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MULTIPLICITY OF SOLUTIONS FOR RESONANT
DISCRETE 2n-TH ORDER PERIODIC BOUNDARY VALUE
PROBLEM

O. HAMMOUTI, N. MAKRAN, S. TAARABTI

Abstract. We examine a class periodic boundary value problems for a discrete equation
of order 2n. We demonstrate the existence of multiple solutions by using the critical point
theory and variational methods. Additionally, we consider two examples, in which we
discuss the fundamental characteristics of the multiplicity of solutions.
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1. INTRODUCTION

In the work we study the following boundary value problem for a nonlinear difference equation
of 2n-th order

D (=DFAMY(E — k) = y5y(t) + h(ty(t), t € [1,N]g,

k=0

Aly(—(n—1)) = A'y(N — (n — 1)), i €[0,2n —1]z.
where n € N, N > n is an integer, [1, N]z is the discrete interval {1,2,..., N}, A is the forward
difference operator defined by

Ay(t) =yt +1) —y(t),  A%)=y(t),  A'y(t) =A"(Ay(t))
fori € {1,2,3,...,2n}; h: [1,N]z x R — R is a function such that for each fixed ¢t € [1, N]z

the function h(t, -) is continuous, and v;, j € [1,q — 1]z, is the (j + 1)-th eigenvalue of the
linear boundary value problem

(1.1)

Z(_l)kAQky(t - k) = fyy(t)v te [17 N]Za
Aly(—(n—1)) = A'y(N — (n—1)), i€[0,2n —1]z.

where ¢ = 21 when N is odd and ¢ = & when N is even. A functiony : [—(n—1), N+n]z — R,
which satisfies both equations of in (1.1) is a solution to (1.1).

The problem (1.1) is said to be resonant on +; at infinity if
h(t
lim hit,z)

|z|—o0 T

(1.2)

=0,

for each t € [1, N]z.
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We stress that the problem (1.1) can be regarded as a discrete analog of the following bound-
ary value problem for a differential equation of 2n-th order

- kd%y(t) o
];(—1) T = 1yt + At y(E), te(0,1), 13)

y@(0) =y (1), i€ [0,2n — 1]y

Difference equations emerge inevitably in the mathematical modeling of important problems
in mechanical engineering, control systems, artificial or biological neural networks, economics,
and other fields [1], [11]. The existence and variety of solutions to boundary value for difference
equations nowadays attracts more and more attention. One of important tools in studying
the difference equations is the fixed point theorems in cones, which are frequently employed.
Another tool for the study of nonlinear difference equations is the approach based on upper
and lower solution. It is widely accepted that critical point theory, variational approaches,
and monotonicity methods are useful tools for determining whether and how different solutions
exist for a variety of problems; for more detail, see [2]-[8], [10]-[13], [15]-[27].

In this paper we study the existence and multiplicity of solutions to discrete nonlinear problem
(1.1).

We make the following assumptions.

(h1) The identity h(t,—x) = —h(t,z) holds for all (¢,z) € [1, N]z x R.
(ha) There exists y;, 1 <1 < j such that
, 2H(t,x)
limsup ——>—= <y — v,
z—0 X

where

for (t,z) € [1, N]z x R.
(h3) The identity

lim . @) =0
|z| =00 T
holds for each t € [1, N|z.
©)
(hg) If |ym|| — oo such that % — 1 as m — oo, then there exists 7 > 0 and mg € IN such
Ym
that
N
S bt gD (0) > 7 for m > m,
t=1
where

Um =9 +uy, W € BV, gy e EEEPET,
j N—-1

EY = E(y)), E- = @E(%), ET = EB E(v).

i=j+1
(hs) H(t,z) — 400 as |x| — +oo uniformly for t € [1, N]|z.
(he) The inequalities
h(t h(t
0< liminf(—’x) < limsupM <

hold uniformly in ¢ € [1, N]z.
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(h7) The identity
lim h(t,z)r —2H(t,x) = 400

|| =00
holds uniformly in ¢ € [1, N]z.

Our main results are formulated in the next two theorems.

Theorem 1. Assume that h(t,z) satisfies (h1)—(hs), then the problem (1.1) possesses at
least 2(j — | + 1) nontrivial solutions.

Theorem 2. Assume that h(t,x) satisfies (hy), (hs), (hs)—(hz7), then the problem (1.1) pos-
sesses at least 2(j — 1 + 1) nontrivial solutions.

