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HOMOGENIZATION OF ATTRACTORS TO
REACTION-DIFFUSION EQUATIONS IN DOMAINS
WITH RAPIDLY OSCILLATING BOUNDARY:
SUPERCRITICAL CASE

G.F. AZHMOLDAEV, K.A. BEKMAGANBETOV,
G.A. CHECHKIN, V.V. CHEPYZHOV

Abstract. This paper is devoted to studying the reaction—diffusion systems with rapidly
oscillating coefficients in the equations and in boundary conditions in domains with locally
periodic oscillating boundary; on this boundary a Robin boundary condition is imposed.
We consider the supercritical case, when the homogenization changes the Robin boundary
condition on the oscillating boundary is to the homogeneous Dirichlet boundary condition
in the limit as the small parameter, which characterizes oscillations of the boundary, tends
to zero. In this case, we prove that the trajectory attractors of these systems converge
in a weak sense to the trajectory attractors of the limit (homogenized) reaction—diffusion
systems in the domain independent of the small parameter. For this aim we use the homog-
enization theory, asymptotic analysis and the approach of V.V. Chepyzhov and M.I. Vishik
concerning trajectory attractors of dissipative evolution equations. The homogenization
method and asymptotic analysis are used to derive the homogenized reaction—diffusion sys-
tem and to prove the convergence of solutions. First we define the appropriate auxiliary
functional spaces with weak topology, then, we prove the existence of trajectory attractors
for these systems and formulate the main Theorem. Finally, we prove the main convergence
result with the help of auxiliary lemmas.

Keywords: attractors, homogenization, reaction—diffusion systems, nonlinear equations,
weak convergence, rapidly oscillating boundary.
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1. INTRODUCTION

This paper is the next step in our investigations of homogenization problem for reaction—
diffusion systems in domains with very rapidly oscillating boundary, for detailed geometric
settings see [18]. In [5] we studied the critical case, in which the Robin condition was imposed
on the oscillating part of the boundary and under the homogenization the type of bound-
ary condition was preserve and only the coefficients changed. The subcritical case, when the
Robin condition becomes the Neumann condition under the homogenization, will be considered
separately.
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In this paper we deal with the supercritical case, when the Robin boundary condition be-
comes the Dirichlet boundary condition under the homogenization. We prove the existence of
trajectory attractors for both perturbed and homogenized problems, construct the attractor
for the latter problem, and prove the convergence of the attractors as the small parameter
characterizing the oscillations, tends to zero, namely, we prove the Hausdorff convergence of
attractors. In many pure mathematical papers, one can find the asymptotic analysis of prob-
lems in domains with oscillating (rough) boundaries, see, for example, [12], [13], [28], [29], [37]

for rapidly oscillating boundary, [5], [18] for very rapidly oscillating boundary, [33] for spectral
problems, [14], [15], [16] for operator convergence, [35] for a general geometry, [22], [23] for
multilevel oscillating boundary, [36] for fractal structure, [1], [2], [3], [{] for eigenvalue prob-
lems). We also mention the basic frameworks [19], [32], [38], [39], where one can find the detail
bibliography.

Concerning attractors see, for example, [6], [26], [10], and the bibliography in these mono-
graphs. Homogenization of attractors were studied in [27], [30], [31], see also [7], [3], [10], [11],

24].

The first section is devoted to basic settings, in the second section we describe the limiting
(homogenized) reaction—diffusion system and its trajectory attractor. The third section contains
auxiliary results including integral estimates (for analogous estimates see [20], [21]) and in the
fourth section the proof of main theorem is given.

