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ON ONE METHOD OF RATIONAL APPROXIMATIONS OF

RIEMANN — LIOUVILLE TYPE INTEGRAL ON SEGMENT

P.G. POTSEIKO, Y.A. ROVBA

Abstract. We study rational approximations of functions defined by a Riemann — Liou-
ville integral on the interval [−1, 1] with a density belonging to some classes of continuous
functions. As the approximation apparatus, the Riemann — Liouville type integral with
a density being a rational Fourier — Chebyshev integral operator serves. We find upper
bounds for approximations of the Riemann — Liouville type integral with a bounded density,
which depends on the poles and the position of a point in the segment.
As a separate problem we study of approximations of Riemann — Liouville type integrals

with a density being a function with a power singularity. We obtain uniform upper bounds
for approximations with a certain majorant that depends on the position of a point in a
segment. We find an asymptotic expression for this majorant, which depends on the poles of
approximating rational function. We study the case, when the poles are some modifications
of the Newman parameters. We find optimal values of the parameters, for which the ap-
proximations have the greatest decay rate. The rate of best rational approximations by the
considered method is higher in comparison with the corresponding polynomial analogues.

Keywords: Riemann — Liouville integral, rational Fourier — Chebyshev integral operator,
uniform rational approximation, asymptotic estaimtes, Laplace method.
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1. Introduction

The operator of Riemann — Liouville fractional differentiation [14]

𝐼𝛼𝑡 𝑓(𝑡) =
1

Γ(𝛼)

𝑡∫︁
0

𝑓(𝜏)𝜏

(𝑡− 𝜏)1−𝛼
, 𝛼 > 0,

where Γ(·) is the Euler Gamma function, has wide applications in various fields of science
and technics [2], [5]. A number of problems in fluid mechanics, chemistry, physics and other
scientific fields are described by models using mathematical tools from the theory of fractional
calculus. As a rule, the analytical solution of these problems is difficult, and the development
of approximate methods for solving them is relevant [25], [23], [26], [28].
The functions represented by the Riemann— Liouville integral are widely used in the the-

ory of both polynomial [6], [20] and rational approximation [16], [10], [18], [17], [13]. With
their help, new classes of continuous functions were found, on which the rate of uniform ra-
tional approximation is higher than for the corresponding polynomial analogues. At the same
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time, in the approximation of Riemann — Liouville integrals, the Fourier series are employed
occasionally.
In the rational approximation, Fejer, Jackson, and Vallée Poussin integral operators [12],

[11], [19] are applied, which are analogues of well–known polynomial periodic operators based
on Fourier series and methods of their summation. In 1979, Rovba [9] introduced an integral
operator on the interval [−1, 1] associated with the Chebyshev — Markov system of rational
functions, which is a natural generalization of partial sums of the Chebyshev — polynomial
Fourier series.
Suppose we are given an arbitrary set of numbers {𝑎𝑘}𝑛𝑘=1, where either 𝑎𝑘 are real and

|𝑎𝑘| < 1 or they are complex conjugate. On the set of functions 𝑓(𝑥) summable with the
weight 1/

√
1− 𝑥2 on the segment [−1, 1] we consider the rational Fourier — Chebyshev integral

operator of order at most 𝑛, see [9],

𝑠𝑛(𝑓, 𝑥) =
1

2𝜋

+𝜋∫︁
−𝜋

𝑓(cos 𝑣)
sin𝜆𝑛(𝑢, 𝑣)

sin
𝑣 − 𝑢

2

𝑑𝑣, 𝑥 = cos𝑢, (1.1)

where

𝜆𝑛(𝑢, 𝑣) =

𝑣∫︁
𝑢

𝜆𝑛(𝑦) 𝑑𝑦, 𝜆𝑛(𝑦) =
1

2
+

𝑛∑︁
𝑘=1

1− |𝛼𝑘|2

1 + 2|𝛼𝑘| cos(𝑦 − arg𝛼𝑘) + |𝛼𝑘|2
,

𝛼𝑘 =
𝑎𝑘

1 +
√︀

1− 𝑎2𝑘
.

The branch of root is fixed by the requirement |𝛼𝑘| < 1. The operator 𝑠𝑛 sends 𝑓 into the set
R𝑛(𝐴), which consists of rational functions

𝑝𝑛 (𝑥)
𝑛∏︁

𝑘=1

(1 + 𝑎𝑘𝑥)

, 𝑝𝑛(𝑥) ∈ P𝑛,

𝐴 = (𝑎1, . . . , 𝑎𝑛), and 𝑠𝑛(1, 𝑥) ≡ 1. If 𝑎𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛, then the operator 𝑠𝑛(·, ·), is the
Dirichlet integral of polyanomial Fourier — Chebyshev series.
Gorskaya and Galimyanov developed methods for approximate calculation of the Riemann—

Liouville integral on the real axis by using orthogonal Fourier series [3], [24]. A distinctive
feature of these studies was the approach based on the representation of density of Riemann— Li-
ouville integral by a Fourier series. In our opinion, this method of approximating the Riemann—
Liouville integral has been little studied and is of scientific interest. In [8], approximations of
the Riemann— Liouville type integral on the interval [−1, 1] were introduced and investigated
by a method based on representing its density by partial sums of the Fourier — Chebyshev
polynomial series. An integral representation of approximations was established and estimates
for pointwise and uniform approximations were obtained in the case, when the density belongs
to some classes of continuous functions on a segment.
The aim of this paper is to study rational approximations of the Riemann — Liouville type

integral on the interval [−1, 1] by a method based on the representation of its density by the
rational Fourier— Chebyshev integral operator (1.1). We obtain an integral representation for
the approximations and their pointwise and uniform estimates. The dependence of estimates
on the choice of poles of the approximating function is established. We find estimates for
uniform rational approximations in the case when the poles represent some modifications of the
Newman parameters.
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2. Riemann — Liouville integral on segment