The paper is organized as follows. In Section 2 we prove an auxiliary lemma. In Section 3 we
prove the main results. In the end of paper we provide the examples to illustrate our results.

2. PRELIMINARIES
We define the vector space BV
EY ={y:[~(n—1),N+nlz = R|Aly(~(n—1)) = A'y(N — (n— 1)), i € [0,2n — 1]z},

The inner product (-, -) and norm || - || in EV are
N N 2
(y,2) =D y=(t), |yl = (Z |y(t)|2) . yze BV,
t=1 t=1

Remark 1. It is clear that for each y € EV we have
y(—=(n=1)) =y(N — (n - 1))
y(—=(n—2)) =y(N — (n - 2))
y(=(n=3)) =y(N — (n—3))

y(0) = y(N)
y(1) =y(N +1)

y(n) = y(N +n).

The space B is isomorphic to the finite dimensional space RY and this makes EV the
N-dimensional Hilbert space. By writing y = (y(1),...,y(N)) € RY we mean that y can be
extended to a vector in E” so that (2.1) holds, namely, y can be extended to the vector

(YN = (n=1)),y(N = (n=2)),....y(N),y(1),y(2),...,y(N),y(1),...,y(n)) € EV.

Let us discuss the eigenvalues and eigenvectors of (1.2). By applying the results of [2] we see
that the problem (1.2) has precisely N real eigenvalues v;, j € [0, N — 1]z,

" 2wl .
Vi = o +2)  pucos (%) jE[0,N =1z,

= (2:2)

Vi = TN—j, j € [LN - 1]Z7
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where p; = (—1)! Z ngl, [ € [0,n]z, and C} are the binomial coefficients. The eigenspaces
7=l
E(v;) associated with v;, j € [0, N — 1]z read

E(y0) = span(eo),
{E(w = span(p;, x;), j€[L,N—1]z. (2.3)

where
0; = (03(0),0;(1),9;(2), ..., (N = 1)), x5 = (x5(0), x5(1), x;3(2), ..., x; (N = 1))
for j € [0, N — 1]z, and with

2mrj o1
%(T)ZCOSWTW, x;(r) = sin 7;‘7, re[0,N—1]z.

Since v; = yn—; for j € [1, N — 1]z, the problem (1.2) has ¢ + 1 different eigenvalues. These
eigenvalues are ordered as follows:

0<”)/0<’}/1<")/2<...<’}/q.

— F~ @E(j) @EJr,

We have the decomposition

where
j—1 N-1
=@EM), EY=EB(y), E"= EMm.
i=0 i=j+1
Hence, we have
N n
Vil I < ZZ |AFy*(t <wally™Il?, vyt e BT (2.4)
t=1 k=0
On EV we define the functional ¥ by the formula
N
SIS aneo - L, Z O 3 H(t. (1), (2.5
t=1 k=0 t=1

It is easy to see that ¥ € C*(EN,R) and its derivative ¥'(y) at y € EV is given by

(¥'() Z

t=1

Z Afy( “2(t — k) —yy(t)=(t) — A, y(t))Z(t)] (2.6)

for z € EV.
By [2, Lm. 2.3], the derivative ¥’ can be written as

(W'(y),2) =) [Z(—D’“A%y(t — k) — () = h(t, y(t))] 2(t),  zeEY

t=1 Lk=0

The solutions to Equation (1.1) are critical points of the functional W.
The space of functionals from F into R, which are continuously Fréchet differentiable, is
denoted by C*(E,R). By S; we denote the sphere in E of the radius [ centered at the origin.

Definition 1. Let E be a real Banach space, and ¥ € C'(E,R). The functional V is said
to satisfy the Cerami condition (C) if each sequence (y;) C E for which (Y (y;)) is bounded and
(1 + [Jue DY (ye) || = 0 as t — oo, possesses a convergent subsequence.

Remark 2. We note that the Cerami condition is weaker than the Smale palate condition.
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Lemma 1 ( [9]). Let E be a reflexive Banach space, ¥ € C*(E,R) with ¥(0) = 0. Assume
that W is an even functional satisfying Condition (C') and the following conditions:

1) There ezist constants [, ¢ > 0 and a closed linear subspace Ey of E such that codim Ey = [
and V|g,ns, = c.
2) There exists a subspace Ey with dim Ey = k, k > 1, such that ¥(y) — —oo as |ly|| — oo,
Yy E EQ.
Then U possesses at least 2(k — 1) nontrivial critical points.

