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HOMOGENIZATION OF ATTRACTORS TO
REACTION-DIFFUSION EQUATIONS IN DOMAINS
WITH RAPIDLY OSCILLATING BOUNDARY:
SUPERCRITICAL CASE

G.F. AZHMOLDAEV, K.A. BEKMAGANBETOV,
G.A. CHECHKIN, V.V. CHEPYZHOV

Abstract. This paper is devoted to studying the reaction—diffusion systems with rapidly
oscillating coefficients in the equations and in boundary conditions in domains with locally
periodic oscillating boundary; on this boundary a Robin boundary condition is imposed.
We consider the supercritical case, when the homogenization changes the Robin boundary
condition on the oscillating boundary is to the homogeneous Dirichlet boundary condition
in the limit as the small parameter, which characterizes oscillations of the boundary, tends
to zero. In this case, we prove that the trajectory attractors of these systems converge in a
weak sense to the trajectory attractors of the limit (homogenized) reaction—diffusion systems
in the domain independent of the small parameter. For this aim we use the homogenization
theory, asymptotic analysis and the approach of V.V. Chepyzhov and M.I. Vishik concerning
trajectory attractors of dissipative evolution equations. The homogenization method and
asymptotic analysis are used to derive the homogenized reaction—diffusion system and to
prove the convergence of solutions. First we define the appropriate auxiliary functional
spaces with weak topology, then, we prove the existence of trajectory attractors for these
systems and formulate the main Theorem. Finally, we prove the main convergence result
with the help of auxiliary lemmas.

Keywords: attractors, homogenization, reaction—diffusion systems, nonlinear equations,
weak convergence, rapidly oscillating boundary.

Mathematics Subject Classification: 34B45, 81Q15

1. INTRODUCTION

This paper is the next step in our investigations of homogenization problem for reaction—
diffusion systems in domains with very rapidly oscillating boundary, for detailed geometric
settings see [18]. In [5] we studied the critical case, in which the Robin condition was imposed
on the oscillating part of the boundary and under the homogenization the type of boundary
condition was preserve and only the coefficients changed. The subcritical case, when the
Robin condition becomes the Neumann condition under the homogenization, will be considered
separately.
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In this paper we deal with the supercritical case, when the Robin boundary condition
becomes the Dirichlet boundary condition under the homogenization. We prove the existence
of trajectory attractors for both perturbed and homogenized problems, construct the attractor
for the latter problem, and prove the convergence of the attractors as the small parameter
characterizing the oscillations, tends to zero, namely, we prove the Hausdorff convergence
of attractors. In many pure mathematical papers, one can find the asymptotic analysis of
problems in domains with oscillating (rough) boundaries, see, for example, [12], [13], [28], [29],
[37] for rapidly oscillating boundary, [5], [18] for very rapidly oscillating boundary, [33| for
spectral problems, [14], [15], |16] for operator convergence, [35] for a general geometry, |22],
[23] for multilevel oscillating boundary, [36] for fractal structure, [1], [2], [3], [4] for eigenvalue
problems). We also mention the basic frameworks [19], [32], [38], [39], where one can find the
detail bibliography.

Concerning attractors see, for example, [6], [26], [40], and the bibliography in these
monographs. Homogenization of attractors were studied in [27], [30], [31], see also [7], [8],
[10], [11], [24].

The first section is devoted to basic settings, in the second section we describe the limiting
(homogenized) reaction—diffusion system and its trajectory attractor. The third section contains
auxiliary results including integral estimates (for analogous estimates see [20], [21]) and in the
fourth section the proof of main theorem is given.

