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ON BASIC SUMMABILITY IN R

B. SARIĆ

Abstract. The paper deals with the concept of basic summability of residue function of

interval function, which is a synonym for its differential form. As one comprehensive concept,

it includes not only all known concepts of integrability, such as Newton’s, generalized

Riemann and generalized Riemann — Stieltjes integrability, but also arithmetic series.
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1. Introduction

In the middle of the last century, the concept of Riemann integral was slightly redefined,
which led us to the concept of generalized Riemann integrals [1], [2], [4]. At the same time,
the notion of absolutely continuous function (𝐴𝐶) was redefined to the concept of functions of
negligible variation (𝑁𝑉 ) [3], [6], [10]. The connection between the indefinite integral and the
generalized Riemann integral, in the form of the Newton — Leibniz formula, can be established
only in the case that the primitive function 𝐹 of the integrand 𝑓 is an 𝑁𝑉 function on every
null subset 𝐸 of the compact interval of integration 𝐼. Otherwise, if the function 𝐹 is a function
of bounded variation (𝐵𝑉 ) on 𝐼 and is not an 𝑁𝑉 function on every null subset 𝐸 of 𝐼, the
cumulative change in the value of the primitive 𝐹 on 𝐼 (the value of the associated interval
function ∆𝐹 on the interval 𝐼 [12]) differs from the value of the generalized Riemann integral
of the function 𝑓 over the interval of integration 𝐼. The difference of those values is equal to
the sum of the residue function ℜΔ𝐹 of the interval function ∆𝐹 on the singularity set 𝑆,
and the sum of the values of the generalized Riemann integral and the sum of the function
ℜΔ𝐹 on the set 𝑆 is the total value of the generalized Riemann integral of the function 𝑓
over 𝐼, which is obviously equal to ∆𝐹 (𝐼), unconditionally [7], [8], [9]. In other words, the
Newton — Leibnitz formula, in which the total value of the Riemann integral figures, is valid
unconditionally. The value of the residue function ℜΔ𝐹 of interval function ∆𝐹 at the point
𝑥 ∈ 𝐼 is the limit lim

𝐼→𝑥
∆𝐹 (𝐼), so that the limit lim

𝐼→𝑥
𝑓𝜇𝐼 is the value of the residue function ℜ𝑓𝜇𝐼

at the point 𝑥 ∈ 𝐼 of the point-interval function 𝑓𝜇𝐼 , where 𝜇𝐼 is the Lebesgue measure on the
interval 𝐼 [9]. Clearly, only in special cases, for the class of 𝐴𝐶𝐺 functions 𝐹 [4], the sums of
values of functions ℜΔ𝐹 and ℜ𝑓𝜇𝐼

, on the compact interval 𝐼, are equal and the total integral
of derivative 𝑓 of primitive 𝐹 over 𝐼 is equal to the generalized Riemann integral of function
𝑓 over 𝐼. Accordingly, the paper presents the concept of basically summable functions, which
is comparable to the concept of functions of bounded variation, see [3], with its peculiarities,
which lead us, in case the sum of the residue function exists on a compact set, to the concept
of total integrability.
The paper is organized as follows. Section 2 is preliminary. Section 3, as the main one, begins

with the definition of the differential form, which is renamed to the residue function, in the
second part of this section. Finally, after defining the concept of basic summability, at the end
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of this section the necessary and sufficient conditions are given, in the form of a theorem, for
the residue function to be basically summable.

2. Preliminaries

Given a compact interval [𝑎, 𝑏] in R, let ℐ ([𝑎, 𝑏]) be a family of all compact subintervals 𝐼 of
[𝑎, 𝑏] and let 𝒫 ([𝑎, 𝑏]) be the power set of [𝑎, 𝑏]. We set R+ := [0,+∞) and N := {1, 2, 3, . . .}.
The interior, closure and boundary of a set 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) are denoted by 𝐸̇, 𝐸̄ and 𝜕𝐸,
respectively, and the characteristic function (the indicator) of 𝐸 is denoted by 𝜒𝐸 : R→ {0, 1};
it is equal to 1 if 𝑥 is in 𝐸, and to 0 if 𝑥 is not in 𝐸. A set function S on 𝒫 ([𝑎, 𝑏]) is said to be
a countably additive if it satisfies the condition

S (∪1⩽𝑛𝐸𝑛) =
∑︁
1⩽𝑛

S (𝐸𝑛) ,

for each countable collection {𝐸𝑛}1⩽𝑛 of pairwise disjoint sets 𝐸𝑛 such that ∪1⩽𝑛𝐸𝑛 ∈ 𝒫 ([𝑎, 𝑏]).
Any countably additive set function S on 𝒫 ([𝑎, 𝑏]) is in fact a finite signed measure. In the
theory of measures a signed measure is sometimes called a charge. Accordingly, by a charge on
𝒫 ([𝑎, 𝑏]) we mean a countably additive set function on 𝒫 ([𝑎, 𝑏]). Non-negative measures can be
thought of as making precise a notion of "size"for sets. The Lebesgue measure onR is denoted by
𝜇, however, for any 𝐼 ⊂ ℐ ([𝑎, 𝑏]) we sometimes write∆𝑥 (𝐼) or |𝐼| instead of 𝜇𝐼 . If null set is a set
of Lebesguemeasure zero, then the point function 𝑓 on [𝑎, 𝑏] is said to be null function on [𝑎, 𝑏],
if the set {𝑥 ∈ [𝑎, 𝑏] | 𝑓 (𝑥) ̸= 0} is a null set, see Definition 2.4 in [1]. If {𝑥 ∈ [𝑎, 𝑏] | 𝑓 (𝑥) ̸= 0}
is an empty set, then 𝑓 is a zero function on [𝑎, 𝑏]. A function, which is a finite combination of
set and point functions, connected by elementary operations, all the way to a composition of
functions, is called the set–point function. Given 𝛿 > 0 on [𝑎, 𝑏], named a gauge, an interval–
point pair (𝐼, 𝑥) is called 𝛿–fine if 𝐼 ⊂ (𝑥 − 𝛿 (𝑥) , 𝑥 + 𝛿 (𝑥)). A countable partition 𝑃 [𝑎, 𝑏] of
some compact interval [𝑎, 𝑏] ∈ R is a countable set of interval–point pairs ([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛)1⩽𝑛 such
that the subintervals [𝑎𝑛, 𝑏𝑛] are non-overlapping, ∪1⩽𝑛 [𝑎𝑛, 𝑏𝑛] = [𝑎, 𝑏] and 𝑥𝑛 ∈ [𝑎𝑛, 𝑏𝑛]. The
points {𝑥𝑛}1⩽𝑛 are the tags of 𝑃 [𝑎, 𝑏] [1]. It is clear that there are many different ways to
arrange the position of the tags 𝑥𝑛 with respect to [𝑎𝑛, 𝑏𝑛] . Each of these positions leads to one
of a Riemann type definition of the generalized Riemann integral. If 𝐸 ∈ 𝒫 ([𝑎, 𝑏]), then the
restriction of 𝑃 [𝑎, 𝑏] to 𝐸 is a countable collection of ([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛) ∈ 𝑃 [𝑎, 𝑏] such that all 𝑥𝑛

are tagged in 𝐸 :
𝑃 [𝑎, 𝑏] |𝐸 = {([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛) ∈ 𝑃 [𝑎, 𝑏] | 𝑥𝑛 ∈ 𝐸} .