2. STATEMENT OF THE PROBLEM

Let © be a bounded domain in R?, d > 2, with a smooth boundary 09 = I'y U Ty, where
lies in a half-space 4 > 0 and T'y C {z : 24 = 0}. Given a smooth non—positive 1-periodic in

the variable £ function F(i,f), T = (1,... ,xd,l),é = (&1,...,&-1), we define the domain €.
via its boundary 02, = I'{ U 'y, where

I{ = {a: = (Z,2q) : (2,0) €y, 24 = eaF(:i,i’a’l)}, 0<a<l,
that is, we add a thin oscillating layer
II. = {z = (&,2q) : (£,0) € 1,24 € [0,e*F(&,2e7"))}

to the domain Q. We assume that F(z, é) is compactly supported on I'; uniformly in f . We
consider the boundary-value problem

(0
Ue :)\Aus—a(x,z> f(us)—i—h(x,E), x e, t>0,
ot € €
ou .z . T
(91/8 —i—aﬁp( ,g> U, = et g(x,g), xelf, t>0, (2.1)
u: = 0, rely t>0,
\ue:U(I)a reQ, t=0,
where © = (%, 14), u. = u.(x,t) = (u',...,u")" is an unknown vector function, the nonlinear

function f = (f%,..., f)" is given, h = (h',...,h")" is the known function, 8 > 0, and X is
an n X n—matrix with constant coefficients and having a positive symmetrical part:

1

§(A+>\T) >wl, w>0,
and [ is the unit matrix with of size n x n. We assume that p = diag{p',...,p"}, g =
(g,...,g")7, and p' = pi(2,€), ¢ = ¢'(2,€), i = 1,...n, are continuous 1-periodic in &
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functions and p'(Z,§), i = 1,...n, are positive. By

ou. [ Oul oum\ "
o \ov'' ov

we denote the normal derivative of the vector function u. multiplied by the matrix A, that is,

aalf ::Zn:ZA”gZéNk, i=1,...,n,

=1 k=1

and N = (Ny,..., Ny) is the unit outer normal to the boundary of the domain. By pyax = const
we denote the maximum of p’ on I'; with respect to x and i. By U we denote a vector function
in (Ly(2))™.

The function a = a(x,&) is supposed to belong to C(€. x R?) and obey the ellipticity
condition 0 < ag < a(z,§) < Ay with some constants ag, Ag. We assume that the function
a-(z) = a (z,%) has the average a(z) when & — 0+ in the space Lo .(Q2), that is

/a <:U, - o(r)dr — /E(x)w(x) dr, & — 0+, (2.2)

Q
for each function ¢ € Li(Q).

We denote by V' (respectively V.) the Sobolev space H'(,T'y) (respectively H'(Q.,Ty)),
that is, the space of functions from the Sobolev space H'(Q) (respectively H'(€).)) with the
zero trace on I'y. We also denote by V' (respectively V) the dual space for V' (respectively V),
that is, the space of linear bounded functionals on V' (respectively V).

Let Q7 be a domain such that . C Q% for each . For the vector function h (z,&) we
suppose that for each e > 0 and ¢ the function hi(z) = h' (z,%) belongs to € Ly(Q2") and has

the average hi(x) in the space Ly(QT) for ¢ — 0+, that is,
R (x, f) — Rhi(x) weakly in  Ly(QT) as e — 0+,
£
or

/h2< z)dz — /hz z)dr as & — 0+, (2.3)

O+
for each function p € Ly(2F) and for all i =1,...,n
From the condition (2.3) it follows that the norms of the functions h’(z) are bounded uni-
formly in €, in the space Ly(€).), that is,

1hE(2)| 1y < Mo for all e € (0,1]. (2.4)
We assume that the components of vector function f € C'(R"; R") satisfy the inequalities

S I < Co (Z o
=1 =1

Z% i< Zfi(v)vi, veR", (2.6)
i=1 i=1

with 7; > 0 for each ¢ = 1,...,n. The inequality (2.5) is motivated by the fact that in real
reaction—diffusion systems, the functions f? are polynomials with possibly different degrees.
The inequality (2.6) is called the dissipativity condition for the reaction—diffusion system (2.1).
In a simple model case p; = p for i = 1,...,n, the conditions (2.5) and (2.6) reduce to the
equalities

p2+1>7 2<p1<<pn71<pn7 (25)

1) < Co (o]~ +1), Yol = C < f(v)v, veR™ (2.7)
We stress that the Lipschitz condition for the function f(v) is not assumed.
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Remark 2.1. Qur technique can also applied for studying the systems, in which nonlinear
terms are of the form Y a; (x, f) fi(u), where a; are matrices with the entries allowing averag-
j=1
ing and f;(u) are polynomial vectors of u satisfying conditions of form (2.5), (2.6). For brevity,
we study the case m =1 and a, (x, f) =a (31:7 f) I, where I 1s the identity matriz.

