𝑠 + ℎ,
𝑧0 = 𝑠, we can represent the function 𝑣3,0 as the sum 𝑣3,0 = 𝑣3 + 𝑣4𝑡, where

𝑣3(𝑠) := 𝑓3(𝑧−1, 𝑧1, 𝑧0, 𝑧0), 𝑣4(𝑠, 𝑡) := 𝑓4(𝑧, 𝑧−1, 𝑧1, 𝑧0, 𝑧0), 𝑠 ∈ 𝐼𝐿, 𝑡 ∈ [−ℎ, ℎ].
Taking into consideration that

ℎ∫︁
−ℎ

𝑔3,0𝑡𝜔 𝑑𝑡 = 0 (𝑑 ∈ 𝐼𝐷) and
⃒⃒
𝑔3,0(𝑡, 𝑑)𝑡

2
⃒⃒
⩽ 1 (𝑑 ∈ 𝐼𝐷, 𝑡 ∈ [−ℎ, ℎ]),
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by the formulas (3.4) and

ℎ∫︁
−ℎ

|𝜔| 𝑑𝑡 = 4

3
ℎ3 we obtain the estimates

⃒⃒⃒⃒
⃒⃒

ℎ∫︁
−ℎ

𝑔3,0𝑡𝑣3,0𝜔 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒

ℎ∫︁
−ℎ

𝑔3,0𝑡
2𝑣4 𝜔 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑐1,3 ‖𝑣‖𝐶4(𝜕Ω) ℎ

3 ((𝑠, 𝑑) ∈ T𝐿), 𝑐1,3 := 18−1. (7.12)

By the formula (7.5) and estimates (7.8), (7.11), (7.12) we obtain

|𝑢1 − 𝑢̃1| ⩽ 𝑐1 ‖𝑣‖𝐶4(𝜕Ω) ln (2𝐿+ 1)ℎ3 ((𝑠, 𝑑) ∈ T𝐿), 𝑐1 := 𝑐1,1 + 𝑐1,2 + 𝑐1,3. (7.13)

In view of the formulas 𝑢 =
3∑︀

𝑖=1

𝑢𝑖, 𝑢̃ =
3∑︀

𝑖=1

𝑢̃𝑖 (𝑖 = 1, 3) and the estimates (7.3), (7.4), (7.13) for

(𝑠, 𝑑) ∈ T𝐿 we arrive at the estimates (7.1), where 𝐶1 := 𝑐1 + 𝑐2 + 𝑐3. By Theorem 6.1, 7.1 the
inequalities (7.1) can be extended by continuity to the entire set T𝐿. The proof is complete.

Let 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝑣 ∈ 𝐶(𝜕Ω). On the set T𝐿 we represent the function 𝑢̃ as the sum

𝑢̃ =
4∑︀

𝑖=1

𝑢̃𝑖, where

𝑢̃𝑖(𝑠, 𝑑) :=

∫︁
[−P′,P′]

𝑎𝑖𝑤̃
′
𝑖𝑑𝜌 (𝑖 = 1, 3), 𝑢̃4(𝑠, 𝑑) ≡

∫︁
𝐼𝑆∖[Σ′

−,Σ′
+]

𝑤̃4𝑑𝜎 ((𝑠, 𝑑) ∈ T𝐿).

Theorem 7.3. Let 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+2. Then, for (𝑠, 𝑑) ∈ T𝐿, the
functions 𝑢̃(𝑠, 𝑑), 𝑢̂(𝑠, 𝑑), defined by continuity for 𝑑 = 0, satisfy the estimates

|𝑢̂− 𝑢̃| ⩽ 𝐶2 ‖𝑣‖𝐶3(𝜕Ω) ℎ
3 ln (2𝐿+ 1) , (7.14)

where 𝐶2 is a positive constant independent of 𝐿 and (𝑠, 𝑑).

Proof. Let 𝑣 ∈ 𝐶3(𝜕Ω). We define the set

Υ′′ := 𝐼𝑆 ×
[︂
−3Σ1

5
,
3Σ1

5

]︂
× 𝐼𝐷.

Since 𝑟 > 0 for (𝑠, 𝜎, 𝑑) ∈ Υ ∖Υ′′, for 𝜕Ω ∈ 𝐶𝑛+1, 𝑛 ∈ Z+ we can define the positive constants

𝑐4,𝑗 := sup
(𝑠,𝜎,𝑑)∈ϒ∖ϒ′′

⃒⃒
𝜕𝑗𝜎𝑔
⃒⃒

(𝑗 = 0, 𝑛).

For 𝐿 ⩾ 𝐿0, (𝑠, 𝑑) ∈ T𝐿 we have the embeddings
[︀
−3Σ1

5
, 3Σ1

5

]︀
⊆ [𝑠−2𝐿′−1, 𝑠2𝐿′+1], and this is

why for (𝑠, 𝑑) ∈ T𝐿 and almost all 𝜎 ∈ 𝐼𝑆 ∖ [𝑠−2𝐿′−1,𝑠2𝐿′+1] the derivative 𝜕
2𝛾
𝜎 𝑤̃4 exists and by

the inequalities (3.7), (3.10) we have⃒⃒
𝜕2𝛾𝜎 𝑤̃4

⃒⃒
⩽ 𝑐4 ‖𝑣‖𝐶2(𝜕Ω) ((𝑠, 𝑑) ∈ T𝐿), 𝑐4 := 𝑐4,2𝛾𝑐Λ,0 + 2𝛾𝑐4,2𝛾−1𝑐Λ,1 + 𝛾(2𝛾 − 1)𝑐4,2𝛾−2𝑐Λ,2.