3. PROOF OF MAIN RESULTS
Here we prove our main results.
3.1. Proof of Theorem 1. We begin with the following lemma.
Lemma 2. Under Conditions (hg) and (hy) the functional U satisfies Condition (C').

Proof. Let (y,) € EY be such that {¥(y,,)} is bounded and (1 + ||ym|) ¥’ (ym)|| — 0 as
m — +oo. It is sufficient to show that {y,,} remains bounded in EY. We argue by contradiction.
Suppose that ||y,|| — oo as m — oco. For each z € EN we have

(V' (ym) , 2 ZZAkym (t —k)AF2(t — k ’y]Zym (3.1)

t=1 k=0

= > At ym(t = o([l=]))-

Let ym =y, + yi) 4 y, where y~ € E-,y¥) € EY and y+ € ET. Taking z =y} in (3.1), by

(2.4) we get

(Y41 = 1) Il < ZZM’“ t— k)" — yllyhll? < IIymIHthym (). (3.2)

k=1 k=0
By (hs), for each € > 0, there exists C; € R such that

h(t,l’) <€|$|+Ol, (t,l‘) c [LN]Z x R.
By combining the above inequality with (3.2) we deduce

(i1 = 73) llymll® < llwmll + Z elym ()] + C1)lym (1)]

t=1
< Nyl + ellgmllllyml + Colly|

< (14 C)llymll + ellym 1yl

where (), is a positive constant independent of m. Since ¢ is arbitrary, we obtain

”zm” —0 as m — oo (3.3)
Letting z = y,, in (3.1), by similar reasons we demonstrate that
”szm” —0 as m— 0. (3.4)
According to (3.3) and (3.4),
1Y+ ¥ll Iyl L om oo
9| [[Yml
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By (h4) there exists 7 > 0 and mg € N such that

N
(V' (ym), y2) = =D hlt, ym(D)yP (1) < =7 for m > my.
t=1

Then, for each m > myq, we get

19 o) |2 119" o) 19211 2 10 (i) 9N 2 = (), )| 2 7.

This contradicts the assumption (1 + ||y ) [[¥/ (ym)|| = 0 as m — +o00. The proof is complete.
[

Lemma 3. Under Conditions (hy) and (hs) there exists constants p, a > 0 such that U(y) >
a fory € B with ||y|| = p, where

N-1
El+ = @ E(v).
i=l
Proof. It follows from Condition (hy) that for each € > 0 there exists R > 0 such that

Ht,x) < gl = — e, (6 lel) € [1,N] x [0, B

By (hs), for € = 1 there exist b € R such that

\h(t,z)| < |z| +b.
Therefore, there exists C5 > 0 such that

[H (t, z)] < Cs|zf”

for |z| > R, where p > 2.
Let y € E;" and

Sp = {t € [LN]Z : |y(t)| < R}7 Sy = {t € [17N]Z : |y(t)| > R}

We get
1 N n . 1 N N
Uiy) =53 > A= R =5 Y w0 = Y H(ty(®)
t=1 k=0 =1 t=1
1 1
> §%Hy\l2 ~ 5% Iyll* = H(t,y(t) = > H(t,y(t))
tesSt teSa
1 1 1
Z 3 (v =) lylI” = 3 (i = =) llyll* + B (n——¢) Z ly(t)]* — Cs Z ly(@)[”
teSs teSs
1 1 _
> 58Hy1|2 +5 (=7 —¢) S IOy = Cs >y
teSs teSs
1 1 _
> sellyll®+ 5 (n—y =) By w0l = Cs ) ly®)”
teSs teSs
1 1
> §5Hy!|2 —5 G mtet+ Gy >y
teSs

1
> 5ellyll” = Callyll”

1 _
o1 | 32 = il
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where (), is a constant positive.
Since p > 2, the function z — 3¢~ CyxP~2 is strictly positive in a neighborhood of zero.