2. STATEMENT OF THE PROBLEM

Let Q be a bounded domain in R?, d > 2, with a smooth boundary 0 = I'; U Ty, where Q
lies in a half-space 4 > 0 and I'y C {z : 24 = 0}. Given a smooth non-positive 1-periodic in
the variable é function F(i,g), T = (xq,... ,xd_l),f = (&,...,&-1), we define the domain €2,
via its boundary 09, = I'{ U Ty, where

If = {ac =(Z,2q) : (2,0) €y, 24 = aaF(fc,:i’a’l)}, 0<a<l,
that is, we add a thin oscillating layer
II. = {z = (&,2q) : (£,0) € ['y,z4 € [0,e*F(&,2e7"))}

to the domain . We assume that F(z, é) is compactly supported on I'y uniformly in £&. We
consider the boundary-value problem

(a;::)\Aug—a(x,§>f(us)+h(x,§), reQ., t>0,
861;/5 +&p (f, g) u, = e %g(%, g), rel], t>0, (2.1)
ue = 0, rely t>0,
(ue = U(x), reQ., t=0,
where © = (%, 14), u. = u.(x,t) = (u',...,u")" is an unknown vector function, the nonlinear

function f = (f*,...,f™)" is given, h = (h',... h")" is the known function, 3 > 0, and \ is
an n X n—matrix with constant coefficients and having a positive symmetrical part:

1
§(A+>\T)>w1, w >0,

and I is the unit matrix with of size n x n. We assume that p = diag{p',...,p"}, ¢
(" gM)7

s

cand pf = pi(&,6), ¢ = ¢'(2,€), i = 1,...n, are continuous l-periodic in
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functions and p*(Z,&), i = 1,...n, are positive. By

du. [ Oul oun\
o \ov' " ov

we denote the normal derivative of the vector function u. multiplied by the matrix A, that is,

ZZA% ENk, i=1,....,n,

=1 k=1

and N = (Ny, ..., Ny) is the unit outer normal to the boundary of the domain. By pp.x = const
we denote the maximum of p* on I'; with respect to x and i. By U we denote a vector function
in (La(2))". B

The function a = a(z,£) is supposed to belong to C(Q. x RY) and obey the ellipticity
condition 0 < a¢ < a(z,§) < Ay with some constants ag, Ag. We assume that the function
a-(z) = a (z,%) has the average a(z) when £ — 0+ in the space Lo .(Q), that is

/a <x, - o(r)dr — /d(x)go(x) dr, & — 0+, (2.2)

Q
for each function ¢ € L1(92).

We denote by V' (respectively V.) the Sobolev space H(Q,T'y) (respectively H'(Q.,Ty)),
that is, the space of functions from the Sobolev space H'(Q) (respectively H'(€).)) with the
zero trace on I'y. We also denote by V' (respectively V) the dual space for V' (respectively V.),
that is, the space of linear bounded functionals on V' (respectively V).

Let Q7 be a domain such that Q. C QF for each . For the vector function h (z,§) we
suppose that for each e > 0 and ¢ the function hi(z) = h' (z,%) belongs to € Ly(Q2") and has

the average hi(x) in the space Ly(QT) for ¢ — 0+, that is,
X (x, £> — hi(z) weaklyin Lo(QF) as e — 0+,
£
or

/h’( x)dr — /hl x)dr as e — 0+, (2.3)

Q+
for each function ¢ € Ly(27) and for all i =1,...,n
From the condition (2.3) it follows that the norms of the functions hl(z) are bounded uni-
formly in e, in the space Lo(£2.), that is,
1h2(z) || Loy < Mo for all e € (0,1]. (2.4)

We assume that the components of vector function f € C(R™; R") satisfy the inequalities

Z|f )70 < Cy (Zw |Pl+1) 2<p1 < .. < Prot < Py (2.5)

=1

Z%|vi|p" —C< Zfi(v)vi, v EeR", (2.6)
=1 =1

with 7; > 0 for each ¢ = 1,...,n. The inequality (2.5) is motivated by the fact that in real
reaction—diffusion systems, the functions f? are polynomials with possibly different degrees.
The inequality (2.6) is called the dissipativity condition for the reaction—diffusion system (2.1).
In a simple model case p; = p for i = 1,...,n, the conditions (2.5) and (2.6) reduce to the
equalities

@I <GP +1), AP —C< fo)y, veR™ 2.7)
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We stress that the Lipschitz condition for the function f(v) is not assumed.

Remark 2.1. Qur technique can also applied for studying the systems, in which nonlinear
terms are of the form Y a; (m, f) fi(u), where a; are matrices with the entries allowing averag-
j=1
ing and f;(u) are polynomial vectors of u satisfying conditions of form (2.5), (2.6). For brevity,
we study the case m =1 and a; (a:, f) =a (a:, f) I, where I s the identity matriz.