Using the estimate for the error term in the Gauss formulas [2, Ch. 3, Sect. 5, Subsect. 2],
we obtain the estimate for the error of approximation of function 𝑢̃4:

|𝑢̂4 − 𝑢̃4| ⩽ 𝑐4 ‖𝑣‖𝐶2(𝜕Ω) ℎ
2𝛾 ((𝑠, 𝑑) ∈ T𝐿), 𝑐4 := 2𝑆(𝛾!)4 [(2𝛾)!]−3 (2𝛾 + 1)−1𝑐4. (7.15)

By Corollary 4.1, for 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+ we can define the positive constants

𝑐𝑖,𝑗 := sup
(𝑠,𝜌,𝑑)∈ϒ̃′

⃒⃒
𝜕𝑗𝜌𝛿

′
𝑖

⃒⃒
(𝑗 = 0, 𝑛, 𝑖 = 0, 3).

For almost all (𝑠, 𝜌, 𝑑) ∈ Υ̃′ the derivatives 𝜕3𝜌𝑤̃
′
𝑖 (𝑖 = 1, 3) exist and by the inequalities (3.7),

(3.10) we have ⃒⃒
𝜕3𝜌𝑤̃

′
𝑖

⃒⃒
⩽ 𝑐𝑖 ‖𝑣‖𝐶2(𝜕Ω) ,
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where

𝑐𝑖 := 𝑐𝑖,3𝑐Λ,0 + (3𝑐𝑖,2𝑐0,0 + 3𝑐𝑖,1𝑐0,1 + 𝑐𝑖,0𝑐0,2) 𝑐Λ,1 + 3
(︀
𝑐𝑖,1𝑐

2
0,0 + 𝑐𝑖,0𝑐0,1𝑐0,0

)︀
𝑐Λ,2 (𝑖 = 1, 3).

Using the inequalities

ℎ′𝑠,𝑑,𝑙 ⩽ 𝑐′′𝜌ℎ ((𝑠, 𝑑) ∈ T𝐿, 𝑙 = −2𝐿′ − 1, 2𝐿′ + 1),

similar to the estimates (7.3), (7.4) we obtain the estimates for the errors of approximations of
functions 𝑢̃3, 𝑢̃2:

|𝑢̂𝑖 − 𝑢̃𝑖| ⩽ 𝑐𝑖 ‖𝑣‖𝐶2(𝜕Ω) ℎ
3 ((𝑠, 𝑑) ∈ T𝐿, 𝑖 = 2, 3). (7.16)

Here

𝑐2 := 2𝑐𝜆𝑐2(𝑐
′′
𝜌)

3 sup
𝑑∈𝐼𝐷

|𝐴2,0(P, |𝑑|)| , 𝑐3 := 2𝑆𝑐𝜆𝑐3(𝑐
′′
𝜌)

3.

Letting

𝑧 = 𝜌𝑠,𝑑,2𝑙 + 𝑡, 𝑓(𝑧) = 𝑤̃′
1(𝑠, 𝜌𝑠,𝑑,2𝑙 + 𝑡, 𝑑), 𝑧−1 = 𝜌𝑠,𝑑,2𝑙−1,

𝑧1 = 𝜌𝑠,𝑑,2𝑙+1, 𝑧0 = 𝜌𝑠,𝑑,2𝑙, 𝑓(𝑧) = 𝑤̂′
1(𝑠, 𝜌𝑠,𝑑,2𝑙 + 𝑡, 𝑑),

𝑡 ∈
[︀
−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙

]︀
, (𝑠, 𝑑) ∈ T𝐿, 𝑙 = −2𝐿′ − 1, 2𝐿′ + 1,

in the formula (3.1), we arrive at the identities

𝑤̃′
1(𝑠, 𝜌𝑠,𝑑,2𝑙 + 𝑡, 𝑑)− 𝑤̂′

1(𝑠, 𝜌𝑠,𝑑,2𝑙 + 𝑡, 𝑑) = 𝑤̂′
III,𝑙𝑡 𝜔𝑠,𝑑,𝑙,

where

𝜔𝑠,𝑑,𝑙(𝑡) :=
(︀
𝑡+ ℎ′𝑠,𝑑,𝑙

)︀ (︀
𝑡− ℎ′𝑠,𝑑,𝑙

)︀
, 𝑤̂′

III,𝑙(𝑠, 𝑡, 𝑑) := 𝑓3(𝑧, 𝑧−1, 𝑧1, 𝑧0).

For (𝑠, 𝑑) ∈ T𝐿 the deviation 𝑢̃1 − 𝑢̂1 can be written as

𝑢̃1 − 𝑢̂1 =
2𝐿′+1∑︁

𝑙=−2𝐿′−1

ℎ′
𝑠,𝑑,𝑙∫︁

−ℎ′
𝑠,𝑑,𝑙

𝑔𝑙𝑤̂
′
III,𝑙𝑡𝜔𝑠,𝑑,𝑙𝑑𝑡, 𝑔𝑙(𝑠, 𝑡, 𝑑) := [𝑎1(𝜌, 𝑑)]𝜌=𝜌𝑠,𝑑,2𝑙+𝑡 . (7.17)

