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DYNAMICAL SYSTEMS OF QUADRATIC OPERATORS

ON SET OF IDEMPOTENT MEASURES

I.T. JURAEV, U.A. ROZIKOV

Abstract. We consider quadratic operators, which map the 𝑛–dimensional simplex of
idempotent measures into itself. We introduce the concept of Volterra quadratic operator on
the simplex of idempotent measures and provide some general properties of such operators.

We also consdier a special Volterra quadratic operator and provide a comprehensive
analysis of the dynamical system generated by this operator. Moreover, the dynamical
systems generated by general Volterra operators defined on 2 and 3–dimensional simplices
of idempotent measures are studied. For each case, we find fixed points and limits of
trajectories.
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1. Introduction

Idempotent mathematics is developed by using a new set of basic associative operations,
addition ⊕ and multiplication ⊙, so that all the semifield or semiring axioms hold; moreover,
the new addition is idempotent, that is, 𝑥 ⊕ 𝑥 = 𝑥 for every element 𝑥 of the corresponding
semiring, see, for instance, [1], [2], [3], [4], [5], [6], [7].

One of extensively studied example is the semifield Rmax = R ∪ {−∞} known as the Max–
Plus algebra. This semifield consists of all real numbers and an additional element 0 = −∞.
The element 0 is the zero element in Rmax, and the basic operations are defined by the formulas
𝑥⊕ 𝑦 = max{𝑥, 𝑦} and 𝑥⊙ 𝑦 = 𝑥+ 𝑦; the identity (or unit) element 1 coincides with the usual
zero 0. These operations give rise to a new algebraic structure known as the tropical semiring.

Tropical mathematics, often referred to as tropical geometry, related to tropical curves and
varieties, which are polyhedral complexes that encode information about classical algebraic
varieties. This field provides powerful tools for solving problems in various branches of mathe-
matics, including algebraic geometry, combinatorics, optimization, and computational biology,
see books [8], [9].

We consider idempotent measures in the sense of idempotent analysis [1], [4], [5], [6], [7].
Such measure theory is a new branch of mathematics analysis for studying deterministic control
problems and first order nonlinear partial differential equations, such as Hamilton — Jacobi
equations, with discontinuous initial data and low–lying eigenfunctions of Schrödinger operator.

We define the simplex ℐ𝑛 of idempotent measures on {1, 2, . . . , 𝑛} as

ℐ𝑛 =
{︀
(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

max : max
1⩽𝑖⩽𝑛

𝑥𝑖 = 0
}︀
=
{︀
(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

max : 𝑥1 ⊕ . . .⊕ 𝑥𝑛 = 1
}︀
.

In [2] and [3] an idempotent analogue of the Markov chain was introduced; the linearity of
the evolution operator was defined by the new operations ⊕ and ⊙. In [10] all linear operators
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which map the 𝑛–dimensional simplex of idempotent measures into itself were described. These
linear operators on the set of idempotent measures are “idempotent” analogues of Markov
chains, where a state of the Markov chain is an idempotent measure, but linearity of the
evolution operator is defined by the usual operations + and ·. Moreover, in [10], the dynamical
systems generated by the linear maps of the set of idempotent measures were studied. In [11]
and [12], the case, when the linear maps considered in [10] become quadratic operators, was
investigated. In these works, quadratic operators that map the simplex of idempotent measures
into itself were constructed, and their fixed points and corresponding dynamical systems were
analyzed. However, since these studies focus on general quadratic operators, the investigation
of dynamical systems becomes significantly more difficult for large values of 𝑛.

In this paper we consider special Volterra quadratic operators, which map ℐ𝑛 into itself and
study dynamical systems generated by these operators.

The paper is organized as follows. In Section 2 we describe all quadratic operators, which
map 𝑛–dimensional simplex of idempotent measures into itself, and define Volterra quadratic
operators on the simplex of idempotent measures. Some general properties of such operators are
provided. Section 3 is devoted to special Volterra quadratic operator. We make the complete
analysis of dynamical system generated by this operator. The last section is devoted to the
dynamical systems generated by general Volterra operators defined on 2 and 3–dimensional
simplex of idempotent measures. In each case for arbitrary initial point we find limits of its
trajectory.

2. Volterra quadratic operators

We consider a cubic matrix 𝑃 = (𝑝𝑖𝑗,𝑘)
𝑛
𝑖,𝑗,𝑘=1 with 𝑝𝑖𝑗,𝑘 ∈ Rmax.

Definition 2.1. The quadratic map

𝑄 : 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛
max → 𝑥′ = 𝑄(𝑥) = (𝑥′

1, . . . , 𝑥
′
𝑛) ∈ R𝑛

max

is defined as

𝑥′
𝑘 =

𝑛∑︁
𝑖,𝑗=1

𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗, 𝑘 = 1, 2, . . . , 𝑛. (2.1)

where 𝑝𝑖𝑗,𝑘 ∈ Rmax.

Denote

𝑀𝑛 =

{︃
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

max : 𝑥𝑖 ⩽ 0,
𝑛∑︁

𝑘=1

𝑥𝑘 = −1

}︃
.

Proposition 2.1. Any quadratic map (2.1) with 𝑝𝑖𝑗,𝑘 ⩽ 0 and

𝑛∑︁
𝑘=1

𝑝𝑖𝑗,𝑘 = −1 (2.2)

maps 𝑀𝑛 into itself.

Proof. Take arbitrary 𝑥 ∈ 𝑀𝑛. Then by condition 𝑝𝑖𝑗,𝑘 ⩽ 0 from (2.1) we get 𝑥′
𝑘 ⩽ 0 and

𝑛∑︁
𝑘=1

𝑥′
𝑘 =

𝑛∑︁
𝑘=1

𝑛∑︁
𝑖,𝑗=1

𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 =
𝑛∑︁

𝑖,𝑗=1

𝑛∑︁
𝑘=1

𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 = −
𝑛∑︁

𝑖=1

𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 = −(−1)2 = −1.

The proof is complete.
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Remark 2.1. A quadratic stochastic operator (QSO), see for example [13], [14], [15], [16],
[17], is defined by the identity (2.1) with the conditions

𝑝𝑖𝑗,𝑘 ⩾ 0,
𝑛∑︁

𝑘=1

𝑝𝑖𝑗,𝑘 = 1.

Such a QSO maps the simplex

𝑆𝑛−1 =

{︃
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥𝑖 ⩾ 0,

𝑛∑︁
𝑘=1

𝑥𝑘 = 1

}︃
into itself.

Thus all known results related to QSOs can be reformulated for quadratic maps mentioned
in Proposition 2.1 just by changing positive values (of parameters and variables) to negative
ones. Below we study dynamical systems of quadratic maps on R𝑛

max ∖𝑀𝑛, too.

