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SEMIANALYTIC APPROXIMATION OF NORMAL
DERIVATIVE OF DOUBLE LAYER POTENTIAL NEAR AND
AT BOUNDARY OF TWO-DIMENSIONAL DOMAIN

D.Yu. IVANOV

Abstract. The normal derivatives (ND) of the double layer potential (DLP) are defined
on a boundary of a domain by hyper—singular integrals. This is why, it is impossible to
calculate ND DLP with a satisfactory accuracy either on the boundary or in its vicinity using
traditional quadrature formulas, which allow one to calculate ND DLP with a good accuracy
at a sufficient distance from the boundary. In the present paper, we obtain semi—analytical
approximations of ND DLP for the two—dimensional Laplace equation, which uniformly
converge with an almost cubic velocity in a closed near-boundary domain that includes
the boundary. For this purpose, we use exact integration over the smooth component of
the distance function near the observation point, an additive-multiplicative method for
extracting a singularity, and a piecewise quadratic interpolation of slowly varying functions.
We provide the results of calculating ND DLP in a closed near-boundary domain of a unit
circle, which confirm the uniform almost cubic convergence of the proposed approximations.

Keywords: quadratic formulas, analytic integration, double layer potential, uniform con-
vergence.
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1. INTRODUCTION

The boundary element method (BEM), along with the finite element method (FEM) and
the finite difference method (FDM), is one of the main methods for the approximate solving
of boundary value problems |3, Sect. 2.5]. In the BEM, the discretization is performed only
on the boundary 02 of a domain (2, in contrast to the FEM and FDM, where it is necessary
to discretize the entire domain ). The BEM is based on the analytical method of boundary
integral equations (BIE) [16, Sect. 1.1]. In the framework of the BIE method, the solution
to the boundary value problem at any point x € 2 is sought in the form of the so—called
potential, which, using the integral operator, is expressed through the unknown density defined
on the boundary 0f2 as a solution to the BIE. In two—dimensional problems, the potentials
are curvilinear integrals over the arc length s. The BIE operator is also expressed in terms
of the potentials and their derivatives defined on the boundary 0f). For example, solutions of
the internal and external Dirichlet problems are expressed as a double layer potential (DLP),
where the density is a solution of the corresponding BIE of the second kind, the integral
operator of which also has the form of a DLP [10, Sect. 3.4]. Therefore, to implement the
BEM, an approximation of the potentials and their derivatives is required. For this purpose,
within the framework of the two—dimensional BEM, the curve 0f) is divided into arcs, the
so—called boundary elements (BE). On each BE, the density is approximated by a polynomial
coinciding with the density at the given nodes, that is, the piecewise polynomial interpolation is
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performed. The integrals arising on the BE cannot be calculated exactly in the general case. To
calculate them, quadrature formulas are used, usually these are the Gauss formulas |2, Ch. 3,
Sect. 5, Subsect. 3]. Gauss formulas allow one to attain a satisfactory accuracy if the potential
is calculated at a sufficient distance from the boundary 0€2. If the observation point x, at which
the potential is calculated, is located sufficiently close to the nodes of the Gauss formula, the
accuracy, as a rule, becomes unsatisfactory. This phenomenon, called the boundary layer effect
[32], is due to the fact that the kernel of the integral operator K (x,z’) has a singularity at
x =2’ € 010, and it is impossible to calculate the potential at the nodes of the Gauss formula.
The integrals on the GE are called singular (SI) if the observation point x belongs to the BE,
and almost singular (ASI) if the point z is sufficiently close to the BE [28].

The need for calculations near the boundary of the domain arises when solving problems in

thin-walled and multilayer structures, thin coatings, films, at the ends of cracks [23], |25], [31].
To calculate the SI and ASI, special methods are used, including semi-analytical ones [11]-[14],
(171, 1231, [24], 127], [29], [30], [31]. One of such methods, outlined in [24], [27], [31] and proposed

for approximating two-dimensional potentials and their derivatives near and at the boundary
09, is based on the passage from the integration variable s to the variable p = (r? — dQ)%, where
r and d are the distances from the observation point x to the integration point ' € 02 and
to the curve 02, respectively. The integrals over p are calculated exactly. For this purpose, a
multiplicative method of extracting a singularity is used: the integrand is split into two factors,
one of which, including the Jacobian, is a slowly varying function and is therefore approximated
by polynomials, while the other factor, singular or close to singular, is taken as a weight function.
This approach has two advantages. First, as it was shown in [{], it can be implemented for
any sufficiently smooth analytically defined curve 02 since the integrals over the variable p
are calculated exactly in many known cases and depend on the curve 9€) only parametrically,
that is, the coordinate functions of the curve 02 cannot fundamentally change the form of the
integrand. Second, there are no visible reasons preventing unbounded growth of approximation
order in the framework of this method. Indeed, the approximation order is determined by the
order of the polynomial in the numerator, therefore, the complexity of the integral does not
increase essentially while increasing the order of polynomial. We note that in the framework
of semi—analytical methods based on the approximation of integrals over the arc length s, the
unbounded growth of the approximation order is prevented by the fact that the powers of the
distance function r*" (n € IN) are in the denominator of the integrand. Indeed, in order to make
the exact integration possible, the function r? is replaced by a polynomial in powers of s. Since
the polynomial is in the denominator, its degree cannot exceed two, otherwise obtaining an
analytical expression for the antiderivative becomes difficult. Therefore, linear approximation
of coordinate functions is mainly used [11|-[14], [17], [23], [29]. If the quadratic approximation
is employed, then the polynomial obtained instead of r? is still truncated to a quadratic one
[30], and within this approach, usage of higher—degree polynomials to approximate coordinate
functions makes no sense.

In works of the author, by using exact integration with respect to the variable p, there
were obtained uniformly converging approximations of the thermal potential of a simple layer
potential (SLP) near the boundary of a two-dimensional domain [1], approximations of the
thermal DLP [5], approximations of the DLP for the Laplace equation [6|, approximations of
the normal derivative of the thermal SLP [7], approximations of the DLP for the dissipative
Helmholtz equation [8], approximations of the ND SLP for the Laplace equation [9]. In the
present work, on the base of exact integration with respect to the variable p, we obtain uniformly
converging approximations of the ND DLP for the two—dimensional Laplace equation near and
at the boundary. The need to calculate the values of the ND DLP on the boundary 0f) arises
when solving various BIEs |10, Sects. 3.5-3.7, 3.9]. If the solution to the Dirichlet problem
is sought in the form of a DLP, then the ND DLP for the Laplace equation can be used to
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calculate the steady—state heat flux, the fluid velocity during steady flow, and the strength of
an electrostatic field. We note that the solution to the Dirichlet problem in the form of a DLP
has the advantage that stable BIEs of the second kind are used, whereas unstable BIEs of the
first kind are used when obtaining the solution to the Dirichlet problem using the SLP.

It is known that DLP with a continuous density generally speaking possesses no derivatives
at the boundary, but if the density is smooth enough, the ND DLP can be defined at the
boundary to a continuous function in the entire space |15, Sect. 2.5|. By the ND DLP on
the boundary we mean the values obtained by the continuous continuation of ND DLP from
the domain 2. They can be calculated by using hyper—singular integrals, which exist only in
the sense of a finite Hadamard value, the integrand in which has the singularity r—2 [15, Sect.
1.6]. In [15, Sect. 13.6] the ND DLP on the boundary is approximately calculated on the
base of a semi-analytical approximation of such integrals at the support points, which are the
midpoints of the BE: at each BE the density is replaced by a constant function with a node at
the support point, and the integrals arising after this in the case of the Laplace equation are
calculated analytically by the discrete vortex method. It was shown in [21] that the ND DLP
on the boundary can be expressed in terms of less singular integrals that exist in the sense
of the Cauchy principal value. In [1], [22], the ND DLP, expressed in terms of such integrals,
was approximated at the support points being the midpoints of the BE on the base of the
quadrature formula of mean rectangles. The approximations of the ND DLP on the boundary
of a two-dimensional domain € obtained in [15, Sect. 13.6] and [1], [22] have errors O(hlnh)
and O(h%), respectively, where h is the length of the BE.

In the present work we construct the approximations for ND DLP in a closed near—boundary
domain, which includes the boundary and have the semi—width equalling to the third of radius
of Lyapunov circle. The integrals obtained as the result of continuation by continuity and
existing only in the sense of Hadamard finite value are approximated on the boundary. At the
first step, the boundary is divided into BEs of equal length and, for fixed d, we calculate the
approximations for the ND DLP at support points, the projections of which onto the curve
0f) coincide with the midpoints of the BEs. We employ the piecewise quadratic interpolation
(PQI) with three nodes at the ends and in the middle of the BE to approximate the density.
Exact integration with respect to p is performed in some neighborhood of the projection of
each support point, where the Jacobian remains positive and bounded (not on the SI and ASI,
as in [24], [27], [31], but on arcs of fixed length). The integral with respect to p is represented
as a sum of three integrals of different degrees of singularity, each of which is approximated
on the base of the above described multiplicative method of extracting a singularity. The PQI
is also used to approximate slowly changing factors in the integrands. To achieve the highest
approximation order, an additional discretization with respect to p is performed in such a
way that the BEs with respect to p are located symmetrically with respect to each support
point. Such additional discretization requires no additional values of the density. Outside the
neighborhoods where exact integration with respect to p is performed, Gauss formulas of at
least fifth order are used to approximate the integrals arising after the PQI of the density. At
the second step, in order to double the number of reference points used without involving new
values of the density, all BEs are shifted by the half of BE length, and then, just as at the first
step, the approximations of the ND DLP are calculated at the reference points corresponding
to the midpoints of the new BEs. At the third step, for a fixed d, the PQI is performed
with respect to the variable s with nodes at the reference points. This allows us to calculate
approximate values of the NP DLP at any point of the closed near—boundary domain described
by the curvilinear coordinates s and d. We prove that the approximations of ND DLP obtained
in this way converge uniformly in the closed near—boundary domain at the rate O(h®Inh). The
final section presents the results of calculating ND DLP in a closed near-boundary domain of
a unit circle, which confirm the almost cubic rate of uniform convergence of semi—analytical
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approximations, and also demonstrate the impossibility of using exclusively Gaussian formulas
to approximate integrals arising under the interpolation of density.