Let us estimate the sum (7.17) without the term for 𝑙 = 0. Since

ℎ′𝑠,𝑑,−𝑙 = ℎ′𝑠,𝑑,𝑙, 𝜔𝑠,𝑑,−𝑙(−𝑡) = 𝜔𝑠,𝑑,𝑙(𝑡), 𝑔−𝑙(𝑠,−𝑡, 𝑑) = 𝑔𝑙(𝑠, 𝑡, 𝑑)

for 𝑡 ∈
[︀
−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙

]︀
, (𝑠, 𝑑) ∈ T𝐿, 𝑙 = 1, 2𝐿′ + 1, and the sign of function 𝑔𝑙, 𝜔𝑠,𝑑,𝑙 does not

change for 𝑡 ∈
[︀
−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙

]︀
, in view of the formula (3.3) and the mean value theorem for

(𝑠, 𝑑) ∈ T𝐿, 𝑙 = 1, 2𝐿′ + 1 we have the identities

ℎ′
𝑠,𝑑,−𝑙∫︁

−ℎ′
𝑠,𝑑,−𝑙

𝑔−𝑙𝑤̂
′
III,−𝑙𝑡𝜔𝑠,𝑑,−𝑙 𝑑𝑡+

ℎ′
𝑠,𝑑,𝑙∫︁

−ℎ′
𝑠,𝑑,𝑙

𝑔𝑙𝑤̂
′
III,𝑙𝑡𝜔𝑠,𝑑,𝑙 𝑑𝑡

=6−1
(︁[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁+𝑙

−
[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁−𝑙

)︁
𝜁𝑙

ℎ′
𝑠,𝑑,𝑙∫︁

−ℎ′
𝑠,𝑑,𝑙

𝑔𝑙𝜔𝑠,𝑑,𝑙 𝑑𝑡,

(7.18)

where

𝜁±𝑙 (𝑠, 𝑑) := ±𝜌𝑠,𝑑,2𝑙 ± 𝜁𝑙, 𝜁𝑙(𝑠, 𝑑) ∈
[︀
−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙

]︀
, 𝑙 = 1, 2𝐿′ + 1.
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We also have[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁+𝑙

−
[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁−𝑙

=
2∑︁

𝑘=0

(︁[︀
𝜕3−𝑘
𝜌 𝛿′1

]︀
𝜌=𝜁+𝑙

−
[︀
𝜕3−𝑘
𝜌 𝛿′1

]︀
𝜌=𝜁−𝑙

)︁ [︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁+𝑙

+
[︀
𝜕3−𝑘
𝜌 𝛿′1

]︀
𝜌=𝜁−𝑙

(︁[︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁+𝑙

−
[︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁+𝑙

)︁
+
[︀
𝜕3−𝑘
𝜌 𝛿′1

]︀
𝜌=𝜁−𝑙

(︁[︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁+𝑙

−
[︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁−𝑙

)︁
+
[︀
𝜕3−𝑘
𝜌 𝛿′1

]︀
𝜌=𝜁−𝑙

(︁[︀
𝜕𝑘𝜌𝑣

′]︀
𝜌=𝜁−𝑙

−
[︀
𝜕𝑘𝜌𝑣

′
]︀
𝜌=𝜁−𝑙

)︁
,

(7.19)

where

𝑣′(𝑠, 𝜌, 𝑑) := 𝑣(𝑠+ 𝜎̃𝑠,𝑑(𝜌)), 𝑣′(𝑠, 𝜌, 𝑑) := 𝑣(𝑠+ 𝜎̃𝑠,𝑑(𝜌)).

We define the positive constants

𝑐′1,0 := 𝑐1,0, 𝑐′1,𝑗 := max
{︀
𝑐1,𝑗, 𝑐

′
𝑖,𝑗−1

}︀
(𝑗 = 1, 𝑛);

𝑐′Λ := max {𝑐Λ,0, 𝑐Λ,1, 𝑐Λ,2} , 𝑐′𝜆 := max {𝑐𝜆,0, 𝑐𝜆,1, 𝑐𝜆,2} .

For 𝑣 ∈ 𝐶3(𝜕Ω), (𝑠, 𝜌, 𝑑) ∈ Υ̃′ we have the estimates⃒⃒
𝜕𝑗𝜌𝑣

′⃒⃒ ⩽ 𝑐𝑣,𝑗 ‖𝑣‖𝐶𝑗(𝜕Ω) (𝑗 = 0, 3),

where

𝑐𝑣,0 := 1, 𝑐𝑣,1 := max {𝑐0,0, 𝑐𝑣,0} ,
𝑐𝑣,2 := max

{︀
𝑐20,0 + 𝑐0,1, 𝑐𝑣,1

}︀
,

𝑐𝑣,3 := max
{︀
𝑐30,3 + 3𝑐0,0𝑐0,1 + 𝑐0,2, 𝑐𝑣,2

}︀
.

Moreover, 𝜌 ⩽ 𝜌𝑠,𝑑(𝑠2𝑙+1) ⩽ 𝑐′′𝜌𝑠2𝑙+1 if 𝜌 ∈ [𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1], 𝑙 = 1, 2𝐿′ + 1. Taking into

consideration the inequalities (3.7), (3.8), (3.10), (3.11), for 𝑡 ∈ [−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙], 𝑙 = 1, 2𝐿′ + 1,