Definition 2.2. The quadratic operator (2.1), corresponding to matrix 𝑃 = (𝑝𝑖𝑗,𝑘)
𝑛
𝑖,𝑗,𝑘=1,

with 𝑝𝑖𝑗,𝑘 ⩽ 0 for all 𝑖, 𝑗, 𝑘, is called quadratic Volterra operator if it satisfies the condition

𝑝𝑖𝑗,𝑘 = 0, 𝑘 /∈ {𝑖, 𝑗} . (2.3)

By this definition, it is easy to see that a Volterra operator (denoted by 𝑉 ) reads as

𝑉 : 𝑥′
𝑘 = 𝑥𝑘

𝑛∑︁
𝑖=1

(𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘)𝑥𝑖, 𝑘 = 1, 2, . . . , 𝑛. (2.4)

Theorem 2.1. [18] The quadratic operator 𝑉 given by the cubic matrix 𝑃 = (𝑝𝑖𝑗,𝑘)
𝑛
𝑖,𝑗,𝑘=1

with 𝑝𝑖𝑗,𝑘 ⩽ 0 maps ℐ𝑛 into itself if and only if it satisfies one of following conditions:

i) Each 𝑘-th matrix of the cubic matrix 𝑃 contains exactly one non–zero row and exactly one
non–zero column.

ii) Cubic matrix 𝑃 has at least one zero matrix, that is, there exists 𝑚 ⩽ 𝑛 such that all
elements of the 𝑚-th matrix 𝑃𝑚 = (𝑝𝑖𝑗,𝑚)

𝑛
𝑖,𝑗=1 consists of only zeroes.

The condition (2.3) implies that Volterra operator satisfies Condition i) of Theorem 2.1.

Theorem 2.2. A quadratic Volterra operator maps ℐ𝑛 into itself.

Proof. Assume 𝑥 ∈ ℐ𝑛, that is, max1⩽𝑖⩽𝑛 𝑥𝑖 = 0, for Volterra operator we show that 𝑥′ = 𝑉 (𝑥) ∈
ℐ𝑛:

max
1⩽𝑘⩽𝑛

𝑥′
𝑘 = max

1⩽𝑘⩽𝑛

𝑛∑︁
𝑖,𝑗=1

𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 = max
1⩽𝑘⩽𝑛

{︃
𝑥𝑘

𝑛∑︁
𝑖=1

(𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘)𝑥𝑖

}︃
. (2.5)

By the condition 𝑝𝑖𝑗,𝑘 ⩽ 0 and 𝑥𝑖 ⩽ 0 we have
𝑛∑︁

𝑖=1

(𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘)𝑥𝑖 ⩾ 0 for all 𝑘 = 1, 2, . . . , 𝑛.

Moreover, since 𝑥 ∈ ℐ𝑛, there is 𝑚 = 1, 2, . . . , 𝑛 such that 𝑥𝑚 = 0. Therefore, by (2.5) we get

max
1⩽𝑘⩽𝑛

𝑥′
𝑘 = 𝑥′

𝑚 = 0.

The proof is complete.

For each 𝐼 ⊂ 𝐸 = {1, . . . , 𝑛} we define the face Γ𝐼 of ℐ𝑛 by

Γ𝐼 = {𝑥 ∈ ℐ𝑛 : 𝑥𝑖 = 0, 𝑖 ∈ 𝐼} .

Proposition 2.2. Let 𝑉 be a Volterra QSO. Then each face of ℐ𝑛 is invariant set with
respect to 𝑉 .



124 I.T. JURAEV, U.A. ROZIKOV

Proof. In view of (2.4) it is clear that if 𝑥𝑖 = 0 then 𝑥′
𝑖 = 0. Hence 𝑉 (Γ𝐼) ⊂ Γ𝐼 . The proof is

complete.

Definition 2.3. The quadratic Volterra operator (2.4) with the condition (2.2) is called the
quadratic absolute stochastic Volterra operator (QASVO).

It follows from the condition (2.2) that for QASVO we have 𝑝𝑖𝑖,𝑖 = −1 for each 𝑖 = 1, . . . , 𝑛.

Definition 2.4. A solution to 𝑉 (𝑥) = 𝑥 is called the fixed point. The set of all fixed points
is denoted by Fix(𝑉 ).

Proposition 2.3. If 𝑥 = (𝑥1, . . . , 𝑥𝑛) is a fixed point of the quadratic map (2.1) with 𝑝𝑖𝑗,𝑘 ⩽ 0
and (2.2), then

𝑛∑︁
𝑖=1

𝑥𝑖 ∈ {−1, 0}.

Proof. We take an arbitrary 𝑥 ∈ Fix(𝑉 ). Then from equation 𝑉 (𝑥) = 𝑥 we get

𝑛∑︁
𝑘=1

𝑥𝑘 = −
𝑛∑︁

𝑖=1

𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 ⇔
𝑛∑︁

𝑖=1

𝑥𝑖 = −1 or 0.

The proof is complete.

3. Case 𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘 = −1

In this section we assume that

𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘 = −1, for all 𝑖, 𝑘 = 1, 2, . . . , 𝑛 (3.1)

In this case by (2.4) we get

𝑉0 : 𝑥′
𝑘 = −𝑥𝑘

𝑛∑︁
𝑖=1

𝑥𝑖, 𝑘 = 1, 2, . . . , 𝑛. (3.2)

3.1. Fixed points of 𝑉0.

Proposition 3.1. If (2.2), (2.3) and 𝑝𝑖𝑗,𝑖 + 𝑝𝑗𝑖,𝑖 = −1, then the set of all fixed points for the
QASVO 𝑉0 : ℐ𝑛 → ℐ𝑛 is

Fix(𝑉0) = {(0, 0, . . . , 0)} ∪ 𝒥𝑛,

where

𝒥𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℐ𝑛 :
𝑛∑︁

𝑖=1

𝑥𝑖 = −1}.

Proof. The equation 𝑉0(𝑥) = 𝑥 can be rewritten as

𝑥𝑘 = −𝑥𝑘

𝑛∑︁
𝑖=1

𝑥𝑖.

Its solutions are 𝑥𝑘 = 0 and
𝑛∑︀

𝑖=1

𝑥𝑖 = −1. The proof is complete.
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3.2. Dynamics under 𝑉0. Let 𝑥(0) ∈ ℐ𝑛 be an initial point, we define its trajectory (dy-
namical system) as 𝑥(𝑚+1) = 𝑉0(𝑥

(𝑚)), 𝑚 = 0, 1, 2, . . . Our aim is to study the limit points of
the trajectory for any initial point 𝑥(0).
Denote

𝐷
{𝑛}
𝑛−1 = {𝑥 ∈ ℐ𝑛 : −1 < 𝑥1 + 𝑥2 + . . .+ 𝑥𝑛−1 ⩽ 0} .

Theorem 3.1. For any initial point 𝑥(0) ∈ ℐ𝑛 the identity holds1

lim
𝑚→∞

𝑉 𝑚
0 (𝑥(0)) =

⎧⎪⎪⎨⎪⎪⎩
𝑥(0) if 𝑥(0) ∈ Fix(𝑉0),

(0, 0, . . . , 0) if 𝑥(0) ∈ 𝐷
{𝑛}
𝑛−1,

(−∞, . . . ,−∞, 0) if 𝑥(0) =
(︀
𝑥
(0)
1 , . . . , 𝑥

(0)
𝑛−1, 0

)︀
∈ ℐ𝑛 ∖

(︀
Fix(𝑉0) ∪𝐷

{𝑛}
𝑛−1

)︀
.