Let ℎ be an interval–point function on ℐ ([𝑎, 𝑏])× [𝑎, 𝑏] and let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]). In what follows, a
set of values and the sum of the values of ℎ on 𝑃 [𝑎, 𝑏]|𝐸 ⊂ 𝑃 [𝑎, 𝑏] are denoted by ℎ (𝑃 [𝑎, 𝑏] |𝐸)
and 𝑠 (ℎ, 𝑃 [𝑎, 𝑏] |𝐸) instead of ⟨ℎ𝜒𝐸⟩ (𝑃 [𝑎, 𝑏]) and 𝑠 (⟨ℎ𝜒𝐸⟩, 𝑃 [𝑎, 𝑏]), respectively:

ℎ (𝑃 [𝑎, 𝑏] |𝐸) = {ℎ (([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛)) | ([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛) ∈ 𝑃 [𝑎, 𝑏] |𝐸} ,
as well as

𝑠 (ℎ, 𝑃 [𝑎, 𝑏] |𝐸) =
∑︁

([𝑎𝑛,𝑏𝑛],𝑥𝑛)∈𝑃 [𝑎,𝑏]|𝐸

ℎ (([𝑎𝑛, 𝑏𝑛] , 𝑥𝑛)) .

By 𝜌 (𝑥, 𝑦) we denote the distance between two points 𝑥 and 𝑦 in R, then

𝜌 (𝑥,𝐸) := inf {𝜌 (𝑥, 𝑦) | 𝑦 ∈ 𝐸}
is the distance between 𝑥 and a set 𝐸 ∈ 𝒫 ([𝑎, 𝑏]). For a point function 𝑓 on [𝑎, 𝑏] and the
Lebesgue measure 𝜇, throughout the rest of the paper, the interval–point function ⟨𝜇𝑓⟩ is
denoted by F.

Definition 2.1. Given a compact interval [𝑎, 𝑏] in R, let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]). A countable 𝛿–fine
partition 𝑃 ([𝑎, 𝑏]) is said to be fully tagged in 𝐸̄ if a gauge 𝛿 > 0 on [𝑎, 𝑏] satisfies the condition
𝛿 (𝑥) ⩽ 𝜌(𝑥, 𝜕𝐸̄) on [𝑎, 𝑏] ∖ 𝜕𝐸̄.
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The following lemma is a form of the well–known Vitali Covering Lemma (VCL) related to
a countable 𝛿–fine partition of a compact interval [𝑎, 𝑏] in R fully tagged in a measurable set
𝐸 ∈ 𝒫 ([𝑎, 𝑏]) with Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎).

Lemma 2.1. For a compact interval [𝑎, 𝑏] in R let 𝒱[𝑎,𝑏] be a Vitali cover of [𝑎, 𝑏] and let
𝐸 ∈ 𝒫 ([𝑎, 𝑏]) be a measurable set having Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎) . Then for every 𝜀 ∈
(0, 𝑏− 𝑎− 𝜇𝐸) there exist a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] and a countable sequence

{︀
𝐼𝑛 | 𝐼𝑛 ∈ 𝒱[𝑎,𝑏]

}︀
1⩽𝑛

of non–overlapping intervals 𝐼𝑛 such that

𝑠
(︀
𝜇, 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄

)︀
> (1− 𝜀′) (𝑏− 𝑎) , (2.1)

where 𝜀′ (𝑏− 𝑎) = 𝜀+𝜇𝐸, 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄ ⊂ 𝑃 [𝑎, 𝑏] and 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of

[𝑎, 𝑏] fully tagged in 𝐸̄.

Proof. Let 𝒱[𝑎,𝑏] be a Vitali cover of [𝑎, 𝑏] and let 𝐸 ⊂ [𝑎, 𝑏] be a set of Lebesgue measure
𝜇𝐸 < (𝑏− 𝑎). For every 𝜀 ∈ (0, 𝑏− 𝑎− 𝜇𝐸) there is an open set 𝒪𝜀, such that 𝐸̄ ⊂ 𝒪𝜀 and
𝜇 (𝒪𝜀) < 𝜀 + 𝜇𝐸. Then for every 𝜀 ∈ (0, 𝑏− 𝑎− 𝜇𝐸) we choose a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such
that 𝛿𝜀 (𝑥) ⩽ 𝜌(𝑥, 𝜕𝐸̄) on [𝑎, 𝑏] ∖ 𝜕𝐸̄ and 𝛿𝜀 (𝑥) ⩽ 𝜌 (𝑥, 𝜕𝒞𝒪𝜀) on 𝜕𝐸̄, where 𝒞𝒪𝜀 is the closure
of 𝒪𝜀. For the relative complement [𝑎, 𝑏] /𝐸̄ of 𝐸̄, with respect to [𝑎, 𝑏], we take a collection of
intervals 𝐼 ∈ 𝒱[𝑎,𝑏], which paired with 𝑥 ∈ [𝑎, 𝑏] /𝐸̄ form 𝛿𝜀–fine interval-point pairs for every
𝜀 ∈ (0, 𝑏− 𝑎− 𝜇𝐸), to be a Vitali cover 𝒱[𝑎,𝑏]∖𝐸̄ of [𝑎, 𝑏] ∖ 𝐸̄. If 𝒱𝐸̄ ∈ 𝒱[𝑎,𝑏] is a Vitali cover of 𝐸̄,
which means that for every 𝜀 ∈ (0, 𝑏− 𝑎− 𝜇𝐸) there is a collection of intervals 𝐼 ∈ 𝒱𝐸̄, which,
paired with 𝑥 ∈ 𝐸̄, form 𝛿𝜀–fine interval–point pairs, then each countable set{︀

(𝐼𝑛, 𝑥𝑛) | 𝐼𝑛 ∈ 𝒱[𝑎,𝑏]∖𝐸̄ ∪ 𝒱𝐸̄ ∧ ∪1⩽𝑛𝐼𝑛 = [𝑎, 𝑏]
}︀

is a countable 𝛿𝜀–fine partition 𝑃 [𝑎, 𝑏] of [𝑎, 𝑏] fully tagged in 𝐸̄.
Since

𝑠 (𝜇, 𝑃 [𝑎, 𝑏])− 𝑠
(︀
𝜇, 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄

)︀
= 𝑠 (𝜇, 𝑃 [𝑎, 𝑏] |𝐸̄) < 𝜇 (𝒪𝜀) < 𝜀+ 𝜇𝐸,

where 𝑠 (𝜇, 𝑃 [𝑎, 𝑏]) = 𝑏−𝑎, it follows that for every 𝜀 ∈ (0, 𝑏− 𝑎− 𝜇𝐸) there exists a countable
𝛿𝜀–fine subpartition 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄ consisting of the non–overlapping intervals 𝐼𝑛 ∈ 𝒱[𝑎,𝑏]∖𝐸̄ ⊂
𝒱[𝑎,𝑏] such that

𝑠
(︀
𝜇, 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄

)︀
> (1− 𝜀′) (𝑏− 𝑎) ,

where 𝜀′ (𝑏− 𝑎) = 𝜀+ 𝜇𝐸. The proof is complete.

