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DIMENSIONS OF RIESZ PRODUCTS

AND PLURIHARMONIC MEASURES

E.S. DOUBTSOV

Abstract. On the unit sphere in C𝑛, 𝑛 ⩾ 2, we consider the Riesz products generated by

the Ryll — Wojtaszczyk polynomials. We obtain the lower bound for the energy dimension

of such Riesz products. The obtained inequality implies immediately an estimate for the

Hausdorff dimension of the considered products. This results is also obtained in another

way, by means of known one–dimensional estimates and decomposition into slice–products.

These decompositions are employed for sharp estimating of the Hausdorff dimension of

pluriharmonic measures on an 𝑛–dimensional torus, 𝑛 ⩾ 2.
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1. Introduction

The present work is motivated by the following general question: how does the spectrum
of a measure 𝜇 influence the size of support of measure 𝜇? We first of all consider the Riesz
products and related objects on the unit sphere

𝑆 = 𝑆𝑛 = {𝜁 ∈ C𝑛 : |𝜁| = 1}, 𝑛 ⩾ 2,

and we begin with the definition of the spaces 𝐻(𝑝, 𝑞), (𝑝, 𝑞) ∈ Z2
+.

1.1. Complex spherical harmonics. Let 𝒰(𝑛) be the group of unitary operators on the
Hilbert space C𝑛, 𝑛 ⩾ 2. We note that 𝑆𝑛 = 𝒰(𝑛)/𝒰(𝑛−1), and therefore, 𝑆𝑛 is a homogeneous
space. The general constructions of an abstract harmonic analysis are explicitly realized on the
sphere 𝑆𝑛 in terms of the spaces 𝐻(𝑝, 𝑞), (𝑝, 𝑞) ∈ Z2

+.

Definition 1.1. Let us fix the dimension 𝑛, 𝑛 ⩾ 2, and let 𝐻(𝑝, 𝑞) = 𝐻(𝑝, 𝑞;𝑛) be the space

of all homogeneous harmonic polynomials of bi–degree (𝑝, 𝑞) ∈ Z2
+. By the definition this means

that the considered polynomials have the degree 𝑝 in the variables 𝑧1, 𝑧2, . . . , 𝑧𝑛, the degree 𝑞
in the variable 𝑧1, 𝑧2, . . . , 𝑧𝑛, and also have the total degree 𝑝+ 𝑞.
For the restriction of space 𝐻(𝑝, 𝑞) to the sphere 𝑆 we use the same symbol. The elements

of the space 𝐻(𝑝, 𝑞) are often called complex spherical harmonics.

1.2. Riesz products on spher. The Zygmund dichotomy [15] hints that the homogeneous
holomorphic polynomials introduced by Ryll and Wojtaszczyk [14] can be used for constructing
singular products of Riesz type on the sphere.
We say that {𝑅𝑗}∞𝑗=1 is the Ryll — Wojtaszczyk sequence with a constant 𝛿 ∈ (0, 1) if

1. 𝑅𝑗 ∈ 𝐻(𝑗, 0), that is, 𝑅𝑗 is a homogeneous holomorphic polynomial of degree 𝑗;
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2. ‖𝑅𝑗‖𝐿∞(𝑆) = 1;
3. ‖𝑅𝑗‖𝐿2(𝑆) ⩾ 𝛿 for all 𝑗 = 1, 2, . . . .

Definition 1.2. Let 𝑅 = {𝑅𝑗}∞𝑗=1 be a Ryll — Wojtaszczyk sequence,

𝐽 = {𝑗𝑘}∞𝑘=1 ⊂ N,
𝑗𝑘+1

𝑗𝑘
⩾ 3 and 𝑎 = {𝑎𝑘}∞𝑘=1 ⊂ D.

Then (𝑅, 𝐽, 𝑎) is called the Riesz triple.