2. FORMULATION OF PROBLEM

Let €2, be a two—dimensional simply connected domain with a boundary 0¢2. In the Cartesian
coordinates (x1,x2) we define parametric equations of the curve 9Q: z7 = Z1(s), x2 = Za(s).
The absolute value of the parameter s is equal to the length of the arc beginning at some fixed
point and ending at the point Z(s) := (Z1(s), T2(s)), and it increases as the domain €2, is to the
left while passing the boundary 0€2. The functions Z;(s), Z2(s) (s € R) are periodic with the
period 2S, where S is the half length of 02, and make a one-to—one correspondence between
the sets [—S5,5) and 0. In what follows we write 02 € C™ if there exists continuous on the
closed set Is := [—S, S] derivatives fl@(s) (I=0,n,i=1,2), and jl@(—S +0) = il(-l)(S —0).
We suppose that 09 € C? unless otherwise is said.

By C(02) we denote the Banach space of 25-periodic continuous on the entire real axis R
real functions f(s) with the norm

[fllcony = sup [f(s)]-
s€lg

By C™(09) (n € Z.) we denote the Banach spaces of the functions f € C'(02) having contin-
uous on the set I derivatives f)(s) (I = T,n) with the norm

1fllenany = D I1F Ol oony  (CO0) = C(09)).
=0

By €(s) we denote the unit vector directed along the tangential line to 02 at the point Z(s) to
the side of increasing of the parameter s, while 7i(s) stands for the unit normal to the curve 02
at the point Z(s) directed inside the domain . The vectors é(s), 7i(s) form the right system
and their coordinates (z1,x2) are calculated by means of the formulas €(s) = (Z(s), Z5(s)),
ii(s) = (=15(s), 71(s)).

We introduce local Cartesian coordinates (&5,7) with the origins at the points Z(s) and
the abscissa and ordinate axes directed along the vectors €(s) and 7i(s), respectively. The
points Z4(s) (d € R) with the local coordinates (&s,7s) = (0,d) form the normal to the curve
00 passing through Z(s) (Zo(s) := Z(s)). There exists a set Ip of form [—D;,0) U (0, Dy]
(D1, Dy > 0) such that for (s,d) € T := I x Ip the correspondence between the points Z(s)
and Z4(s) is one-to—one. For instance, Ip = [—D,0) U (0, D], where D is the third of the radius
of the Lyapunov circle [18, Sect. 102]. Since 92 € C?, for a fixed d € Ip the points Z4(s) form
a closed curve 0§; € C*, and the normals 7(s)Z4(s) to the curves 92 are also the normals to
the curve 0€);. The curves 0€2; are called the curves parallel to the curve 0f).

On the set T we define the function u

u(s,d) = /gv(s + o) do. (2.1)
Here S

(3ﬁ(s+a)7’2) ]

9(s,0,d) := () Oas o) T~ = =27 1054 [ 3

v e C(09), r(s,o,d) =1, 7(s,0,d) := T4(s)2(s + o);

the differentiations Oy(5) and 0y(s+0) are made at the points Z4(s) and Z(s+ o) in the directions
fi(s) and 7i(s + o), respectively. We adopt that sometimes we do not write the variables of a
function if they are the same as in the definition of function. The function U (Z4(s)) := (27) 'u
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is ND DLP with the density v in the near—boundary domain €2 formed by the points Z4(s) as
(s,d) € T.

By the known theorems |10, Sect. 2.5, Thms. 2.21, 2.23] the function U (Z4(s)) can be defined
by the continuity at d = 0, s € I5. Here we obtain the approximations U (Z4(s)) of the function
U (Z4(s)) uniformly converging on the set T with the rate O(h®In h), that is, they satisfy the
estimates

‘ﬁ—U’ <ch®nh| ((s,d) € T), (2.2)

where ¢ is a positive constants independent of h and (s, d).

3. SOME FACTS ABOUT QUADRATIC INTERPOLATION

We consider a quadratic interpolation, which will be used, for some real function f(z). Let
h > 0,2 €R, 241 := 2 £ h. By C¥I,) (k = 0,1,...) we denote the Banach spaces of
continuous on the segment I, = [2_1, 2] functions f(z) having continuous on I, derivatives
fO(z) (I =1,k) with the norm

k
1 ller,) = Z sup ‘f(l)(z)‘ :

ZZO ZEI}-L

Let f € CO(I,). We define the Lagrange interpolation polynomial f(z) with the equidistant
nodes z_1, 29, 21 |2, Ch. 2, Sect. 5]

~

[(2) = f(z1) + (2 = 220) fi(zo1, 21) + (2 = 220)(2 = 21) fa(2o1, 21, 20).

Here fi(z_1,21), fa(z_1, 21, 20) are separated distance of 1st and 2nd orders with non—coinciding
values of the variable |2, Ch. 2, Sect. 5, Subsect. 1]

f(z) = f(z)

fl(’Z*l?Zl) = —— 7
f2<271,21,20) - fl(zl? ZO) - fl(z_hzl).
ZO _Z—l

The separated differences are symmetric functions, that is, their values do not change under
each permutation of the variables [2, Ch. 2, Sect. 5, Subsect. 1, Prop. 3|. At the nodes,
the identities f(zn) = f(zm) (m = —1,1) hold. For z € (2_y, 20) U (20, z1) the following two
formulas hold

f(2)
f(2)

~

f(2)+(z—=21)(z—21)(z — 20) f3(2, 21, 21, 20) (f € C°(I},)), (3.1)
f2)+(z—21)(z—21)(2 — 20)53(2_1, 21, 20, 20) 1 (32)
+ (2 — 2-1) (2 — 21)(2 — 20)" fu(z, 2-1, 21, 20, 20) (f € C (1)),

see the formulas for the residual term in the Newton interpolation formula [2, Ch. 2, Sect. 5,
Subsect. 3|, [2, Ch. 2, Sect. 11, Subsect. 5|). Here f3, f, are separated differences of 3rd and
4th orders, the variables of which coincide or can coincide

folerzoa,mz0) = LELIEIZREELA) gy U g z), £ €0,

f3(Zm,Z—1,21720) = lim f3(Z/,Z—17Z1,20) (m =-1,1, f € Cl(fh));

z'—zm

f4(Z,Z_1,Zl,Z[),Z0) = f3(217217207z;)) = '53(2’21’2172()) (Z < (2_1720) U (Z0>Zl>7 f € Cl([h))a
0—

fa(zm, 221, 21, 20, 20) = Z,llgl fa(2', 220, 21, 20, 20) (m=—1,1, f € C*(I)).
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For each z € [z_1, z1] there exist (1(z),(2(z) € [z_1, z1] such that

f3<z7 Z—1, %1, ZO) = 6_1f(3)(C1) (f S 03 (Ih>>7 (33)
f4<27 Z—15 21, 20, ZO) = 2471f(4)(<2) (f € 04 ([h))> (34)

see |2, Ch. 2, Sect. 5, Subsect. 3|, [2, Ch. 2, Sect. 11, Subsect. 5|. By the formulas (3.1),
(3.3), we have the majorant estimate for interpolation error on the segment [z_1, z1]:

< ey sup ‘f(g)(z)‘ h? (z €lz1,21], FEC (L), cy = \/§> (3.5)

f(2) = f(2) o o7

The interpolation polynomial f(z) can be also written as the sum

f)= Y A=) (2 € [z a)), (3.6)

m=—1

where

1

Nl = I =2 m="TD),

Zm — Rj
j==10G#m) "

see [2, Ch. 2, Sect. 2, Subsect. 1]. On the base of the formula (3.6) and the inequalities
AL <1 (z€ e m), m=0,2),

by means of the mean value theorem for z € [2_1, 21] we obtain the estimates

()| Seno max [ ()l (£ ECT(I), enni=3), (37)
f(2) - f<z)) <o s ]\ O R (FeC (), exoi=3). (3.8)

For z € [z_1, 7], for the derivatives f)(z) (j = 1,2) we have the formulas

@2 —m—2) [ fOQI (22— 20— 20) | FOQ)C
fO() = il + 2 (f € CH(Ip)),

(21— 20) (221 — 21) (21 = 20) (21 — 2-1)

- .y (3.9)
2 [ fP(Q) (-1 = Q) d¢ 2 [ fP(C) (21— () dC

(2-1 — 20) (2-1 — 21) (21 = 20) (21 — 2-1)

f@(2) = (f € C* (1))

obtained by the representation (3.6) and the Taylor form with the residual term in the integral
form (TFETIF) [19, Sect. 318|. By the mean value theorem the formulas (3.9) allow us to
obtain the estimates for z € [z_1, 2]

f(j)(Z)) oW sup ]|f(j)(2)\ (f € C7([e=1, 1)) .5 = 1,2), (3.10)
‘f(j)(z) _ f(j)(z>‘ <evy sup [f9MYER)| R (FeCT (i, a)),i=1,2),  (3.11)
2€[z—1,71]

where cy 1 =3, cp2 1= 2-1 cx1 =4, crg 1= 2.
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4. ADDITIVE—~ MULTIPLICATIVE SELECTION OF SINGULARITY

Here we consider the possibility of passage from the integration variable o to the integration
variable p in the integrals (2.1), which will be used for the semi-analytic approximation of ND