Proof. According to Proposition 3.1, each fixed point except for (0, 0, 0, . . . , 0) satisfies the
condition 𝑥1 + 𝑥2 + . . .+ 𝑥𝑛 = −1. For such a point the limit is trivially the fixed point. Below
we consider initial points, which are not fixed points. We need to find the limits for non–fixed
points

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= lim

𝑚→∞
𝑉
(︀
𝑉
(︀
𝑉
(︀
· · ·
(︀
𝑉
(︀
𝑥(0)
)︀)︀

· · ·
)︀)︀)︀

= lim
𝑛→∞

𝑥(𝑚).

We take a non–fixed point in the case 𝑥
(0)
𝑛 = 0, that is, 𝑥(0) =

(︀
𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛−1, 0

)︀
∈ ℐ𝑛. In

this case by the formula (3.2) we get

1)
𝑛−1∑︁
𝑖=1

𝑥
(1)
𝑖 = −

𝑛−1∑︁
𝑖=1

𝑥
(0)
𝑖

𝑛−1∑︁
𝑗=1

𝑥
(0)
𝑗 = −

(︃
𝑛−1∑︁
𝑖=1

𝑥
(0)
𝑖

)︃2

,

2)
𝑛−1∑︁
𝑖=1

𝑥
(2)
𝑖 = −

𝑛−1∑︁
𝑖=1

𝑥
(1)
𝑖

𝑛−1∑︁
𝑗=1

𝑥
(1)
𝑗 = −

(︃
𝑛−1∑︁
𝑖=1

𝑥
(1)
𝑖

)︃2

= −

(︃
𝑛−1∑︁
𝑖=1

𝑥
(0)
𝑖

)︃4

,

· · ·

m)
𝑛−1∑︁
𝑖=1

𝑥
(𝑚)
𝑖 = −

𝑛−1∑︁
𝑖=1

𝑥
(𝑚−1)
𝑖

𝑛−1∑︁
𝑗=1

𝑥
(𝑚−1)
𝑗 = −

(︃
𝑛−1∑︁
𝑖=1

𝑥
(𝑚−1)
𝑖

)︃2

= · · · = −

(︃
𝑛−1∑︁
𝑖=1

𝑥
(0)
𝑖

)︃2𝑚

.

By the formula (3.2) and the above obtained results for each coordinates 𝑥
(0)
𝑘 of the initial point

𝑥(0) we get

1) 𝑥
(1)
𝑘 = −𝑥

(0)
𝑘

𝑛−1∑︁
𝑖=1

𝑥
(0)
𝑖 = −𝑥

(0)
𝑘

(︀
𝑥
(0)
1 + 𝑥

(0)
2 + · · ·+ 𝑥

(0)
𝑛−1

)︀
,

2) 𝑥
(2)
𝑘 = −𝑥

(1)
𝑘

𝑛−1∑︁
𝑖=1

𝑥
(1)
𝑖 = −𝑥

(0)
𝑘

(︀
𝑥
(0)
1 + 𝑥

(0)
2 + · · ·+ 𝑥

(0)
𝑛−1

)︀3
,

3) 𝑥
(3)
𝑘 = −𝑥

(2)
𝑘

𝑛−1∑︁
𝑖=1

𝑥
(2)
𝑖 = −𝑥

(0)
𝑘

(︀
𝑥
(0)
1 + 𝑥

(0)
2 + · · ·+ 𝑥

(0)
𝑛−1

)︀7
,

· · ·

m) 𝑥
(𝑚)
𝑘 = −𝑥

(𝑚−1)
𝑘

𝑛−1∑︁
𝑖=1

𝑥
(𝑚−1)
𝑖 = −𝑥

(0)
𝑘

(︀
𝑥
(0)
1 + 𝑥

(0)
2 + · · ·+ 𝑥

(0)
𝑛−1

)︀2𝑚−1
.

1The third line is true in the case 𝑥
(0)
𝑘 < 0, if 𝑥

(0)
𝑘 = 0, then 𝑥

(𝑚)
𝑘 = 0 for 𝑘 = 1, 𝑛− 1.



126 I.T. JURAEV, U.A. ROZIKOV

Therefore, we get the trajectories for each 𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛−1, 0

)︀
∈ ℐ𝑛. Namely, let

𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛−1, 0

)︀
∈ 𝒟{𝑛}

𝑛−1. The coordinates of this point satisfy

−1 < 𝑥
(0)
1 + 𝑥

(0)
2 + . . .+ 𝑥

(0)
𝑛−1 ⩽ 0.

Then we find

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥
(0)
𝑘

)︀
= lim

𝑚→∞
𝑥
(𝑚)
𝑘 = − lim

𝑚→∞
𝑥
(0)
𝑘

(︁
𝑥
(0)
1 + 𝑥

(0)
2 + . . .+ 𝑥

(0)
𝑛−1

)︁2𝑚−1

= 0.

It implies that

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= lim

𝑚→∞
𝑥(𝑚) = (0, 0, . . . , 0).

Now let 𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛−1, 0

)︀
∈ ℐ𝑛 ∖

(︀
Fix(𝑉0)∪𝐷

{𝑛}
𝑛−1

)︀
. The coordinates of this initial

point satisfies the inequality

𝑥
(0)
1 + 𝑥

(0)
2 + . . .+ 𝑥

(0)
𝑛−1 < −1.

We observe that if 𝑥
(0)
𝑘 = 0, then according to (2.1) we get 𝑥

(𝑚)
𝑘 = 0 for each 𝑚 ∈ 𝑁 and

𝑘 = 1, 𝑛− 1. This is why we study the case 𝑥
(0)
𝑘 < 0 for 𝑘 = 1, 𝑛− 1. We have

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥
(0)
𝑘

)︀
= lim

𝑚→∞
𝑥
(𝑚)
𝑘 = − lim

𝑚→∞
𝑥
(0)
𝑘

(︁
𝑥
(0)
1 + 𝑥

(0)
2 + . . .+ 𝑥

(0)
𝑛−1

)︁2𝑚−1

= −∞.

It follows that

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= lim

𝑚→∞
𝑥(𝑚) = (−∞,−∞, . . . ,−∞, 0).

The proof is complete.

4. The case 𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘 ̸= −1

In this section we consider the case 𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘 ̸= −1 for some 𝑖, 𝑘.

4.1. Fixed points of 𝑉 in case 𝑝𝑖𝑘,𝑘 + 𝑝𝑘𝑖,𝑘 ̸= −1. Finding all fixed points is a difficult
problem for general 𝑛. We consider the cases 𝑛 = 2 and 𝑛 = 3.

Case 𝑛 = 2. We are going to find fixed points of Volterra operator 𝑉 : ℐ2 → ℐ2 assuming
that 𝑝𝑖𝑖,𝑖 ̸= 0, 𝑖 = 1, 2.
Denote

𝑎𝑖𝑗 = 𝑝𝑖𝑗,𝑖 + 𝑝𝑗𝑖,𝑖 if 𝑖 ̸= 𝑗.

For 𝑛 = 2 the equation 𝑉 (𝑥) = 𝑥 by (2.4) becomes{︃
𝑥1 = 𝑝11,1𝑥

2
1 + 𝑎12𝑥1𝑥2,

𝑥2 = 𝑝22,2𝑥
2
2 + 𝑎21𝑥1𝑥2.

(4.1)

There arise three cases:

1a) If 𝑥1 ⩽ 0 and 𝑥2 = 0, then we get 𝑥1 = 𝑝11,1𝑥
2
1. The solutions are 𝑥1 = 1

𝑝11,1
and 𝑥1 = 0.