We introduce the notation
H = [Ly(Q)]", H. := [Ly()]", V= [H'(Q,Ty)]", V. = [H'(Q;Ty)]™

The norms in these spaces are introduced as

Jol? = / S i) P, Joll? = / S ot (@),
Q =1 O =1

5

Jolf = [ 3 Vo (o), ol i= [ 30 Ve (o),
o =1 i

Q. =1
Let ¢; = (pf’—il), i = 1,...,n. We shall employ the notation p = (pi1,...,p,) and q =
(q1,---,qn), and define the spaces

L,: =L, () x...x L, (),

Lp.: =L, () x...x L, (),

L,(Ry;Ly) :=L,, (Ry; Ly, () x ... x L, (R4; Ly, (£2)),
L,(Ry;Lyp.) ==Ly, (Ry; Ly, () X ... x L, (Ry; Ly, (S2)).

As in [25], [26], we study weak solutions of the initial boundary value problem (2.1), that is,
functions

ue =u(z,t),  ue € LRy H) NLY(Ry; Vo) NLY (Ry; L)

which satisfy Equation (2.1) in the distributional sense (the sense of generalized functions),
that is, for which the integral identity

— / Ue - g dxdt + / AVu, - Vi dedt + / a:(z) f(ue) - ¢ dxdt

ot
Qe xRy ) Qe xRy QexRy ) (28)
tef / p(@,f)us.wdsdt: / hg(x)-wdxdt—i-ala/ g(@,f)wdsdt
PExR4 © QexRy PixR4 ©

holds for each function ¢ € CP(Ry; V. NLy.). Here y; - yo stands for the scalar product of
vectors y1, y2 € R™.

If u. € Ly(0,M;Ly.), then it follows from the condition (2.5) that f(u) € Lq(0, M;Lqg.).
At the same time, if u. € Ly(0, M; V), then AAu, + h. € Ly(0, M; V). Therefore, each weak
solution wu.(z, s) to problem (2.1) satisfies

Ou,
a—l; € Lq(0, M; Lg.) + La(0, M; V7).

The Sobolev embedding theorem implies

Lq(0, M; L) + Ly(0, M; V') C Lg (0, M; H.Y)
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r=(ry,...," ),

where
H_":= H"™(Q) X H7™(8),
1 1
———)}, 1=1,...,n.

" max{ (qz :
() denotes the dual space for the Sobolev space H[(2.), r > 0, of functions in the
6“5 Que (@) 1,6]0ngs to

Here H~" (€2,
domain €2, with zero trace on the boundary
Hence, for each weak solution u.(z,t) to problem (2.1) its time derivative
. This

Lq (07 M7 HE )
data U € H. and fized ¢ can be proved in the standard way, see, for example, |6], |25]

Remark 2.2. Ezistence of a weak solution u(z,t) to problem (2.1) for an arbitrary initial
solution need not be unique, since the function f(v) satisfies only the conditions (2.5), (2.6)

and the Lipschitz condition with respect to v is not supposed
The next lemma can be proved similarly to the proof of from [26, Prop. XV.3.1]

Lemma 2.1. Let u. € LY(Ry; Vo) NLE(Ry; Ly ) be a weak solution of the problem (2.1)

Then the following statements are true
(i) u. € C(Ry;H,);
(ii) the function ||u.(-,t)||* is absolutely continuous on R, and
1d ,
3l D+ [ AVa(at) - Vulo,
Qe
+/aa(x)f(u€(x,t))-ug(x,t)d:v—I—a /p (:ﬁ g) us(x,t) - ue(x,t) ds (2.9)
Q. re
:/hg(@ e (w,t)dr + &' /g <£, f) cue(z,t) ds
Q. re

Lq (tl,tQ;H )}

ot

for almost allt € R,..
To define the trajectory space K for (2.1), we use the general approaches of |9, Sect. 2]

For each segment [t1, ;] € R we consider the Banach spaces
; N

ov

El to —L (tl,tQ;L )ﬂLQ(t17t27V)mL (tl,tQ,H) {U
ot

")