(𝑠, 𝑑) ∈ T𝐿 we get the estimates⃒⃒⃒[︀
𝜕𝑗𝜌𝛿

′
1

]︀
𝜌=𝜁±𝑙

⃒⃒⃒
⩽ 𝑐𝛿 (𝑗 = 0, 3), 𝑐𝛿 : = 𝑐′1,3;⃒⃒⃒[︀

𝜕𝑗𝜌𝛿
′
1

]︀
𝜌=𝜁+𝑙

−
[︀
𝜕𝑗𝜌𝛿

′
1

]︀
𝜌=𝜁−𝑙

⃒⃒⃒
⩽ 𝑐′𝛿 (2𝑙 + 1)ℎ (𝑗 = 0, 3), 𝑐′𝛿 : = 2𝑐′1,4𝑐

′′
𝜌;⃒⃒⃒[︀

𝜕𝑗𝜌𝑣
′]︀
𝜌=𝜁+𝑙

−
[︀
𝜕𝑗𝜌𝑣

′]︀
𝜌=𝜁−𝑙

⃒⃒⃒
⩽ 𝑐′𝑣 ‖𝑣‖𝐶3(𝜕Ω) (2𝑙 + 1)ℎ (𝑗 = 0, 2), 𝑐′𝑣 : = 2𝑐𝑣,3𝑐

′′
𝜌;⃒⃒⃒[︀

𝜕𝑗𝜌𝑣
′
]︀
𝜌=𝜁±𝑙

⃒⃒⃒
⩽ 𝑐𝑣 ‖𝑣‖𝐶2(𝜕Ω) (𝑗 = 0, 2), 𝑐𝑣 : = 𝑐′Λ𝑐𝑣,2;⃒⃒⃒[︀

𝜕𝑗𝜌𝑣
′ − 𝜕𝑗𝜌𝑣

′]︀
𝜌=𝜁±𝑙

⃒⃒⃒
⩽ 𝑐′𝑣 ‖𝑣‖𝐶3(𝜕Ω) ℎ (𝑗 = 0, 2), 𝑐′𝑣 : = 𝑐′𝜆𝑐𝑣,3𝑐

′′
𝜌.

(7.20)

By the estimates (7.20) and identities (7.19), for 𝑡 ∈ [−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙], 𝑙 = 1, 2𝐿′ + 1, (𝑠, 𝑑) ∈ T𝐿

the estimates hold⃒⃒⃒[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁+𝑙

−
[︀
𝜕3𝜌𝑤̃

′
1

]︀
𝜌=𝜁−𝑙

⃒⃒⃒
⩽ 𝑐1,1 ‖𝑣‖𝐶3(𝜕Ω) (2𝑙 + 1)ℎ, 𝑐1,1 := 3 (𝑐′𝛿𝑐𝑣 + 𝑐𝛿 (2𝑐

′
𝑣 + 𝑐′𝑣)) . (7.21)

Let

𝜌′𝑠,𝑑,2𝑙−1 := min
{︀
−𝜌𝑠,𝑑(𝑠−(2𝑙−1)), 𝜌𝑠,𝑑(𝑠2𝑙−1)

}︀
, 𝑙 = 1, 𝐿′, (𝑠, 𝑑) ∈ T𝐿.

We observe that 𝜌 ⩾ 𝜌′𝑠,𝑑,1 ⩾ 𝑐′𝜌𝑠1 if 𝜌 ∈ [𝜌𝑠,𝑑,1, 𝜌𝑠,𝑑,3] and by the Dirichlet principle 𝜌 ⩾
𝜌′𝑠,𝑑,2𝑙′−1 ⩾ 𝑐′𝜌𝑠2𝑙′−1 if 𝜌 ∈ [𝜌𝑠,𝑑,2𝑙−1, 𝜌𝑠,𝑑,2𝑙+1], 𝑙 = 2𝑙′ + 𝑙′′, 𝑙′ = 1, 𝐿′, 𝑙′′ = 0, 1. This is why the
inequalities hold

|𝑔1| ⩽
(︀
𝑐′𝜌ℎ
)︀−2

for 𝑡 ∈ [−ℎ𝑠,𝑑,1, ℎ𝑠,𝑑,1],



SEMIANALYTIC APPROXIMATION OF NORMAL DERIVATIVE 39

and
|𝑔𝑙| ⩽

(︀
𝑐′𝜌ℎ
)︀−2

(2 |𝑙′| − 1)
−2

for 𝑡 ∈ [−ℎ′𝑠,𝑑,𝑙, ℎ′𝑠,𝑑,𝑙],
𝑙 = 2𝑙′ + 𝑙′′, 𝑙′ = 1, 𝐿′, 𝑙′′ = 0, 1 ((𝑠, 𝑑) ∈ T𝐿). Taking into consideration the inequalities

|𝜁𝑙| ⩽ 𝑐′′𝜌ℎ (𝑙 = 1, 2𝐿′ + 1),

(2𝑙 + 1)

(2𝑙′ − 1)
⩽ 7 (𝑙 = 2𝑙′ + 𝑙′′, 𝑙′ = 1, 𝐿′, 𝑙′′ = 0, 1)

and
ℎ′
𝑠,𝑑,𝑙∫︁

−ℎ′
𝑠,𝑑,𝑙

|𝜔𝑠,𝑑,𝑙| 𝑑𝑡 ⩽
4

3

(︀
𝑐′′𝜌ℎ
)︀3

(𝑙 = 1, 2𝐿′ + 1, (𝑠, 𝑑) ∈ T𝐿),

the identities (7.18) and estimates (7.21), similar to the inequalities (7.11) we obtain the esti-
mates⃒⃒⃒⃒
⃒⃒⃒ ∑︁
𝑙=−2𝐿′−1,−1, 1,2𝐿′+1

ℎ′
𝑠,𝑑,𝑙∫︁

−ℎ′
𝑠,𝑑,𝑙

𝑔𝑙𝑤̂
′
III,𝑙𝑡𝜔𝑠,𝑑,𝑙 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ ⩽ 𝑐1,1 ‖𝑣‖𝐶3(𝜕Ω) ln (2𝐿

′ + 1)ℎ3 ((𝑠, 𝑑) ∈ T𝐿). (7.22)

Here

𝑐1,1 :=
14

9
𝑐1,1
(︀
𝑐𝜌𝑐

′′
𝜌

)︀2
.

We proceed to estimate the term in the sum (7.17) for 𝑙 = 0. Comparing the Newton
formulas (3.1), (3.2) and letting 𝑧 = 𝑡, 𝑧−1 = −ℎ𝑠,𝑑,0, 𝑧1 = ℎ𝑠,𝑑,0, 𝑧0 = 0, for 𝑡 ∈ [−ℎ𝑠,𝑑,0, ℎ𝑠,𝑑,0],
(𝑠, 𝑑) ∈ T𝐿 we can represent the function 𝑤̂′

III,0as the sum

𝑤̂′
III,0 = 𝑤̂′

III + 𝑤̂′
IV𝑡,

where
𝑤̂′

III(𝑠, 𝑑) := 𝑓3(𝑧−1, 𝑧1, 𝑧0, 𝑧0), 𝑤̂′
IV(𝑠, 𝑡, 𝑑) := 𝑓4(𝑧, 𝑧−1, 𝑧1, 𝑧0, 𝑧0).