If 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) is a measurable set having Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎), then for every
𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏], such that any 𝛿𝜀–fine partition 𝑃 [𝑎, 𝑏] of [𝑎, 𝑏] consists
of two countable subpartitions, one of which is 𝑃 [𝑎, 𝑏] |[𝑎,𝑏]∖𝐸̄ consisting of, generally speaking,

countably many countable 𝛿𝜀–fine partitions, and the other is 𝑃 [𝑎, 𝑏] |𝐸̄ fully tagged in 𝐸̄. Thus,
in what follows, unless otherwise stated, without loss of generality, a set 𝐸 is supposed to be
closed.

3. The concept of basic summability

For some compact interval [𝑎, 𝑏] in R, let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) and let ℎ and 𝑘 be two interval–point
functions on ℐ ([𝑎, 𝑏]) × [𝑎, 𝑏]. We begin with the definition of the differential form on 𝐸 of
⟨ℎ− 𝑘⟩ denoted by 𝛿⟨ℎ− 𝑘⟩.

Definition 3.1. Given a compact interval [𝑎, 𝑏] in R, let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) and let ℎ and 𝑘 be two
interval–point functions on ℐ ([𝑎, 𝑏])× [𝑎, 𝑏]. The point function 𝛿⟨ℎ− 𝑘⟩ on 𝐸 is a differential
form on 𝐸 of ⟨ℎ− 𝑘⟩ if for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|⟨⟨ℎ− 𝑘⟩ − 𝛿⟨ℎ− 𝑘⟩⟩ (𝑃 [𝑎, 𝑏]|𝐸)| < 𝜀, (3.1)
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whenever 𝑃 [𝑎, 𝑏]|𝐸 ⊂ 𝑃 [𝑎, 𝑏] and 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged in
𝐸. Here 𝛿⟨ℎ− 𝑘⟩ = lim

𝛿𝜀→0+
⟨ℎ− 𝑘⟩.

In the case |𝛿⟨ℎ− 𝑘⟩| < +∞ on 𝐸 we say that ℎ and 𝑘 are differentially comparable on 𝐸.
If, in addition, 𝛿⟨ℎ− 𝑘⟩ is identically zero on 𝐸, then ℎ and 𝑘 are differential equivalents on 𝐸.
For 𝐸 ∈ 𝒫 [𝑎, 𝑏], let 𝜍 be a strictly positive charge on ℐ [𝑎, 𝑏] such that its differential form 𝛿𝜍 is
identically zero on [𝑎, 𝑏]. If the set of values on 𝐸 of the point function 𝛿𝜍⟨ℎ− 𝑘⟩, as the limit
lim

𝛿𝜀→0+
⟨⟨ℎ − 𝑘⟩/𝜍⟩, is a set of defined values, which means that |𝛿𝜍⟨ℎ− 𝑘⟩| < +∞ on 𝐸, then

ℎ and 𝑘 are derivatively comparable on 𝐸 with respect to 𝜍. For a measurable set 𝐸 ⊂ [𝑎, 𝑏]
having Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎) the next definition is that of derivative equivalence on
𝐸 for ℎ and 𝑘, with respect to 𝜍.

Definition 3.2. For a compact interval [𝑎, 𝑏] in R, let 𝐸 ⊂ [𝑎, 𝑏] be a measurable set having
Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎), let ℎ and 𝑘 be two interval-point functions on ℐ ([𝑎, 𝑏])× [𝑎, 𝑏])
and let 𝜍 be a strictly positive charge on ℐ [𝑎, 𝑏] such that its differential form 𝛿𝜍 is identically
zero on [𝑎, 𝑏]. Then the interval–point functions ℎ and 𝑘 are said to be derivative equivalents
on [𝑎, 𝑏] ∖ 𝐸 with respect to 𝜍 if for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that⃒⃒

⟨ℎ− 𝑘⟩
(︀
𝑃 [𝑎, 𝑏]|[𝑎,𝑏]∖𝐸

)︀⃒⃒
< 𝜀𝜍(𝑃 [𝑎, 𝑏]|[𝑎,𝑏]∖𝐸), (3.2)

whenever 𝑃 [𝑎, 𝑏]|[𝑎,𝑏]∖𝐸 ⊂ 𝑃 [𝑎, 𝑏] and 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged
in 𝐸. Here

𝛿𝜍⟨ℎ− 𝑘⟩ = lim
𝛿𝜀→0+

⟨⟨ℎ− 𝑘⟩/𝜍⟩ ≡ 0.

It is clear that for each interval–point function ℎ the point function 𝛿𝜇ℎ on [𝑎, 𝑏], as the
limit lim

𝛿𝜀→0+
⟨ℎ/𝜇⟩, is the derivative function on [𝑎, 𝑏] of ℎ. Of course, the point function 𝑓 is a

derivative on [𝑎, 𝑏] of ℎ if 𝑓 is the derivative of ℎ at every point 𝑥 ∈ [𝑎, 𝑏]. The interval–point
function ℎ is said to be differentiable on [𝑎, 𝑏] to the point function 𝑓 if ℎ has 𝑓 as a derivative
on [𝑎, 𝑏].

On the other hand, it is obviously possible that on some subset of [𝑎, 𝑏], where ℎ and 𝑘 are
or are not, it is irrelevant, differential equivalents, but are not derivative equivalents, they are
differentially comparable, which means that the limit 𝛿⟨ℎ− 𝑘⟩ is defined on this subset. Such
a set is a set of singularities defined below.

Definition 3.3. For a compact interval [𝑎, 𝑏] in R, let 𝑆 ⊂ [𝑎, 𝑏] be a measurable set having
Lebesgue measure 𝜇𝑆 < (𝑏− 𝑎), let ℎ and 𝑘 be two interval–point functions on ℐ ([𝑎, 𝑏])× [𝑎, 𝑏])
and let 𝜍 be a strictly positive charge on ℐ [𝑎, 𝑏] such that its differential form 𝛿𝜍 is identically
zero on [𝑎, 𝑏]. The set 𝑆 is said to be a set of singularities of ⟨ℎ − 𝑘⟩, with respect to 𝜍 if for
every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

𝜀𝜍(𝑃 [𝑎, 𝑏]|𝑆) ⩽ |⟨ℎ− 𝑘⟩ (𝑃 [𝑎, 𝑏]|𝑆)| , (3.3)

whenever 𝑃 [𝑎, 𝑏]|𝑆 ⊂ 𝑃 [𝑎, 𝑏] and 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged in
𝑆.