Hence, there exist p > 0 and a > 0 such that U(y) > a for all y € E;" with ||y|| = p. The proof
is complete. O

Lemma 4. Under Conditions(hs) the convergence V(y) — —oo holds as ||y|| — oo, y € E=
E- o EY,

Proof. By Condition (hs) there exists A > 0 such that
—H(t,z) <0, (¢ |z]) € [1, N]z x [A, +00)
However, by the continuation of H we have

“H(t,x) < H =max| — H(t,z)|, V(¢ |z]) € [1,N]z x [0, A].

lz|<A
Then,
~H(t,z) < H, I(t,r) € [1,N]z x R. (3.5)
Lety € E = E~®FEY. Assume that ||y|| — oo, then there exists a nonempty subset A C [1, N]z

such that for |y(t)] — oo as t € A.
Hence, by Condition (hs),

= CH(t,y(t) - —o0 (3.6)
teA
By (3.5) and (3.6) we obtain
N
t=1 teA t¢A
< =Y H(t,y(t)) + mes{[1, N]\ A}H — —oc.
teA
where mes{[1, N]\ A} is the number of the element of the set [1, N]\ A. The proof is complete.
[

Proof of Theorem 1. It follows from the definition (2.5) of ¥ that W(0) = 0 and V¥ is even by
Condition (k). Lemma 2 implies that ¥ satisfies Condition (C). We take E = EV,| By = E;

and Fy = E. Lemmas 3 and 4 show that ¥ satisfies assumptions 1) and 2) of Lemma 1,
respectively. Then the functional U possesses at least 2(j — [ + 1) nontrivial critical points,
which are nontrivial solutions of the problem (1.1). The proof is complete. ]

3.2. Proof of Theorem 2. We begin with two auxiliary statements.
Lemma 5. Under Condition (h7) holds the functional ® satisfies Condition (C).
Proof. Let (y,,) C EV be such that for some C5 > 0 the inequality and convergence hold
W () <G5, (L+ llyml) ¥ (ym)[| = 0, m — +oo.

It is easy to see that

20 () = (U (Ym) s Ym) = D 1 (6 Y (1)) Y (£) — 2H (£, ym(t)) -

t=1
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By the Cauchy inequality we have

> bt ym (1) Ym () = 2H (£, ym ()] < 29 o) + (' (Yn) + Y|

<205 + [V (ym) | - |yl (3.7)
<205 + (1 + [[yml) 1" (ym) ||
< 205 + G,

where (Y is a positive constant.
It remains to demonstrate that {y,,} is bounded. Suppose that ||y,| — oo as m — oco. Then
there exists ¢y € [1, N]z such that

|Ym (to)] — +o0, m — +00.
By Condition (h7) we obtain
h (to, Ym (to)) Ym (to) — 2H (to, ym (o)) = +00 as m — oo.

On the other hand, by the continuity of A and Copndition (h7) there exists a constant C; € R
such that

h(t,z)x —2H (t,x) > Cx, (t,z) € [1,N]z x R.
This yields

D 0t Y1) ym () = 2H (8, ym () =h (o, Y (£0)) Yim (t0) = 2H (to, Y (t0))

+ 3" R (to, Yo () Y (t) — 2H (to, yum (t))
t#to

>h (to, Ym (t0)) Ym (to)
— 2H (to, Ym (to)) + (N = 1)C7 = +00, m — +00,

which contradicts (3.7). This completes the proof. O

Lemma 6. Under Conditions (hs) and (he) there exist constants p, a > 0 such that ®(y) > a
for w € E;" with |jul| = p.

Proof. By Condition (hs) for each € > 0 there exists R > 0 such that
Ht0) < 50X =)o, (1) € [12la x [0, Rl
By Condition (hg), for each € > 0 there exists r > 0 such that
—elal* <ah(t,x) < (y+e)lef, (& ]x]) € [1, N]g x [, +00).
On the other hand, by the continuity of x — h(t,x), there exists Cs > 0 such that
|h(t,z)| < Cs, (t,|x|) € [1, N]z x [0, r].
Hence,
—ela]? — Csla| < @h(t,z) < (5 +€) |2* + Cslal.
This implies
|h(t,z)] < (v; +¢€) || + Cs, [(t,x) € [1,N]z x R. (3.8)
Therefore, there exists Cy > 0 such that
[H(t, z)| < Col|?,  V(t,]x]) € [1, N]z x [R, +00),
where ¢ > 2. The rest of the proof is similar to that of Lemma 3. The proof is complete. [
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Proof of Theorem 2. The functional ¥ defined by (2.5) satisfies the identity U(0) = 0 and is
even by Condition (h;). Lemma 5 implies that ¥ satisfies Condition (C). We take E = EV,