Each Riesz triple (𝑅, 𝐽, 𝑎) generates a (standard) Riesz product Π(𝑅, 𝐽, 𝑎) by means of the
formal identity

Π(𝑅, 𝐽, 𝑎) =
∞∏︁
𝑘=1

(︂
𝑎𝑘𝑅𝑗𝑘

2
+ 1 +

𝑎𝑘𝑅𝑗𝑘

2

)︂
,

where the product converges in ⋆–weak sense, see [7] for more detail.
There exists a rather rich set of singular Riesz products on the sphere. Indeed, if (𝑅, 𝐽, 𝑎)

is a Riesz triple and 𝑎 /∈ ℓ2, then by Corollary 1 in [6] there exists a sequence 𝑈 = {𝑈𝑗}∞𝑗=1,
𝑈𝑗 ∈ 𝒰(𝑛) such that the product Π(𝑅∘𝑈, 𝐽, 𝑎) is singular with respect to the Lebesgue measure
on the sphere 𝑆𝑛. Here by the definition

𝑅 ∘ 𝑈 = {𝑅𝑗 ∘ 𝑈𝑗}∞𝑗=1.

For a singular Riesz product, it is natural to ask the question about its dimension. In
the present work we provide the estimates for the energy and Hausdorff dimensions of Riesz
products on the sphere. To the best of the author’s knowledge, the problems of such kind were
not studied earlier.
Let dimℋΠ denote the Hausdorff dimension of a measure Π. In particular, we obtain the

following result.

Theorem 1.1. Let (𝑅, 𝐽, 𝑎) be a Riesz triple. Then

dimℋΠ(𝑅, 𝐽, 𝑎) ⩾ 2𝑛− 1− lim sup
𝑘→∞

(︃
1

2 log 𝑗𝑘

𝑘−1∑︁
ℓ=1

|𝑎ℓ|2
)︃
.

1.3. Structure of work. Auxiliary results including the definitions and basic facts in the
harmonic analysis on the sphere 𝑆𝑛 are collected in Section 2. The estimates for energy and
Hausdorff dimensions of Riesz products on the unit sphere are obtained in Section 3. The
related problem on Hausdorff dimensions of pluriharmonic measures on the torus is considered
in Section 4. We note that Lemma 2.1 on the disintegration of Riesz products serves as a link
between the results of Section 3, in which this lemma is used directly, and Section 4, where
analogues of Lemma 2.1 are applied.

1.4. Notation. For 𝐹,𝐺 > 0 the writing 𝐹 ≲ 𝐺 means that 𝐹 ⩽ 𝐶𝐺 with some constant
𝐶 > 0. If 𝐹 ≲ 𝐺 and 𝐺 ≲ 𝐹 , we use the notation 𝐹 ≈ 𝐺.

2. Auxiliary results

2.1. Basic facts in harmonic analysis on sphere 𝑆𝑛. Let 𝜎 = 𝜎𝑛 denote the normalized
Lebesgue measure on the unit sphere 𝑆𝑛. We note that

𝐿2(𝜎) = ⊕
(𝑝,𝑞)∈Z2

+

𝐻(𝑝, 𝑞). (2.1)
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The features of harmonic analysis on the sphere 𝑆 are well illustrated by the following multi-
plication rule for the spaces 𝐻(𝑝, 𝑞): if 𝑓 ∈ 𝐻(𝑝, 𝑞) and 𝑔 ∈ 𝐻(𝑟, 𝑠), then

𝑓𝑔 ∈
𝐿∑︁

ℓ=0

𝐻(𝑝+ 𝑟 − ℓ, 𝑞 + 𝑠− ℓ),

where 𝐿 = min(𝑝, 𝑠) + min(𝑞, 𝑟). The proofs of the formulated facts and of further results are
provided in [13, Ch. 12].
Let𝑀(𝑆𝑛) be the space of all complex Borel measures defined on the sphere 𝑆𝑛. Let𝐾𝑝,𝑞(𝑧, 𝜁)

be the reproducing kernel of the Hilbert space 𝐻(𝑝, 𝑞) ⊂ 𝐿2(𝑆). The polynomial

𝜇𝑝,𝑞(𝑧) =

∫︁
𝑆

𝐾𝑝,𝑞(𝑧, 𝜁) 𝑑𝜇(𝜁), 𝑧 ∈ 𝑆,

is called the 𝐻(𝑝, 𝑞)–projection of the measure 𝜇 ∈ 𝑀(𝑆). For 𝜇 ∈ 𝑀(𝑆), in terms of the
spaces 𝐻(𝑝, 𝑞), the spectrum spec(𝜇) is defined by the identity

spec(𝜇) =
{︀
(𝑝, 𝑞) ∈ Z2

+ : 𝜇𝑝,𝑞 ̸= 0
}︀
.