For almost all (𝑠, 𝜌, 𝑑) ∈ Υ̃′ the derivative 𝜕4𝜌𝑤̃
′
1 exists and by the formula (3.4) and inequalities

(3.7), (3.10) we have

|𝑤̂′
IV| ⩽ 24−1 sup

(𝑠,𝜌,𝑑)∈ϒ̃′

⃒⃒
𝜕4𝜌𝑤̃

′
1

⃒⃒
⩽ 24−1𝑐1,2 ‖𝑣‖𝐶2(𝜕Ω) ,

where

𝑐1,2 :=𝑐1,4𝑐Λ,0 + (4𝑐1,3𝑐0,0 + 6𝑐1,2𝑐0,1 + 4𝑐1,1𝑐0,2 + 𝑐1,0𝑐0,3) 𝑐Λ,1

+
(︀
6𝑐1,2𝑐

2
0,0 + 12𝑐1,1𝑐0,0𝑐0,1 + 3𝑐1,0𝑐

2
0,1 + 4𝑐1,0𝑐0,0𝑐0,2

)︀
𝑐Λ,2.

Taking into consideration that

ℎ𝑠,𝑑,0∫︁
−ℎ𝑠,𝑑,0

𝑔0𝑡𝜔𝑠,𝑑,0 𝑑𝑡 = 0,

ℎ𝑠,𝑑,0∫︁
−ℎ𝑠,𝑑,0

|𝜔𝑠,𝑑,0| 𝑑𝑡 ⩽
4

3

(︀
𝑐′′𝜌ℎ
)︀3

for (𝑠, 𝑑) ∈ T𝐿

and ⃒⃒
𝑔0𝑡

2
⃒⃒
⩽ 1 for (𝑠, 𝑑) ∈ T𝐿, 𝑡 ∈ [−ℎ𝑠,𝑑,0, ℎ𝑠,𝑑,0],

we obtain the estimates⃒⃒⃒⃒
⃒⃒⃒ ℎ𝑠,𝑑,0∫︁
−ℎ𝑠,𝑑,0

𝑔0𝑤̂
′
III,0𝑡𝜔𝑠,𝑑,0𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ =

⃒⃒⃒⃒
⃒⃒⃒ ℎ𝑠,𝑑,0∫︁
−ℎ𝑠,𝑑,0

𝑔0𝑡
2𝑤̂′

IV𝜔𝑠,𝑑,0𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ ⩽ 𝑐1,2 ‖𝑣‖𝐶2(𝜕Ω) ℎ

3 ((𝑠, 𝑑) ∈ T𝐿). (7.23)

Here 𝑐1,2 := 18−1𝑐1,2(𝑐
′′
𝜌)

3.
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By the formula (7.17) and estimates (7.22), (7.23) we obtain

|𝑢̂1 − 𝑢̃1| ⩽ 𝑐1 ‖𝑣‖𝐶3(𝜕Ω) ln (2𝐿
′ + 1)ℎ3 ((𝑠, 𝑑) ∈ T𝐿), 𝑐1 := 𝑐1,1 + 𝑐1,2. (7.24)

In view of the identities 𝑢̃ =
4∑︀

𝑖=1

𝑢̃𝑖, 𝑢̂ ≡
4∑︀

𝑖=1

𝑢̂𝑖 and estimates (7.15), (7.16), (7.24), for (𝑠, 𝑑) ∈ T𝐿

we obtain the estimates (7.14), where 𝐶2 := 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4. By Theorems 5.1, 7.1, the
inequalities (7.14) can be continued to the entire set T𝐿. The proof is complete.

By the inequalities (7.1), (7.14) under the conditions 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+2,
𝑣 ∈ 𝐶4(𝜕Ω) we obtain the estimates

|𝑢̂− 𝑢| ⩽ 𝐶0 ‖𝑣‖𝐶4(𝜕Ω) ℎ
3 ln (2𝐿+ 1) ((𝑠, 𝑑) ∈ T𝐿), 𝐶0 := 𝐶1 + 𝐶2. (7.25)

Similarly, there exists a positive constant 𝐶 ′
0 such that under the conditions 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0,

𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+2, 𝑣 ∈ 𝐶4(𝜕Ω) the estimates hold

|𝑢̂′ − 𝑢′| ⩽ 𝐶 ′
0 ‖𝑣‖𝐶4(𝜕Ω) ℎ

3 ln (2𝐿+ 1) ((𝑠, 𝑑) ∈ T
′
𝐿). (7.26)

According to the estimates (7.25), (7.26), the functions 𝑢̂, 𝑢̂′ approximate the function 𝑢 with

the error 𝑂(ℎ3 ln (2𝐿+ 1)) on the corresponding sets T𝐿, T
′
𝐿. Under the conditions 𝛾, 𝐿 ∈ N,

𝐿 ⩾ 𝐿0, 𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+2, 𝑣 ∈ 𝐶4(𝜕Ω) we have the estimates

|𝑢̆− 𝑢| ⩽ 𝐶 ‖𝑣‖𝐶4(𝜕Ω) ℎ
3 ln (2𝐿+ 1) ((𝑠, 𝑑) ∈ T𝐿 ∪ T

′
𝐿), 𝐶 := 𝐶0 + 𝐶 ′

0. (7.27)

According to the formulas (5.4), (6.7), for (𝑠, 𝑑) ∈ T the function 𝑢̆ − 𝑢̈ is calculated by the
formula