We introduce the notation
H = [L:(Q)]", H. := [Ly(02.)]", V = [Hl(Q,Fg)]”, V. = [Hl(Qg;FQ)]”.

The norms in these spaces are introduced as

Jol? = / S i (@) P, Joll? = / S | (@),
Q =1 3

Q. =1

o2 = / SV (o) e, o2, = / S Vi (a) da
o =1 g, i=1

€

Let ¢; = (pf—il)? i = 1,...,n. We shall employ the notation p = (pi,...,p,) and q =

(q1,---,qn), and define the spaces

L, : =L, (2) x...x L, (),

Lp. =L, () x...x L, (),

Ly(Ry;Lp) := Ly, (R Ly, () x ... x Ly, (Ry; Ly, (),
L,(Ry;Lp.) == Ly, (Ry; Ly, () X ... x L, (Ry; Ly, (§2)).

As in [25], [20], we study weak solutions of the initial boundary value problem (2.1), that is,
functions

ue =u(z,t),  ue € LRy H) NLY(Ry; Vo) NLEY (Ry; L)

which satisfy Equation (2.1) in the distributional sense (the sense of generalized functions),
that is, for which the integral identity

— / U * oy dxdt + / AVu, - Vip dxdt + / ac(z) f(ue) - ¢ dadt

ot
Qe xRy A Qe xRy Qe xRy ) (28)
tef / p(i,z)us'wdsdt— / he(x)'wdxdtJral_a/ g(@,f>-¢dsdt
T{xR4 c Qe xRy T{xR4 ©

holds for each function ¢ € C(Ry; V. NLy.). Here y; - yo stands for the scalar product of
vectors y1, y2 € R™.

If u. € Lp(0,M;Ly.), then it follows from the condition (2.5) that f(u) € Lq(0, M;Lg.).
At the same time, if u. € Ly(0, M; V), then AAu. + h. € Ly(0, M; V.). Therefore, each weak
solution u.(z, s) to problem (2.1) satisfies

ou

a—; € Ly(0, M; L) + Lao(0, M; VY).

The Sobolev embedding theorem implies
Lq(0, M;Lg.) + Lo(0, M; VL) C Lg (0, M; HCT)
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where

H " := H"(Q) x...x H™(£,), r=(ry,..., ),

1 1 ,
r; =maxq l,d| — — = , 1=1,...,n.
¢ 2

Here H™"(£2.) denotes the dual space for the Sobolev space H{(€2.), r > 0, of functions in the
domain €2, with zero trace on the boundary.

Hence, for each weak solution u.(z,t) to problem (2.1) its time derivative
Lq (07 M7H;r)

8“5 “ ) helongs to

Remark 2.2. Eristence of a weak solution u(z,t) to problem (2.1) for an arbitrary initial
data U € H. and fized € can be proved in the standard way, see, for example, [0], [25]. This
solution need not be unique, since the function f(v) satisfies only the conditions (2.5), (2.6)
and the Lipschitz condition with respect to v is not supposed.

The next lemma can be proved similarly to the proof of from [26, Prop. XV.3.1].

Lemma 2.1. Let u. € LY(Ry; Vo) NLE(Ry; Ly ) be a weak solution of the problem (2.1).
Then the following statements are true.

(1) Ue € C(R+7H5)7
(i) the function |juc(-,t)||* is absolutely continuous on R, and

2 .
sl O+ [ AV at) - Vo, o

Qe

+/%@V@@wy%@ﬁm+ﬁ/peé)%“””“””3<u»

:/ha($)'u€(x,t)dx+51_a/g (57, g) “ue (2, 1) ds

Q. rs
for almost all t € R,.

To define the trajectory space K for (2.1), we use the general approaches of [9, Sect. 2].
For each segment [t1, %3] € R we consider the Banach spaces

0
‘El,tQ = Lp(tl,tg; Lp) N Lz(tl,tQ;V) N Loo(tl,tQ,H> N {U ‘ 8_1; € Lq (tl,tQ;Hr)}

(sometimes we omit the parameter € for brevity) with the norm

o7, = ol + Bl + Dollioasan + | 5 -

Lt tasHT)

Letting Dy 1, = Lqg(t1,t0; H™"), we obtain Fy, 4, € Dy 4, and for u(t) € F, 4, we have
A(u(t)) € Dy, 1, We consider weak solutions to (2.1) as solutions of an equation in the general
scheme in [9, Sect. 2].