(sometimes we omit the parameter ¢ for brevity) with the norm
(0,
Lq ty,to;H™

lolls. nw%thm+nwmm@Ny+mmm0MH+ﬂ
), we obtain Fy, 4, C Dy 4, and for u(t) € F, 4, we have

Lettlng Dtl,tg = Lq (t17t2; H
A(u(t)) € Dy, 1,- We consider weak solutions to (2.1) as solutions of an equation in the general
scheme in |9, Sect. 2]
{‘ € LI(R,; H- %,

We consider the spaces
Li“(R.; Lp) N LE*(Ry; V) ML (R H

Fioe =L
Pt = (R L) DL (R V) N LR 1 fo | 3 € L)}
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Let K be the set of all weak solutions to (2.1). For each U € H there exists at least one
trajectory u(-) € KF such that u(0) = U(z), Remark 2.2. Hence, the trajectory space K of
(2.1) is not empty. It is easy to see that I C }"El"j and the space I is translation invariant,
ie., if u(t) € K, then u(r +t) € K for all 7 > 0. Hence, S(7)KF C K for all 7 > 0.

We define metrics py, 1,(+,-) in the spaces Fy, 1, by means of the norms from Ly (1, to; H)

2

pt1,t2 U, U /Hu - U HHdt ) ’LL(), U() € ftl,tz'

The topology ©%¢ in F'*¢ is generated by these metrics. We recall that {v,} C F converges
to v € Flo¢ as k — oo in O if ||og(-) — v(-)||lLyt1.0m) — 0 as k — oo for all [t,t5] C Ry. The
topology @l"c is metrizable and the corresponding metric space is complete. We consider this
topology in the trajectory space KI of (2.1). In the same way we define the topology @l"i in
the space Féoj

We consider the translation semigroup {S(7)} on Kf, S(r) : K — K, 7 > 0. The trans-
lation semigroup {S(7)} acting on K is continuous in the topology ©X¢. This fact is implied
by the definition of this topology.

Following the lines of [9, Sect. 2|, we define bounded sets in the space I by means of the
norm of Banach space .7-"51’7 +- We obtain

‘Fg-i' = L2<R+3Lp,s> N LS(RJHVE) NLo (R H { ‘ — € Lb RJF;HE’")}

and the space fb+ is a subspace of }"Eloj
We denote by K. the kernel to (2.1), which, by definition, consists of all complete weak
solutions, i.e. u(t), t € R, to our system, bounded in

0
F? = L}(R; L) NL5(R; Vo) N Loo(R; He) N {v ‘ a_: € Ly(R; H;T)} :

Lemma 2.2. The problem (2.1) has the trajectory attractors . in the topological space @é"i
The set A, is bounded in -Fb+ and compact in @l"c Moreover, 2. = 11, K., the kernel K. is
non—empty and bounded in F°. We recall that the spaces .7-"bJr and @loc depend on €.

To prove this lemma, we use the approach in the proof from [26, Ch. XV, Sect. 3, Thm.
3.2]. To prove the existence of an absorbing set (bounded in F?_ and compact in @é"i) one
can use Lemma 2.1 similarly to [26, Ch. XV, Sect. 3, Prop. 3.1, Cor. 3. 1].

It is easy to verify that A. C By(R) for all € € (0, 1). Here BO(R) is an open ball in F?_ with
a sufficiently large radius R. Due to the Aubin — Lions — Simon Lemma [5, Lm. 3.1] we have

By(R) € Ly“(Ry; HL™), (2.10)
Bo(R) € C**(R;H?), 0<6<1. (2.11)

Bearing in mind these embeddings, the attraction to the constructed trajectory attractor can
be strengthen.

Corollary 2.1. For each bounded set B C K in F?, we have

disty,, o ar.pri-sy (Mo, S(7) B, o aKe) — 0

where M s a positive constant.
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We recall that Q C Q. and Q lies in the positive half-space {z4 > 0}. Therefore, for each
function u(z, t) belonging to the space ]:f7+ with x € (), its restriction to the domain {2 belongs
to the space fi and

Jull 7o < flullz -

In view of this observation, we have the next statement.