As previously stated, if the point function 𝛿 ⟨ℎ− 𝑘⟩ is identically zero on the set 𝑆, then ℎ
and 𝑘 are differential equivalents on 𝑆. However, if ℎ and 𝑘 are not derivative equivalents on
𝑆, the previous inequality (3.3) becomes the double inequality

𝜀𝜍(𝑃 [𝑎, 𝑏]|𝑆) ⩽ |⟨ℎ− 𝑘⟩ (𝑃 [𝑎, 𝑏]|𝑆)| < 𝜀. (3.4)

In case the point function 𝛿 ⟨ℎ− 𝑘⟩ is a nonzero function on the set 𝑆, and ℎ and 𝑘 are
differentially comparable on 𝑆, then the following double inequality is satisfied

𝜀𝜍(𝑃 [𝑎, 𝑏]|𝑆) ⩽ |⟨⟨ℎ− 𝑘⟩ − 𝛿⟨ℎ− 𝑘⟩⟩ (𝑃 [𝑎, 𝑏]|𝑆)| < 𝜀, (3.5)
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and the singularity set 𝑆 is a set of removable singularities of ⟨ℎ− 𝑘⟩ with respect to 𝜍.
For an interval [𝑎, 𝑏] in R let ℎ be an interval–point function on ℐ ([𝑎, 𝑏])×[𝑎, 𝑏]). The absolute

sum 𝜎𝛿|ℎ|([𝑎, 𝑏]) over [𝑎, 𝑏] of the point function 𝛿 |ℎ|, which is a limit on [𝑎, 𝑏] of |ℎ|, is defined
to be lim

𝛿→0+
𝑠 (|ℎ| , 𝑃 [𝑎, 𝑏]) . If the set 𝐸 is a set in [𝑎, 𝑏] with indicator 𝜒𝐸, then 𝜎⟨𝛿|ℎ|𝜒𝐸⟩ ([𝑎, 𝑏])

is the absolute sum of 𝛿ℎ over 𝐸. In what follows we write 𝜎𝛿|ℎ| (𝐸) instead of 𝜎⟨𝛿|ℎ|𝜒𝐸⟩ ([𝑎, 𝑏]).
If 𝜎𝛿|ℎ| (𝐸) has a finite value, then we say that 𝛿ℎ is absolutely summable (𝐴𝑆) over 𝐸. Hence,
𝛿ℎ ∈ 𝐴𝑆([𝑎, 𝑏]) if 𝜎𝛿|ℎ| ([𝑎, 𝑏]) < +∞, and if 𝜎𝛿|ℎ| ([𝑎, 𝑏]) ⩽ +∞, then 𝛿ℎ is said to be absolutely
extendedly summable (𝐴𝑒𝑥𝑆) over [𝑎, 𝑏]. Define

‖𝛿ℎ‖𝐴𝑆 = 𝛿 |ℎ|+ 𝜎𝛿|ℎ| ([𝑎, 𝑏]) .

One can show that with the usual operations of addition and scalar multiplication of functions
that (𝐴𝑆 ([𝑎, 𝑏]) , + , · ) is a vector space and ‖ · ‖𝐴𝑆 is a norm on it, so that (𝐴𝑆 ([𝑎, 𝑏]) , + , · , ‖ ·
‖𝐴𝑆) is a normed vector space. Therefore, the space 𝐴𝑆 ([𝑎, 𝑏]) is the space of absolutely
summable functions. If 𝜎𝛿|ℎ| (𝐸) = 0, then 𝛿ℎ is negligibly absolutely summable over 𝐸. Now,
let 𝛿ℎ ∈ 𝐴𝑆 ([𝑎, 𝑏]). Then 𝛿ℎ is a null function on [𝑎, 𝑏]. If, in addition, 𝛿ℎ is negligibly
absolutely summable either over each set 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) or over [𝑎, 𝑏], then 𝛿ℎ is identically zero
on [𝑎, 𝑏].

Definition 3.4. For a compact interval [𝑎, 𝑏] in R, let ℎ be an interval–point function on
ℐ ([𝑎, 𝑏]) × [𝑎, 𝑏]) and let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]). The real number 𝜎𝛿ℎ (𝐸) is a basic sum over 𝐸 of the
limit 𝛿ℎ of ℎ, if for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (ℎ, 𝑃 [𝑎, 𝑏]|𝐸)− 𝜎𝛿ℎ (𝐸)| < 𝜀, (3.6)

whenever 𝑃 [𝑎, 𝑏]|𝐸 ⊂ 𝑃 [𝑎, 𝑏] and 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged in
𝐸. Here,

𝜎𝛿ℎ (𝐸) = lim
𝛿𝜀→0+

𝑠 (ℎ, 𝑃 [𝑎, 𝑏]|𝐸) = (𝐵)
∑︁

𝑥∈[𝑎,𝑏]

⟨𝛿ℎ𝜒𝐸⟩ (𝑥) .

Obviously, if 𝑠 (|ℎ| , 𝑃 [𝑎, 𝑏]|𝐸) replaces 𝑠 (ℎ, 𝑃 [𝑎, 𝑏]|𝐸) in (3.6), then Definition 3.4 becomes
the definition of the absolute sum 𝜎𝛿|ℎ| over 𝐸 of 𝛿 |ℎ|. In the case 𝜎𝛿ℎ (𝐸) has a finite value,
which means that |𝜎𝛿ℎ (𝐸)| < +∞, we say that 𝛿ℎ is basically summable (𝐵𝑆) over 𝐸. We
define

‖𝛿ℎ‖𝐵𝑆 := |𝛿ℎ|+ |𝜎𝛿ℎ ([𝑎, 𝑏])| .
Then, the space (𝐵𝑆 ([𝑎, 𝑏]) , + , · ) of basically summable functions is a vector space and ‖ · ‖𝐵𝑆

is a norm on it, so that (𝐵𝑆 ([𝑎, 𝑏]) , , + , · ‖ · ‖𝐵𝑆) is a normed vector space. If |𝜎𝛿ℎ (𝐸)| ⩽ +∞,
then 𝛿ℎ is basically extendedly summable (𝐵𝑒𝑥𝑆) over 𝐸. In the case 𝜎𝛿ℎ (𝐸) = 0 we say that
𝛿ℎ is negligibly basically summable over 𝐸. The differential form 𝛿ℎ is said to be negligibly
basically summable on [𝑎, 𝑏] if and only if 𝜎𝛿ℎ (𝐸) = 0 for every 𝐸 ∈ 𝒫 ([𝑎, 𝑏]).
Some point functions may be negligibly basically summable over a set, but not negligibly

absolutely summable over that set. A point function, which is negligibly absolutely summable
over a set, is also negligibly absolutely summable over all its subsets; this does not apply to a
function, which is negligibly basically summable over a set, but not on a set.

Two differential forms 𝛿ℎ and 𝛿𝑘 are absolutely (basically) summable equivalents over a set if
𝛿⟨ℎ−𝑘⟩ is negligibly absolutely (basically) summable over that set. If 𝛿ℎ and 𝛿𝑘 are absolutely
summable equivalents over [𝑎, 𝑏], then 𝛿⟨ℎ− 𝑘⟩ is identically zero on [𝑎, 𝑏] and this means that
ℎ and 𝑘 are differential equivalents on [𝑎, 𝑏]. In the general case the opposite is not true.
A statement is absolutely (basically) true 𝛿ℎ–almost everywhere if it is true everywhere

except in a set 𝐸, with

𝜎𝛿|ℎ| (𝐸) = 0, 𝜎𝛿ℎ (𝐸) = 0.
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Such a set is said to be absolutely (basically) a 𝛿ℎ–negligible set. If ℎ is replaced by 𝜇, then
𝐸 is a negligible set. Clearly, each negligible set is a null set. Theabove defined notion of the
basic sum 𝜎𝛿ℎ of the limit 𝛿ℎ of ℎ, leads us to the identity

lim
𝛿→0+

∑︁
(𝐼,𝑥)∈𝑃 [𝑎,𝑏]|𝐸

ℎ (𝑃 [𝑎, 𝑏]|𝐸) = lim
𝛿→0+

𝑠 (ℎ, 𝑃 [𝑎, 𝑏]|𝐸)

=𝜎𝛿ℎ (𝐸) = (𝐵)
∑︁

𝑥∈[𝑎,𝑏]

⟨𝛿ℎ𝜒𝐸⟩ (𝑥)

= (𝐵)
∑︁
𝑥∈𝐸

lim
𝛿→0+

ℎ (𝑃 [𝑎, 𝑏]|𝐸) ,

(3.7)

which explicitly shows us that the limit of the sum of the values of ℎ is equal to the sum of the
values of its limit 𝛿ℎ.
The next thing we are going to look at is the Cauchy criterion for the basic sum. This

theorem is important because it allows us to prove that a certain interval–point function is
basically summable without knowing the value of the basic sum. It will be used in some proofs
later on.