We consider the spaces

Fio¢ = Ly (Ry; L) NLYY(Ry; V) NLY (R H { ‘ — € LI(Ry; Hr)} )

ot

Let K be the set of all weak solutions to (2.1). For each U € H there exists at least one
trajectory u(-) € K such that u(0) = U(x), Remark 2.2. Hence, the trajectory space K of

oc ocC oc oc a/U oc T
Fi% =L (Ry; Lp ) NLY°(Ry; Vo) N LI (R4 Ho) N {v - € Ly“(Ry; He )} :
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(2.1) is not empty. It is easy to see that I C fslofr and the space KT is translation invariant,
ie., if u(t) € £F, then u(r +t) € K for all 7 > 0. Hence, S(7)KF C KF for all 7 > 0.
We define metrics py, 4, (-, -) in the spaces Fi, 4, by means of the norms from Ly (¢4, to; H)

1

2

pt1,t2 U, U /HU - U HHdt ) u(): U() € ‘Ftl,tQ'

The topology @lﬁc in Fffc is generated by these metrics. We recall that {v} C .Fffc converges
tov € Fl¢ as k — oo in O if ||og(-) = v(-)||Lo(t1,10:) — 0 as k — oo for all [ty, 1] C Ry. The
topology @lfc is metrizable and the corresponding metric space is complete. We consider this
topology in the trajectory space KF of (2.1). In the same way we define the topology ©1¢ in
the space Fslofr

We consider the translation semigroup {S(7)} on K, S(7) : K — K, 7 > 0. The trans-
lation semigroup {S(7)} acting on K7 is continuous in the topology . ThlS fact is implied
by the definition of this topology.

Following the lines of [9, Sect. 2], we define bounded sets in the space I by means of the
norm of Banach space .7-"5”7 +- We obtain

F'. = LRy Lp.) NI4(R.; V.) N Lo (R HL) O {

Jv .
G € TR |

and the space fb+ is a subspace of féoj
We denote by K. the kernel to (2.1), which, by definition, consists of all complete weak
solutions, i.e. u(t), t € R, to our system, bounded in

F2 =L (R;Lp.) NLE(R; Vo) N Loo(R { ‘ — € LY(R;H_ )}

Lemma 2.2. The problem (2.1) has the trajectory attractors 2. in the topological space @loc
The set 2. is bounded in .7-"”Jr and compact in @é‘fc . Moreover, . = 11, IC., the kernel ICE 18
non—empty and bounded in F°. We recall that the spaces .7-"bJr and @loc depend on €.

To prove this lemma, we use the approach in the proof from [26, Ch. XV, Sect. 3, Thm.
3.2]. To prove the existence of an absorbing set (bounded in F? . and compact in @é"i) one
can use Lemma 2.1 similarly to [26, Ch. XV, Sect. 3, Prop. 3.1, Cor. 3. 1].

It is easy to verify that 2. C By(R) for all € € (0,1). Here BO(R) is an open ball in F? with
a sufficiently large radius R. Due to the Aubin — Lions — Simon Lemma [5, Lm. 3.1] we have

By(R) € Ly“(Ry; HI™), (2.10)

Bo(R) € C**(R;H?), 0<6<1. (2.11)
Bearing in mind these embeddings, the attraction to the constructed trajectory attractor can
be strengthen.

Corollary 2.1. For each bounded set B C K in F?, we have

disty, o ppa2-8) (Lo, S(7) B, Hon K) — 0
dlStC([o,M];H;5) (Ip pr S(7)B, Iy K) — 0, T — 00,
where M 1s a positive constant.