Hence, the fixed points are
(︁

1
𝑝11,1

, 0
)︁
and (0, 0).

1b) Assume, 𝑥1 = 0 and 𝑥2 ⩽ 0, then the fixed points are
(︁
0, 1

𝑝22,2

)︁
and (0, 0).

1c) Let 𝑥1 = 𝑥2 = 0. It implies that the fixed point is (0, 0).

Thus, for 𝑛 = 2 we have

Fix(𝑉 ) =

{︂(︂
1

𝑝11,1
, 0

)︂
,

(︂
0,

1

𝑝22,2

)︂
, (0, 0)

}︂
.
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Case 𝑛 = 3. Let us find all fixed points of the Volterra operator 𝑉 : ℐ3 → ℐ3. Under the
conditions (2.3), 𝑝𝑖𝑖,𝑖 = −1 and 𝑎𝑖𝑗 ̸= −1 we see that the equation 𝑉 (𝑥) = 𝑥 becomes⎧⎪⎨⎪⎩

𝑥1 = −𝑥2
1 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3,

𝑥2 = −𝑥2
2 + 𝑎21𝑥1𝑥2 + 𝑎23𝑥2𝑥3,

𝑥3 = −𝑥2
3 + 𝑎31𝑥1𝑥3 + 𝑎32𝑥2𝑥3.

Let 𝑥1 ⩽ 0, 𝑥2 ⩽ 0 and 𝑥3 = 0, then we get the system of non-linear equations{︂
𝑥1 = −𝑥1(𝑥1 − 𝑎12𝑥2),

𝑥2 = −𝑥2(𝑥2 − 𝑎21𝑥1).

The following three cases are possible:

2a) If 𝑥1 ⩽ 0 and 𝑥2 = 0, then solutions are 𝑥1 = −1 and 𝑥1 = 0. Hence, the fixed points are
(−1, 0, 0) and (0, 0, 0).

2b) Let 𝑥1 = 0 and 𝑥2 ⩽ 0, then we obtain the fixed points (0,−1, 0) and (0, 0, 0).
2c) Assume, 𝑥1 < 0 and 𝑥2 < 0. In this case we get the system of linear equations{︂

𝑥1 − 𝑎12𝑥2 = −1,

𝑎21𝑥1 − 𝑥2 = 1.
(4.2)

From (4.2) we get fixed point

𝑥 =
(︀ 𝑎12 + 1

𝑎12𝑎21 − 1
,

𝑎21 + 1

𝑎12𝑎21 − 1
, 0
)︀
∈ ℐ3

if (︀
𝑎12 < −1, 𝑎21 < −1

)︀
or

(︀
𝑎12 > −1, 𝑎21 > −1

)︀
,

otherwise there is no fixed point.

In the same way for the cases (𝑥1, 0, 𝑥3) and (0, 𝑥2, 𝑥3) we find the fixed points (−1, 0, 0),
(0,−1, 0), (0, 0,−1) and also(︂

𝑎13 + 1

𝑎13𝑎31 − 1
, 0,

𝑎31 + 1

𝑎13𝑎31 − 1

)︂
if (𝑎13 < −1, 𝑎31 < −1) or (𝑎13 > −1, 𝑎31 > −1) ,(︂

0,
𝑎23 + 1

𝑎23𝑎32 − 1
,

𝑎32 + 1

𝑎23𝑎32 − 1

)︂
if (𝑎23 < −1, 𝑎32 < −1) or (𝑎23 > −1, 𝑎32 > −1) .

Proposition 4.1. Assume 𝑛 = 3, 𝑝𝑖𝑖,𝑖 = −1 and 𝑎𝑖𝑗 ̸= −1 for 𝑖, 𝑗 ∈ {1, 2, 3}. Then the set
of all fixed points for the Volterra operator 𝑉 : ℐ3 → ℐ3 is

Fix(𝑉 ) = {(0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}⋃︁{︁
(𝑥1, 𝑥2, 𝑥3) ∈ ℐ3, where 𝑥𝑖 =

𝑎𝑖𝑗 + 1

𝑎𝑖𝑗𝑎𝑗𝑖 − 1
, 𝑥𝑗 =

𝑎𝑗𝑖 + 1

𝑎𝑖𝑗𝑎𝑗𝑖 − 1
, 𝑥𝑘 = 0,

if (𝑎𝑖𝑗 < −1, 𝑎𝑗𝑖 < −1) or (𝑎𝑖𝑗 > −1, 𝑎𝑗𝑖 > −1)

for 𝑖 ̸= 𝑗, 𝑖 ̸= 𝑘, 𝑗 ̸= 𝑘, 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}
}︁
.

4.2. Dynamics under QASVO 𝑉 in case 𝑝𝑖𝑗,𝑖 + 𝑝𝑗𝑖,𝑖 ̸= −1. We recall some definitions.
Consider a non–linear mapping of 𝑛–dimensional variables:

𝑥′ = 𝑉 (𝑥) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥′
1 = 𝑓1 (𝑥1;𝑥2; ... ;𝑥𝑛) ,

𝑥′
2 = 𝑓2 (𝑥1;𝑥2; ... ;𝑥𝑛) ,

· · ·
𝑥′
𝑛 = 𝑓𝑛 (𝑥1;𝑥2; ... ;𝑥𝑛) .
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The Jacobian matrix of operator 𝑉 at a point 𝑥0 is given by

𝐽𝑉 (𝑥0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

(𝑥0)
𝜕𝑓1
𝜕𝑥2

(𝑥0) · · · 𝜕𝑓1
𝜕𝑥𝑛

(𝑥0)

𝜕𝑓2
𝜕𝑥1

(𝑥0)
𝜕𝑓2
𝜕𝑥2

(𝑥0) · · · 𝜕𝑓2
𝜕𝑥𝑛

(𝑥0)

· · · · · · · · · · · ·
𝜕𝑓𝑛
𝜕𝑥1

(𝑥0)
𝜕𝑓𝑛
𝜕𝑥2

(𝑥0) · · · 𝜕𝑓𝑛
𝜕𝑥𝑛

(𝑥0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Definition 4.1 (see [19]). A fixed point 𝑥0 = (𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛 ) of the operator 𝑉 is called

hyperbolic if the Jacobian 𝐽𝑉 (𝑥0) has no eigenvalues on the unit circle.

Definition 4.2 (see [19]). A hyperbolic fixed point 𝑥0 = (𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛 ) is called

1) attracting if all eigenvalues of the Jacobi matrix 𝐽𝑉 (𝑥0) are less than 1 in absolute value;
2) repelling if all eigenvalues of the Jacobi matrix 𝐽𝑉 (𝑥0) are greater than 1 in absolute value;
3) saddle otherwise.

Case 𝑛 = 2.

Proposition 4.2. For the Volterra operator 𝑉 : ℐ2 → ℐ2:

a) the fixed point (0, 0) is an attracting fixed point;

b) fixed points
(︁

1
𝑝11,1

, 0
)︁
and

(︁
0, 1

𝑝22,2

)︁
are repelling fixed points.