Theorem 3.1. For a compact interval [𝑎, 𝑏] in R, let ℎ be an interval–point function on
ℐ ([𝑎, 𝑏])× [𝑎, 𝑏]). The differential form 𝛿ℎ, as a limit on [𝑎, 𝑏] of ℎ, is basically summable over
[𝑎, 𝑏] if and only if for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| < 𝜀, (3.8)

whenever 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are countable 𝛿𝜀–fine partitions of [𝑎, 𝑏].

Proof. Let 𝛿ℎ be basically summable over [𝑎, 𝑏]. Accordingly, for every 𝜀 > 0 there exists a
gauge 𝛿𝜀 > 0 on [𝑎, 𝑏], such that

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])| <
𝜀

2
, |𝑠 (ℎ, 𝑃2[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])| <

𝜀

2
,

whenever 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are countable 𝛿𝜀–fine partitions of [𝑎, 𝑏]. Hence,

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| ⩽ |𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])|+ |𝑠 (ℎ, 𝑃2[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])|

<
𝜀

2
+

𝜀

2
< 𝜀.

And vice versa, assume that for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| < 𝜀,

whenever 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are countable 𝛿𝜀-fine partitions of [𝑎, 𝑏]. For each 𝑛 ∈ N we
choose a gauge 𝛿𝑛 > 0 on [𝑎, 𝑏] such that

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| <
1

𝑛
,

whenever 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are 𝛿𝑛–fine. Let the sequence {𝛿𝑛} be non–increasing and let
𝑃𝑛[𝑎, 𝑏] be a countable 𝛿𝑛–fine partition of [𝑎, 𝑏] for each 𝑛 ∈ N.
If 𝑚 > 𝑛 ⩾ 𝑁 , then 𝛿𝑁 ⩾ 𝛿𝑛 ⩾ 𝛿𝑚. Now, 𝑃𝑛[𝑎, 𝑏] is 𝛿𝑛–fine and thus also 𝛿𝑁–fine. The same

holds for 𝑃𝑚[𝑎, 𝑏]: 𝑃𝑚[𝑎, 𝑏] is 𝛿𝑚–fine and thus also 𝛿𝑁–fine. It implies that

|𝑠 (ℎ, 𝑃𝑛[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃𝑚[𝑎, 𝑏])| <
1

𝑁
,

for 𝑚 > 𝑛 ⩾ 𝑁 . So, the sequence {𝑠 (ℎ, 𝑃𝑛[𝑎, 𝑏])} is a Cauchy sequence. Further, let 𝜎𝛿ℎ ([𝑎, 𝑏])
be the limit of this sequence and let 𝜀 > 0. Choose an integer 𝑁 such that 1

𝑁
< 𝜀

2
and

|𝑠 (ℎ, 𝑃𝑛[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])| <
𝜀

2
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for all 𝑛 ⩾ 𝑁 . Therefore, for each countable 𝛿𝜀–fine partitions 𝑃 [𝑎, 𝑏] of [𝑎, 𝑏]

|𝑠 (ℎ, 𝑃 [𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])| ⩽ |𝑠 (ℎ, 𝑃 [𝑎, 𝑏])− 𝑠 (ℎ, 𝑃𝑛[𝑎, 𝑏])|++ |𝑠 (ℎ, 𝑃𝑛[𝑎, 𝑏])− 𝜎𝛿ℎ ([𝑎, 𝑏])|

<
1

𝑁
+

𝜀

2
<

𝜀

2
+

𝜀

2
< 𝜀.

The proof is complete.

If we have a differential form 𝛿ℎ basically summable over an interval [𝑎, 𝑏], then intuitively
we suppose that it is also basically summable over every subinterval 𝐼 ∈ ℐ ([𝑎, 𝑏]). It turns out
that this statement is indeed true. This is the content of the following lemma. Of course, we
are going to use the previous theorem, the Cauchy criterion, to prove this.

Lemma 3.1. For a compact interval [𝑎, 𝑏] in R, let ℎ be an interval–point function on
ℐ ([𝑎, 𝑏])× [𝑎, 𝑏]). If the differential form 𝛿ℎ, as a limit on [𝑎, 𝑏] of ℎ, is basically summable over
[𝑎, 𝑏], then 𝛿ℎ is basically summable over every compact interval 𝐼 ∈ ℐ ([𝑎, 𝑏]).

Proof. Let 𝜀 > 0. Choose a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| <
𝜀

2
,

whenever 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are countable 𝛿𝜀–fine partitions of [𝑎, 𝑏]. We can do this owing to
the Cauchy criterion. For arbitrary points 𝑐 and 𝑑 in (𝑎, 𝑏), choose countable 𝛿𝜀–fine partitions
𝑃𝑐 [𝑎, 𝑐] and 𝑃𝑑 [𝑑, 𝑏]. Let 𝑃1 [𝑐, 𝑑] and 𝑃2 [𝑐, 𝑑] be two countable 𝛿𝜀–fine partitions of [𝑐, 𝑑]. We
define

𝑃1 [𝑎, 𝑏] := 𝑃𝑐 [𝑎, 𝑐] ∪ 𝑃1 [𝑐, 𝑑] ∪ 𝑃𝑑 [𝑑, 𝑏]

and

𝑃2 [𝑎, 𝑏] := 𝑃𝑐 [𝑎, 𝑐] ∪ 𝑃2 [𝑐, 𝑑] ∪ 𝑃𝑑 [𝑑, 𝑏] .

Obviously, 𝑃1 [𝑎, 𝑏] and 𝑃2 [𝑎, 𝑏] are countable 𝛿𝜀–fine partitions of [𝑎, 𝑏] and⃒⃒⃒
𝑠(ℎ, 𝑃1 [𝑐, 𝑑])− 𝑠(ℎ, 𝑃2 [𝑐, 𝑑])

⃒⃒⃒
= |𝑠 (ℎ, 𝑃1[𝑎, 𝑏])− 𝑠 (ℎ, 𝑃2[𝑎, 𝑏])| < 𝜀.

By using the Cauchy criterion again, we conclude that 𝛿ℎ is basically summable over 𝐼 =
[𝑐, 𝑑]. The proof is complete.

If ℎ is a charge S on 𝒫 ([𝑎, 𝑏]), we need to define a total differential form (briefly, a total
differential) on a set 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) of S.

Definition 3.5. For a compact interval [𝑎, 𝑏] in R, let S be a charge on 𝒫 ([𝑎, 𝑏]). The
differential form 𝛿S, as a limit on [𝑎, 𝑏] of S, is said to be a total differential on [𝑎, 𝑏] if it is
basically summable over [𝑎, 𝑏] and 𝜎𝛿S = S on 𝒫 ([𝑎, 𝑏]) .