We recall that Q@ C €. and Q lies in the positive half-space {z4 > 0}. Therefore, for each
function u(z, t) belonging to the space .7-"3 4 with z € )., its restriction to the domain €2 belongs
to the space .7:2 and

lullzs < llull 7
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In view of this observation, we have the next statement.

Corollary 2.2. The trajectory attractors 2. are bounded in .7-"_1; uniformly in € € (0,1). The
kernels K. are bounded in F° uniformly in € € (0,1).

3. HOMOGENIZED REACTION-DIFFUSION SYSTEM
AND ITS TRAJECTORY ATTRACTOR: CASE <1 —«

In the next sections, we study the behaviour of the problem (2.1) as e — 0 in the supercritical
case f < 1 — a. We have the formal limiting problem with the Dirichlet boundary condition

%:)\Auo—a(x)f(uo)—i-ﬁ(x), re, >0,
ug =0, xed, t>0, (3.1)
uy = Ulx), re, t=0,

Here @(x) and h(x) are defined in (2.2) and (2.3), respectively. The limiting boundary condition
arises due to the relation between small parameters, see similarly [15].

We note that in the supercritical case the influence of the boundary layer on the part of
the boundary I'; completely disappears (compare with the critical case [5] and subecritical case
mentioned in the introductory part).

As before, we consider weak solutions of the problem (3.1), that is, functions

ug(w,t) € LRy H) NLY(Ry; V) N LY (Ry; L)
which satisfy the integral identity

- / uo-%—:/jdxdt—i- / AVug - V) dxdt + / a(x) f(ug) - dedt = /h(x)-z/}d:r;dt (3.2)

QXR+ QXR+ QXR+ QXR+

for each function ¢ € Ci°(R4+;V N Ly). For each weak solution u(z,t) to problem (3.1) we
have 8“08—(;”) € Ly (0, M;H™™) (see Section 2). Recall, that the limiting domain €2 in (3.1) and
(3.2) is independent of £ and its boundary contains the plain part I';.

Similarly (2.1), for each initial data U € H the problem (3.1) has at least one weak solution,
see Remark 2.2. Lemma 2.1 also holds for the problem (3.1), in which e-depending coefficients
a, h, p and g are to be replaced by the corresponding averaged coefficients @(x), h(x).

Let K be the trajectory space for (3.1) (the set of all weak solutions), which belongs to the
corresponding spaces }"fc and ]:i, see [9, Sect. 2]. Recall that K" c ffe and the space K is
translation invariant with respect to translation semigroup {S(7)}, that is, S(1)K' C K for
all 7 > 0. We now construct the trajectory attractor in the topology ©2¢ for the problem (3.1),
Section 2 and [9, Sect. 2].

Similarly to Lemma 2.2 we have the next statement.

Lemma 3.1. The problem (3.1) has the trajectory attractor A in the topological space @lﬁc.
The set A is bounded in fﬁ’r and compact in @lfc. Moreover,

ﬁ - H+K,
the kernel IKC of the problem (3.1) is non—empty and bounded in F°.

We also have 2 C By(R), where By(R) is a ball in F? with a sufficiently large radius R.
Finally, the analogue of Corollary 2.1 holds for the trajectory attractor 2.
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Corollary 3.1. For each bounded set B C K in ]—"_l; we have
diSth(O’M;Hl—é) (HOJMS(T)B, H(LMK) — 0,

4. PRELIMINARY LEMMAS: CASE <1 —«

We consider auxiliary elliptic problems

)\Ave+h<x,§) =0, x € .,
v, L IO
;V + p(z, g)va =el2g(z, g), x eIy, (4.1)
v, = 0, x €Ty,
where x = (Z, z4) and
Mg + h(z) =0, €Q,
vo + h(x) x (4.2)
Vo = 0, WS 89,

and h(z) is defined in (2.3).
The next lemma was proved in [18].

Lemma 4.1. Let § < 1— q, F(i,é),g(i,é),p(i,é) be periodic in & smooth functions, A be

x

a given matriz, the function h(x,Z) satisfy the condition (2.3). Then for all sufficiently small
e > 0 the problem (4.1) has no unique solution. The family of solutions is uniformly bounded
i the V.—norm and the strong convergence

Ve — U (4.3)
holds in V. as € — 0.