We consider the class of functions

𝑓(𝑥) =
1

Γ(𝑟)

𝑥∫︁
−1

(𝑥− 𝑡)𝑟−1𝜙(𝑡)
𝑑𝑡√
1− 𝑡2

, 𝑥 ∈ [−1, 1], 𝑟 ∈ [1,+∞). (2.1)

It is obvious that the integral in the right hand side is a Riemann— Liouville type integral on
the interval [−1, 1] with density 𝜙(𝑡) ∈ 𝐶[−1, 1]. It easily follows from (2.1) that

𝜙(𝑥) =
√
1− 𝑥2𝑓 (𝑟)(𝑥), 𝑟 = 1, 2, . . . .

Suppose that the density of integral (2.1) is represented by a rational Fourier — Chebyshev
integral operator (1.1) Then the operator

𝑠𝑛(𝜙, 𝑥) =
1

Γ(𝑟)

𝑥∫︁
−1

(𝑥− 𝑡)𝑟−1𝑠𝑛(𝜙, 𝑡)
𝑑𝑡√
1− 𝑡2

, 𝑥 ∈ [−1, 1], (2.2)

defines some function, rational for 𝑟 = 1, 2, . . . , with the same poles as 𝑠𝑛(𝜙, 𝑡). We introduce
the notation

𝜀𝑛(𝜙, 𝑥,𝐴) = 𝑓(𝑥)− 𝑠𝑛(𝜙, 𝑥), 𝑥 ∈ [−1, 1],

𝜀𝑛(𝜙,𝐴) = ‖𝑓(𝑥)− 𝑠𝑛(𝜙, 𝑥)‖𝐶[−1,1] , 𝑛 ∈ N. (2.3)

We suppose that 𝛼1 = 𝛼2 = . . . = 𝛼𝑝 = 0, 𝑝 = [𝑟 − 1], where [·] denotes the integer part of a
number. Let us study the quantity 𝜀𝑛(𝜙, 𝑥,𝐴).

Theorem 2.1. For each 𝑟 ∈ [1,+∞) the approximations of the Riemann— Liouville type

integral (2.1) on the interval [−1, 1] by the operator (2.2) satisfy the integral representation

𝜀𝑛(𝜙, 𝑥,𝐴) =
21−𝑟

𝜋Γ(𝑟)

𝜋∫︁
−𝜋

𝜙(cos 𝑣)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

⎯⎸⎸⎷ 𝑛∏︁
𝑘=1

𝑡2 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2
1 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2𝑡2

· (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2√︀

1− 2𝑡 cos(𝑣 − 𝑢) + 𝑡2
sin𝜓𝑛(𝑥, 𝑡, 𝑣) 𝑑𝑡 𝑑𝑣, 𝑥 = cos𝑢, 𝜃𝑘 = arg𝛼𝑘,

(2.4)

where

𝜓𝑛(𝑥, 𝑡, 𝑣) = arg
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
, 𝜔(𝜁) =

𝑛∏︁
𝑘=1

𝜁 + 𝛼𝑘

1 + 𝛼𝑘𝜁
, 𝜉 = e𝑖𝑢,

Γ(·) is the Euler Gamma function.

Proof. It is known [9] that the rational Fourier — Chebyshev integral operator satisfies the
representation

𝑠𝑛(𝜙, 𝑡) =
1

2𝜋

𝜋∫︁
0

𝜙(cos 𝑣)𝐷𝑛(𝑣, 𝜏) 𝑑𝑣, 𝑡 = cos 𝜏, 𝑛 = 0, 1, . . . , (2.5)

where

𝐷𝑛(𝑣, 𝜏) =

𝜁
𝜔(𝜁)

𝜔(𝑧)
− 𝑧

𝜔(𝑧)

𝜔(𝜁)

𝜁 − 𝑧
+

𝜁𝑧𝜔(𝜁)𝜔(𝑧)− 1

𝜔(𝜁)𝜔(𝑧)

𝜁𝑧 − 1
, 𝑧 = e𝑖𝜏 , 𝜁 = e𝑖𝑣,
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and the function 𝜔(·) is defined in the formulation of the theorem. We substitute this repre-
sentation into (2.2) and use the Fubini theorem to interchange the integration order

𝑠𝑛(𝜙, 𝑥) =
1

2𝜋Γ(𝑟)

𝜋∫︁
0

𝜙(cos 𝑣)𝐼𝑛(𝑣, 𝑥) 𝑑𝑣, 𝑥 ∈ [−1, 1], (2.6)

where

𝐼𝑛(𝑣, 𝑥) =

𝑥∫︁
−1

(𝑥− 𝑡)𝑟−1𝐷𝑛(𝑣, 𝜏)
𝑑𝑡√
1− 𝑡2

, 𝑡 = cos 𝜏.

We transform the inner integral 𝐼𝑛(𝑣, 𝑥) by making the change of variable 𝑡 = cos 𝜏

𝐼𝑛(𝑣, 𝑥) =

𝜋∫︁
𝑢

(cos𝑢− cos 𝜏)𝑟−1𝐷𝑛(𝑣, 𝜏) 𝑑𝜏, 𝑥 = cos𝑢.