DLP. Let (s, 0) := :E(_s):i(s—l—ag, ro(s,0) := |7o|. On the set © := Ig x Is we define the
functions (s, o) (i = 0,4): for o # 0 we let

vo= 2L (i=0,2), =2 (i=3,4),

o? o
where
wo(s,0) =12 = [EF1(s 4+ 0) — £1(5)]* + [Za(s + 0) — o(5)]”,
©1(8,0) =27 0554070 = —T5(s + 0) [T1(s + 0) — T1(8)] + T (s + ) [T2(s + ) — Ta(s)]
= ((s+0),7T0)Re
p2(s,0) =27 Oarg = —T5(s) [F1(s) — T1(s + 0)] + F1(s) [T2(s) — Ta(s + 0)]
== (ﬁ(s)v FO)R2 )
p3(s,0) 1= 270500 = T (s + 0) [T1(s + ) — T1(s)] + Ty(s + 0) [T2(s + 0) — Ta(s)]
= (e(s +0),70)ge »
pals,0) = Optpr = Ty(s) Ty (s + 0) — T (s) Zy(s + 0) = — (71(s), €(s + o)) ,
(-, *)ge 1s the scalar product in the Euclidean space R?), while for o = 0 we let
do=1s =1, =1y =27y =270 (35(s) T (s) — T () T5(s)) = —27 K ().
Here K(s) is the signed curvature |20, Subsect. 250] of the curve 92 at the point Z(s). Similarly
to [8, Thm. 2.1] one can show that under the condition 9Q € C™™2 (n € Z,) there exist
continuous on the set © derivative 0*9 ¢, k =0,n — 1,1 =0,nfor i =0,2,4; k =0,n+ 1 — [,
I =0,n41 fori=3.
The local coordinates (&, 1) of the points Z4(s) and Z(s + o) are equal to (0,d) and
((e(s),70)ge 5 (7i(s), FO)]RQ) respectively, and this is why

‘xd s+a§] 2 94 (ii(s), 7o) ge + d2.

On the set T := O x Ip = Is x T we define the functions ¢} (s, o, d), ¥)(s,0,d), V}(s,0,d):

o= — At = o+ 2ipy, =t +2ds, U=+ i

Since ¢ > 0 for (s,0,d) € T (¢, > 0 for o # 0, ¢, = 0 for o = 0) [8, Sect. 2|, on the set T we
can define the function p'(s, o, d):

pi=py if o =0 pi=—=\eh, if o<O.

Since
r? = o + 2d oy + d?,
we have
27 0510y = 1 + dips,
where

3 _ +d s
= — — ! d a'r‘i s+o 1 b= o ’
uls0) = < s+ ) = B + ) and Dy ! = A

This is why for (s,0,d) € T (except for d = o = 0), the function g = 9405(s10)In7T"" can be
written as

g = (ll(p,,d) 51 +a2(p’,d) 52 —|—a3(p',d) 53, (41)
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where
a(p,d) = (=p* +d*) A%, as(p,d) :=2dp* A2, az(p,d) == p'A%,  A(p,d) = p’ + &,
Y1 + a5 2011
61(570) = Ps 52(870ad) = 53(570-7d) = :
v (vo)*
In what follows we suppose that the set Ip = [—D1,0) U (0, Ds] (D1, Dy > 0) is defined by

the conditions
(i) for (s,d) € T, the correspondence between the points Z(s) and Z4(s) is one—to—one;
(ii) for (s,d) € T the inequalities 1 — dK (s) > 0 hold.
2
For instance, Ip = [-D,0) U (0, D], since at the same time 1 — dK(s) > 3 ((s,d) € T) [8,
Sect. 2|. We can ensure an arbitrary smoothness for the functions d; in (s, o) by an appropriate
smoothness of the boundary 0€). Indeed, since

%(3,0) = 17 1/12(3,0) = _271[((5)7

we have B

Py(s,0,d) =1—dK(s) >0 for (s,d)eT.

/
Moreover, 1y = % > 0 for (s,0,d) € T, 0 # 0. This is why ¢j > 0 on the set T, under
the condition 9Q € C™*% (n € Z.) there exist continuous on the set T derivatives 989 6;
(k=0,n—1,1=0,n,i=1,3).
We also note that ¥3(s,0) = 1, 14(s,0) = —K(s). Therefore,

V1(5,0,d) =1—dK(s) >0 for (s,d)€T,

and the next statement is true.

Theorem 4.1 (cf. [1, Thm. 5]). Let 0 € C?. Then there exists a sufficiently small number
Yo > 0 such that on the set X' := Ig X Z X Ip, where = := [—%q, Xo|, the function
Yo
Ui

So(5,0,d) = ()" =

18 defined everywhere and positive.

It is obvious that the number X, is not unique. In particular, we can obtain the number
Yo as follows. For a fixed s € Ig by E; we denote a closed arc of the curve 002 bounded by
two parallel straight lines located at the distance D from the straight line Z_p(s)Zp(s) and
Z(s) € E;. The set of values o, for which Z(s + o) € E;, we denote by Z;, the boundaries of
=, are denoted ¥/, X7 and then =, = X, Y] ¥ < =D, ¥ > D; Z(s — X)), (s + X7) is
the boundaries of the arc Eg, see Figure. 1. By [1, Thm. 5| as the number ¥, we can take the

smallest of the values inf |3, inf 37.
selg s€ls

X p (s)

F1GURE 1. Construction of the arc E;.
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The function dyp,which is the Jacobian of passage from the integration variable o to the
integration variable p = p’ can be also made arbitrarily smooth in (s,0) by an appropriate
smoothness of the curve 9Q: under the condition 9Q € C"*2 (n € Z, ) there exist continuous
on the set T derivatives 0%9' 6y (k =0,n — 1, 1 =0,n).

Corollary 4.1. Let 0Q € C"*2 n € Z,. Then for each fized (s,d) € T the func-
tions psa(o) = p diffeomorphically, with the smoothness C™', map the set = onto the sets
Esd = ps.d(Z). The functions o'(s, p,d) := G5a(p) (Gs.4(p) is the inverse function for psa(c)),
56(8,p,d) = 0 (5,554(p),d), 6i(s,p,d) = 0; (8,0s5a(p),d) 6, (i =1,3) have continuous on the
set Y = {(s,p, d):s€lg,pe€ _S,d,d S TD} derivatives 858@0’ (k=0n—-1+1,1=0,n),

okoLS (k=0,n—1,1=0,n,i=0,3).

s“pYi

By the identities (4.1) and Corollary 4.1, on the set T the function u can be represented as
4

the sum u = > u;, where
i=1

ui(s,d) == /aiwgdp (i=1,3), uy(s,d) := /w4da,

s,d IS\E

wi(s, p,d) = 6w(s+7sa(p)) (i =1,3), wy(s,0,d) :== gv(s+o). Here the integrands a; (i = 1, 3)
have a singularity at d = p = 0, while for the functions w! (i = 1, 3) we can ensure an arrbitrary
smoothness in (s, p) by an appropriate smoothness of the boundary curve 92 and the density
v: under the conditions Q) € C™""2 v € C™(9N) (n € Z,) there exist continuous on the set
Y’ derivatives 0*0'w] (k = 0,n—1, 1 = 0,n, i = 1,3). The integrand wy can be also made
arbitrarily smooth in (s,0) by an appropiate smoothness of 92 and v: since r > p’ > 0 for
o #0, (s,d) € T, under the conditions 92 € C"*2 v € C™(99) (n € Z, ) there exist continuous

derivatives 0% w, (k =0,n — 1,1 =0,n) for o € Ig \ [0, X0}, (s,d) € T.

[1]:

5. DESCRIPTION OF SEMI-ANALYTICAL APPROXIMATIONS
FOR ND DLP NEAR AND AT BOUNDARY OF DOMAIN

Since j,4(0) = 0 for (s,d) € T, by Corollary 4.1 there exist the numbers

P:=min{-P_,P.}, P_:= sup psa(—20) <0, Pi:= inf ps4(3) > 0.
(S,d)ET (s,d)€T

Since G,4(0) = 0 for (s,d) € T, by Corollary 4.1 there exists a number
Yy =min{-3_,3,},

where
Y_:= sup dsq4(—P) <0, Y= inf &,4(P)>0.
(s, )T (s,d)ET
By definition, B
psa([—21,21]) € [-P,P] C =44 ((s,d) € T).

Let L € N,
S
h(L) := =lh (le?).
(1) = 5 (lez)
We note that s, € Is for | = —2L — 1,2L + 1 and Z(s;441.12) = Z(s;) for all | € Z, in particular,
Z(s_2r—1) = Z(sar4+1). In introduce the sets I, consisting of the points sy for [ = —L, L and

>
the sets Ty := I, x Ip. We take a sufficiently large number Ly € IN such that h € (O ?} for
L > L.
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Let L > Ly. On the set T, we define the functions
P'(s,d) :== max {—P" P’ }, P’ (s,d) := psa(s_ar—1), P’ (s,d) = psa(sar41),
¥ (s,d) :=0sa(—P), 3 (s,d) = 75q(P).
The values of function L'(s,d) € IN are such that SQL/+1 < X4, Sop/43 > X;. By definition,
[-P'P|C[-P,P]C =y ((s,d) €Ty).
On Figure 2 the segment [—P’, P] is obtained under the assumptions
-P_>P,, —Y_ <X, —P. < P.
Moreover, by the definition,

3 3% _
(3,50 ] D [sar—1, Sar41] 2 [—Tl7 51} ((s,d) € Tp),
since
2L + 1)X 3%
Sor/43 = (2L/ + S)h > 21, and Sop/4+1 = (2[/ + 1)]1 > ( QLj——f—)?) ! = 51 for L' € N.