2.2. Desintegration in terms of slice–products. Let T = 𝑆1 be the unit circle. For
𝜉 ∈ 𝑆𝑛 the slice–product

Π𝜉(𝑅, 𝐽, 𝑎)(𝜆) := Π(𝑅(𝜆𝜉), 𝐽, 𝑎), 𝜆 ∈ T,

is the classical Riesz product defined by the formula

∞∏︁
𝑘=1

(︃
𝑎𝑘𝑅𝑗𝑘(𝜉)𝜆

𝑗𝑘

2
+ 1 +

𝑎𝑘𝑅𝑗𝑘(𝜉)𝜆
𝑗𝑘

2

)︃
, 𝜆 ∈ T. (2.2)

The convergence of the product (2.2) is to be treated in ⋆–weak sense. In particular,
Π𝜉(𝑅, 𝐽, 𝑎) is a well–defined probability measure.
Let CP𝑛−1 be the complex projective space of the dimension 𝑛 − 1, that is, the set of all

one–dimensional linear subspaces of the space C𝑛. Let 𝜋 = 𝜋𝑛 be the canonical projection
from 𝑆𝑛 to CP𝑛−1. We observe that Π𝜆𝜉(𝑤) = Π𝜉(𝜆𝑤) for 𝜉 ∈ 𝑆𝑛, 𝜆,𝑤 ∈ T. Therefore, the
probabilistic slice–measure Π𝜁 is well–defined for 𝜁 ∈ CP𝑛−1 as an element of 𝑀+(𝑆𝑛), the
support of which is the unit circle 𝜋−1(𝜁) ⊂ 𝑆𝑛.
Let ̂︀𝜎𝑛 be the unique probabilistic measure on CP𝑛−1, which is invariant with respect to all

unitary transformations of the space C𝑛. The next lemma shows that the product Π(𝑅, 𝐽, 𝑎) is
the integral of its sections.

Lemma 2.1 ([6, Lm. 1]). Let (𝑅, 𝐽, 𝑎) be a Riesz triple on the sphere 𝑆𝑛, 𝑛 ⩾ 2, and let

Π(𝑅, 𝐽, 𝑎) denote the corresponding Riesz product. Then

Π(𝑅, 𝐽, 𝑎) =

∫︁
CP𝑛−1

Π𝜁(𝑅, 𝐽, 𝑎) 𝑑̂︀𝜎𝑛(𝜁)

in the following weak sense∫︁
𝑆𝑛

𝑓 𝑑Π(𝑅, 𝐽, 𝑎) =

∫︁
CP𝑛−1

∫︁
𝑆𝑛

𝑓 𝑑Π𝜁(𝑅, 𝐽, 𝑎) 𝑑̂︀𝜎𝑛(𝜁)

for all 𝑓 ∈ 𝐶(𝑆𝑛).
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3. Dimensions of Riesz products

3.1. Energy dimension. Let 𝑀+(𝑆𝑛) be the set of all positive Borel measures on the sphere
𝑆𝑛. For a measure 𝜇 ∈ 𝑀+(𝑆), its 𝑡–energy 𝐼𝑡(𝜇), 𝑡 > 0, is defined by the identity

𝐼𝑡(𝜇) :=

∫︁
𝑆

∫︁
𝑆

𝑑𝜇(𝑥)𝑑𝜇(𝑦)

|𝑥− 𝑦|𝑡
.

We say that 𝑑 is the energy dimension of the measure 𝜇 and use the notation dimℰ𝜇 = 𝑑 if

𝑑 = sup {𝑡 : 𝐼𝑡(𝜇) < ∞} .

To estimate the energy dimension of the product Π(𝑅, 𝐽, 𝑎), we need the next theorem.

Theorem 3.1 ([12, Thm. 3.1]). For each 𝑡, 0 < 𝑡 < 2𝑛 − 1, there are constants 𝐶1, 𝐶2 > 0
such that

𝐶1𝐼𝑡(𝜇) ⩽ ‖𝜇0,0‖22 +
∞∑︁
𝑗=1

𝑗𝑡−2𝑛+1
∑︁

𝑝+𝑞=𝑗

‖𝜇𝑝,𝑞‖22 ⩽ 𝐶2𝐼𝑡(𝜇)

for all 𝜇 ∈ 𝑀+(𝑆𝑛), where 𝑛 ⩾ 2.