The integrand is even and hence,

𝐼𝑛(𝑣, 𝑥) =
1

2

∫︁
[−𝜋,−𝑢]⊔[𝑢,𝜋]

(cos𝑢− cos 𝜏)𝑟−1𝐷𝑛(𝑣, 𝜏) 𝑑𝜏, 𝑥 = cos𝑢.

Passing to integration over the variable 𝑧, 𝑧 = e𝑖𝜏 , in the integral in the right hand side, we
have

𝐼𝑛(𝑣, 𝑥) =
(−1)𝑟−1

2𝑟𝑖

∫︁
Γ

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟𝐷𝑛(𝑣, 𝜏)
𝑑𝑧

𝑧
, 𝜉 = e𝑖𝑢,

where Γ the arc of unit circumference from the point 𝜉 to the point 1/𝜉 passed counterclockwise,
see Figure 1.
It is obvious that for a fixed value of the parameter 𝑣 the integral 𝐼𝑛(𝑣, 𝑥) is a function of

the parameter 𝑥 with first order poles at the points (see (1.1))

𝑎𝑘 = −
(︂

2𝑧𝑘
(1 + 𝑧2𝑘)

)︂−1

, 𝑘 = 1, 2, . . . , 𝑛.

This is why it is sufficient to study the integral 𝐼𝑛(𝑥, 𝑣, 𝜌), which differs from 𝐼𝑛(𝑥, 𝑣) by 𝜁 = 𝜌e𝑖𝑣,
𝜌 ∈ (0, 1), and then to use the identity

𝐼𝑛(𝑣, 𝑥) = lim
𝜌→1

𝐼𝑛(𝑣, 𝑥, 𝜌). (2.7)

We represent the integral in 𝐼𝑛(𝑣, 𝑥, 𝜌) as a sum of four integrals

𝐼𝑛(𝑣, 𝑥, 𝜌) =
(−1)𝑟−1

2𝑟𝑖

[︁
𝜔(𝜁)𝐽1 − 𝜁𝜔(𝜁)𝐽2 + 𝜔(𝜁)𝐽3 − 𝜁𝜔(𝜁)𝐽4

]︁
, (2.8)

where

𝐽1 =

∫︁
Γ

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧, 𝐽2 =

∫︁
Γ

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧,

𝐽3 =

∫︁
Γ

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 1
𝜁

𝜔(𝑧) 𝑑𝑧, 𝐽4 =

∫︁
Γ

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 1
𝜁
)𝑧𝑟𝜔(𝑧)

𝑑𝑧.

We note that in the case when the parameter 𝑟, 𝑟 ∈ (1,+∞), is not natural, the integrands of
each of the integrals have branching points 𝑧 = 0, 𝑧 = 𝜉, 𝑧 = 𝜉 and 𝑧 = ∞. If 𝑟 = 1, 2, . . . , then
the integrands are rational functions of the integration variable and the reasoning in this case
is simpler. Since, obviously, the approximations (2.3) have a similar integral representation, we
single out single–valued branches of multivalued functions only if 𝑟 ∈ (1,+∞)∖N.
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Figure 1. The contour 𝐶 for the integral 𝐽1.

We transform each of the four integrals in (2.8) separately. Let us study the integral 𝐽1. We
fix the parameter 𝜉 and consider the domain bounded by the contour on Figure 1

𝐶 = 𝐶1 ∪ Γ ∪ 𝐶−
2 ∪ 𝐶−

𝛿 ,

where

𝐶1 = {𝑧 : 𝑧 = 𝜉𝑡, 𝑡 ∈ [𝛿, 1]} , 𝐶2 =
{︀
𝑧 : 𝑧 = 𝜉𝑡, 𝑡 ∈ [𝛿, 1]

}︀
,

𝐶𝛿 =
{︀
𝑧 : 𝑧 = 𝛿e𝑖𝜏 , 𝜏 ∈ [𝜃, 2𝜋 − 𝜃]

}︀
.

In this domain the function 𝑔𝑟(𝑧, 𝜉) = (𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟, splits into regular branches
fixed by the conditions 𝑔𝑎(1, e

𝑖𝜋
3 ) = e𝑖𝜋(2𝑘−1)(𝑟−1), 𝑘 ∈ Z. We choose the branch, which obeys

the condition 𝑔*𝑎(1, e
𝑖𝜋
3 ) = (−1)𝑟−1, and apply the Cauchy residue theorem to the integral 𝐽1(︃∫︁

𝐶1

+

∫︁
Γ

+

∫︁
𝐶−

2

+

∫︁
𝐶−

𝛿

)︃
(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧 = 2𝜋𝑖𝜔(𝜁)𝑟(𝜁, 𝜉),

where

𝑟(𝜁, 𝜉) =

{︃
(𝜁 − 𝜉)𝑟−1(𝜁 − 𝜉)𝑟−1𝜁1−𝑟, 𝜁 ∈ D,

0, 𝜁 /∈ D.

We consider the integral over the arc 𝐶𝛿. Making the change of variable 𝑧 = 𝛿e𝑖𝜏 , we easily get∫︁
𝐶𝛿

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧

= 𝑖𝛿𝑝+2−𝑟

𝑢∫︁
−𝑢

(𝛿e𝑖𝜏 − 𝜉)𝑟−1(𝛿e𝑖𝜏 − 𝜉)𝑟−1e(𝑝+2−𝑟)𝑖𝜏

𝛿e𝑖𝜏 − 𝜁

𝑛∏︁
𝑘=𝑝+1

𝛿e𝑖𝜏 + 𝛼𝑘

1 + 𝛼𝑘𝛿e𝑖𝜏
𝑑𝜏.