Ey = E/ and Ey = E. Lemmas 4 and 6 imply that W satisfies assumptions 1) and 2) of Lemma
1, respectively. Then the functional ¥ possesses at least 2(j — [ + 1) nontrivial critical points,
which are nontrivial solutions of the problem (1.1). The proof is complete. ]

4. EXAMPLES

4.1. Example for Theorem 1. We define h: [1, N]z x R — R as

23
—;x 1
h(t —_— >1, te]l,Nlg,
(t,2) = 2t(1 + 22) METEE =1 1 Nz (41)
—;x 1 :
h(t _ <1, tell,Nlyg.
( l’) 2t(1+1]2) 2t’Y] ) |SL’| ) e[ ) ]Z
Then we have
H(t,z) = %m (1+27), iz > 1, te[l,Nlgz,
4.2)
| , (
Hit.r) = —2In(1+2%) + =ya',  Jal <1 t€[L N

It is easy to verify that that the function h(t, ) satisfies Conditions (hy), (h3) and the function
H(t,z) satisfies Condition (hs).
By simple calculations we find
glclg(l)sup R <7 —7 =0.
Therefore, Condition (hs) is satisfied with v, = ;.
We are going to prove that h(t,z) satisfies Condition (hy). By Condition (h4) for each
sufficiently small € we have the estimate

[yl < & llymll (4.3)

for sufficiently large m. We denote
Y ={te[LN]z:lyn(O)| =1},  Qo={t€[l,Nlz: |yn(t)] <1}.

We have
Zh (t, Ym(t = 0t ym) YD) + Y A Ym() Ym () = D bt ym (1)) 3 (1)
On the other hand,

5 bt @)t = 5 D 4 S0 2 €, (4.4

teQo teQg

where C' is constant.
By the Cauchy — Bunyakovsky — Schwarz inequality we obtain

=S b)) 5 %Zym §)+%2§y3<t>y;<t>

teQg teQg
Yy ym(
> LS Al 4 LS (D
2N = 1+ 92( t tEQ

3% ~ D um(D;

tEQQ
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37,
2 -1 m x .
v [9mll g
By (4.3) we get

= 3 ) 0 (0) > e (1.5

teQo

In the other hand, using Cauchy-Schwarz inequality, it is clear to see that

S bty (1) = {—ﬁmyﬁzﬁ (1) + Lm0

2
te by 2t 1+ y2,(¢) 2
3 *
Vim (t Yive(t)ym () 1 1 )
N t (DY (t
teZQ: {Qt 1+ym(t)) T (12, 0) + 57 7m (1) = 5575Ym (DY (1)
1
> gy -] Il

By the above inequality and (4.4), (4.5) we find

N
A ; 3
@Dy > |1 — e 2
;1 h(t,ym(t)) yy (t) > 5N {1 <2N+ 2) 5} lyml|” + C.

Since ¢ is small enough, Condition (h4) holds. Hence, by Theorem 1, the problem (1.1) has at
least two nontrivial solutions.

4.2. Example for Theorem 2. We consider a continuous function h : [1,N], x R — R
given by the formula:

- 1
h(t,z) = L+$2 + 24 vie ", (t,z) €[l,N], x R.
We obviously have
—1In(1 2 1
H(t,z) = [% + ZxQ] vie ', (t,x) € [1,N], x R.
It is easy to see that h(t,z) satisfies Condition (hy).
We obtain
, 2H(t,x) . —In(1+2%) 1 ] B
fimy sup = 5 = limysup KT+§ ne| = e < =0

and hence, Condition (hy) is satisfied with 7, = ;. On the other hand,

1 In(l+2?%

li H(t li 2oyt =
|:c|i>I£—100 (t,2) = |x\i>riloox [4 212 e +oo,
h(t t 1
0 < lim inf (t,2) lim sup (¢, 2) = —ve " <,

w0 @ oloee T2

and

lim h(t,x)r —2H(t,x lim +In(1 + 22 et = +o00.
|z|—+o0 ( ) ( ) || —=+o0 [1 + 22 ( ):| e

Thus all assumptions of Theorem 2 are satisfied and the problem (1.1) has at least two nontrivial
solutions.
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