Corollary 2.2. The trajectory attractors 2. are bounded in ]-"_l; uniformly in € € (0,1). The
kernels K. are bounded in F° uniformly in € € (0,1).

3. HOMOGENIZED REACTION—DIFFUSION SYSTEM
AND ITS TRAJECTORY ATTRACTOR: CASE ﬂ <l—a«

In the next sections, we study the behaviour of the problem (2.1) as e — 0 in the supercritical
case # < 1 — a. We have the formal limiting problem with the Dirichlet boundary condition

%:)\Auo—a(x)f(uo)—i-ﬁ(x), ref, t>0,
o = 0, x €00, t>0, (3.1)
uy = U(x), re, t=0,

Here @(x) and h(x) are defined in (2.2) and (2.3), respectively. The limiting boundary condition
arises due to the relation between small parameters, see similarly [18].

We note that in the supercritical case the influence of the boundary layer on the part of
the boundary I'; completely disappears (compare with the critical case [5] and subcritical case
mentioned in the introductory part).

As before, we consider weak solutions of the problem (3.1), that is, functions

up(z,t) € LY (Ry; H) NLy(Ry; V) N Ly° (Ry; Ly)
which satisfy the integral identity

- / uo-%—@fdxdt—i— / AVug - V) dxdt + / a(x) f(up) - dedt = /i_l(x)-wdxdt (3.2)

OxRy QxR QxR QxR

for each function ¢ € CP(R4+;V NLy). For each weak solution u(x,t) to problem (3.1) we
have 8“06—(56’” € Ly (0, M;H™™) (see Section 2). Recall, that the limiting domain € in (3.1) and
(3.2) is independent of ¢ and its boundary contains the plain part T';.

Similarly (2.1), for each initial data U € H the problem (3.1) has at least one weak solution,
see Remark 2.2. Lemma 2.1 also holds for the problem (3.1), in which e-depending coefficients
a, h, p and g are to be replaced by the corresponding averaged coefficients @(z), h(z).

Let IC' be the trajectory space for (3.1) (the set of all weak solutions), which belongs to the
corresponding spaces }'fc and ]:i, see |9, Sect. 2|. Recall that K" c }"fc and the space K is
translation invariant with respect to translation semigroup {S(7)}, that is, S(1)K' C K for
all 7 > 0. We now construct the trajectory attractor in the topology ©%¢ for the problem (3.1),
Section 2 and [9, Sect. 2].

Similarly to Lemma 2.2 we have the next statement.

Lemma 3.1. The problem (3.1) has the trajectory attractor A in the topological space @lﬁc.
The set A is bounded in fj’r and compact in @lfc. Moreover,

ﬁ — H+K,
the kernel K of the problem (3.1) is non—empty and bounded in F°.
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We also have 2 C By(R), where By(R) is a ball in F° with a sufficiently large radius R.
Finally, the analogue of Corollary 2.1 holds for the trajectory attractor 2.

Corollary 3.1. For each bounded set B C K in ]-"_l; we have

diStLQ(OJM;Hl—é) (HQJ\/]S(T)B, H[),MK) — 0,

4. PRELIMINARY LEMMAS: CASE < 1—«

We consider auxiliary elliptic problems

)\Av€+h<x,—) =0, x € g,

€

v, % o a

(;; + 5519(@, g)v6 =cl7g(2, g), x eIy, (4.1)
v, = 0, x €Iy,

where x = (Z,z,4) and
Mug +h(z) =0, x€Q,
Vo = 0, S 39,

and h(z) is defined in (2.3).
The next lemma was proved in [18].

Lemma 4.1. Let § <1 — q, F(i,é),g(i,f),p(:ﬁ,f) be periodic in & smooth functions, \ be

T

a given matriz, the function h(z,2) satisfy the condition (2.3). Then for all sufficiently small
e > 0 the problem (4.1) has no unique solution. The family of solutions is uniformly bounded
in the V.—norm and the strong convergence

Ve — U (4.3)
holds in V. as ¢ — 0.