Thus, for all (s,d) € Ty, L > Lo the segment [P’ P'] is always in the domain, in which we
can pass from the integration variable o to the integration variable p = p’, and the boundaries

—— 3%
of the set Ig\ [X_, X/ ] do not approach the zero point closer than by the fixed distance Tl

-3, -y {\?
L1 A1 1 gl 1 1 1e1 1 1 L |* L

\ 2 S—(&L+1) S5 8,08 S5 . S2,L+1 42, o
\
\
Su . /1nf
_ s, d s d
(s d)IE)T (s, d)&T ( Y ) ( ) (s, d T/(s d)eT
\ \ \ : ,’ /
\ \ \ K I///
\
\\\ “ ‘\ 'l I,/
\ \ \ ! /'/
\ Pe P Py JP
‘ - L d 4 >
P —P'A 0 P’ P P

FIGURE 2. The scheme of obtaining the segments [—P’, P']

On the sets [—P',P'] ((s,d) € T.) we define the sets of points {psd2l+1}z—72y , which
consist of the points ps4(sx+1) (I = —L' — 1, L’) and their mirror symmetries with respect to
the point p = 0:

{ps,d,2l+1}l2£_—;1y_2 = {iﬁs,d(SQZJrl)}lL:_L/_l ; Ps,d21—1 < Ps,d20+1
for | = —2L' —1,2L' +1, (s,d) € Ty, see Figure 3. We also define the sets of points

{Ps,d,m}?:Ll_zlL/_li

Psdal =2 (psaor1+ Psdziri)

and we denote by A/ ;, the lengths of segments [ps g 21, ps,a,—2141] (I = 2L/ — 1,21’ +1). By
definition,

2L'+1

U [ps.d2i-1s psaz+1) = [P, P;

I=—2L"-1
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the segments [ps g —2-1, Ps.d—2+1] and [ps.d.21-1, Ps,a204+1] are symmetric with respect to the point
_p57d,2l+17 h/s,d,fl — h.’S,d,l (l — 0, 2L/ + 1’ (S, d) E TL).

Ps,do = 0: psd—+1) =

P = P Py P Ps P3P P Ps Ps P7 Py Py =P
Ly L] ° 1] L1y . .
| | 1 0 | 1 1 -
Poa(55) Pya(s3) Poa(s,) Pa(s1) Psa(83) P, 4(s5)

FIGURE 3. Sets of points {psdmﬂ}l_f%/ and {ﬁsvd(smﬂ)}f;fﬂfl for L' =2

We define PQA ¢ of the density v € C'(99) in the variable s on the segments [s9;_1, So111
with the nodes at points So;_1, Soi, Sor11:

1

() = Y vsapm)ALZ2000(s) (s € [sa1,5201], 1 ==L, L),
m=—1
We define the functions w.(s, p,d) := 0/0(s + Gsa(p)) (i = 1,3), wy(s,0,d) == gov(s+ o). We
denote by (s, p,d) the PQA of functions @} (i = 1,3) in the variable p on the segments
[Ps.d,21-1, Ps,d2i+1) With nodes at points psaoi—1, Ps.d20, Psd21+1:

wi(s, p,d) =5, (p € [psagi1spsazsr], |=—-20—12L+1, (s,d)eTy),
1

Wi (s, p,d) = 2 1w£(87p8,d,21+m7d> Aks’d’2171’ps'd’zm](p) (Ps,azi-1 < Psdz2it1),
o, I\2 Cha m=—

Wi(S, psd2d) (Ps.d2i—1 = Ps.d2i+1)-
Bs,d,21+1
We denote by w4, the approximations of integrals [ wq(s, o, d)do on the base of the Gauss
Bs,d,21—1

formulas with v nodes
U)4l S, d = h”dlanw4 Bs,d,l,j;d) (l = —L,L, (S,d) ETL).

Here

;/,d,l =27 (ﬁs,d,21+1 - 53,[1,21—1) ) Bs,d,l,j = Bs,d,l + h;’,d,lzj;
Bear =2 (Bsaor-1+ Bsams1) (I=—L,L);

Bzt :=min{sy_1,5"}, for 1=-L,0,

ﬁs,d,2l+1 ‘= max {32l+17 ZQF} for =0, ((57 d) € TL);

4
z; are the roots of the polynomial (W) (Z? _ 1)7 on the interval (—1,1); the weight coeffi-
z

”
cients n; obey the conditions Y n; =2, n; > 0 [2, Ch. 3, Sect. 5|. By definition,
j=1

L

U [Bsa1-1, Bsaira] = Is \ X2, 2], (s,d) € Tp.

l=—L
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The semi-analytic approximations (s, d) of function u(s,d) are defined on the sets T, by

4
means of sums 4 := Y 4;, where
i=1
w;(s,d) ;= / a;w;dp ((s,d) € Ty, i=1,3), (5.1)
[—P',P']

L
(s, d) =Y abay ((s,d) € Tp). (5.2)
I=—L
Theorem 5.1. Let 0Q € C?, v € C(0Q), L € N, L > Lo. Then the function u(s,d) is
continuous on the set Tr, and can be defined by continuity for d = 0 that makes it continuous
on the set Tp.

Proof. The observation point can differ from the nodes in the Gauss formula since r > 0

for 0 € Is\ [s_ar/—1,821/41], (5,d) € Ty, and this is why the function 4, can be defined by

continuity for d = 0 to a continuous function on the set T by means of the formula (5.2).
The functions 4; (i = 1, 3) can be represented as the sums

2L/+1 Ps,d,21+1
U = E Jit, where J;(s,d) := / a;w; ,dp.
o7/
l==2L-1 Ps,d,21—1

In their turn, the integrals J;; for (s,d) € Tp, psaoi—1 < psd2+1 can be represented as the

sums
Ps,d,21+1

2
JiJ = Z Ai,j,l’%,j,la where /LJJ(CZ) = / alp]dp,

—0
J Ps,d,21—1

Yiji(s,d) are the coefficients of the Lagrange polynomilas 1;;, = ;01 + Vi11p + Yi2.p%, which
are continuous on the set T, functions. The functions /L-J-J for (s,d) € Ty are calculated by
the identities

Ai,j,l(d) = Ai,j(ps7d72l+1’ d) — Ai,j(ps,d,QZfla d) (] = 0, 2, l = —2[/ — 1, 2[/ + 1, Z = 1, 3), (53)

where

Ava(p,d) == —p — d?pA™" + 2d arctan <§> ;

Ago(p,d) == —dpA~" + arctan (g) ,
Agq(p,d) = d*A™ +dIn A,

Aso(p,d) :=2dp + d*pA~" — 3d” arctan <§> ;

Azo(p,d) :=2p+ d*pA~' — 3d arctan (g) 7
Ag1(p,d) = p* —d'A7" —2d%In A,

2 3
Aza(p,d) = % —4d?p — d*pA~" + 5d® arctan <§> )

Therefore, by means of the identities (5.3) and 7200 = 0 the integrals J;; can be defined for
d = 0 to continuous on the set T, functions, and then by the formulas (5.1) the functions
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ii; (i = 1,3) can be defined to continuous on the set T, functions. At the same time the
integral J;(s,0) exists only in the sense of Hadamard finite value [25, Frm. (1.6.6)], the
integral J; 1(s,0) does only in the sense of Cauchy principal value; the other integrals J;,(s,0)
are converging improper integrals. The proof is complete. O

We introduce the PQA ¢’ of the density v € C'(02) in the variable s on the segments [so;, So142]
with the nodes at the points so;, Soii1, Soia:

1

v'(s) == Z V(Sa1114m) AlE20522] (5) (S € [sa, S2142), 1= —L>L) :

m=—1

We introduce the sets I} consisting of the points sgy 1 for [ = —L, L and the set T} := I} x Ip.
By means of the functions ¥/, on the sets T’ the approximations @/(s,d) of function u in the
same way how on the sets T, the approximations u(s, d) were defined by means of the functions
@/ Similar to Theorem 5.1 we define the functions @' at d = 0 to continuous ones on the sets
T, .

The semi-analytic approximations U (Z4(s)) of ND DLP U (Z4(s)), which can be calculated
at each point Z4(s) of a closed near-boundary domain Qp under the condition v € C(9), are
defined by the formula U := (27)~'%, where

(s, d) = @ (syr_1, d) A2 25 () 4 i (sgg, d) A2 () 4 i (sqpq, )AL (6) (5.4)

d € Ip, s € [sy_1,8941], | = —L, L. The values of functions @, @’ for d = 0, which are used
here, can be obtained via the continuous extension in accordance with Theorem 5.1.

6. JUSTIFICATION OF POSSIBILITY OF TANGENTIAL INTERPOLATION OF
ND DLP NEAR AND AT BOUNDARY OF DOMAIN

In this section we prove the uniform convergence of the interpolants of the ND DLP with
respect to the variable s in the closed near-boundary domain Qp. In order to do this, we first
obtain conditions for the existence and continuity of the tangent derivatives of the ND DLP in
the domain Qp.