The proposition can be proved by the simple analysis of the eigenvalues.
We proceed to the limit points of trajectories. We calculate 𝑥(𝑚) = 𝑉 𝑚(𝑥(0)) for the Volterra

operator 𝑉 : ℐ2 → ℐ2, and for 𝑚 = 1, 𝑥
(0)
1 = 𝛼

𝑝11,1
< 0 and 𝑥

(0)
2 = 0 we have(︀

𝑥
(1)
1 , 𝑥

(1)
2

)︀
= 𝑉

(︀
𝑥(0)
)︀
=

(︂
𝛼2

𝑝11,1
, 0

)︂
.

By induction, for all natural values of 𝑚 we get

𝑉 𝑚
(︀
𝑥(0)
)︀
=

(︂
𝛼2𝑚

𝑝11,1
, 0

)︂
(4.3)

Hence, we obtain the following result.

Proposition 4.3. For an arbitrary initial point 𝑥(0) =
(︁

𝛼
𝑝11,1

, 0
)︁
we have

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= lim

𝑚→∞

(︂
𝛼2𝑚

𝑝11,1
, 0

)︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0) if 𝛼 ∈ [0, 1),(︂

1

𝑝11,1
, 0

)︂
if 𝛼 = 1,

(−∞, 0) if 𝛼 > 1.

(4.4)

Similar results apply to te initial point as 𝑥(0) = (0, 𝑥
(0)
2 ). The trajectories of points 𝑥(0) ∈ 𝐼2

are shown on Figure 1.
Case 𝑛 = 3.
Now we define the characteristics of fixed points for QASVO in the case 𝑛 = 3 under the

condition 𝑎𝑖𝑗 ̸= −1 for 𝑖, 𝑗 ∈ {1, 2, 3}. In this case according to the condition (2.2) and
Proposition 4.1, the fixed points for the operator QASVO 𝑉 : ℐ3 → ℐ3 are (0, 0, 0), (−1, 0, 0),
(0,−1, 0) and (0, 0,−1).

Proposition 4.4. Suppose that 𝑎𝑖𝑗 ̸= −1 for 𝑖, 𝑗 ∈ {1, 2, 3}. For the QASVO 𝑉 : ℐ3 → ℐ3:

a) the fixed point (0, 0, 0) is an attracting fixed point;
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Figure 1. Trajectories in the case 𝑛 = 2.

b) the fixed point 𝐴𝑖 = (𝑥1, 𝑥2, 𝑥3), where 𝑥𝑖 = −1, 𝑥𝑗 = 0, 𝑥𝑘 = 0, 𝑗 ̸= 𝑖, 𝑘 ̸= 𝑖 is repelling if
𝑎𝑖𝑗 < −1 and 𝑎𝑖𝑘 < −1 for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3};

c) the fixed point 𝐴𝑖 = (𝑥1, 𝑥2, 𝑥3) , where 𝑥𝑖 = −1, 𝑥𝑗 = 0, 𝑥𝑘 = 0, 𝑗 ̸= 𝑖, 𝑘 ̸= 𝑖 for
𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} is a saddle point otherwise.

Proof. By Proposition 4.1 we have four fixed points (0, 0, 0) , (−1, 0, 0) , (0,−1, 0) and (0, 0,−1)
for QASVO under the conditions (2.2) and 𝑎𝑖𝑗 ̸= −1.
Due to the formula (2.1) in the case 𝑥1 ⩽ 0, 𝑥2 ⩽ 0 and 𝑥3 = 0 we get{︃

𝑥
(1)
1 = −

(︀
𝑥
(0)
1

)︀2
+ 𝑎12𝑥

(0)
1 𝑥

(0)
2 ,

𝑥
(1)
2 = −

(︀
𝑥
(0)
2

)︀2
+ 𝑎21𝑥

(0)
1 𝑥

(0)
2 .

(4.5)

We check the characteristics of fixed points (0, 0, 0) , (−1, 0, 0) and (0,−1, 0) according to the
formula for the two–dimensional cases. We find eigenvalues of Jacobian for (4.5) by solving the
equation

|𝐽𝑉 (𝑥0)− 𝐸𝜆| =
⃒⃒⃒⃒−2𝑥1 + 𝑎12𝑥2 − 𝜆 𝑎12𝑥1

𝑎21𝑥2 −2𝑥2 + 𝑎21𝑥1 − 𝜆

⃒⃒⃒⃒
= 0

with 𝑎12 = 𝑝12,1 + 𝑝21,1, 𝑎21 = 𝑝12,2 + 𝑝21,2. The eigenvalues of this Jacobian are

𝜆1 = 𝜆2 = 0, if 𝑥0 = (0, 0, 0);

𝜆1 = 2, 𝜆2 = −𝑎21, if 𝑥0 = (−1, 0, 0);

𝜆1 = 2, 𝜆2 = −𝑎12, if 𝑥0 = (0,−1, 0).

Similar considerations holds in the cases (𝑥1, 0, 𝑥3) and (0, 𝑥2, 𝑥3). The obtained results shows
that the fixed point (0, 0, 0) is always attracting. According to the conditoin (2.2) we have
𝑎𝑖𝑗 + 𝑎𝑗𝑖 = −2. Thus, the type of the fixed points (−1, 0, 0), (0,−1, 0) and (0, 0,−1) depend
each on the other. If one of them is repeller, then the others are saddle, else all of them are
saddle points. The proof is complete.
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We assume that 𝑥3 = 0 and in the plane 𝑂𝑥1𝑥2 we consider a triangle with the vertices are
at the fixed points (0, 0, 0), (−1, 0, 0) and (0,−1, 0). We denote this triangle by 𝐷12. Then the
set 𝐷12 is as follows:

𝐷12 =
{︁
𝑥(0) =

(︀
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︀
: −1 < 𝑥

(0)
1 + 𝑥

(0)
2 < 0

}︁
.

Theorem 4.1. Let 𝑛 = 3 and 𝑎12 ̸= −1. For an arbitrary 𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︀
the trajectory

has the following limit: if

𝑥(0) =
(︀
𝑥
(0)
2 , 𝑥

(0)
2 , 0

)︀
∈ 𝐷̄12,

then

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0, 0) if 𝑥

(0)
1 + 𝑥

(0)
2 > −1,

(−1, 0, 0) if 𝑥
(0)
1 + 𝑥

(0)
2 = −1, 𝑎12 < −1,

(0,−1, 0) if 𝑥
(0)
1 + 𝑥

(0)
2 = −1, 𝑎12 > −1;

if

𝑥(0) = (𝑥
(0)
2 , 𝑥

(0)
2 , 0) ∈ ℐ3 ∖ 𝐷̄12, 𝑎12 = 0,

then

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) =

{︃
(0,−∞, 0) if − 1 < 𝑥

(0)
1 < 0,

(−1,−∞, 0) if 𝑥
(0)
1 = −1;

if

𝑥(0) = (𝑥
(0)
2 , 𝑥

(0)
2 , 0) ∈ ℐ3 ∖ 𝐷̄12, 𝑎21 = 0,

then

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) =

{︃
(−∞, 0, 0) if − 1 < 𝑥

(0)
2 < 0,

(−∞,−1, 0) if 𝑥
(0)
2 = −1;

and in all other cases
lim

𝑚→∞
𝑉 𝑚(𝑥(0)) = (−∞,−∞, 0).