𝑢̆− 𝑢̈ = [𝑢̂′ − 𝑢]𝑠=𝑠2𝑙−1
Λ

[𝑠2𝑙−1,𝑠2𝑙+1]
−1 + [𝑢̂− 𝑢]𝑠=𝑠2𝑙

Λ
[𝑠2𝑙−1,𝑠2𝑙+1]
0 + [𝑢̂′ − 𝑢]𝑠=𝑠2𝑙+1

Λ
[𝑠2𝑙−1,𝑠2𝑙+1]
1 ,

that is, the function 𝑢̆− 𝑢̈ on the segments [𝑠2𝑙−1, 𝑠2𝑙+1] is described by the quadratic Lagrange
polynomials determined by the given values of the function 𝑢̆− 𝑢 at the nodes 𝑠2𝑙−1, 𝑠2𝑙, 𝑠2𝑙+1.
This is why in view of the inequalities (3.7), (7.27) under the conditions 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0,
𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+2, 𝑣 ∈ 𝐶4(𝜕Ω) we obtain the estimates

|𝑢̆− 𝑢̈| ⩽ 𝑐Λ,0𝐶 ‖𝑣‖𝐶4(𝜕Ω) ℎ
3 ln (2𝐿+ 1) ((𝑠, 𝑑) ∈ T). (7.28)

By the estimates (6.8), (7.28) under the conditions 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝐿 ⩾
𝑆2 − 1

2
, (ln(2𝐿+

1) ⩽ 2 |lnℎ|), 𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+3, 𝑣 ∈ 𝐶5(𝜕Ω) we get the estimates (2.2), where

𝑐 := 𝜋−1

(︃
𝑐Λ,0𝐶 ‖𝑣‖𝐶4(𝜕Ω) + 𝑐𝜆 sup

(𝑠,𝑑)∈T

⃒⃒
𝜕3𝑠𝑢
⃒⃒)︃

.

We arrive at the main statement of the work.

Corollary 7.1. Let 𝛾, 𝐿 ∈ N, 𝐿 ⩾ 𝐿0, 𝛾 ⩾ 2, 𝜕Ω ∈ 𝐶2𝛾+3, 𝑣 ∈ 𝐶5(𝜕Ω). Then, as 𝐿 → ∞,

the functions 𝑈̆ (𝑥̃𝑑(𝑠)) converge to the function 𝑈 (𝑥̃𝑑(𝑠)), defined for 𝑑 = 0 by continuity,
uniformly in (𝑠, 𝑑) ∈ T with the rate 𝑂 (ℎ3 lnℎ).

8. Numerical experiments

We consider ND DLP near and at the boundary of unit circle (𝑑 ∈ [−0.01, 0.01]) with the
density 𝑣(𝑠) = cos(𝑠) (𝑠 ∈ 𝐼𝑆 = [−𝜋, 𝜋]). The exact values of ND DLP 𝑈 (𝑥̃𝑑(𝑠)) are calculated
by the formulas

𝑈 = −2−1 cos(𝑠) for 𝑑 ∈ [0, 1],
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𝑈 = −2−1 cos(𝑠)

(1− 𝑑)2
for 𝑑 ∈ (−∞, 0] .

For this geometry the third of the radius of Lyapunov circle is 𝐷 =
2

3𝜋
≈ 0.21. The derivative

𝜕𝜎𝜌
′ is calculated by means of the expression

√
1− 𝑑 cos

(︁𝜎
2

)︁
for all (𝑠, 𝜎, 𝑑) ∈ Υ, and this

is why 𝜕𝜎𝜌
′ > 0 for 𝜎 ∈ (−𝜋, 𝜋), and as Σ0 we can take any number Σ0 ∈ (0, 𝜋), and by

the symmetry Σ1 = Σ0. We calculate the semi–analytic approximations of ND DLP 𝑈̆ (𝑥̃𝑑(𝑠))
are calculated by means of the formula (5.4), and for calculating the function 𝑢̂4 we use the
Gauss formula with 𝛾 = 2 nodes. The calculation of approximate and exact values of ND DLP
is made with the double precision on the sets 𝑋𝐿 formed by the points 𝑥̃𝑑𝑖(𝑠𝑙+ 𝑗

4
) (𝑖 = −5, 5,

𝑙 = −2𝐿− 1, 2𝐿, 𝑗 = 0, 3), where

𝑠𝑙+ 𝑗
4
:=

(︂
𝑙 +

𝑗

4

)︂
ℎ, 𝑑0 := 0, 𝑑±𝑖 := ±10𝑖+1, 𝑖 = 1, 4, 𝑑±5 := ±10−15.

To determine experimentally the approximation accuracy we find the values ∆𝑈 , which are the
maxima of absolute values of errors on the sets 𝑋𝐿:

∆𝑈(ℎ,Σ0) := max
𝑖=−5,5, 𝑙=−2𝐿−1,2𝐿, 𝑗=0,3

⃒⃒⃒
𝑈̆
(︁
𝑥̃𝑑𝑖(𝑠𝑙+ 𝑗

4
)
)︁
− 𝑈

(︁
𝑥̃𝑑𝑖(𝑠𝑙+ 𝑗

4
)
)︁⃒⃒⃒
.

In Table 1 in each cell we provide the values of ∆𝑈 calculated for given Σ0 and ℎ.

Table 1.