Since by the assumption 𝑝+ 2− 𝑟 > 0, as 𝛿 → 0 we arrive at the asymptotic identity∫︁
𝐶𝛿

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧 ∼ −2𝑖 sin(𝑝+ 2− 𝑟)𝑢

𝜁
𝛿𝑝+2−𝑟

𝑛∏︁
𝑘=𝑝+1

𝛼𝑘 −→
𝛿→0

0.
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At the same time we find
𝜉∫︁

0

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧 + 𝐽1 +

0∫︁
𝜉

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟

𝑧 − 𝜁
𝜔(𝑧) 𝑑𝑧 = 2𝜋𝑖𝜔(𝜁)𝑟(𝜁, 𝜉),

where the first and third integrals are taken over the corresponding rays of the complex plane.
In the first integral we make the change of variable 𝑧 = 𝜉𝑡, and the change 𝑧 = 𝜉𝑡 in the

third integral and we arrive at the expression

𝐽1 = −
1∫︁

0

(𝑡− 1)𝑟−1𝑡1−𝑟

[︂
𝜉(𝜉𝑡− 𝜉)𝑟−1

𝜉𝑡− 𝜁
𝜔(𝜉𝑡)− 𝜉(𝜉𝑡− 𝜉)𝑟−1

𝜉𝑡− 𝜁
𝜔(𝜉𝑡)

]︂
𝑑𝑡+ 2𝜋𝑖𝜔(𝜁)𝑟(𝜁, 𝜉). (2.9)

We proceed to studying the integral 𝐽2. As above, we fix 𝜉 and consider the domain 𝐷
enveloped by the contour shown in Figure 2,

𝐶 = 𝐶1 ∪ 𝐶𝑅 ∪ 𝐶−
2 ∪ Γ−,

where

𝐶1 = {𝑧 : 𝑧 = 𝜉𝑡, 𝑡 ∈ [1, 𝑅]} , 𝐶2 =
{︀
𝑧 : 𝑧 = 𝜉𝑡, 𝑡 ∈ [1, 𝑅]

}︀
,

𝐶𝑅 =
{︀
𝑧 : 𝑧 = 𝑅e𝑖𝜏 , 𝜏 ∈ [𝜃, 2𝜋 − 𝜃]

}︀
.

Figure 2. The contour 𝐶 for the integral 𝐽2.

In this domain the function

𝑔𝑟(𝑧, 𝜉) = (𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1𝑧1−𝑟,

splits into regular branches. Arguing as in the case of the integral 𝐽1, we single out its single–
valued branch. Applying the Cauchy integral theorem to the integral 𝐽2, we obtain⎛⎜⎝∫︁

𝐶1

+

∫︁
𝐶𝑅

+

∫︁
𝐶−

2

+

∫︁
Γ−

⎞⎟⎠ (𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧 = 0. (2.10)
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We consider the integral over the arc 𝐶𝑅. Making the change of variable 𝑧 = 𝑅e𝑖𝜏 , we get∫︁
𝐶𝑅

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧 =

−𝑢∫︁
𝑢

(𝑅e𝑖𝜏 − 𝜉)𝑟−1(𝑅e𝑖𝜏 − 𝜉)𝑟−1

(𝑅e𝑖𝜏 − 𝜁)(𝑅e𝑖𝜏 )𝑟𝜔(𝑅e𝑖𝜏 )
𝑅𝑖e𝑖𝜏 𝑑𝜏

=
𝑖

𝑅𝑝+2−𝑟

−𝑢∫︁
𝑢

(︀
e𝑖𝜏 − 𝜉

𝑅

)︀𝑟−1
(︁
e𝑖𝜏 − 𝜉

𝑅

)︁𝑟−1

(︀
e𝑖𝜏 − 𝜁

𝑅

)︀
e𝑖𝜏(𝑟−1)

𝑛∏︁
𝑘=𝑝+1

1
𝑅
+ 𝛼𝑘e

𝑖𝜏

e𝑖𝜏 + 𝛼𝑘

𝑅

𝑑𝜏.

Passing to the limit as 𝑅 → ∞, in view of the inequality 𝑝+ 2− 𝑟 > 0 we obtain∫︁
𝐶𝑅

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧 ∼ − 2𝑖

(2− 𝑟)𝑅𝑝+2−𝑟
sin((𝑝+ 2− 𝑟)𝜃)

𝑛∏︁
𝑘=𝑝+1

𝛼𝑘 −→ 0
𝑅→∞

.

At the same time by (2.10) we find

+𝜉∞∫︁
𝜉

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧 +

𝜉∫︁
+𝜉∞

(𝑧 − 𝜉)𝑟−1(𝑧 − 𝜉)𝑟−1

(𝑧 − 𝜁)𝑧𝑟𝜔(𝑧)
𝑑𝑧 − 𝐽2 = 0,

where the first and second integrals are taken over the corresponding rays of the complex plane.
By making the changes 𝑧 = 𝜉𝑡 and 𝑧 = 𝜉𝑡 in the first and second integrals, respectively, we
obtain

𝐽2 =

+∞∫︁
1

(𝑡− 1)𝑟−1𝑡−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1

(𝜉𝑡− 𝜁)𝜔(𝜉𝑡)
− (𝜉𝑡− 𝜉)𝑟−1

(𝜉𝑡− 𝜁)𝜔(𝜉𝑡)

]︂
𝑑𝑡.