Proof. According to Proposition 4.1 and condition (2.2) there are four fixed points (0, 0, 0),
(−1, 0, 0), (0,−1, 0) and (0, 0,−1) for QASVO 𝑉 : ℐ3 → ℐ3. Below we consider initial points
which are not fixed points. We need to find the limits for non–fixed points

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= lim

𝑚→∞
𝑉
(︀
𝑉
(︀
𝑉
(︀
· · ·
(︀
𝑉
(︀
𝑥(0)
)︀)︀

· · ·
)︀)︀)︀

= lim
𝑚→∞

𝑥(𝑚).

We take non–fixed point in case 𝑥
(0)
3 = 0, that is, by the formula (2.1) we get{︃

𝑥
(1)
1 = −

(︀
𝑥
(0)
1

)︀2
+ 𝑎12𝑥

(0)
1 𝑥

(0)
2 ,

𝑥
(1)
2 = −

(︀
𝑥
(0)
2

)︀2 − (𝑎12 + 2)𝑥
(0)
1 𝑥

(0)
2 .

(4.6)

By the system (4.6) we obtain the recurrent identities

𝑥
(1)
1 + 𝑥

(1)
2 = −

(︀(︀
𝑥
(0)
1

)︀2
+
(︀
𝑥
(0)
2

)︀2
+ 2𝑥

(0)
1 𝑥

(0)
2

)︀
= −

(︀
𝑥
(0)
1 + 𝑥

(0)
2

)︀2
,

𝑥
(2)
1 + 𝑥

(2)
2 = −

(︀(︀
𝑥
(1)
1

)︀2
+
(︀
𝑥
(1)
2

)︀2
+ 2𝑥

(1)
1 𝑥

(1)
2

)︀
= −

(︀
𝑥
(1)
1 + 𝑥

(1)
2

)︀2
= −

(︀
𝑥
(0)
1 + 𝑥

(0)
2

)︀4
,

· · ·

𝑥
(𝑚)
1 + 𝑥

(𝑚)
2 = −

(︀
𝑥
(𝑚−1)
1 + 𝑥

(𝑚−1)
2

)︀2
= · · · = −

(︀
𝑥
(0)
1 + 𝑥

(0)
2

)︀2𝑚
We consider a non–fixed point 𝑥(0) =

(︀
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︀
∈ 𝐷12. The coordinates of this point

satisfy double inequality −1 < 𝑥
(0)
1 + 𝑥

(0)
2 < 0. It implies

lim
𝑚→∞

(︀
𝑥
(𝑚)
1 + 𝑥

(𝑚)
2

)︀
= − lim

𝑚→∞

(︀
𝑥
(0)
1 + 𝑥

(0)
2

)︀2𝑚
= 0.
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Hence,

lim
𝑚→∞

(︀
𝑥
(𝑚)
1

)︀
= 0 and lim

𝑚→∞

(︀
𝑥
(𝑚)
2

)︀
= 0.

This gives

lim
𝑚→∞

𝑉 𝑚
(︀
𝑥(0)
)︀
= (0, 0, 0).

It shows that the trajectory of every initial point 𝑥(0) ∈ 𝐷12 under QASVO approaches to
(0, 0, 0).

We consider the non–fixed point 𝑥(0) =
(︁
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︁
∈ ℐ3 ∖ 𝐷12. The coordinates of this

point satisfy the inequality 𝑥
(0)
1 + 𝑥

(0)
2 < −1. In this case, according to the above obtained

result, we get

lim
𝑚→∞

(︀
𝑥
(𝑚)
1 + 𝑥

(𝑚)
2

)︀
= −∞. (4.7)

Now we are going to determine the limits for each coordinates 𝑥
(𝑚)
𝑖 , 𝑖 = 1, 2. Denoting

𝑎𝑖𝑗 = 𝑝𝑖𝑗,𝑖 + 𝑝𝑗𝑖,𝑖, we get 𝑎𝑖𝑗 + 𝑎𝑗𝑖 = −2. By (4.5) we obtain{︃
𝑥
(1)
1 = 𝑥

(0)
1

(︀
− 𝑥

(0)
1 + 𝑎12𝑥

(0)
2

)︀
,

𝑥
(1)
2 = 𝑥

(0)
2

(︀
− 𝑥

(0)
2 + 𝑎21𝑥

(0)
1

)︀
.

(4.8)

We note that if 𝑥
(0)
𝑘 = 0, then according to (2.1) we get 𝑥

(𝑚)
𝑘 = 0 for every𝑚 ∈ 𝑁 and 𝑘 ∈ {1, 2}.

This is why we study case 𝑥
(0)
1 < 0, 𝑥

(0)
2 < 0 and 𝑥

(0)
1 + 𝑥

(0)
2 < −1. We analyse the system (4.8)

in the cases 𝑎𝑖𝑗 = 0 and 𝑎𝑖𝑗 ̸= 0 separately.

b1) Let 𝑎12𝑎21 = 0.

b1.1) Assume that 𝑎12 = 0. Then we get 𝑎21 = −2 and (4.8) becomes{︃
𝑥
(1)
1 = −

(︀
𝑥
(0)
1

)︀2
,

𝑥
(1)
2 = 𝑥

(0)
2

(︀
− 𝑥

(0)
2 − 2𝑥

(0)
1

)︀
.

(4.9)

This allows us to get the 𝑚th iteration of the operator{︃
𝑥
(𝑚)
1 = −

(︀
𝑥
(𝑚−1)
1

)︀2
,

𝑥
(𝑚)
2 = −𝑥

(𝑚−1)
2

(︀
𝑥
(𝑚−1)
2 + 2𝑥

(𝑚−1)
1

)︀
.

(4.10)

By the first equation in the above system we get

𝑥
(𝑚)
1 = −

(︀
𝑥
(𝑚−1)
1

)︀2
= −

(︀(︀
𝑥
(𝑚−2)
1

)︀2)︀2
= . . . = −

(︀
𝑥
(0)
1

)︀2𝑚
.

The inequality 𝑥
(0)
1 < 0 implies

lim
𝑚→∞

𝑥
(𝑚)
1 = − lim

𝑚→∞

(︀
𝑥
(0)
1

)︀2𝑚
=

⎧⎪⎪⎨⎪⎪⎩
0 if − 1 < 𝑥

(0)
1 ⩽ 0,

−1 if 𝑥
(0)
1 = −1,

−∞ if 𝑥
(0)
1 < −1.

(4.11)

By (4.7), (4.10) and (4.11) we obtain that 𝑥
(𝑛)
2 → −∞ as 𝑚 → ∞.