Lemma 4.2. The following statements are true.
(1) All solutions u(t) to (2.1) satisfy

Ju (O < u(O)]2e ™ + 2, (440
41 N t+1
= [ o) ds 20050 [ I, o, ds
¢ i=1
t
t+1 (4.5)

+%mﬁﬂ/wuwamw<wmm+%,
t

where 1 > 0 is a constant independent of €. Positive constants Ry and Ry depend on My,
see (2.4), and are independent of u.(0) and e.

(2) All solutions u(t) to (3.1) satisfy the same inequalities (4.4) and (4.5) with the norms in
the functional spaces on the domain ) instead of €.

Proof. We give a brief outline of the proof, for detail see |26, Ch. XV, Sect. 3, Prop. 3.1, Cor.
3.1]. The integral over the part of the boundary I'] in the left hand side of (2.9) is nonnegative
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since the matrix p is positive definite. We integrate (2.9) with respect to t. Then, to estimate

the terms
sl_a/g-wds and eﬁ/pua~wds

Iy I

we use the Cauchy inequality and the compactness of the embedding Ly(I'5) € V.. For other
terms we use a standard procedure, see [26, Ch. XV, Sect. 3, Prop. 3.1, Cor. 3.1|. The proof
is complete. O

5. MAIN RESULT

In this section we formulate the main result on the limiting behaviour of the trajectory
attractors 2. of reaction—diffusion systems (2.1) as € — 0 in the supercritical case § <1 — a.

Theorem 5.1. The convergence
A. - A as ¢ — 0+ (5.1)
holds in the topological space @ljc, and
K.—=K as e¢—=0+ in 0O (5.2)

Proof. Tt is easy to see that (5.2) implies (5.1). Hence, it is sufficient to prove (5.2), i.e., for
every neighbourhood O(K) in ©'¢ there exists e, = £,(O) > 0 such that

K.CcOK) for e<ey. (5.3)

Assume that (5.3) is false. Then there exists a neighbourhood O'(K) in ©'°, a sequence
e, = 0+ (kK — 00), and a sequence u., () = u., (t) € K., such that

u., ¢ O'(K) forall keN.

The function u, (x,t), t € R is a solution to

( Ou. x z
8tk :)\Auak —a(x,a) f(uak)‘{‘h(ﬂf,;) , CL’EQSM
Oue 2 o gn B . (5.4)
a — +€kp< gk)ué:k :Fji g(x7a>7 IGFlk,
k Ugy, = OJ €T E F27

where f < 1 — a. To get the uniform in ¢ estimate of the solution, we use Lemma 4.2. By
means of (4.4) and (4.5) we find that the sequence {u., (z,t)} is bounded in F°

1

t+1 2

[tey |70 = sup [|ue, (£)]| + sup /Iluak(ﬁ)llfdﬁ
teR teR
t

|

t+1 P t+1
+ sup /Husk(ﬁ)H]ipd?9 +e sup// us z,9) - uc(z,9)dsdd  (5.5)
teR / ) i
t+ 8 q a
+ sup /Hﬁ(ﬁ) Wl <0 keN
teR / ot
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We recall that 5 < 1—a. The constant C' is independent of €. Hence, there exists a subsequence
{uc (z,t)} C {uc,(z,1)} such that uu (z,t) — U(z,t) as k — oo in ©"°. Here u(x,t) € F* and
u(t) satisfies (5.5) with the same constant C. Because of (5.5) we get

U (r,t) = u(z,t) as k— o0
weakly in LY(R; V), weakly in L (R; Lp) amd *-weakly in LY(R4; H), and

dug (,1) _ Ou(x, 1)
ot ot
weakly in L% (R;H™"). We claim that u(z,t) € K. We have [|ul|z < C. Hence, we have to

verify that w(z,t) = uo(z,t), i.e., that it is a weak solution to (3.1).
Using (5.5) and (2.3), we find

as x — 0

_ag;k ~ Mg, — he, (z) % — M= h(z) as ko0 (5.6)

in the space D' (R;H_T) since the differentiation operators are continuous in the space of
distributions.
We are going to prove that

a (x é) flus,) —a(x) f(@) as k— oo (5.7)

weakly in LY (R;Lg). We fix an arbitrary number M > 0. The sequence {u.,(z,t)}
is bounded in L, (—M, M;L;), see (5.5). Then, due to (2.5), the sequence {f(uc(t))} is

bounded in Lq (—M, M; Lg). Since {u, (x,¢)} is bounded in Ly (—M, M; V) and {6“% (t)} is

at
bounded in Lq (—M, M;H™™), we can suppose that u., (z,t) — u(z,t) as k — oo strongly in
Ly (=M, M;Ls) = Ly (2%x] — M, M[) and, therefore,

ue, (x,t) = u(z,t) as k — oo for almost all (z,t) € Qx| — M, M].