One more change of variable 𝑡 ↦→ 1/𝑡 gives

𝐽2 = (−1)1−𝑟

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉 − 𝜁𝑡
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉 − 𝜁𝑡

]︂
𝑑𝑡. (2.11)

Proceeding similarly for the integrals 𝐽3 and 𝐽4, we conclude

𝐽3 = −
1∫︁

0

(𝑡− 1)𝑟−1𝑡1−𝑟

[︃
𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉𝑡− 1
𝜁

− 𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉𝑡− 1
𝜁

]︃
𝑑𝑡, (2.12)

𝐽4 =(−1)𝑟−1

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︃
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉 − 𝑡
𝜁

− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝜉 − 𝑡
𝜁

]︃
𝑑𝑡

− 2𝜋𝑖𝜁𝜔(𝜁)𝑟(𝜁, 𝜉).

(2.13)

The representations (2.8), (2.9), (2.11), (2.12) and (2.13) imply

𝐼𝑛(𝑣, 𝑥, 𝜌) =− 1

2𝑟𝑖

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝜉𝑡− 𝜁)𝜔(𝜁)
− 𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝜉𝑡− 𝜁)𝜔(𝜁)

+
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)𝜁𝜔(𝜁)

𝜉 − 𝜁𝑡
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)𝜁𝜔(𝜁)

𝜉 − 𝜁𝑡

+
𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)𝜔(𝜁)

𝜉𝑡− 1
𝜁

− 𝜉(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)𝜔(𝜁)

𝜉𝑡− 1
𝜁
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+
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝜉 − 𝑡
𝜁
)𝜁𝜔(𝜁)

− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)(︁
𝜉 − 𝑡

𝜁

)︁
𝜁𝜔(𝜁)

⎤⎦ 𝑑𝑡+ 2𝜋𝑟1(𝑢, 𝑣),

where

𝑟1(𝑢, 𝑣) =

⎧⎨⎩(cos𝑢− cos 𝑣)𝑟−1, |𝑢| < 𝑣,

0, |𝑢| > 𝑣.

By appropriate transformations the above integral is reduced to

𝐼𝑛(𝑣, 𝑥, 𝜌) =− 21−𝑟

𝑖

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)

−(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉
+

(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑡+ 2𝜋𝑟1(𝑢, 𝑣), 𝜁 = 𝜌e𝑖𝑣, 𝜉 = e𝑖𝑢.

For each fixed 𝑡 ∈ (0, 1) the expression in the square brackets of the integrand is continuous in
the variable 𝜁 and hence, the passage to the limit (2.7) is valid. In this case, the representation
(2.6) yields

𝑠𝑛(𝜙, 𝑥) =− 1

2𝑟𝜋𝑖Γ(𝑟)

𝜋∫︁
0

𝜙(cos 𝑣)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)

−(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉
+

(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑡 𝑑𝑣

+
1

Γ(𝑟)

𝜋∫︁
𝑢

𝜙(cos 𝑣)(cos𝑢− cos 𝑣)𝑟−1 𝑑𝑣, 𝑥 ∈ [−1, 1].

The second integral in the right hand side is the Riemann — Liouville type integral (2.1). By
the relation (2.3) this yields

𝜀𝑛(𝜙, 𝑥,𝐴) =
1

2𝑟𝜋𝑖Γ(𝑟)

𝜋∫︁
0

𝜙(cos 𝑣)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)

−(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉
+

(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑡 𝑑𝑣, 𝜉 = e𝑖𝑢, 𝑥 = cos𝑢.

We represent the outer integral as the sum of two integrals, respectively, by the term in the
square bracket of the integrand and then after a simple change of variable 𝑣 ↦→ −𝑣 we arrive
at the expression

𝜀𝑛(𝜙, 𝑥,𝐴) =
1

2𝑟𝜋𝑖Γ(𝑟)

𝜋∫︁
−𝜋

𝜙(cos 𝑣)

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑡 𝑑𝑣.

(2.14)

The expressions in square brackets are complex conjugate, and to arrive at (2.4) it is sufficient to
perform simple transformations in the found integral representation. The proof is complete.
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In Theorem 2.1 we let 𝛼𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛. In this case 𝐴 = (0, 0, . . . , 0) = 𝑂, and the

quantity 𝜀𝑛(𝜙, 𝑥,𝑂) = 𝜀
(0)
𝑛 (𝜙, 𝑥) is the approximation for the Riemann — Liouville integral

(2.1) by the operator, which is the image of polynomial Fourier — Chebyshev series under the
transformation (2.2). In this case the following corollary holds.

Corollary 2.1. The integral representation

𝜀(0)𝑛 (𝜙, 𝑥) =
21−𝑟

𝜋Γ(𝑟)

𝜋∫︁
−𝜋

𝜙(cos 𝑣)

1∫︁
0

(1− 𝑡)𝑟−1𝑡𝑛+1−𝑟 (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2√︀

1− 2𝑡 cos(𝑣 − 𝑢) + 𝑡2

· sin
(︂
𝑛(𝑢− 𝑣) + arg

(𝜉𝑡− 𝜉)𝑟−1

𝑡− 𝜁𝜉

)︂
𝑑𝑡 𝑑𝑣, 𝜉 = e𝑖𝑢, 𝑥 = cos𝑢,

holds.

The latter integral representation was given in [8].