Let p_ < 0, p; > 0 be constants such that [p_,p,] C [P_,P,]. By 0_, o, we denote the
functions o_(s,d) := G54(p-), 04(s,d) := G54(p+). By Corollary 4.1 the functions —o_, o
are positive on the set T. According to the identities (4.1), for (s,d) € T the function u can be

4
represented as the sum u = ) u;, where
i=1
P+
ui(s,d) = /aiwgdp (i=1,3), uy(s,d) := / wydo. (6.1)
o Is\[o— 4]

Theorem 6.1. Let 9Q € C"™ v € C"2(00), n € Z,. Then the function u(s,d) is
continuous on the set T and can be defined at d = 0 to a continuous on the set T function.
On the set T, the function u(s,d) defined to a continuous one, possesses the derivatives Ou
(I = 1,n), which are continuous on the sets T and Is for d = 0. There exists uniformly in
s € Ig converging limits

Jim u(s,d) = £ (9'w)) (5,0,0) + du(s,0) (I=T1,n, sé€lg), (6.2)

by means of which the derivatives d'u (I =1,n) can be defined to continuous either on the set
Is x [0, Ds] or on the set Is x [—D1,0] functions.
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Proof. Let 92 € C"*2 v € C™(0N)), n € Z. Sincer > 0for o € Is\ [0_,0,], (s,d) € T, there
exist continuous derivatives d'w, (I = 0,n) for o € Is\ [0_,0.], (s,d) € T and according to
Corollary 4.1 the derivatives d'o_, dlo, (I = 0,n) are continuous on the set T. This is why
the function w4 can be defined for d = 0 to a continuous on T function means of corresponding
integrals (6.1), and then there exist continuous on the set T derivatives d'uy (I = 1,7n), which
can be represented as the linear combinations of the integrals

aéw4do
IS\[O—*7O-+}
and the expressions of form
O Fwy(s, 04, d)0F oy (k=1,01,1 =1,n).
The functions a; (i = 1, 3) are continuous for d € Ip, p€R. By Corollary 4.1 the derivatives
Olwl (I = 0,n, i = 1,3) are continuous on the set Y. This is why the functions u(s,d)
(i = 1, 3) defined by the corresponding integrals (6.1) are continuous on the set T, and there

exist continuous on T derivatives
P+

Ohus = /az»aiw; dp  (=Tmi=T3)
p7
For d € Ip, p € R (except for d = p = 0) the function a3 is continuous and bounded:
las| < 1, this is why the function uz can be defined for d = 0 to a continuous on T function
by the corresponding integrals (6.1), and then the derivatives dluz (I = 0,7n) are continuous on
the set T and are calculated by the integrals
Py
Oug = /agaiwg dp.
p—

For each fixed € € (0, p4] N (0, —p_] we have uniformly in s € Ig converging limits
—€ P+
hm/aﬁiwédp = lim / axd'whdp =0 (1=0,n). (6.3)
d—0 d—0
p— 5

We also have uniformly in s € Ig converging limits
3
lim [ lim /agﬁiwgdp (s) =2 lim (
e—=>+0 \ d—=+0 e—=+0
—

. [ )
dli}]':rtlo (8811}2) <S7 ps,d,&a d) AQ,O (57 d)) (64)

=+ (J,wy) (5,0,0)  (1=0,n),

where p; 4. is some point in the segment [—¢, €], the exact location of which depends (s,d) € T.
By the identities (6.3), (6.4) there exist uniformly in s € Is converging limits

dl_iggo O us(s,d) = £ (OLwh) (s,0,0) (1=0,n). (6.5)

In view of the identities (6.5) and w4(s,0,0) = 05(s,0,0) =0 (s € Ig) the function uy becomes
continuous on the set T if we define being zero for d = 0, s € Ig. This agrees with the formula
(6.1) since ay(p,0) = 0 for p # 0.

Let 0Q € C"t v € C"2(00Q), n € Z,. Using TFETIF, we represent the function w/ as the
sum

wll = wll,O + wll,lp + w/1,2p2 ((87 d) < T? pe [p*7 IO+])7 (66)
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where

wh o(s,d) == wi(s,0,d), wh (s, d) := (0,wy) (s,0,d),

wi o (s, p,d) : 0‘2/ (Q3w)) (s,5,d) (p—<)ds  (p#0),

w/1,2(87 07 d) :

271 (02uh) (s,0,d).

The derivatives d‘w} ; (I = 0,n, j = 0,2) are continuous by Corollary 4.1: 9w} ,, 9w/, on
the set T, dlw] , on the set T'. In accordance with the formulas (6.1), (6.6), for (s,d) € T we
represent the function u; as the sum

2
Uy = E Uiz,
Jj=0

where
P+ P+

uy (s, d) = w’lyjfllﬂj, Ay (d) = /alpj dp (j=0,1), uy2(s,d) = /alpzw'L2 dp.
p— p—

The functions A, o(d), A;1(d) can be defined for d = 0 to continuous on the set Tp functions
since —p_, p+ > 0 and Ay ;(d) = A1 ;(p+,d) — A1 j(p—,d) (j = 0,1). We note that the obtained
in this way values A; ;(0) (j = 0,1) coincide respectively with the integral A ((0) in the sense
of Hadamard finite value, see the definion in [15, Frm. (1.6.5)] and with the integral A;;(0) in
the sense of the Cauchy principle value. Let

u1(5,0) 1= Ay (0) wiy(s,0) (s €Ls, j=0,1).
Then the derivatives 9Lu, ; are continuous on T since
0éu17j = Amaiw’l,j (l = O,_TL, j = 0, 1)
We consider the representation of form
Uro = U1 + U122,

where
Pt

u2k(s,d) = /CLLk;w’L2 dp ((s,d)eT, k=1,2),
o_
ar1(p,d) = —p* A2, ara(p,d) = d*p* A2
Taking into consideration that a;1(p,0) = —1, a1 2(p,0) = 0 for p # 0, we define the functions
u 2 for d = 0:

P+

u121(8,0) == — / w172|d:0 dp, U122(5,0):=0 (s € Ig).
p7
Then the derivatives
P+
8iu1,271 = /au@iwig dp (l = 0,_71)
p—

exist and continuous on the set T since |a; ;| < 1for d € Ip, p € R except for d = p = 0. For
d # 0, s € Ig the function a; 5 does not change the sign on the integration segments [p_, p. ],
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and this is why by the mean value theorem 'y 99 = 27 'dAyd'w’ (s, ps.ay, d). Here p,qy is some
point in [p_, p4], the locatio of which depends on d, s, [; As(d) := Asg(ps,d) — Aap(p—,d) is a
uniformly bounded in d € Ip function. Therefore, as d — 0, the values
P+
(7iu172’2 = /amf)iwi@ dp
p—
tend to the values 9Lu 25(s,0) = 0 (I = 0, n) uniformly in s € Ig, that is, the derivatives Olu; 29

exist and continuous on the set T.
Thus, let

1
u(s,0) = Ay ;(0)w) ;(5,0) + u121(s,0) (s € I).
7=0

Then the function u; and derivatives d'u; (I = 1,n) are continuous on the set T. Finally, let
u(s,0) :=ui(s,0) + us(s,0) + ua(s,0) (s € Ig),

where u3(s,0), us(s,0) are calculated by the corresponding integrals (6.1). Then by the above
proven facts the derivatives d'u(s,0) (I = 1,n) are continuous in s € Ig, the function u is
continuous on the set T, and due uniformly in s € Ig converging limits (6.5) there exist
uniformly in s € I converging limits (6.2). These limits allow us to define the derivatives dlu
(I =1,n) to continuous either on the set I x [0, Dy] or on the set Is x [—Dy,0] functions. The
proof is complete. O

We note that the possibility of defining ND DLP on the boundary of domain by continuity
was obtained in the known theorems |10, Sect. 2.5, Thms. 2.21, 2.23|.

Let 09 € C*, v € C%(09Q). On the set T we define PQA i of the function u in the variable
s on the segments [s9; 1, So;41] With the nodes at the points sg_1, S, Sory1:

1
(s, d) := Z (S, d)AB2-15201)(5) (d € Tp, s € [sy_1, 5141, | = —L, L). (6.7)

m=—1

The used values of function u(s,d) for d = 0, s € Ig are obtained by the continuation by
continuity.

Theorem 6.2. Let L € N, 00 € C7, v € C5(09). Then, as L — oo, the functions E(s,d)
converge to the functions u(s,d) defined for d = 0 by continuity, uniformly in (s,d) € T with
at least cubic rate.

Proof. By the estimate (3.5) and Theorem 6.1 the inequalities hold

i —u| < exh® sup |Ou) ((s,d) € T). (6.8)
(s,d)ET

The proof is complete. 0

7. PROOF OF UNIFORM CONVERGENCE OF SEMI-ANALYTIC APPROXIMATIONS OF
ND DLP NEAR AND AT BOUNDARY OF DOMAIN

On the sets T we define the approximations u of function u

(s, d) ::/gﬁ(s—i—a) do.

Is
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Theorem 7.1. Let 9Q € C*, v € C(00), L € N, L > Lo. Then the function (s, d) is
continuous on the set T and can be defined for d =0 to a continuous on the set T function.

Proof. The proof follows the lines of the proof of Theorem 6.1. We point out special moments.
Since the continuity is to be proved only on the set Ty, as p_, p; we take the quantities

sup psa(—h) <0, inf psa(h) > 0.
(s,d)€T (s,d)eT

4
We represent the function @ as the sum @ = ) 4;, where the functions @; (i = 1,4) are similar
i=1

to the functions w; (i = 1,4):

P+

ﬁi(s,d)::/aiu?;dp (=T3),  iuls,d) — / dado ((s,d) € Tp).
p— IS\[O-*10-+}

The end points of segments [sg_1, So41] are the nodes of PQA and this is why the function
0(s), as well as v(s), is continuous on the set I5. The identity

lim 4y(s,d) =0,
d—=£0

which is similar to (6.5) for [ = 0, holds on the set I, since
wWy(5,0,0) = 05(5,0,0) =0 for se .

An identity similar to (6.6) holds for p € [p_, py], (s,d) € Ty, for the function @} under the
condition v € C(9N), which is weaker than the condition v € C%(9Q) for the function w] since
for all v € C(09), s € Iy, the function 0(s + o) is quadratic in the variable o € [—h, h|. The
proof is complete. O

Theorem 7.2. Let L€ N, L > Ly, 09 € C*. Then the functions u(s,d), u(s,d) defined by
continuity for d =0, obey the estimates for (s,d) € Ty,
lu—al < C ||U||C4(ag) RPIn(2L+1)  ((s,d) € Tp), (7.1)
where C is a positive constant independent of L and (s,d).