Σ0/𝜋 ℎ1 = 𝜋/15 ℎ2 = 𝜋/31 ℎ3 = 𝜋/63 ℎ4 = 𝜋/127 ℎ5 = 𝜋/255
0.006 7.70 · 100 6.94 · 100 5.39 · 100 2.30 · 100 5.07 · 10−2

0.01 4.33 · 100 3.56 · 100 2.02 · 100 8.17 · 10−2 6.91 · 10−3

0.03 9.60 · 10−1 1.88 · 10−1 3.22 · 10−3 4.41 · 10−4 4.70 · 10−5

0.05 2.87 · 10−1 5.63 · 10−3 1.07 · 10−3 6.39 · 10−5 6.08 · 10−6

0.068 3.06 · 10−2 1.01 · 10−3 1.63 · 10−4 1.87 · 10−5 1.18 · 10−6

0.10 3.27 · 10−3 6.27 · 10−4 3.48 · 10−5 3.47 · 10−6 2.17 · 10−7

0.15 4.25 · 10−4 9.74 · 10−5 8.85 · 10−6 1.00 · 10−6 8.35 · 10−8

0.50 2.96 · 10−4 3.78 · 10−5 5.14 · 10−6 6.60 · 10−7 6.82 · 10−8

0.90 4.66 · 10−4 5.35 · 10−5 6.83 · 10−6 7.68 · 10−7 7.43 · 10−8

0.99 1.29 · 10−2 2.00 · 10−3 2.21 · 10−4 3.68 · 10−5 4.79 · 10−6

0.999 1.79 · 10−1 4.06 · 10−2 9.10 · 10−3 1.91 · 10−3 3.44 · 10−4

0.9999 1.85 · 100 4.34 · 10−1 1.04 · 10−1 2.53 · 10−2 6.02 · 10−3

0.99999 1.85 · 101 4.37 · 100 1.06 · 100 2.60 · 10−1 6.37 · 10−2

Calculating the degree of convergence rates

𝜐 := ln

(︂
∆𝑈(ℎ𝑘)

∆𝑈(ℎ𝑘+1)

)︂
/ln

(︂
ℎ𝑘
ℎ𝑘+1

)︂
while passing from the discretization step ℎ𝑘 to ℎ𝑘+1 (𝑘 = 1, 4), we observe that in a wide range
of possible values of Σ0 the proposed semi–analytical approximation has a uniform almost cubic
rate of convergence (𝜐 ≈ 3) in the closed near–boundary domain, which is in good agreement
with Corollary 7.1. In particular, a pronounced cubic rate of convergence is observed for the

value
Σ0

𝜋
= 𝜋−1 arcsin𝐷 ≈ 0.068, when the distance from the observation point to the nearest

nodes in the Gauss formulas is approximately equal to the third of radius of Lyapunov circle (see
the remark after Theorem 4.1). The convergence rate decreases with decreasing Σ0, when the
observation point 𝑥̃𝑑(𝑠) approaches the nodes in the Gauss formulas, and as Σ0 → 𝜋, when the
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Jacobian (𝜕𝜎𝜌
′)−1, which makes the passage from the integration variable over the arc length

𝜎 to the variable 𝜌, increases unboundedly.
Thus, the proposed combined method, which uses the exact integration with respect to

the variable 𝜌 on a fixed length part of the boundary near the observation point and the
Gauss formula on the rest of the boundary, ensures uniform almost cubic convergence of the
approximations of the ND DLP in the near–boundary domain including the boundary. In this
case, the part of the boundary on which the exact integration with respect to 𝜌 is made should
be made as large as possible to achieve the greatest accuracy, provided that the Jacobian of
the transition to the variable 𝜌 remains positive and does not take on too large values.
Now we consider the calculation of ND DLP with the density 𝑣(𝑠) = cos(𝑠) at some distance

from the boundary of the unit circle (𝑑 ⩾ 0.01 and 𝑑 ⩽ −0.01). Here for 𝑑 ∈ (−∞, 1), 𝑠 ∈ 𝐼𝑆
the correspondence between the points 𝑥̃(𝑠) and 𝑥̃𝑑(𝑠) is one–to–one 1−𝑑𝐾(𝑠) = 1−𝑑 > 0, and
this is why as the set 𝐼𝐷 we can take any segment [−𝐷1, 0)∪ (0, 𝐷2], where 𝐷1 > 0, 𝐷2 ∈ (0, 1).
The possibility to choose the number Σ0 is independent of the choice of numbers 𝐷1, 𝐷2 since
𝜕𝜎𝜌

′ =
√
1− 𝑑 cos

(︀
𝜎
2

)︀
> 0 for all 𝑑 ∈ (−∞, 1), 𝜎 ∈ (−𝜋, 𝜋). For fixed 𝑑 we calculate the values

of functions 𝑈̆ (𝑥̃𝑑(𝑠)) (for 𝛾 = 2) and 𝑈 (𝑥̃𝑑(𝑠)) on the sets 𝑋 ′
𝐿(𝑑) formed by the points 𝑥̃𝑑(𝑠𝑙+ 𝑗

4
)

(𝑙 = −2𝐿− 1, 2𝐿, 𝑗 = 0, 3). For the experimental determination of approximation accuracy we
find the values ∆′𝑈 , which are the absolute values of errors on the sets 𝑋 ′

𝐿(𝑑) for fixed values
𝑑, Σ0:

∆′𝑈(𝑑, ℎ,Σ0) := max
𝑙=−2𝐿−1,2𝐿, 𝑗=0,3

⃒⃒⃒
𝑈̆
(︁
𝑥̃𝑑
(︀
𝑠𝑙+ 𝑗

4

)︀)︁
− 𝑈̆

(︁
𝑥̃𝑑
(︀
𝑠𝑙+ 𝑗

4

)︀)︁⃒⃒⃒
.