Lemma 4.2. The following statements are true.
(1) All solutions u.(t) to (2.1) satisfy

a0 < u(O)]2e ™ + 2, (4.4
i1 N t+1
[ o) s+ 200 [T, o, ds
¢ i=1
t
t+1 (4.5)

el / e ()2, s ds < Jue(8)]2 + B2,
t

where 311 > 0 is a constant independent of €. Positive constants Ry and Ry depend on My,
see (2.4), and are independent of u.(0) and .

(2) All solutions u(t) to (3.1) satisfy the same inequalities (4.4) and (4.5) with the norms in
the functional spaces on the domain € instead of Q..

Proof. We give a brief outline of the proof, for detail see [26, Ch. XV, Sect. 3, Prop. 3.1, Cor.
3.1]. The integral over the part of the boundary I'j in the left hand side of (2.9) is nonnegative
since the matrix p is positive definite. We integrate (2.9) with respect to t. Then, to estimate

the terms
gl /g - wds and P /puE - wds

Iy Iy
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we use the Cauchy inequality and the compactness of the embedding Lo(I'{) € V.. For other
terms we use a standard procedure, see [26, Ch. XV, Sect. 3, Prop. 3.1, Cor. 3.1]. The proof
is complete. O

5. MAIN RESULT

In this section we formulate the main result on the limiting behaviour of the trajectory
attractors 2. of reaction—diffusion systems (2.1) as € — 0 in the supercritical case § < 1 — a.

Theorem 5.1. The convergence

A. - A as ¢ — 0+ (5.1)
holds in the topological space @lfc, and
K.—-K as =0+ in 0O (5.2)

Proof. 1t is easy to see that (5.2) implies (5.1). Hence, it is sufficient to prove (5.2), i.e., for
every neighbourhood O(K) in ©%¢ there exists e; = £;(0) > 0 such that

K.cOK) for e<ey. (5.3)

Assume that (5.3) is false. Then there exists a neighbourhood O'(K) in !¢, a sequence
er = 0+ (k — o00), and a sequence u., (-) = ue, (t) € K¢, such that

u., ¢ O'(K) forall keN.

The function u,, (x,t), t € R is a solution to

)
ou, T z
atk = Nu,, —a (a:, ;) flue,) +h (x, a) , x € €,
A, @ aga E . (5.4)
ayk +elp(E, —)ue, = e g(%, a), r el
| Ue), = 0, x ey,

where f < 1 — a. To get the uniform in ¢ estimate of the solution, we use Lemma 4.2. By
means of (4.4) and (4.5) we find that the sequence {u., (z,t)} is bounded in F°

1

t+1 2

[ue, |70 = sup [Jue, (¢)[| + sup /H%(WH?M
teR teR

t+1 t+1

T sup / lue ) E, a0 |+ &P sup / / D, 0) el ) dsdd - (55)
t

teR teR

t T
—+ sup /‘
teR

We recall that 5§ < 1—a«. The constant C'is independent of €. Hence, there exists a subsequence
{ue (x,1)} C {ue, (z,t)} such that uu (z,t) — u(x,t) as k — oo in ©'. Here u(z,t) € F’ and
u(t) satisfies (5.5) with the same constant C. Because of (5.5) we get

8u€k

dz? < C, k € IN.

H-

U (r,t) = u(r,t) as k— o0
weakly in LY°(R; V), weakly in LY (R; Lp) amd *-weakly in LY (R ; H), and

Oug (z,t)  du(x, 1)
ot ot

as x — 00
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weakly in L% (R;H™"). We claim that u(x,¢) € K. We have |[ul|z < C. Hence, we have to
verify that @(z,t) = uo(z,t), i.e., that it is a weak solution to (3.1).
Using (5.5) and (2.3), we find
Ou, ot
%—)\Auak—hak()%a—?—AAu—h() as k- 0o (5.6)

in the space D' (R;H_T) since the differentiation operators are continuous in the space of
distributions.
We are going to prove that

a (x é) flus,) —a(z) f(@) as k — oo (5.7)

weakly in LY (R;Lg). We fix an arbitrary number M > 0. The sequence {uc,(z,t)}
is bounded in L, (=M, M;Ly), see (5.5). Then, due to (2.5), the sequence {f(uc,(t))} is

L
bounded in Lq (=M, M;Lg). Since {uc, (z,t)} is bounded in Ly (=M, M; V) and {aus’“ (t)} is
(

at
bounded in Ly (—M, M;H™™), we can suppose that u., (z,t) — u(z,t) as k — oo strongly in

Ly (=M, M;Ly) = Ly (Q2x] — M, M]) and, therefore,
Ue, (x,t) = u(z,t) as k — oo for almost all (z,t) € Qx| — M, M].