Proof. Let v € C*(99Q). According to the identities (4.1), for (s,d) € T, the functions u, @ can
be represented as the sums

where

ui(s,d) := /ai(p',d)wi do, w;(s,d) = /ai(p',d)wi do, (7.2)
I, I
w;i(s,o,d) == d;v(s + o), w;(s,0,d) == 6;0(s + o) (i=1,3).
The function ag(p/, d) is bounded for (s,d) € T, o € Is: |as(p’,d)| < 1. This is why in view of
the inequalities (3.5) we have the estimates

|3 — us| < ez vl gsan h3( Su)p |93 ((s,d) € Tp), c3 1= 25¢,. (7.3)
s,0,d)eY’

There exist positive constants

. . 7 "o, / P
¢, = inf /4, ¢, = sup Vs Cpi= —.

/
(S,O’,d)ET (S,O’,d)GT Cp
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For (s,d) € T the inequalities hold

21d| (oc") 202
/\ag(p’,d)|d0</ | ‘(jcp) 27 < 2 sup [ Ayolc)S.|d))]
Loy +e] G

In view of the inequalities (3.5), we obtain the estimates
U — uz| < ||UHC3(8Q) R ((s,d) € Tp),

where
QCAC
cy 1= sup |As( c,S, |d)] sup |dy].
Cp deTp (s,0,d)EY!

Letting
Z =5+ So + t, f(z) =v(s+ sy + 1), 2.1 =8+ So_1,
21 = S+ Sou1, 20 = S+ S, f(z) =0(s+ s9 + t)
in the formula (3.1), we arrive at the identities
V(s + sy +1t) —0(s+ sy +1t) =03tw,

where

w(t) = ({+h)(t—"h), 0s3(s,t):= f3(2,2-1,21,20), s€lp, te[—hh]

We use TFETIE to get
0 — 51,0 = 51,107

where
o

d10(8) :=01(s,0) = —1, 611(s,0) =01 / (0,01) (s,¢)ds

0

(7.4)

l=—1,L.

for 0 #0, 611(s,0) := (0,61) (s,0). We can write the deviation u; — @; for (s,d) € Ty, as

I h

Uy — Uy = 2/91151882l+t)+92z511(8 Sor+1t) — g3, t) U wdt,

I=—L",
where
gr(s,t,d) = [(ar(p',d) — ar(o, d)) ], 4y
g2.(t,d) = [as (o, d)at]a:52;+t’ 93,1(t,d) := lay (o, d)]a:521+t'
On the base of TFETIF
Yo — o0 = Yo,10 + 2diy,

where
’(ﬂojo(S) = ¢0(S,0) = 1, ¢01 S, O' =0 / J@ZJO
0

for o # 0,
¢0,1(8, O) = (80¢0) (37 0)7
and the identity (p/)* = 02}, for (s,d) € T, o € Is we have the identities

ar(p',d) —ay(o,d) = (o 10 +2d1p2) b,  b(s,0,d) =

1/100 — (g + )d204 -

(7.5)

3d*o?

(02 + d?)* (02fy + d2)?
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Moreover,
t

o
for 0 = si9y+t, t € [~h,h], 1l = 1,L; for (s,d) € T, ¢ € Ig the absolute value of function
(10,10 + 2d 1)) bo is bounded by some positive constant ¢; and |a;(0,d)o?| < 1 for (o,d) € T.
This is why for (s,d) € Ty, t € [—h, h| we have the inequalities

<@20-1)"1

lgrol <y gaol <150 gl < (211 — 1)710/1> 920] < (2]1] — 1>71 (£l=1,L). (7.6)

We also have the relations

I h
4
> 20 -1 <In(2L+1), /|w| dt = §h3. (7.7)
=1 o
There exist positive constants ¢y := sup |[01], ¢; ;== sup [d11]. By the formulas (7.6), (7.7),
(s,0)€O (s,0)€O
(3.3) we obtain the estimates
L]k
> / (91101 + g2u011) Tsuw dt| < vy 0]l sy I 2L+ 1) B ((s,d) € Ty), (7.8)
=L |/,
4 .,
where ¢ 1= 5 (ciéo + ¢1).

Since w(—t) = w(t) and gs_(—t,d) = gsy(t,d) (t € [=h,h], | = 1,L), and the signs of the
functions gs;, w do not change as t € [—h, h|, in view of the formula (3.3) and the mean value
theorem for (s,d) € Ty, | = 1, L we have the identities

h h h

/ggy_lﬁg,_ltw dt + /9371173712@ dt = / (173,[(8, t) - 773,—[(37 _t)) th,lW dt
—h —h —h
X (7.9)
=6"! (v(?’)(s + 50 +G) — v (s — 59 — Q) G /gs,lw dt,
“h
where ((s,d) € [=h, h]. For (s,d) € Ty, [ =1, L the inequalities hold
[0 (s + 521+ G) = 0P (s = 531 = Q)| < [0l cagony 220 + D,
<(20—1)%h2 <h ( < 3.
|93,l| ( ) ) ‘Cl’ ) (2l _ 1) 3

By the relations (7.7), (7.9), (7.10) we get the estimates

h
- 2
> /g37ltv371wdt < 12 [vllpsooy I QL+ 1) B ((s,d) € Ty), c1p:= 5 (7.11)

I=—L,—1,1,L°p,

Comparing the Newton formulas (3.1), (3.2) and letting z = s++¢, 2.1 =s—h, 21 = s+ h,
Zp = s, we can represent the function 75 as the sum 03y = U3 + 04t, where

03(s) := f3(z-1,21,20,20), Va(s,t):= fa(z,2-1,21,20,20), S€E I, t€[=h,h].
Taking into consideration that
h
/gg,otw dt=0 (de€lp) and |gso(t,d)t*| <1 (d€ Ip,te [—h,hn]),

—h
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h
4
by the formulas (3.4) and / lw| dt = §h3 we obtain the estimates

~h
h h
/93,0t173,0w dt| = /93,0152174Wdt <casloloion® ((s,d) € Tr), cz:=187" (7.12)
h h
By the formula (7.5) and estimates (7.8), (7.11), (7.12) we obtain
‘Ul — 7:61’ § C1 H/UHC‘l(aﬂ) In (2L + 1) h3 ((S, d) € TL>, C1 ‘= C11 + C1,2 -+ C1,3. (713)

3 3 o

In view of the formulas u = > u;, @ = > @; (i = 1,3) and the estimates (7.3), (7.4), (7.13) for
i=1 i=1

(s,d) € T, we arrive at the estimates (7.1), where C 1= ¢; + ¢z +¢3. By Theorem 6.1, 7.1 the

inequalities (7.1) can be extended by continuity to the entire set T. The proof is complete. [

Let L € N, L > Lo, v € C(992). On the set T; we represent the function @ as the sum

-

u = ) u;, where

1

7

wi(s,d) := / awidp (1=1,3), Uy(s,d) = / wydo  ((s,d) € Tp).
o \[= %]
Theorem 7.3. Let v, L € N, L > Lo, v > 2, 00 € C**2. Then, for (s,d) € Ty, the
functions u(s,d), u(s,d), defined by continuity for d = 0, satisfy the estimates
i —a| < Col[vflgson B n (2L + 1), (7.14)
where Cy is a positive constant independent of L and (s, d).

Proof. Let v € C3(052). We define the set

T = Ig x {—3?,3?21} x Ip.
Since r > 0 for (s,0,d) € T\ Y7, for 92 € C"* n € Z, we can define the positive constants
C4j 7= sup lﬁgg{ (j =0,n).
(s,0,d)ET\T”
For L > Ly, (s,d) € Ty we have the embeddings [—%, %] C [s_ar/—1,S2r/41), and this is

why for (s,d) € Ty, and almost all ¢ € Is \ [s_a7_1.527/41] the derivative 0271, exists and by
the inequalities (3.7), (3.10) we have

‘837154‘ < |vllce@ay  ((s.d) € Tr), @€4:=CanyCao+ 2VCaoy—10a1 + V(27 — 1)Ca2y—2Ch 0-
Using the estimate for the error term in the Gauss formulas |2, Ch. 3, Sect. 5, Subsect. 2],
we obtain the estimate for the error of approximation of function y:
s — G| < allolloaony B ((s,d) € Tr), =25 2NN 2y +1)7'a.  (7.15)
By Corollary 4.1, for 90 € C"*2 n € Z. we can define the positive constants

Cij = sup_ ‘3252'-‘ (j=0,n,i=0,3).
(s,p,d)EY’

For almost all (s, p,d) € T’ the derivatives 3w (i = 1,3) exist and by the inequalities (3.7),
(3.10) we have

|05w;| < & [[v]l oo
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where

~ A A A A A A A A A2 A A A .
¢ = Cigca0 + (32t + 31601 + CipCo2)car + 3 (Ci,lco,o + Ci,OCO,lcO,O) cre (1=1,3).