In the work [11], an analogue of Theorem 3.2 for the unit sphere was used to calculate the
energy dimension of the classical Riesz product on the circle T. In the next result we apply
Theorem 3.1 to estimate from below the energy dimension of the Riesz product on the sphere.
The used arguing is similar to the corresponding arguing in the proof of Theorem 3.1 in [11],
however, the technical details differ.

Theorem 3.2. Let (𝑅, 𝐽, 𝑎) be a Riesz triple. Then

dimℰΠ(𝑅, 𝐽, 𝑎) ⩾ 2𝑛− 1− 𝛼0,

where

𝛼0 = max

⎡⎢⎢⎢⎣0, lim sup
𝑘→∞

⎛⎜⎜⎜⎝
log |𝑎𝑘|2

2
+

𝑘−1∑︀
ℓ=1

log
(︁
1 + |𝑎ℓ|2

2

)︁
log 𝑗𝑘

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ . (3.1)

In particular,

dimℰΠ(𝑅, 𝐽, 𝑎) ⩾ 2𝑛− 1− lim sup
𝑘→∞

(︃
1

2 log 𝑗𝑘

𝑘−1∑︁
ℓ=1

|𝑎ℓ|2
)︃
.

Proof. Let Π := Π(𝑅, 𝐽, 𝑎). For 𝑘 = 1, 2, . . . we denote

Γ𝑘 :=

{︃
±𝑗𝑘 +

𝑘−1∑︁
ℓ=1

𝜀ℓ𝑗ℓ : 𝜀ℓ = 0,±1

}︃
.

Let 𝛾 ∈ Γ𝑘. Without loss of generality we suppose that 𝛾 > 0. Then there exists exactly one
representation

𝛾 = 𝑗𝑘 +
𝑘−1∑︁
ℓ=1

𝜀ℓ𝑗ℓ.

By the multiplication rule for the spherical harmonics, see Section 2.1, we have∑︁
𝑝−𝑞=𝛾

Π𝑝,𝑞 = 𝑅𝑗𝑘

𝑘−1∏︁
ℓ=1

𝑅𝑗ℓ(𝜀ℓ),
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where

𝑅𝑗ℓ(𝜀ℓ) = 𝑅𝑗ℓ , 𝜀ℓ = 1,

𝑅𝑗ℓ(𝜀ℓ) = 1, 𝜀ℓ = 0,

𝑅𝑗ℓ(𝜀ℓ) = 𝑅𝑗ℓ , 𝜀ℓ = −1.

Applying the property (2.1), we obtain

∑︁
𝑝−𝑞=𝛾

‖Π𝑝,𝑞‖22 =

⃦⃦⃦⃦
⃦𝑅𝑗𝑘

𝑘−1∏︁
ℓ=1

𝑅𝑗ℓ(𝜀ℓ)

⃦⃦⃦⃦
⃦
2

2

⩽

(︃
|𝑎𝑘|
2

∏︁
ℓ: 𝜀ℓ ̸=0

|𝑎ℓ|
2

)︃2

,

where the empty product is equal to one.
Now we fix a number 𝛼 > 𝛼0. Since 𝑝+ 𝑞 ⩾ 𝑝− 𝑞, we have∑︁

𝛾∈Γ𝑘

|𝑝+ 𝑞|−𝛼
∑︁

𝑝−𝑞=𝛾

‖Π𝑝,𝑞‖22 ⩽
∑︁
𝛾∈Γ𝑘

|𝛾|−𝛼
∑︁

𝑝−𝑞=𝛾

‖Π𝑝,𝑞‖22. (3.2)

If 𝛾 ∈ Γ𝑘, then |𝛾| ≈ 𝑗𝑘. Hence,

∑︁
𝛾∈Γ𝑘

|𝛾|−𝛼
∑︁

𝑝−𝑞=𝛾

‖Π𝑝,𝑞‖22 ≲ 𝑗−𝛼
𝑘

|𝑎𝑘|2

2

𝑘−1∏︁
ℓ=1

(︂
1 +

|𝑎ℓ|2

2

)︂
. (3.3)