Theorem 2.2. If max
|𝑥|⩽1

|𝜙(𝑥)| = 𝐾, and the poles of approximating rational functions satisfies

the condition

𝜎𝑛(𝐴) =
𝑛∑︁

𝑘=1

(1− |𝛼𝑘|) −→
𝑛→∞

∞, (2.15)

then for each 𝑟 ∈ (1,+∞) as 𝑛→ ∞ the upper bounds

|𝜀𝑛(𝜙, 𝑥,𝐴)| ⩽
2𝐾(

√
1− 𝑥2)𝑟−1 ln𝜎𝑛(𝐴)

𝜋[𝜎𝑛(𝐴)]𝑟
+𝑂

(︂
(
√
1− 𝑥2)𝑟−1

[𝜎𝑛(𝐴)]𝑟

)︂
(2.16)

hold if 𝑥 ∈ (−1, 1) and

|𝜀𝑛(𝜙, 1, 𝐴)| ⩽
22−𝑟𝐾Γ(2𝑟 − 1)

𝜋Γ(𝑟)

ln𝜎𝑛(𝐴)

[𝜎𝑛(𝐴)]2𝑟−1
+𝑂

(︂
1

[𝜎𝑛(𝐴)]2𝑟−1

)︂
, (2.17)

for 𝑥 = 1.

Proof. We note that the condition (2.15) is necessary and sufficient for the completeness of
the system of rational functions {1/(𝑧 − 𝛼𝑘)}+∞

𝑘=1 [1]. We use the integral representation of
approximations (2.4). The 2𝜋–periodicity of the integrand in the outer integral over the variable
𝑣 implies

|𝜀𝑛(𝜙, 𝑥,𝐴)| ⩽
21−𝑟𝐾

𝜋Γ(𝑟)

2𝜋∫︁
0

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟

⎯⎸⎸⎷ 𝑛∏︁
𝑘=1

𝑡2 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2
1 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2𝑡2

· (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

| sin𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢)| 𝑑𝑡 𝑑𝑣, 𝑥 = cos𝑢, 𝜃𝑘 = arg𝛼𝑘,

where 𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢) and 𝜔(𝜁) were defined in Theorem 2.1.
Let us estimate the root of the integrand. We apply the method proposed in [22] and obtain⎯⎸⎸⎷ 𝑛∏︁

𝑘=1

𝑡2 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2
1 + 2𝑡|𝛼𝑘| cos(𝑢− 𝜃𝑘) + |𝛼𝑘|2𝑡2

⩽

⎯⎸⎸⎷ 𝑛∏︁
𝑘=1

(︂
1− (1− 𝑡2)(1− |𝛼𝑘|)

1 + |𝛼𝑘|
(1 + |𝛼𝑘|𝑡)2

)︂

⩽

⎯⎸⎸⎷ 𝑛∏︁
𝑘=1

(1− (1− 𝑡2)(1− |𝛼𝑘|))

⩽e
1
2
(𝑡2−1)𝜎𝑛(𝐴), 𝑛 = 1, 2, . . . ,

(2.18)



78 P.G. POTSEIKO, Y.A. ROVBA

where the latter inequality is implied by the estimate 1 − 𝑡 ⩽ e−𝑡 for all 𝑡. We represent the
outer integral as the sum of three integrals over the segments[︂

0,
1

𝜎𝑛(𝐴)

]︂
,

[︂
1

𝜎𝑛(𝐴)
, 2𝜋 − 1

𝜎𝑛(𝐴)

]︂
and

[︂
2𝜋 − 1

𝜎𝑛(𝐴)
, 2𝜋

]︂
,

and we find

|𝜀𝑛(𝜙, 𝑥,𝐴)| ⩽
21−𝑟𝐾

𝜋Γ(𝑟)

(︀
𝐼(1)𝑛 + 𝐼(2)𝑛 + 𝐼(3)𝑛

)︀
, (2.19)

where

𝐼(1)𝑛 =

1
𝜎𝑛(𝐴)∫︁
0

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢)| 𝑑𝑡 𝑑𝑣,

𝐼(2)𝑛 =

2𝜋− 1
𝜎𝑛(𝐴)∫︁

1
𝜎𝑛(𝐴)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢)| 𝑑𝑡 𝑑𝑣,

𝐼(3)𝑛 =

2𝜋∫︁
2𝜋− 1

𝜎𝑛(𝐴)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢)| 𝑑𝑡 𝑑𝑣.

Let us study separately each of these integrals.

The integral 𝐼
(1)
𝑛 obeys the estimate

𝐼(1)𝑛 ⩽
1

𝜎𝑛(𝐴)

1∫︁
0

(1− 𝑡)𝑟−2𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 e

1
2
(𝑡2−1)𝜎𝑛(𝐴) 𝑑𝑡, 𝑟 ∈ (1,+∞).

To study the integral in right hand side, we employ the Laplace method [4], [21]. The function
𝑆(𝑡) = 1

2
(𝑡2 − 1) increases as 𝑡 ∈ (0, 1) and hence, it attains its maximal value as 𝑡 = 1. In view

of asymptotic identities 𝑆(𝑡) ∼ 𝑡− 1,

(1− 𝑡)𝑟−2𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 ∼ (2 sin𝑢)𝑟−1(1− 𝑡)𝑟−2,

valid 𝑡→ 1, for a sufficiently small 𝜀 > 0 we find

𝐼(1)𝑛 ⩽
(2 sin𝑢)𝑟−1

𝜎𝑛(𝐴)
(1 + 𝑜(1))

1∫︁
1−𝜀

(1− 𝑡)𝑟−2e(𝑡−1)𝜎𝑛(𝐴) 𝑑𝑡, 𝑛→ ∞.

After appropriate transformations of the integral in the right hand side, in view of the condition
(2.15) it is easy to obtain

𝐼(1)𝑛 ⩽
(2 sin𝑢)𝑟−1Γ(𝑟 − 1)

[𝜎𝑛(𝐴)]𝑟
(1 + 𝑜(1)), 𝑛→ ∞. (2.20)

We proceed to the integral 𝐼
(3)
𝑛 . The change of the variable 𝑣 ↦→ 2𝜋 − 𝑣 gives

𝐼(3)𝑛 =

1
𝜎𝑛(𝐴)∫︁
0

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(𝑥, 𝑡, 𝑢− 𝑣)| 𝑑𝑡 𝑑𝑣.