Using the inequalities

L <A ((s,d) €Ty, 1= =21/ —1,2L" + 1),

similar to the estimates (7.3), (7.4) we obtain the estimates for the errors of approximations of
functions s, s:

a0 — @] < ¢il[vll ey b’ ((s,d) € To, i=2,3). (7.16)
Here

¢y 1= 20xG2(c))? sup |Ag (P, ]d])] c3 = 25e33(c))°.
delp
Letting

2= psda -+t f(z) = (s, psaa+t,d), 21 = Psd2i-1,
21 = Ps,d,21+1, 20 = Ps,d,21, f(z) = UAJ/1(5; Ps,d2l + t, d),

t S |:_ ,S,d,l7 ,S,d,lj| 5 (S,d) S TL, l - _2[/ - ]., 2L/ + 17

in the formula (3.1), we arrive at the identities

~1/ Al A~/
Wy (8, psaz +t,d) — Wi (s, psaz + 1, d) = Wiyt wsay,

where
wsal(t) = (t + h;,d,l) (t — 'S,dJ) , Wy (s,t,d) == f3(z,2-1, 21, 20).
For (s,d) € Ty, the deviation 4 — 4, can be written as
oris1 Mo
Uy — 0y = Z Gy ptws adt, gi(s,t.d) = ar(p. )], 4 (7.17)
=2y

Let us estimate the sum (7.17) without the term for [ = 0. Since
a1 = Mo Wsd,—1(—t) = wsa1(t), g-i(s,—t,d) = gi(s,t,d)

for t € [—h, 45, b, q,]; (s,d) € Ty, I = 1,20+ 1, and the sign of function g;, ws 4, does not
change for t € [—h;dw h;dﬂ, in view of the formula (3.3) and the mean value theorem for
(s,d) € Ty, 1 =1,2L" + 1 we have the identities

hls,d,—z hls,d,l
A~/ A~/
/ g1 Wy, tWs,a,—1 dt + / Gilopy tws g dt
—n —n
s,d,—1 s,d,l
. (7.18)
s,d,l
a1 3.~ 93,5
=6 ([apwl}pfq [apwl]pzcl—> G / GiWs,d,1 dt,
7h;,d,l

where
G (s,d) = Fpean+ Gy Gls,d) € [“higp )], 1=120+1.
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We also have
2
], — [03n],_ =D ([ag—k5g]pzcl+ _ [ag—k(sﬂp:g) o)

057, o = [0, ) (7.19)

where
vl(‘S? Ps d) = U(S + &S,d(p))ﬂ ®/<S7 Ps d) = 17(5 + &S,d(p»‘
We define the positive constants

él1,o = (10, é’l’j ‘= max {élyj,ég’jfl} (5 =1,n);
¢y :=max {cp0,ca1,Ch2}, ¢\ = max {cyo, a1, Cr2) -
For v € C3(09Q), (s,p,d) € T’ we have the estimates
|00V < collvllesony  (1=10,3),
where
Co =1, Cp1 =max {Cop, Cool
Cp2 1= mMax {6(2)70 + Co 1, Cv,l} ,
Cp,3 = Max {63,3 + 3C0,0C0,1 + Co2, cv,g} .
Moreover, p < psa(say1) < Cpsura if p € [psaz1,psaz), | = 1,21/ + 1. Taking into

consideration the inequalities (3.7), (3.8), (3.10), (3.11), for t € [=h 4, N, 4], | = 1,21/ + 1,
(s,d) € T, we get the estimates

[9501] x| S (1=0,3), Cs i =g

[Ogéﬂpzcl [0761] s ‘ cs(2l+1)h (=0,3), Cs 1 = 2¢) 4C);
[3ZU'LZCZ [0 }p - ‘ ¢y 1l osaqy (20 + 1) A (1=0,2), ¢, :=2c,3c); (7.20)
[000] | <@ llvllcaony  (1=0.2), Co = CpCu;

[826, — '] p=CE < & [[vllosgany 1 (j =0,2), G, 1 = c\Cuacy.

By the estimates (7.20) and identities (7.19), for ¢ € [=h, 4, b, 4], | = 1,207+ 1, (s,d) € Ty,
the estimates hold

Haiwﬂpzq - [agwﬂp:gl—‘ < Ctvllesany U+ 1) by 1y =3 (c5é +c5 (26, +¢)) . (7.21)
Let

Pls,d,zlq = min {_ﬁs,d(s—@l—l))y ﬁs,d(Szzq)} ) =1L, (s,d) € Tp.

We observe that p > g, ,, > ¢, s1if p € [psa1,ps43] and by the Dirichlet principle p >
ﬁ;,d,Zl’—l 2 C/pSQl/,l lf 1% I~ [ps,d,Qlflaps,d,QlJrl]; l = 2[’ + l”, l/ = 1, L/, l” = 0, 1. ThlS IS Why the
inequalities hold

—2
’91’ < (Clph) fOr t c [_hs,d,17 hs,d,1]7
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and )
- —2
9] < (Clph) 2 -1) for t € [=h g N,ail,
[=2040"1=1,1',1"=0,1((s,d) € T). Taking into consideration the inequalities

Gl <cgh (=121 +1),
(2l+ 1) / 1 ! 1
LT <7 (=040 =11, I"=0,1
(2 — 1) ( - )
and
hg,d,l
a<2(en)? (=T30 T (s.d)eT
|ws,d,l‘ t\ g(cp ) ( =1, + ,(S, )G L),
7h’s,d,l

the identities (7.18) and estimates (7.21), similar to the inequalities (7.11) we obtain the esti-
mates
h/

s,d,l
> gty twsar dt| < ev 0]l esgon) In (2L + 1) B ((s,d) € Ty). (7.22)
1=—2L"—1,—1, 1,2L/+1_h/s L
Here "
~ 2
CL1 = (cpcg) .

We proceed to estimate the term in the sum (7.17) for [ = 0. Comparing the Newton
formulas (3.1), (3.2) and letting z = ¢, 21 = —hs 40, 21 = hsa0, 20 = 0, for t € [—hs a0, hsa0)s
(s,d) € Ty, we can represent the function 1y jas the sum

Wy = Wyyp + Wyt
where
Wiy (s, d) == f3(z_1, 21, 20, 20), Wiy (s, t,d) :== faz,2-1, 21, 20, 20)-
For almost all (s, p,d) € T’ the derivative dyw} exists and by the formula (3.4) and inequalities

(3.7), (3.10) we have

—1

[}y | < sup ‘3;17113‘ <2476 0]l 200y »

(s,p,d)e'f’
where
C1,2 =C1aCn0 + (4€1,3C0,0 + 6¢12C01 + 4C11C02 + C10C03) CAL
+ (661,25370 + 12¢1 1€o,0C01 + 361,05(2)71 + 451,060,050,2) CA2-

Taking into consideration that

hs,d,O hs,d,()
4 3
/ Gotws 40 dt = 0, / lws.a0| dt < 3 (cgh) for (s,d) €Ty
_hs,dA,O _hs,d,O

and
‘got2‘ < 1 fOI‘ (87 d) S TL7 t S [_hs,d,OJ hs,d,O])
we obtain the estimates

hs,d,0 hs,d,0
hs ,d,0 hs,(i,O

//)3.

Here C12 = 18 C1 2( p
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By the formula (7.17) and estimates (7.22), (7.23) we obtain

|1AL1 — 7,~L1| < ||U||C3(BQ) In (2[/ + ].) hg ((8, d) c TL>, C1 ‘= C11 + C1,2. (724)
4 4
In view of the identities & = > u;, & = > 4; and estimates (7.15), (7.16), (7.24), for (s,d) € T,
i=1 i=1
we obtain the estimates (7.14), where Cy := ¢; + ¢g + ¢3 + ¢4. By Theorems 5.1, 7.1, the
inequalities (7.14) can be continued to the entire set Ty. The proof is complete. ]

By the inequalities (7.1), (7.14) under the conditions v, L € N, L > Lg, v > 2, 02 € C*72,
v € CHIN) we obtain the estimates

i —ul < Col[vllgapey PP I 2L +1)  ((s,d) € Tp), Co:=Ci+ Ch. (7.25)

Similarly, there exists a positive constant Cj such that under the conditions v, L € IN, L > Ly,
v =2,00 € CH? ve CHIN) the estimates hold

i — | < CG [Vl oagony h* I (2L +1)  ((s,d) € T). (7.26)

According to the estimates (7.25), (7.26), the functions 4, @’ approximate the function u with

the error O(h3In (2L + 1)) on the corresponding sets T, T,. Under the conditions v, L € N,
L> Lo, v>2, 00¢eC?2 ve CYON) we have the estimates

[t — u| < C' 0]l gapn) P*In (2L +1)  ((s,d) € TLUT,), C:=Co+Cy. (7.27)

According to the formulas (5.4), (6.7), for (s,d) € T the function @ — ii is calculated by the
formula

i — i = [i — u] Abszvsal g o

[52l—1752l+1} ~7 [52l—1732l+1]
S$=S9;_1 AO + [’LL - ] A

s=59; s=s9;41 1 ’

that is, the function @ — i on the segments [sq,_1, S2;11] is described by the quadratic Lagrange
polynomials determined by the given values of the function @ — u at the nodes so;_1, So7, Sory1.
This is why in view of the inequalities (3.7), (7.27) under the conditions v, L € N, L > Ly,
v = 2,00 € CH2 v e C4IN) we obtain the estimates

it — ii| < eaoCl[vllcagay P’ In (2L +1)  ((s,d) € T). (7.28)

2

By the estimates (6.8), (7.28) under the conditions v, L € N, L > Lo, L >
1) <2[Inhl), v = 2,00 € C*3, v e C°(00Q) we get the estimates (2.2), where

, (In(2L +

C .= 7'('*1 (CA,OC HUHC‘I(QQ) + C) sup|8s3u‘> .

(s,d)eT
We arrive at the main statement of the work.
Corollary 7.1. Let v, L € N, L > Ly, v > 2, 00 € C*'3 v € C°(09Q). Then, as L — oo,

the functions U(id(sl) converge to the function U (Z4(s)), defined for d = 0 by continuity,
uniformly in (s,d) € T with the rate O (h3Inh).

8. NUMERICAL EXPERIMENTS

We consider ND DLP near and at the boundary of unit circle (d € [-0.01,0.01]) with the
density v(s) = cos(s) (s € g = [—m,7]). The exact values of ND DLP U (Z4(s)) are calculated
by the formulas

U= —2"cos(s) for declo0,1],
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_, cos(s)

(1—d)?