We have 𝑥
(0)
1 + 𝑥

(0)
2 < −1. Under this condition and by the second equation in the system

(4.9) we get

𝑥
(1)
2 = −𝑥

(0)
2

(︀
𝑥
(0)
2 + 2𝑥

(0)
1

)︀
< −𝑥

(0)
2

(︀
𝑥
(0)
2 + 𝑥

(0)
1

)︀
,

𝑥
(2)
2 = −𝑥

(1)
2

(︀
𝑥
(1)
2 + 2𝑥

(1)
1

)︀
< −𝑥

(1)
2

(︀
𝑥
(1)
2 + 𝑥

(1)
1

)︀
< −

(︀
− 𝑥

(0)
2

(︀
𝑥
(0)
2 + 𝑥

(0)
1

)︀)︀(︀
𝑥
(1)
2 + 𝑥

(1)
1

)︀
.
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Repeating this estimating, we get

𝑥
(𝑚)
2 < −𝑥

(𝑚−1)
2

(︀
𝑥
(𝑚−1)
2 + 𝑥

(𝑚−1)
1

)︀
< −

(︀
− 𝑥

(𝑚−2)
2

(︀
𝑥
(𝑚−2)
2 + 𝑥

(𝑚−2)
1

)︀)︀(︀
𝑥
(𝑚−1)
2 + 𝑥

(𝑚−1)
1

)︀
< . . . < (−1)𝑚𝑥

(0)
2

(︀
𝑥
(0)
2 + 𝑥

(0)
1

)︀(︀
𝑥
(1)
2 + 𝑥

(1)
1

)︀
· · ·
(︀
𝑥
(𝑚−1)
2 + 𝑥

(𝑚−1)
1

)︀
< (−1)𝑚𝑥

(0)
2

(︀
𝑥
(0)
2 + 𝑥

(0)
1

)︀𝑚
.

It follows that

lim
𝑚→∞

𝑥
(𝑚)
2 < lim

𝑚→∞
(−1)𝑚𝑥

(0)
2

(︁
𝑥
(0)
2 + 𝑥

(0)
1

)︁𝑚
= −∞.

As a result, if 𝑎12 = 0, then we obtain

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) =

⎧⎪⎪⎨⎪⎪⎩
(0,−∞, 0) if − 1 < 𝑥

(0)
1 ⩽ 0,

(−1,−∞, 0) if 𝑥
(0)
1 = −1,

(−∞,−∞, 0) if 𝑥
(0)
1 < −1.

b1.2) We consider the case 𝑎21 = 0. Then similarly to the above considered case we show
that

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) =

⎧⎪⎪⎨⎪⎪⎩
(−∞, 0, 0), if − 1 < 𝑥

(0)
2 ⩽ 0,

(−∞,−1, 0), if 𝑥
(0)
2 = −1,

(−∞,−∞, 0), if 𝑥
(0)
2 < −1.

b2) Let 𝑎𝑖𝑗 ̸= 0. We have

𝑥
(0)
1 < 0, 𝑥

(0)
2 < 0, 𝑥

(0)
1 + 𝑥

(0)
2 < −1.

b2.1) If 𝑎12 < −1, then the identity 𝑎𝑖𝑗 + 𝑎𝑗𝑖 = −2 implies that 𝑎21 > −1. We denote
𝑎12 = −(1 + 𝛼), where 𝛼 ∈ (0; 1), then we get 𝑎21 = 𝛼− 1 and we rewrite (4.8) for each 𝑚 as{︃

𝑥
(𝑚)
1 = 𝑥

(𝑚−1)
1

(︀
− 𝑥

(𝑚−1)
1 − (𝛼 + 1)𝑥

(𝑚−1)
2

)︀
,

𝑥
(𝑚)
2 = 𝑥

(𝑚−1)
2

(︀
− 𝑥

(𝑚−1)
1 + (𝛼− 1)𝑥

(𝑚−1)
1

)︀
.

(4.12)

By the system (4.12) and condition 𝑥
(0)
1 + 𝑥

(0)
2 < −1 we find

𝑥
(𝑚)
1 + 𝑥

(𝑚)
2 = −

(︀
𝑥
(𝑚−1)
1 + 𝑥

(𝑚−1)
2

)︀2
= · · · = −

(︀
𝑥
(0)
1 + 𝑥

(0)
2

)︀2𝑚 → −∞. (4.13)

Using (4.13) for the first equation in the system (4.12), we obtain

−
(︀
𝑥
(𝑚−1)
1 + (𝛼 + 1)𝑥

(𝑚−1)
1

)︀
= −

(︀
𝑥
(𝑚−1)
1 + 𝑥

(𝑚−1)
1 + 𝛼𝑥

(𝑚−1)
1

)︀
> −

(︀
𝑥
(𝑚−1)
1 + 𝑥

(𝑚−1)
2

)︀
> 1.

Under this inequality, the first equation of the system (4.12) implies

𝑥
(𝑚)
1 < 𝑥

(𝑚−1)
1

(︀
− 𝑥

(𝑚−1)
1 − 𝑥

(𝑚−1)
2

)︀
< 𝑥

(𝑚−1)
1 .

for every 𝑚. And as a result we obtain the inequalities

𝑥
(1)
1 < 𝑥

(0)
1

(︀
− 𝑥

(0)
1 − 𝑥

(0)
2

)︀
,

𝑥
(2)
1 < 𝑥

(1)
1

(︀
− 𝑥

(1)
1 − 𝑥

(1)
2

)︀
< 𝑥

(0)
1

(︀
− 𝑥

(0)
1 − 𝑥

(0)
2

)︀(︀
− 𝑥

(1)
1 − 𝑥

(1)
2

)︀
.

Continuing this process and using (4.13), we find

𝑥
(𝑚)
1 < 𝑥

(0)
1

(︀
− 𝑥

(0)
1 − 𝑥

(0)
2

)︀(︀
− 𝑥

(1)
1 − 𝑥

(1)
2

)︀
· · ·
(︀
− 𝑥

(𝑚−1)
1 − 𝑥

(𝑚−1)
2

)︀
< 𝑥

(0)
1

(︀
− 𝑥

(0)
1 − 𝑥

(0)
2

)︀2𝑚−1
.

Since 𝑥
(0)
1 + 𝑥

(0)
2 < −1, it follows that

lim
𝑚→∞

𝑥
(𝑚)
1 < lim

𝑚→∞

(︀
𝑥
(0)
1

(︀
− 𝑥

(0)
1 − 𝑥

(0)
2

)︀2𝑚−1)︀
= −∞.

As a result we obtain
𝑥
(0)
1 > 𝑥

(1)
1 > 𝑥

(2)
1 > . . . > 𝑥

(𝑚)
1 .
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We consider the second equation of the system (4.12)

𝑥
(𝑚)
2 = 𝑥

(𝑚−1)
2

(︀
− 𝑥

(𝑚−1)
2 + (𝛼− 1)𝑥

(𝑚−1)
1

)︀
.

We proved above that it follows from 𝑥𝑚
1 → −∞ that there exits a number 𝑚0 ∈ N, which

satisfies the condition

−𝑥
(𝑚0−1)
2 + (𝛼− 1)𝑥

(𝑚0−1)
1 ⩾ 1.

Then we get the inequality

𝑥
(𝑚0−1)
2 > 𝑥

(𝑚0)
2 .

Therefore, we get the inequalities

𝑥
(𝑚0−1)
2 > 𝑥

(𝑚0)
2 > 𝑥

(𝑚0+1)
2 > . . . > 𝑥

(𝑚)
2 > . . . ,

that is

lim
𝑚→∞

𝑥
(𝑚)
2 = −∞.

Now assume that there exists 𝑚0 such that −𝑥
(𝑚0)
2 + (𝛼− 1)𝑥

(𝑚0)
1 < 1. Let

𝑏 = −𝑥
(𝑚0)
1 − 𝑥

(𝑚0)
2 > 1,

then by (4.12) for 𝑚 = 𝑚0 + 1 we have{︃
𝑥
(𝑚0+1)
1 = 𝑥

(𝑚0)
1

(︀
𝑏− 𝛼𝑥

(𝑚0)
2

)︀
,

𝑥
(𝑚0+1)
2 = 𝑥

(𝑚0)
2

(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

)︀
.