Since the function f(v) is continuous in v € R, we conclude that

Flue, (,8) = f(@(z,8) as k— oo for almost all (z,6) € Ox] — M, M[.  (5.8)
We have
(2. 2) ftu) a0 1) = 0 (2. 2) () = @)+ (o (2 ) —a ) 1@ 69

Let us show that both terms in the right-hand side of (5.9) tend to zero as k — oo weakly in
Lo (—M, M;Lg) = L (Q x |~ M, M[). Fist, the sequence a (x —) (f(u.,) — f(@)) tends to

zero as k — oo for almost all (z,t) € Q x |—M, M|, see (5.8). Applying [34, Ch. 1, Sec. 1, Lm.
1.3], we conclude that

a (x i) (f(uak) - f(a)) 0 as koo

weakly in Lq (© x |—M, M]). Second, the sequence (a (x, 5) &(x)) f(u) also tends to
zero a k — oo weakly in Lg (2 x |—M, M) since a (:c, é) a(z) as k — oo x-weakly in
Loosw (—M, M;Ls) and f(u) € Lq (2 x | =M, M[). This proves (5.7).
Hence, due to Lemma 4.1, see also [13], for u(x,t) = ug(x,t) we have
//u5k~ dxdt + / /)\Vusk Vi dxdt + / /ask (ue,,) - ¢ dadt
“Mo., “Mo., “Ma.,
M A A
+a,f//p(@ )uk W dsdt — ¢! “//g(£,£)~wdsdt—>
€k €k
M ek ~M
M M M
- / /uo : %—Zfdxdt—l— / /)\Vuo -V dzdt + / /E(az)f(uo) ) dxdt
“M Q “M Q “M Q
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Using (5.8), we pass to the limit in Equation (5.4) as k — oo in the space D'(R;H™")
and obtain that the function ug(x,t) satisfies the integral identity (3.2) and, therefore, it is a
complete trajectory of Equation (3.1). Hence, ug € K.

We have proved above that u., — ug as k — oo in ©!¢. The assumption u., ¢ O'(K) (see
[17]) implies ug ¢ O'(K), and, hence, ug ¢ K. We arrive at the contradiction that completes
the proof. O

Using the compact embeddings (2.10) and (2.11), we can improve the convergence (5.1).
Corollary 5.1. For each 0 < 6 < 1 and for all M > 0
disty,, (o, arpm1-5) (o, Ae, o s A) — 0, (5.10)
disteo,arm-s) (Hou e, Mo A) =0, € —0+. (5.11)

To prove (5.10) and (5.11), we reproduce the proof of Theorem 5.1 replacing the topology of
0 to that of L¢(R,; H! %) or C¢(R,; H™).

Finally, we consider the Cauchy problem for reaction—diffusion systems, for which the unique-
ness theorem is true. It sufficient to assume that the nonlinear term f(u) in (2.1) satisfies the
condition

(f(v1) — f(va),v1 — v3) = —C|vy — vo|* for each wy, vy € R", (5.12)
see [20], [20]. It was proved in [25] that if (5.12) is true, then (2.1) and (3.1) generate dynamical
semigroups acting in the spaces of initial data H, and H, possessing global attractors A, and
A being bounded in the spaces V. and V, respectively (see also [10], [6]). Moreover,

A: = {u(0) | u e 2.}, A= {u(0) | u €A}
The convergence (5.11) implies the following statement.

Corollary 5.2. Under the assumptions of Theorem 5.1 the convergence
distg-s (A, A) = 0, e — 0+,
holds.
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