U= for de€ (—o0,0].

2
For this geometry the third of the radius of Lyapunov circle is D = 3 ~ 0.21. The derivative
s

0,p is calculated by means of the expression v1 — dcos (%) for all (s,0,d) € T, and this

is why 0,0 > 0 for 0 € (—m,7), and as ¥y we can take any number ¥, € (0,7), and by
the symmetry ¥ = %,. We calculate the semi-analytic approximations of ND DLP U (Z4(s))
are calculated by means of the formula (5.4), and for calculating the function 44 we use the
Gauss formula with v = 2 nodes. The calculation of approximate and exact values of ND DLP
is made with the double precision on the sets X, formed by the points Zg,(s;, ;) (i = —5,5,

|=—-2L—1,2L, j =0,3), where

4

To determine experimentally the approximation accuracy we find the values AU, which are the
maxima of absolute values of errors on the sets X :

AU(h, %) == max

i=—55,l=—2L—1,2L, j=0,3

S1g = <l + 1) h,  dy:i=0, dy=410"  i=T.4,  dus:=+10"1,

Y

U (;ﬁdi(s%)) —U (zdi(s%)) ) .

In Table 1 in each cell we provide the values of AU calculated for given ¥, and h.

TABLE 1.

Yo/m | hy=7/15 | hy=7/31 |hy=m/63 |hy=m/127 | hs=m/255
0.006 |[7.70-10° [6.94-10° [5.39-10° [2.30-10° 5.07-1072
0.01 4.33-10° [3.556-10° [2.02-10° [8.17-1072 6.91-1073
0.03 9.60-10"" [1.88-107"' [3.22-1073 [4.41-107* [4.70-107°
0.05 2.87-107T [5.63-107° [1.07-10°° [6.39-10° |[6.08-107F
0.068 [3.06-1072 [1.01-10° [1.63-10°* [1.87-107° 1.18-1076
0.10 3.27-107% [6.27-107% [348-107° [3.47-10°% [217-1077
0.15 425-107% [9.74-107° [885-107% [1.00-107% [835-10°%
0.50 2.96-10~*% [3.78-107° [5.14-10°% [6.60-107 [6.82-10°%
0.90 466-107% [535-10° [6.83-10°% |7.68-10"7 |[7.43-10°%
0.99 1.29-1072 [2.00-102% [221-107* [368-10° [4.79-10°F
0999 [1.79-10°" [4.06-10"% [9.10-107% [1.91-107% [3.44-107*
0.9999 [1.85-10° [4.34-10°"F [1.04-10°T [253-10°2 [6.02-103
0.99999[1.85-107 [4.37-10° [1.06-10° [2.60-10"% [6.37-1072

Calculating the degree of convergence rates

() ()

while passing from the discretization step hy to hpy1 (k = 1,4), we observe that in a wide range
of possible values of ¥y the proposed semi—analytical approximation has a uniform almost cubic
rate of convergence (v & 3) in the closed near-boundary domain, which is in good agreement
with Corollary 7.1. In particular, a pronounced cubic rate of convergence is observed for the

by
value =2 = 7 ! arcsin D ~ 0.068, when the distance from the observation point to the nearest

7
nodes in the Gauss formulas is approximately equal to the third of radius of Lyapunov circle (see
the remark after Theorem 4.1). The convergence rate decreases with decreasing 3, when the
observation point Z4(s) approaches the nodes in the Gauss formulas, and as ¥y — 7, when the
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Jacobian (8,p)"", which makes the passage from the integration variable over the arc length
o to the variable p, increases unboundedly.

Thus, the proposed combined method, which uses the exact integration with respect to
the variable p on a fixed length part of the boundary near the observation point and the
Gauss formula on the rest of the boundary, ensures uniform almost cubic convergence of the
approximations of the ND DLP in the near-boundary domain including the boundary. In this
case, the part of the boundary on which the exact integration with respect to p is made should
be made as large as possible to achieve the greatest accuracy, provided that the Jacobian of
the transition to the variable p remains positive and does not take on too large values.

Now we consider the calculation of ND DLP with the density v(s) = cos(s) at some distance
from the boundary of the unit circle (d > 0.01 and d < —0.01). Here for d € (—o0,1), s € Ig
the correspondence between the points Z(s) and Z4(s) is one-to-one 1 —dK(s) = 1—d > 0, and
this is why as the set Ip we can take any segment [—Dy,0)U (0, Ds], where Dy > 0, Dy € (0, 1).
The possibility to choose the number ¥ is independent of the choice of numbers Dy, Dy since
dpp) =1 —dcos(Z) >0forallde (—o0,1), o € (—m,). For fixed d we calculate the values

of functions U (Z4(s)) (for v = 2) and U (Z4(s)) on the sets X} (d) formed by the points id(sl%)

(I=—-2L—1,2L, j =0, 3). For the experimental determination of approximation accuracy we
find the values A'U, which are the absolute values of errors on the sets X7 (d) for fixed values
d, 203

Y %

U (#als15)) = U (2alsue))|

In Table 2 in each cell we provide two series of values A'U: for ¥y = 7 and ¥y = 0 (from
top to down) calculated for given values of d and h.

The data in Table 2 indicate that the use of exclusively Gauss formulas for calculating the
integrals arising after PQA of the density ensures the cubic convergence of the approximations
of the ND DLP only at some distance from the boundary, and it is impossible in a sufficiently
narrow closed near-boundary domain. The semi-analytical approximations U (Z4(s)) converge
with an almost cubic rate uniformly in (s,d) € T in a wide range of possible values of Dy, Ds.
The convergence rate decreases as d — 1 (the points Z4(s) approach the center of the circle),
when the Jacobian (d,p)”" increases unboundedly.

A'U(d, h,>0) := max

I=—2L—12L, j=0,3

9. (CONCLUSION

In this paper, we obtain semi—analytical approximations of ND DLP for the two—dimensional
Laplace equation U (Z4(s)), which converge uniformly in a closed near-boundary domain €,
including the boundary with the rate O(h®Inh) under the conditions 9Q € C7, v € C5(9N).
We use quadratic polynomials and the Gauss formulas of at least fifth order to approximate
slowly varying functions. In the same way, for each n € IN, one can obtain approximations
converging uniformly with the rate O(h?" ™' Inh) if one uses polynomials of degree 2n and the
Gauss formulas of order at least O(h?""3).

The disadvantages of the method include the rather high requirements imposed on the
smoothness of the boundary curve 0€2. In addition, the issue on approximation of the boundary
in the framework of this method was not studied. The advantage of the method is the pos-
sibility of its implementation for any analytically defined boundary curves. Suppose that the
boundary approximation is an independent problem and it is satisfactorily solved by using an
analytically defined curve that has sufficient smoothness, that is, such a curve can be treated
as the true boundary of the domain. Then the proposed method can always be implemented,
regardless of the complexity of curve. To implement other semi-analytical methods based on
exact integration over the arc length, additional approximation of the coordinate functions of
the curve is required: piecewise constant, piecewise linear or piecewise quadratic, which leads
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TABLE 2.

d h1:7T/15 h2:7'('/31 h3:7T/63 h4:7T/127 h5:7T/255
0.01 2.96-107% [3.78-10° [5.14-10°% [6.60-107 [6.82-107®
5.92-10° |[1.18-10' [1.96-10' |1.99- 10 7.23-10°
0.1 3.72-107% [3.47-107° [387-10°% [4.73-107 [5.84-107®
1.73-10° | 4.01-107' |2.24-107% |[527-10"° |5.84-10°8
0.5 298-107* [328-107° [3.88-107% [4.73-1077 [584-108
424-107* [3.26-107° |3.88-107% [4.73-1077 |5.84-108
0.9 3.10-107% [3.32-107° [390-10°% [4.74-107 [6.01-10°8
2.89-107* [3.26-107° [3.88-107% |4.73-1077 |5.84-107®
0.99 3.08-107% [3.32-107° [390-10°% [4.74-107 [2.65-107"
2.89-107* [3.26-107° [3.88-10°% |4.73-1077 |[5.84-10°8
0.999 [3.08-107*% [3.29-10° [546-10° [6.74-10°% [5.50 1071
2.89-107* [3.26-107° [3.88-10°¢ |4.73-1077 |5.84-10°8
0.9999 [6.59-107* [326-10° [1.64-102 [7.34-1072 [3.79-10°T
2.89-107* [3.26-107° [3.87-10°% |4.73-1077 |5.84-10°8
0.99999(5.87-10~T [1.12-10° [2.04-10" [2.13-10" 7.28 - 102
2.89-107* [3.26-107° [3.88-10°% |4.73-1077 |[5.84-10°8
-0.01 [290-107% [368-10° [4.99-107% [6.40-10~" [6.65-10°°
5.86-10° [1.15-10% |1.93-10" |1.98-10! 7.33.10°
-0.1 2.86-107% [2.83-107° [3.20-107% [3.91-1077 [4.83-10°®
1.73-10° | 4.80-10"' |3.47-107% |[1.54-10"* |4.83-10°%
-1 7.33-107° [817-10°% [9.70-1077 [1.18-1077 |1.46-10°8
1.06-107* |8.15-10°% 19.69-10"7 [1.18-10"7 |1.46-10°%
-10 2.36-107% [2.68-1077 [3.20-107% [3.91-107° [4.83-1071°
2.39-107% [2.69-1077 [3.20-10"% |3.91-107° [4.83-10710
-100 2.80-107% [3.18-1079 [3.80-10°1[4.64-10"7 [5.74-10" 12
2.84-107% [3.19-107° |[3.80-10719|4.64 107" |[5.73-107'2

to the appearance of a false boundary, which is extremely undesirable in calculations near and
at the boundary [27], [26].
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