The next lemma, as a logical link in the chain, points to the fact that summation and
differentiation are, in general, two inverse operations, for the reason that 𝛿𝜎𝛿ℎ and 𝛿ℎ are
basically summable equivalents on [𝑎, 𝑏] . It is an alternative form of the well–known lemma in
the theory of the generalized Riemann integrals called the Straddle Lemma [1].

Lemma 3.2. For a compact interval [𝑎, 𝑏] in R, let ℎ be an interval–point function on
ℐ ([𝑎, 𝑏])× [𝑎, 𝑏]). If the differential form 𝛿ℎ, as a limit on [𝑎, 𝑏] of ℎ, is basically summable over
[𝑎, 𝑏], then 𝛿𝜎𝛿ℎ and 𝛿ℎ are basically summable equivalents on [𝑎, 𝑏].

Proof. Let ℎ be an interval–point function on ℐ ([𝑎, 𝑏]) × [𝑎, 𝑏]), the limit 𝛿ℎ of which on [𝑎, 𝑏]
is basically summable over [𝑎, 𝑏] and let 𝐼 ∈ ℐ ([𝑎, 𝑏]). Since

𝑠 (𝜎𝛿ℎ, 𝑃𝐼) = 𝜎𝛿ℎ (𝐼)
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for any countable partition 𝑃𝐼 of 𝐼, it follows, from Lemma 3.1 that for every 𝜀 > 0 there exists
a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (⟨ℎ− 𝜎𝛿ℎ⟩, 𝑃𝐼)| = |𝑠 (ℎ, 𝑃𝐼)− 𝜎𝛿ℎ (𝐼)| < 𝜀,

whenever 𝑃𝐼 is a countable 𝛿𝜀–fine partition of 𝐼. Therefore, 𝜎𝛿⟨ℎ−𝜎𝛿ℎ⟩ (𝐼) = 0 for every 𝐼 ∈
ℐ ([𝑎, 𝑏]), and this means that 𝛿𝜎𝛿ℎ and 𝛿ℎ are basically summable equivalents on [𝑎, 𝑏].

As was noted above, the limit of an interval–point function is a point function. A Baire class
consists of functions, which are limits of convergent interval functions [4], [5]. Thus, if ℎ is
an interval function ∆𝐹 , associated to a point function 𝐹 , being continuous and has bounded
variation, then 𝜎𝛿|ℱ| is the total variational measure induced by ℱ = ∆𝐹 , more precisely, the
Lebesgue-Stieltjes measure [10], [11]. Accordingly, we can take the absolute value of the basic
sum |𝜎𝛿ℎ| and the absolute sum 𝜎𝛿|ℎ| to be the basic summary measure induced by ℎ and the
absolute summary measure induced by ℎ, respectively. We recall that by a charge on 𝒫 ([𝑎, 𝑏])
we mean a countably additive set function on 𝒫 ([𝑎, 𝑏]). Hence, both |𝜎𝛿ℎ| and 𝜎𝛿|ℎ| are charges
on 𝒫 ([𝑎, 𝑏]). Additionally, the signed summary measure 𝜎𝛿ℎ induced by ℎ is also a charge on
𝒫 ([𝑎, 𝑏]). Let 𝐸 ∈ 𝒫 ([𝑎, 𝑏]). If a charge ℱ on ℐ ([𝑎, 𝑏]) has the property: each negligible subset
of 𝐸 is at the same time absolutely a 𝛿ℱ -negligible set too. Then 𝛿ℱ is a zero function on
𝐸, and ℱ is an absolutely continuous (𝐴𝐶𝛿) function, that is, ℱ satisfies theStrong Lusin 𝑆𝐿
condition [5] on the set 𝐸. If, in addition, the set 𝐸 is a countable union of sets, on each of
which ℱ is 𝐴𝐶𝛿, then ℱ is generalized absolutely continuous (𝐴𝐶𝐺𝛿) on the set 𝐸, [4], [11].
Due to the Straddle Lemma, if 𝛿ℱ , as a limit on [𝑎, 𝑏] of ℱ , is basically summable over [𝑎, 𝑏],
then the limit 𝛿⟨ℱ − 𝜎𝛿ℱ⟩ is identically zero on [𝑎, 𝑏].
The following lemma is a slightly modified form of the well–known lemma in the theory of

the generalized Riemann integrals called the Saks — Henstock Lemma [4].

Lemma 3.3. For a compact interval [𝑎, 𝑏] in R, let 𝐸 ⊂ [𝑎, 𝑏]. If two differential forms
𝛿ℎ and 𝛿𝑘 are basically summable equivalents on [𝑎, 𝑏], then the set 𝐸 is both basically and
absolutely a 𝛿⟨ℎ− 𝑘⟩–negligible set.

Proof. Let 𝛿ℎ and 𝛿𝑘 be basically summable equivalents on [𝑎, 𝑏] and let 𝐸 ⊂ [𝑎, 𝑏]. Then, by
Definition 3.4, for every 𝜀 > 0 there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

|𝑠 (⟨ℎ− 𝑘⟩, 𝑃 [𝑎, 𝑏])| < 𝜀,

whenever 𝑃 [𝑎, 𝑏] is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged in 𝐸.
Let

𝑃0 = {([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛) ∈ 𝑃 [𝑎, 𝑏] | 𝑥̂︀𝑛 ∈ 𝐸} = 𝑃 [𝑎, 𝑏]|𝐸.
The set [𝑎, 𝑏] ∖ ∪̂︀𝑛 (𝑎̂︀𝑛, 𝑏̂︀𝑛) consists of a countably many pairwise disjoint closed intervals 𝑆̃︀𝑛.
Since 𝛿ℎ and 𝛿𝑘 are basically summable equivalents on [𝑎, 𝑏], they are basically summable
equivalents on each 𝑆̃︀𝑛, too. Hence, there exists a countable 𝛿𝜀–fine partition 𝑃̃︀𝑛 of each 𝑆̃︀𝑛
such that

|𝑠 (⟨ℎ− 𝑘⟩, 𝛿𝜀, 𝑃̃︀𝑛)| < 𝜀

2̃︀𝑛 .
Then, the partition 𝑃 = 𝑃0 ∪ 𝑃1 . . . ∪ 𝑃̃︀𝑛 ∪ . . . is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully
tagged in 𝐸. Accordingly, we have

|𝑠 (⟨ℎ− 𝑘⟩, 𝑃0)| =

⃒⃒⃒⃒
⃒𝑠 (⟨ℎ− 𝑘⟩, 𝑃0) +

∑︁
1⩽̃︀𝑛 𝑠 (⟨ℎ− 𝑘⟩, 𝑃̃︀𝑛)−∑︁

1⩽̃︀𝑛 𝑠 (⟨ℎ− 𝑘⟩, 𝑃̃︀𝑛)
⃒⃒⃒⃒
⃒

⩽ |𝑠 (⟨ℎ− 𝑘⟩, 𝑃 )|+
∑︁
1⩽̃︀𝑛 |𝑠 (⟨ℎ− 𝑘⟩, 𝑃̃︀𝑛)| < 𝜀+

∑︁
1⩽̃︀𝑛

𝜀

2̃︀𝑛 < 2𝜀.