This implies that the integral 𝐼
(3)
𝑛 obeys an estimate similar to that for 𝐼

(1)
𝑛 , namely,

𝐼(3)𝑛 ⩽
(2 sin𝑢)𝑟−1Γ(𝑟 − 1)

[𝜎𝑛(𝐴)]𝑟
(1 + 𝑜(1)), 𝑛→ ∞. (2.21)
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Finally, we proceed to the integral 𝐼
(2)
𝑛 and represent it as

𝐼(2)𝑛 =

⎛⎜⎜⎝
𝜋∫︁

1
𝜎𝑛(𝐴)

+

2𝜋− 1
𝜎𝑛(𝐴)∫︁

𝜋

⎞⎟⎟⎠
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟(1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2

√
1− 2𝑡 cos 𝑣 + 𝑡2

· e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(𝑥, 𝑡, 𝑣 + 𝑢)| 𝑑𝑡 𝑑𝑣.

Obviously, it is sufficient to consider the first of them, since after replacing 𝑣 ↦→ 2𝜋 − 𝑣, the
same arguing shows that the second integral satisfies the same estimate. Applying the Laplace
method to study the asymptotic behavior as 𝑛→ ∞ of the inner integral, we find

𝐽 (2)
𝑛 =

(2 sin𝑢)𝑟−1Γ(𝑟)

2 sin
𝑣

2
[𝜎𝑛(𝐴)]

𝑟

⃒⃒⃒⃒
sin

(︂
arg(𝜉 − 𝜉)𝑟−1 − arg(1− 𝜁)− arg

𝜔(𝜉𝜁)

𝜔(𝜉)

)︂⃒⃒⃒⃒
(1 + 𝑜(1)),

where 𝜉 = e𝑖𝑢, 𝜁 = e𝑖𝑣.
Taking into consideration the identities

arg(𝜉 − 𝜉)𝑟−1 =
𝜋

2
(𝑟 − 1), arg(1− 𝜁) = −𝜋

2
+
𝑣

2
,

arg
𝜔(𝜉𝜁)

𝜔(𝜉)
=

𝑣+𝑢∫︁
𝑢

𝑛∑︁
𝑘=1

1− |𝛼𝑘|2

1 + 2|𝛼𝑘| cos(𝑦 − arg𝛼𝑘) + |𝛼𝑘|2
𝑑𝑦,

we arrive at the estimate

𝐼(2)𝑛 ⩽
(2 sin𝑢)𝑟−1Γ(𝑟)

[𝜎𝑛(𝐴)]𝑟
(1 + 𝑜(1))

𝜋∫︁
1

𝜎𝑛(𝐴)

⃒⃒⃒
sin
(︁
𝜆𝑛(𝑢, 𝑣 + 𝑢)− 𝜋𝑟

2

)︁⃒⃒⃒
sin

𝑣

2

𝑑𝑣,

where 𝜆𝑛(𝑢, 𝑣 + 𝑢) is from (1.1).
Since

1

sin 𝑡
− 1

𝑡
= 𝑂(𝑡), 𝑡 ∈ [0, 𝜋/2],

we get

𝜋∫︁
1

𝜎𝑛(𝐴)

⃒⃒⃒
sin
(︁
𝜆𝑛(𝑢, 𝑣 + 𝑢)− 𝜋𝑟

2

)︁⃒⃒⃒
sin

𝑣

2

𝑑𝑣 =

𝜋∫︁
1

𝜎𝑛(𝐴)

⃒⃒⃒
sin
(︁
𝜆𝑛(𝑢, 𝑣 + 𝑢)− 𝜋𝑟

2

)︁⃒⃒⃒
𝑣

𝑑𝑣 +𝑂(1),

and therefore,

𝐼(2)𝑛 ⩽
2(2 sin𝑢)𝑟−1Γ(𝑟)

[𝜎𝑛(𝐴)]𝑟

𝜋∫︁
1

𝜎𝑛(𝐴)

⃒⃒⃒
sin
(︁
𝜆𝑛(𝑢, 𝑣 + 𝑢)− 𝜋𝑟

2

)︁⃒⃒⃒
𝑣

𝑑𝑣 +𝑂

(︂
(sin𝑢)𝑟−1

[𝜎𝑛(𝐴)]𝑟

)︂
.

This yields

𝐼(2)𝑛 ⩽
2(2 sin𝑢)𝑟−1Γ(𝑟)

[𝜎𝑛(𝐴)]𝑟

𝜋∫︁
1

𝜎𝑛(𝐴)

𝑑𝑣

𝑣
+𝑂

(︂
(sin𝑢)𝑟−1

[𝜎𝑛(𝐴)]𝑟

)︂

=
2(2 sin𝑢)𝑟−1Γ(𝑟) ln𝜎𝑛(𝐴)

[𝜎𝑛(𝐴)]𝑟
+𝑂

(︂
(sin𝑢)𝑟−1

[𝜎𝑛(𝐴)]𝑟

)︂
, 𝑛→ ∞.

(2.22)
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By the representation (2.19) and the estimates (2.20), (2.21) and (2.22) we obtain

|𝜀𝑛(𝜙, 𝑥,𝐴)| ⩽
2𝐾(sin𝑢)𝑟−1

𝜋

ln𝜎𝑛(𝐴)

[𝜎𝑛(𝐴)]𝑟
+𝑂

(︂
(sin𝑢)𝑟−1

[𝜎𝑛(𝐴)]𝑟

)︂
, 𝑛→ ∞.