(4.14)

Under the condition 𝑏+𝛼𝑥
(𝑚0)
1 < 1 the second equality of the above system yields the inequality

𝑥
(𝑚0+1)
2 > 𝑥

(𝑚0)
2 . But, we have 𝑏 − 𝛼𝑥

(𝑚0)
2 > 1, and we repeat this process for 𝑚 = 𝑚0 + 2 to

obtain

𝑥
(𝑚0+2)
2 =𝑥

(𝑚0+1)
2

(︀
𝑏+ 𝛼𝑥

(𝑚0+1)
1

)︀
= 𝑥

(𝑚0)
2

(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

)︀(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

(︀
𝑏− 𝛼𝑥

(𝑚0)
2

)︀)︀
<𝑥

(𝑚0)
2

(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

)︀(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

)︀
= 𝑥

(𝑚0+1)
2

(︀
𝑏+ 𝛼𝑥

(𝑚0)
1

)︀2
.

The last inequality shows that the sequence {𝑥(𝑖)
2 }∞𝑖=0 is not strictly monotone and

lim
𝑚→∞

𝑥
(𝑚)
1 = −∞.

Thus, there exits a number 𝑁 such that

𝑥
(𝑁)
1 ⩾

1

𝛼− 1
, 𝑥

(𝑁+1)
2 = 𝑥

(𝑁)
2

(︁
−𝑥

(𝑁)
2 + (𝛼− 1)𝑥

(𝑁)
1

)︁
< 𝑥

(𝑁)
2 .

It follows that for every 𝑚𝑁 > 𝑁 we have the inequalities

𝑥
(𝑚𝑁 )
1 > 𝑥

(𝑚𝑁+1)
1 > 𝑥

(𝑚𝑁+2)
1 > . . .

In other words, if 𝑎12 ̸= 0 and 𝑥
(𝑚)
1 approaches to the negative infinity, then 𝑥

(𝑚)
2 also approaches

to the negative infinity.

b2.2) If 𝑎21 < −1, then the equation 𝑎𝑖𝑗 + 𝑎𝑗𝑖 = −2 implies that 𝑎12 > −1. Then similarly to
the above case we show that

lim
𝑚→∞

𝑥
(𝑚)
1 = −∞, lim

𝑚→∞
𝑥
(𝑚)
2 = −∞.

We also note that in the case 𝑎12 = −1, 𝑎21 = −1 the dynamics is given in Theorem 3.1. By
the above obtained results we conclude that for 𝑎𝑖𝑗 ̸= 0 we have

lim
𝑚→∞

𝑉 𝑚(𝑥(0)) = (−∞,−∞, 0).
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Figure 2. Trajectories of points on the lines 𝑥𝑖 + 𝑥𝑗 = −1.

c) Finally, let a non–fixed point 𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︀
∈ 𝜕𝐷12 lie on the line 𝑥1 + 𝑥2 = −1.

Assume that 𝑎12 > −1 and 𝛼 ∈
(︀
0; 1
)︀
. Let 𝑎12 = −1 + 𝛼. Then the equation 𝑥(1) = 𝑉

(︀
𝑥(0)
)︀
is

rewritten as {︃
𝑥
(1)
1 = 𝑥

(0)
1

(︀
− 𝑥

(0)
1 +

(︀
𝛼− 1

)︀
𝑥
(0)
2

)︀
,

𝑥
(1)
2 = 𝑥

(0)
2

(︀
− 𝑥

(0)
2 −

(︀
𝛼 + 1

)︀
𝑥
(0)
1

)︀
.

By (4.13) we have 𝑥
(𝑚)
1 + 𝑥

(𝑚)
2 = −1 and we can rewrite this system as the one–dimensional

system

𝑥
(𝑚+1)
1 = 𝑓

(︀
𝑥
(𝑚)
1

)︀
,

where
𝑓(𝑥) = 𝑥((1− 𝛼)− 𝛼𝑥), 𝑥 ∈ [−1, 0].

The fixed points of 𝑓(𝑥) are −1 and 0. We have

𝑓 ′(︀0)︀ = 1− 𝛼 < 1 and 𝑓 ′(−1) = 1 + 𝛼 > 1.

Thus, 0 is the attractor and −1 is the repeller. Moreover, 𝑓(𝑥) is monotone increasing on
[−1, 0]. Therefore, it is easy to see that

lim
𝑚→∞

𝑓𝑚(𝑥) = 0 for all 𝑥 ∈ (−1, 0].

In conclusion, if we iterate the non–fixed point 𝑥(0) =
(︀
𝑥
(0)
1 , 𝑥

(0)
2 , 0

)︀
, which lies on the line

𝑥1 + 𝑥2 = −1, under the condition 𝑎12 > −1 we obtain

lim
𝑚→∞

𝑥
(𝑚)
1 = 0, lim

𝑚→∞
𝑥
(𝑚)
2 = −1.

In the same way we show that in the case 𝑎12 < −1

lim
𝑚→∞

𝑥
(𝑚)
1 = −1, lim

𝑚→∞
𝑥
(𝑚)
2 = 0.

Similar arguments hold for the cases 𝑥0 = (𝑥1, 0, 𝑥3) and 𝑥0 = (0, 𝑥2, 𝑥3).
Summarizing the above results, we conclude that, if 𝑎12 > −1 and 𝑎13 > −1, then the

non–fixed points, which lie on the lines 𝑥1 + 𝑥2 = −1 and 𝑥1 + 𝑥3 = −1 move far from the
fixed 𝐴𝑖 = (−1, 0, 0) and this fixed point is repelling, see Figure 2.a). And if 𝑎12 > −1 and
𝑎13 < −1, then the non–fixed points which lie on the line 𝑥1+𝑥2 = −1 move far from the fixed
𝐴𝑖 = (−1, 0, 0), but the non–fixed points, which lie on the line 𝑥1 + 𝑥3 = −1, tend to the point
𝐴𝑖 = (−1, 0, 0); in this case the fixed point 𝐴𝑖 = (−1, 0, 0) is saddle, see Figure 2.b). Possible
trajectories of the non–fixed point on line 𝑥𝑖+𝑥𝑗 = −1 are shown on Figures 2.a) and 2.b).

Dynamics of initial point by iteration under QASVO on planes 𝑂𝑥1𝑥2, 𝑂𝑥1𝑥3 and 𝑂𝑥2𝑥3 are
shown on Figures 3 and 4. Figure 3 shows that the case (0, 0, 0) is attracting, the case (0,−1, 0)
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Figure 3. Trajectories of points on planes 𝑂𝑥1𝑥2, 𝑂𝑥1𝑥3 and 𝑂𝑥2𝑥3.

Figure 4. Trajectories of points on planes 𝑂𝑥1𝑥2, 𝑂𝑥1𝑥3 and 𝑂𝑥2𝑥3.

is repelling, the cases (−1, 0, 0) and (0, 0,−1) are saddle points. Figure 4 shows that the case
(0, 0, 0) is attracting, the cases (0,−1, 0), (−1, 0, 0) and (0, 0,−1) are saddle points.
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