By Definition 3.4, 𝜎𝛿⟨ℎ−𝑘⟩ (𝐸) = 0.
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To address the second part of the lemma, let 𝑃+
0 be the collection of the interval point pairs

([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛), fully tagged in 𝐸, such that

⟨ℎ− 𝑘⟩ (([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛)) ⩾ 0

since 𝑃−
0 ⩽ 0. Then

0 ⩽ 𝑠
(︀
⟨ℎ− 𝑘⟩, 𝑃+

0

)︀
=

∑︁
([𝑎̂︀𝑛,𝑏̂︀𝑛],𝑥̂︀𝑛)∈𝑃+

0

|⟨ℎ− 𝑘⟩| (([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛)) < 2𝜀,

−
[︀
𝑠
(︀
⟨ℎ− 𝑘⟩, 𝑃−

0

)︀]︀
=

∑︁
([𝑎̂︀𝑛,𝑏̂︀𝑛],𝑥̂︀𝑛)∈𝑃−

0

|⟨ℎ− 𝑘⟩| (([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛)) < 2𝜀.

Therefore,

𝑠 (|⟨ℎ− 𝑘⟩| , 𝑃0) =
∑︁

([𝑎̂︀𝑛,𝑏̂︀𝑛],𝑥̂︀𝑛)∈𝑃0

|⟨ℎ− 𝑘⟩| (([𝑎̂︀𝑛, 𝑏̂︀𝑛] , 𝑥̂︀𝑛)) < 4𝜀,

that is, 𝜎𝛿|⟨ℎ−𝑘⟩| (𝐸) = 0. The proof is complete.

We recall that if some point function is negligibly absolutely summable over a set, it is
negligibly absolutely summable over all its subsets, too. Accordingly, it follows from the Saks —
Henstock Lemma that if 𝛿ℎ and 𝛿𝑘 are basically summable equivalents on [𝑎, 𝑏], then 𝛿ℎ and 𝛿𝑘
are absolutely summable equivalents over [𝑎, 𝑏]. Hence, a corollary of Lemma 3.3 is as follows.

Corollary 3.1. Let [𝑎, 𝑏] be a compact interval in R. Differential forms 𝛿ℎ and 𝛿𝑘 are
basically summable equivalents on [𝑎, 𝑏], if and only if they are absolutely summable equivalents
over [𝑎, 𝑏].

The next two lemmas are also very important in the theory of the generalized Riemann
integrals.

Lemma 3.4. For a point function 𝑓 on [𝑎, 𝑏], let 𝐸 ⊂ [𝑎, 𝑏] be a set on which 𝑓 ̸= 0, and let
𝛿ℎ be a differential form on [𝑎, 𝑏] of ℎ. The set 𝐸 is absolutely a 𝛿ℎ–negligible set if and only
if 𝐸 is absolutely a 𝛿⟨𝑓ℎ⟩–negligible set.

Proof. Let 𝑓 be a finite–valued point function, which does not vanish on 𝐸 ⊂ [𝑎, 𝑏]. Then, for
each 𝑛̂ ∈ N, let 𝐸𝑛̂ = {𝑥 ∈ 𝐸 | |𝑓 | ⩾ 1/𝑛̂}. Fix 𝑛̂ and let 𝜀 = 𝜀′

(2𝑛̂𝑛̂)
> 0. By the Archimedean

property of R we have

𝐸 =
+∞⋃︁
𝑛̂=1

𝐸𝑛̂.

If 𝐸 is absolutely a 𝛿ℎ–negligible set, then each 𝐸𝑛̂ is absolutely a 𝛿ℎ–negligible set and there
exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

𝑠 (|ℎ| , 𝑃 [𝑎, 𝑏]|𝐸𝑛̂
) <

𝜀′

2𝑛̂𝑛̂
,

whenever 𝑃 [𝑎, 𝑏]|𝐸𝑛̂
⊂ 𝑃 ([𝑎, 𝑏]) and 𝑃 ([𝑎, 𝑏]) is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏], fully tagged

in 𝐸, that is, there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

𝑠 (|⟨𝑓ℎ⟩| , 𝑃 [𝑎, 𝑏] |𝐸) ⩽
∑︁
1⩽𝑛̂

𝑛̂𝑠 (|ℎ| , 𝑃 [𝑎, 𝑏] |𝐸𝑛̂
) <

∑︁
1⩽𝑛̂

𝜀′

2𝑛̂
< 𝜀′,

whenever 𝑃 [𝑎, 𝑏]|𝐸 ⊂ 𝑃 ([𝑎, 𝑏]) and 𝑃 ([𝑎, 𝑏]) is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged
in 𝐸. Hence, 𝜎𝛿|⟨𝑓ℎ⟩| (𝐸) = 0. Secondly, let 𝐸 be absolutely a 𝛿⟨𝑓ℎ⟩-negligible set. Then there
exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

𝑠 (|⟨𝑓ℎ⟩| , 𝑃 [𝑎, 𝑏]|𝐸̂︀𝑛) <
𝜀′

2𝑛̂𝑛̂
,
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whenever 𝑃 [𝑎, 𝑏]|𝐸𝑛̂
⊂ 𝑃 ([𝑎, 𝑏]) and 𝑃 ([𝑎, 𝑏]) is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged

in 𝐸, that is, there exists a gauge 𝛿𝜀 > 0 on [𝑎, 𝑏] such that

𝑠 (|ℎ| , 𝑃 [𝑎, 𝑏]|𝐸) ⩽
∑︁
1⩽𝑛̂

𝑛̂𝑠 (|⟨𝑓ℎ⟩| , 𝑃 [𝑎, 𝑏]|𝐸̂︀𝑛) <
∑︁
1⩽𝑛̂

𝜀′

2𝑛̂
< 𝜀′,

whenever 𝑃 [𝑎, 𝑏]|𝐸 ⊂ 𝑃 ([𝑎, 𝑏]) and 𝑃 ([𝑎, 𝑏]) is a countable 𝛿𝜀–fine partition of [𝑎, 𝑏] fully tagged
in 𝐸. This implies 𝜎𝛿|ℎ| (𝐸) = 0. The proof is complete.

The proof of the next lemma is based on the trivial inequalities

𝜎𝛿|⟨ℎ−𝑘⟩| ([𝑎, 𝑏]) ⩽ 𝜎𝛿|ℎ| ([𝑎, 𝑏]) + 𝜎𝛿|𝑘| ([𝑎, 𝑏])

and

𝜎𝛿|ℎ| ([𝑎, 𝑏]) ⩽ 𝜎𝛿|⟨ℎ−𝑘⟩| ([𝑎, 𝑏]) + 𝜎𝛿|𝑘| ([𝑎, 𝑏])

and is trivial. This is why we formulate the lemma without the proof.

Lemma 3.5. Let [𝑎, 𝑏] be a compact interval in R and let 𝐸 ∈ 𝒫 [𝑎, 𝑏] be absolutely (basically)
a 𝛿ℎ–negligible set. The set 𝐸 is absolutely (basically) a 𝛿𝑘–negligible set if and only if the set
𝐸 is absolutely (basically) a 𝛿⟨ℎ− 𝑘⟩–negligible set.

We are now able to redefine the previously defined concept of basic summability through a
basic summable primitive (a 𝐵𝑆 primitive). This is how we come to one comprehensive concept
that includes within itself not only all the most well–known integrabilities such as Newton’s
and generalized Riemann and Riemann — Stieltjes integrability, but also arithmetic series.