Combining the properties (3.2) and (3.3), we obtain

𝐼2𝑛−1−𝛼(Π) ≲ 1 + 𝑗−𝛼
𝑘

|𝑎𝑘|2

2

𝑘−1∏︁
ℓ=1

(︂
1 +

|𝑎ℓ|2

2

)︂
(3.4)

by Theorem 3.1.
We have log 𝑗𝑘 ⩾ (𝑘−1) log 3, and thus, choosing the number 𝐴, 0 < 𝐴 < 1, sufficiently close

to one, by means of the inequality 𝛼 > 𝛼0 we obtain that

𝛼 ⩾
log |𝑎𝑘|2

2
+

𝑘−1∑︀
ℓ=1

log
(︁
1 + |𝑎ℓ|2

2

)︁
+ 𝑘| log𝐴|

log 𝑗𝑘
,

in other words,

𝑗−𝛼
𝑘

|𝑎𝑘|2

2

𝑘−1∏︁
ℓ=1

(︂
1 +

|𝑎ℓ|2

2

)︂
⩽ 𝐴𝑘.

Combining the latter property and (3.4), we conclude that

𝐼2𝑛−1−𝛼(Π) < ∞.

Since the quantity 𝛼 > 𝛼0 is chosen arbitrarily, we finally have

dimℰΠ ⩾ 2𝑛− 1− 𝛼0,

and this completes the proof.
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3.2. Hausdorff dimension. For a Borel set 𝐸 by the symbol dimℋ𝐸 we denote its Hausdorff
dimension. The Hausdorff dimension of a measure 𝜇 ∈ 𝑀+(𝑆𝑛) is defined by the identity

dimℋ𝜇 = inf{dimℋ𝐸 : 𝐸 is a Borel set suuch that 𝜇(𝐸) > 0}.

The properties of Hausdorff dimension of a measure are presented in [9, Ch. 10].
For the Riesz product Π = Π(𝑅, 𝐽, 𝑎) direct calculations show that there exists a sufficiently

small 𝜀 > 0 such that Π𝑝,𝑞 = 0 under the condition⃒⃒⃒⃒
𝑝

𝑞
− 1

⃒⃒⃒⃒
< 𝜀, (𝑝, 𝑞) ̸= (0, 0).

This is why the application of Theorem 1.1 from [3] to the product Π ensures that dimℋΠ ⩾
2𝑛− 2. In fact, a sharper estimate can be obtained by means of Theorem 3.2.

3.2.1. Application of Theorem 3.2. If 𝐼𝑡(𝜇) < ∞, then dimℋ𝜇 > 𝑡, cf. [8, Sect. 4.3]. This is
why the Hausdorff dimension of a measure is always not less than its energy dimension.

Corollary 3.1. Let (𝑅, 𝐽, 𝑎) be the Riesz triple. Then

dimℋΠ(𝑅, 𝐽, 𝑎) ⩾ 2𝑛− 1− 𝛼0,

where the quantity 𝛼0 is given by the identity (3.1).

Proof. Since dimℋΠ ⩾ dimℰΠ, it is sufficient to apply Theorem 3.2.

Remark 3.1. It is clear that Theorem 1.1 is a particular case of the above corollary.

3.2.2. Reduction of problem to slice–products. An alternative approach to Corollary 3.1 is to
consider slice–products Π(𝑅, 𝐽, 𝑎). We need the following theorem, which follows from Sections
[10, Sects. 2.10.2, 2.10.17].

Theorem 3.3. Let 𝐾 ⊂ CP𝑛−1 × T be a compact set and 𝐾𝜁 = {𝑤 ∈ T : (𝜁, 𝑤) ∈ 𝐾}.
Suppose that dimℋ𝐾𝜁 > 𝛽 for 𝜁 ∈ 𝑋 ⊂ CP𝑛−1. If ̂︀𝜎𝑛(𝑋) > 0, then

dimℋ𝐾 ⩾ 2𝑛− 2 + 𝛽.

We fix some number 𝛼 > 𝛼0. It is sufficient to prove that

dimℋΠ(𝑅, 𝐽, 𝑎) ⩾ 2𝑛− 1− 𝛼. (3.5)

Suppose that the needed estimate fails. Then there exists a compact set 𝐸 ⊂ 𝑆𝑛 such that
Π(𝐸) > 0 and

dimℋ𝐸 < 2𝑛− 1− 𝛼.