Since the function f(v) is continuous in v € R, we conclude that

Flue, (2,8) = f(@(z,0) as k— oo for almost all (z,¢) € Ox] = M, M[.  (5.8)
We have
(52 St - a0 1@ = a (0 2) (10~ 100 + (o (2.2 ) ~a) 1@, (59)

Let us show that both terms in the right-hand side of (5.9) tend to zero as k — oo weakly in
Lq(—M,M;Ly) = Lq(Q x |=M, M]|). First, the sequence a <ac, %) (f(ue,) — f(u)) tends to

zero as k — oo for almost all (z,t) € Q x |—M, M|, see (5.8). Applying |34, Ch. 1, Sec. 1, Lm.
1.3], we conclude that

a (x€£> (f(uak) - f(a)) 0 as koo

k

weakly in Lq (Q X |]—M, M]). Second, the sequence (a (m, %) —d(x)) f(u) also tends to

zero a k — oo weakly in Lq (2 x |—M, M|) since a (x, i) — a(x) as k — oo *-weakly in
Loosw (—M, M;Ls) and f(u) € Lq (2 x | =M, M[). This proves (5.7).



104 G.F. AZHMOLDAEV, K.A. BEKMAGANBETOV, G.A. CHECHKIN, V.V. CHEPYZHOV

Hence, due to Lemma 4.1, see also [18], for u(x,t) = ug(z,t) we have

// d dt+//)\Vugk Vi da:dt+//a5k flue,) - dadt

—MQe, ~MQ., ~MQ.,
M

8 T o T

+ &k P\ T, — | U - dsdt — g glz,— ) -vdsdt —
Ek €k

M 5 M M

— / /uo : a—zf dxdt + / /)\Vuo -V dzdt + / /6($)f(u0) ) dxdt
-M Q -M Q -M Q

as k — oo.

Using (5.8), we pass to the limit in Equation (5.4) as k& — oo in the space D'(R;H™")
and obtain that the function ug(x,t) satisfies the integral identity (3.2) and, therefore, it is a
complete trajectory of Equation (3.1). Hence, ug € K.

We have proved above that u., — ug as k — oo in ©°¢. The assumption u., ¢ O'(K) (see
[17]) implies uo ¢ O'(K), and, hence, ug ¢ K. We arrive at the contradiction that completes
the proof. O

Using the compact embeddings (2.10) and (2.11), we can improve the convergence (5.1).

Corollary 5.1. For each 0 < 6 <1 and for all M >0
disty,, (o, apm1-5) (o, Ae, o 0 A) — 0, (5.10)
dIStC([O’M];HﬂS) (I—[()Jwglg7 HO’]V[Ql) —0, e—=0+. (511)
To prove (5.10) and (5.11), we reproduce the proof of Theorem 5.1 replacing the topology of
0 to that of L¢(R,; H!™®) or C¢(R,; H™).
Finally, we consider the Cauchy problem for reaction—diffusion systems, for which the unique-

ness theorem is true. It sufficient to assume that the nonlinear term f(u) in (2.1) satisfies the
condition

(f(v1) = f(vg),v1 — v3) = —Clvy —va|* for each vy, v, € R™, (5.12)

see [25], [26]. Tt was proved in [25] that if (5.12) is true, then (2.1) and (3.1) generate dynamical
semigroups acting in the spaces of initial data H. and H, possessing global attractors .A. and
A being bounded in the spaces V. and V| respectively (see also [40], [6]). Moreover,

A. = {u(0) | v e .}, A = {u(0) | u €A}
The convergence (5.11) implies the following statement.
Corollary 5.2. Under the assumptions of Theorem 5.1 the convergence
distg-s (A, A) = 0, e — 0+,
holds.
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