Definition 3.6. For a compact interval [𝑎, 𝑏] in R, let 𝑓 be a point function on [𝑎, 𝑏] and let
𝜍 be a strictly positive charge on ℐ ([𝑎, 𝑏]) such that its differential form 𝛿𝜍 is identically zero on
[𝑎, 𝑏]. Then, a charge S on 𝒫 ([𝑎, 𝑏]), whose limit 𝛿S is the total differential on [𝑎, 𝑏], is said to
be the 𝐵𝑆 primitive on 𝒫 ([𝑎, 𝑏]) for 𝑓 , with respect to 𝜍, if S and ⟨𝑓𝜍⟩ are basically summable
equivalents on [𝑎, 𝑏]. Here

S (𝐸) = (𝐵)
∑︁

𝑥∈[𝑎,𝑏]

⟨𝛿⟨𝑓𝜍⟩𝜒𝐸⟩ (𝑥)

for each 𝐸 ∈ 𝒫 ([𝑎, 𝑏]).

Despite the fact that the result our next theorem is trivial, as can be seen from its proof, this
theorem is important because it offers us opportunities to analyze special cases important in
the theory of the generalized Riemann integrals, which will be presented in the second paper.
First, the differential form 𝛿ℎ will be renamed to the residue function, denoted by ℜℎ. Then
the limit of ℎ will be denoted, as needed, by either 𝛿ℎ or ℜℎ.

Theorem 3.2. For a compact interval [𝑎, 𝑏] in R let 𝑓 be a point function on [𝑎, 𝑏] and let
S be a charge on 𝒫 ([𝑎, 𝑏]), whose limit 𝛿S is the total differential on [𝑎, 𝑏]. Then, the residue
function ℜ⟨S−F⟩ is basically summable over [𝑎, 𝑏] if and only if there is a charge E on 𝒫 ([𝑎, 𝑏]),
whose limit 𝛿E is the total differential on [𝑎, 𝑏], and ⟨S−E⟩ is the 𝐵𝑆 primitive on 𝒫 [𝑎, 𝑏] for
𝑓 , which means that

(𝐵)
∑︁

𝑥∈[𝑎,𝑏]

⟨𝛿F𝜒𝐸⟩ (𝑥) = ⟨S− E⟩ (𝐸) , (3.9)

whenever 𝐸 ∈ 𝒫 ([𝑎, 𝑏]).

Proof. Let 𝑓 be a point function on [𝑎, 𝑏] and let S be a charge on 𝒫 ([𝑎, 𝑏]), whose limit
𝛿S is the total differential on [𝑎, 𝑏]. If ℜ⟨S−F⟩ is basically summable over [𝑎, 𝑏], then by the
Straddle Lemma 𝜎𝛿𝜎ℜ⟨S−F⟩

= 𝜎ℜ⟨S−F⟩ on 𝒫 ([𝑎, 𝑏]). Hence, 𝜎ℜ⟨S−F⟩ , whose limit 𝛿𝜎ℜ⟨S−F⟩ is the

total differential on [𝑎, 𝑏], is a charge E on 𝒫 ([𝑎, 𝑏]) such that ⟨S− E⟩ is the 𝐵𝑆 primitive on
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𝒫 [𝑎, 𝑏] for 𝑓 . Now, let E be a charge on 𝒫 ([𝑎, 𝑏]) such that its limit 𝛿E is total differential on
[𝑎, 𝑏] and ⟨S− E⟩ is the 𝐵𝑆 primitive on 𝒫 [𝑎, 𝑏] for 𝑓 . Then,

𝜎ℜ⟨S−F⟩ = 𝜎𝛿E = E

on 𝒫 ([𝑎, 𝑏]). The proof is complete.

Hence, if 𝛿ℎ is basically summable over [𝑎, 𝑏], with the sum 𝜎𝛿ℎ ([𝑎, 𝑏]), then 𝛿ℎ is said to
be basically integrable over any compact interval 𝐼 ∈ ℐ ([𝑎, 𝑏]) and 𝜎𝛿ℎ (𝐼) is a signed integral
measure of 𝐼, that is,

(𝐵)

∫︁
𝐼

𝛿ℎ (𝑥) = 𝜎𝛿ℎ (𝐼) .

Let us now return to the beginning of this section, where we have stated indirectly that it is
possible that at a point of the interval [𝑎, 𝑏], at which the derivative 𝑓 = 𝛿𝜇ℎ of an arbitrary
interval–point function ℎ is not defined, the residue function ℜℎ is defined. Accordingly, suppose
that 𝐸 ∈ 𝒫 ([𝑎, 𝑏]) is a measurable set of Lebesgue measure 𝜇𝐸 < (𝑏− 𝑎), on which the interval–
point function ℎ is not differentiable. In this case we can extend the function 𝑓 from the set
[𝑎, 𝑏] ∖𝐸 to the set [𝑎, 𝑏] so that the extended function 𝑓𝑒𝑥 is defined on [𝑎, 𝑏]. If the differential
forms 𝛿ℎ and 𝛿F𝑒𝑥, as limits on [𝑎, 𝑏] of ℎ and F𝑒𝑥 = ⟨𝑓𝑒𝑥𝜇⟩, respectively, are basically summable
over [𝑎, 𝑏], then

(𝐵)

∫︁ 𝑏

𝑎

𝛿ℎ (𝑥)− (𝐵)

∫︁ 𝑏

𝑎

𝛿F𝑒𝑥 (𝑥) = (𝐵)
∑︁

𝑥∈[𝑎,𝑏]

𝛿⟨ℎ− F𝑒𝑥⟩ (𝑥) , (3.10)

that is,

(𝐵)

∫︁ 𝑏

𝑎

𝛿⟨ℎ− F𝑒𝑥⟩ (𝑥) = (𝐵)
∑︁

𝑥∈[𝑎,𝑏]

ℜ⟨ℎ−F𝑒𝑥⟩ (𝑥) = 𝜎ℜ⟨ℎ−F𝑒𝑥⟩ ([𝑎, 𝑏]) . (3.11)

Accordingly, we conclude that if 𝛿ℎ and 𝛿F𝑒𝑥 are not basically summable equivalents on
[𝑎, 𝑏], then the charge 𝜎ℜ⟨ℎ−F𝑒𝑥⟩ gives us the difference between the integral value of 𝛿𝜇ℎ and
the 𝐵𝑆 primitive for 𝑓𝑒𝑥. Namely, according to the Straddle Lemma, if there is a charge S
on 𝒫 ([𝑎, 𝑏]), whose limit 𝛿S is the total differential on [𝑎, 𝑏], such that S and F𝑒𝑥 are not
differential equivalents on [𝑎, 𝑏], but they are derivative equivalents on [𝑎, 𝑏] ∖ 𝐸, with respect
to 𝜇, then ℜ⟨S−F𝑒𝑥⟩ does not vanish on [𝑎, 𝑏], more precisely on the set 𝐸, and S ̸= 𝜎𝛿F𝑒𝑥 on
𝒫 ([𝑎, 𝑏]) and 𝛿𝜇S = 𝛿𝜇F𝑒𝑥 on [𝑎, 𝑏] ∖ 𝐸. Thus, if the charge S is a primitive for 𝑓 , then by
integrating the extended function F𝑒𝑥 and taking that integral value, which is the 𝐵𝑆 primitive
for 𝑓𝑒𝑥, to be the primitive for 𝑓 , we make an integral error. According to Theorem 3.2, the
sum of the residue function ℜ⟨S−F𝑒𝑥⟩ on the set 𝐸, gives us an estimate of the made integral
error.
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