In Table 2 in each cell we provide two series of values ∆′𝑈 : for Σ0 = 𝜋
2
and Σ0 = 0 (from

top to down) calculated for given values of 𝑑 and ℎ.
The data in Table 2 indicate that the use of exclusively Gauss formulas for calculating the

integrals arising after PQA of the density ensures the cubic convergence of the approximations
of the ND DLP only at some distance from the boundary, and it is impossible in a sufficiently
narrow closed near–boundary domain. The semi–analytical approximations 𝑈̆ (𝑥̃𝑑(𝑠)) converge
with an almost cubic rate uniformly in (𝑠, 𝑑) ∈ T in a wide range of possible values of 𝐷1, 𝐷2.
The convergence rate decreases as 𝑑 → 1 (the points 𝑥̃𝑑(𝑠) approach the center of the circle),
when the Jacobian (𝜕𝜎𝜌

′)−1 increases unboundedly.

9. Conclusion

In this paper, we obtain semi–analytical approximations of ND DLP for the two–dimensional
Laplace equation 𝑈̆ (𝑥̃𝑑(𝑠)), which converge uniformly in a closed near–boundary domain Ω𝐷

including the boundary with the rate 𝑂(ℎ3 lnℎ) under the conditions 𝜕Ω ∈ 𝐶7, 𝑣 ∈ 𝐶5(𝜕Ω).
We use quadratic polynomials and the Gauss formulas of at least fifth order to approximate
slowly varying functions. In the same way, for each 𝑛 ∈ N, one can obtain approximations
converging uniformly with the rate 𝑂(ℎ2𝑛+1 lnℎ) if one uses polynomials of degree 2𝑛 and the
Gauss formulas of order at least 𝑂(ℎ2𝑛+3).
The disadvantages of the method include the rather high requirements imposed on the

smoothness of the boundary curve 𝜕Ω. In addition, the issue on approximation of the boundary
in the framework of this method was not studied. The advantage of the method is the pos-
sibility of its implementation for any analytically defined boundary curves. Suppose that the
boundary approximation is an independent problem and it is satisfactorily solved by using an
analytically defined curve that has sufficient smoothness, that is, such a curve can be treated
as the true boundary of the domain. Then the proposed method can always be implemented,
regardless of the complexity of curve. To implement other semi–analytical methods based on
exact integration over the arc length, additional approximation of the coordinate functions of
the curve is required: piecewise constant, piecewise linear or piecewise quadratic, which leads
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Table 2.

𝑑 ℎ1 = 𝜋/15 ℎ2 = 𝜋/31 ℎ3 = 𝜋/63 ℎ4 = 𝜋/127 ℎ5 = 𝜋/255
0.01 2.96 · 10−4

5.92 · 100
3.78 · 10−5

1.18 · 101
5.14 · 10−6

1.96 · 101
6.60 · 10−7

1.99 · 101
6.82 · 10−8

7.23 · 100
0.1 3.72 · 10−4

1.73 · 100
3.47 · 10−5

4.01 · 10−1
3.87 · 10−6

2.24 · 10−2
4.73 · 10−7

5.27 · 10−5
5.84 · 10−8

5.84 · 10−8

0.5 2.98 · 10−4

4.24 · 10−4
3.28 · 10−5

3.26 · 10−5
3.88 · 10−6

3.88 · 10−6
4.73 · 10−7

4.73 · 10−7
5.84 · 10−8

5.84 · 10−8

0.9 3.10 · 10−4

2.89 · 10−4
3.32 · 10−5

3.26 · 10−5
3.90 · 10−6

3.88 · 10−6
4.74 · 10−7

4.73 · 10−7
6.01 · 10−8

5.84 · 10−8

0.99 3.08 · 10−4

2.89 · 10−4
3.32 · 10−5

3.26 · 10−5
3.90 · 10−6

3.88 · 10−6
4.74 · 10−7

4.73 · 10−7
2.65 · 10−7

5.84 · 10−8

0.999 3.08 · 10−4

2.89 · 10−4
3.29 · 10−5

3.26 · 10−5
5.46 · 10−6

3.88 · 10−6
6.74 · 10−6

4.73 · 10−7
5.50 · 10−4

5.84 · 10−8

0.9999 6.59 · 10−4

2.89 · 10−4
3.26 · 10−3

3.26 · 10−5
1.64 · 10−2

3.87 · 10−6
7.34 · 10−2

4.73 · 10−7
3.79 · 10−1

5.84 · 10−8

0.99999 5.87 · 10−1

2.89 · 10−4
1.12 · 100
3.26 · 10−5

2.04 · 101
3.88 · 10−6

2.13 · 101
4.73 · 10−7

7.28 · 102
5.84 · 10−8

-0.01 2.90 · 10−4

5.86 · 100
3.68 · 10−5

1.15 · 101
4.99 · 10−6

1.93 · 101
6.40 · 10−7

1.98 · 101
6.65 · 10−8

7.33 · 100
-0.1 2.86 · 10−4

1.73 · 100
2.83 · 10−5

4.80 · 10−1
3.20 · 10−6

3.47 · 10−2
3.91 · 10−7

1.54 · 10−4
4.83 · 10−8

4.83 · 10−8

-1 7.33 · 10−5

1.06 · 10−4
8.17 · 10−6

8.15 · 10−6
9.70 · 10−7

9.69 · 10−7
1.18 · 10−7

1.18 · 10−7
1.46 · 10−8

1.46 · 10−8

-10 2.36 · 10−6

2.39 · 10−6
2.68 · 10−7

2.69 · 10−7
3.20 · 10−8

3.20 · 10−8
3.91 · 10−9

3.91 · 10−9
4.83 · 10−10

4.83 · 10−10

-100 2.80 · 10−8

2.84 · 10−8
3.18 · 10−9

3.19 · 10−9
3.80 · 10−10

3.80 · 10−10
4.64 · 10−11

4.64 · 10−11
5.74 · 10−12

5.73 · 10−12

to the appearance of a false boundary, which is extremely undesirable in calculations near and
at the boundary [27], [26].
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