We identify the sphere 𝑆𝑛 and the product CP𝑛−1 × T. We consider the sets

𝐸𝜁 = {𝑤 ∈ T : (𝜁, 𝑤) ∈ 𝐸}.

We state that

dimℋ𝐸𝜁 ⩽ 1− 𝛼 for ̂︀𝜎𝑛–almost all 𝜁 ∈ CP𝑛−1. (3.6)

Indeed, if the formulated property fails, then

dimℋ𝐸𝜁 > 1− 𝛼 for 𝜁 ∈ 𝑋, where ̂︀𝜎𝑛(𝑋) > 0.

Applying Theorem 3.3, we obtain

dimℋ𝐸 ⩾ 2𝑛− 1− 𝛼,

that leads to a contradiction. Thus, the property (3.6) holds.
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Since Π(𝐸) > 0, Lemma 2.1 ensures that

Π𝜁(𝐸𝜁) > 0 for 𝜁 ∈ 𝑌0, where ̂︀𝜎𝑛(𝑌0) > 0.

Combining this fact and (3.6), we obtain

dimℋΠ𝜁 ⩽ 1− 𝛼 for 𝜁 ∈ 𝑌, where ̂︀𝜎𝑛(𝑌 ) > 0. (3.7)

Now we recall that Π𝜁(𝑅, 𝐽, 𝑎) is the classical Riesz product defined by the formula (2.2).
Therefore,

dimℋΠ𝜁(𝑅, 𝐽, 𝑎) ⩾ 1− 𝛼0 > 1− 𝛼

by Theorem 3.1 in [11]. This contradicts the property (3.7). Thus, the property (3.5) holds for
each number 𝛼 > 𝛼0.
In other words, the consideration of slice–products allows us to obtain Corollary 3.1 by means

of Theorem 3.1 in [11], which is a corresponding result on classical Riesz products.

4. Hausdorff dimensions of pluriharmonic measures

This section is motivated by analogues of Lemma 2.1 and their applications in studying the
pluriharmonic measures.

4.1. Pluriharmonic measures on unit sphere. A measure 𝜇 ∈ 𝑀(𝑆𝑛) is called plurihar-
monic if

spec(𝜇) ⊂ {(𝑝, 𝑞) ∈ Z2
+ : 𝑝𝑞 = 0}.

An analogue of Lemma 2.1 is known for pluriharmonic measures on the sphere 𝑆𝑛. It follows
from this fact that dimℋ𝜇 ⩾ 2𝑛− 2 for each pluriharmonic measure 𝜇 ∈ 𝑀(𝑆𝑛); further details
can be found in [1], [3]. However, to the best of the author’s knowledge, the sharpness of this
estimate remains an open question.

4.2. Pluriharmonic measures on torus. A measure 𝜇 ∈ 𝑀(T𝑛) is called pluriharmonic
if 𝜇̂(𝑘1, . . . , 𝑘𝑛) = 0 for (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛 ∖ (Z𝑛

− ∪ Z𝑛
+). It is well–known that 𝜇 ∈ 𝑀(T𝑛) is

a pluriharmonic measure if and only if the Poisson integral of measure 𝜇 is a pluriharmonic
function in the polydisk D𝑛. Therefore, an analogue of Lemma 2.1 holds for each pluriharmonic
measure 𝜇 on T𝑛; see the proof of Proposition 2.1 in [2] for a measure 𝜇 on the unit sphere 𝑆𝑛,
as well as [5], where the pluriharmonic measures are considered on the Shilov boundary of a
circular bounded symmetric domain. Arguing as in the case of sphere 𝑆𝑛, we conclude that

dimℋ𝜇 ⩾ 𝑛− 1, (4.1)

see also [5, Cor. 3.3]. For 𝑛 = 2 the estimate (4.1) and its sharpness were established in work
[4]. Simple examples show that the estimate (4.1) is sharp for all 𝑛 ⩾ 2. Indeed, we let

𝜇 = 𝛿1(𝜉1)⊗𝑚(𝜉2)⊗ · · · ⊗𝑚(𝜉𝑛),

where 𝛿1 is the Dirac measure at the point 1 ∈ T, and 𝑚 = 𝜎1 is the normalized Lebesgue
measure on the circle T. It is clear that 𝜇 is a pluriharmonic measure and

dimℋ𝜇 = 𝑛− 1.
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