The latter relation yields the estimate (2.16).
To prove the inequality (2.17) in the representation (2.4) we let 𝑥 = 1, which corresponds to

𝑢 = 0. Then

𝜀𝑛(𝜙, 1, 𝐴) =
21−𝑟

𝜋Γ(𝑟)

2𝜋∫︁
0

𝜙(cos 𝑣)

1∫︁
0

(1− 𝑡)2𝑟−2𝑡1−𝑟

√
1− 2𝑡 cos 𝑣 + 𝑡2

·

⎯⎸⎸⎷ 𝑛∏︁
𝑘=1

𝑡2 + 2𝑡|𝛼𝑘| cos 𝜃𝑘 + |𝛼𝑘|2
1 + 2𝑡|𝛼𝑘| cos 𝜃𝑘 + |𝛼𝑘|2𝑡2

sin𝜓𝑛(1, 𝑡, 𝑣) 𝑑𝑡 𝑑𝑣, 𝜃𝑘 = arg𝛼𝑘,

where 𝜓𝑛(1, 𝑡, 𝑣) was defined in Theorem 2.1.
Using the estimate (2.18) and again representing the outer integral as a sum of three integrals,

we find

|𝜀𝑛(𝜙, 1, 𝐴)| ⩽
21−𝑟𝐾

𝜋Γ(𝑟)

⎛⎜⎜⎝
1

𝜎𝑛(𝐴)∫︁
0

+

2𝜋− 1
𝜎𝑛(𝐴)∫︁

1
𝜎𝑛(𝐴)

+

2𝜋∫︁
2𝜋− 1

𝜎𝑛(𝐴)

⎞⎟⎟⎠ 𝐼(4)𝑛 (𝑣) 𝑑𝑣, (2.23)

where

𝐼(4)𝑛 (𝑣) =

1∫︁
0

(1− 𝑡)2𝑟−2𝑡1−𝑟

√
1− 2𝑡 cos 𝑣 + 𝑡2

e
1
2
(𝑡2−1)𝜎𝑛(𝐴)| sin𝜓𝑛(1, 𝑡, 𝑣)| 𝑑𝑡.

Now the problem is reduced to studying the asymptotic behavior of each of the three terms in
estimate (2.23). Using similar methods that were used to prove the inequality (2.16), we obtain
(2.17). The proof is complete.

In Theorem 2.2 we let 𝛼𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛. In this case 𝐴 = (0, 0, . . . , 0) = 𝑂 and the

quantity 𝜀𝑛(𝜙, 𝑥,𝑂) = 𝜀
(0)
𝑛 (𝜙, 𝑥) is the approximation for the Riemann — Liouville type integral

(2.1) by a polynomial analogue of the operator (2.2).

Corollary 2.2. If max
|𝑥|⩽1

|𝜙(𝑥)| = 𝐾, then for 𝑟 ∈ (1,+∞) as 𝑛→ ∞ the upper estimates

|𝜀(0)𝑛 (𝜙, 𝑥)| ⩽ 2𝐾(
√
1− 𝑥2)𝑟−1 ln𝑛

𝜋𝑛𝑟
+𝑂

(︂
(
√
1− 𝑥2)𝑟−1

𝑛𝑟

)︂
hold if 𝑥 ∈ (−1, 1) and

|𝜀(0)𝑛 (𝜙, 1)| ⩽ 22−𝑟𝐾Γ(2𝑟 − 1)

𝜋Γ(𝑟)

ln𝑛

𝑛2𝑟−1
+𝑂

(︂
1

𝑛2𝑟−1

)︂
,

as 𝑥 = 1, where Γ(·) is the Euler Gamma function.

A similar in order estimate is contained in [8]. We note that the estimate in Corollary 2.2
is less accurate in the constant. To improve the results, it is seems that we need to seek other
ways for estimating (2.22).
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3. Approximations of a Riemann — Liouville type integral

with a density having a power singularity

We are going to study the approximations (2.3) in the case 𝜙𝛾(𝑥) = (1 − 𝑥)𝛾, 𝛾 ∈ (0,+∞),
that the approximations of the functions

𝑓𝛾(𝑥) =
1

Γ(𝑟)

𝑥∫︁
−1

(𝑥− 𝑡)𝑟−1(1− 𝑡)𝛾
𝑑𝑡√
1− 𝑡2

, 𝑥 ∈ [−1, 1], 𝑟 ∈ (1,+∞). (3.1)

We introduce the notation

𝜀𝑛(𝜙𝛾, 𝑥, 𝐴) = 𝑓𝛾(𝑥)− 𝑠𝑛(𝜙𝛾, 𝑥), 𝑥 ∈ [−1, 1],

𝜀𝑛(𝜙𝛾, 𝐴) = ||𝑓𝛾(𝑥)− 𝑠𝑛(𝜙𝛾, 𝑥)||𝐶[−1,1], 𝑛 ∈ N.

We suppose that

𝛼𝑘 ∈ [0, 1), 𝑘 = 1, 2, . . . , 𝑛,

and

𝛼1 = 𝛼2 = . . . = 𝛼𝑝 = 0, 𝑝 = max {[𝛾], [𝑟 − 1]} ,
where [·] denotes the integer part of a number.

Theorem 3.1. For each 𝑟 ∈ (1,+∞) and 𝛾 ∈ (0,+∞), for the approximations of integral of

the Riemann — Liouville type integral (3.1) on the interval [−1, 1] by the image of the rational

Fourier — Chebyshev integral operator (2.2) we have

1) the integral representation

𝜀𝑛(𝜙𝛾, 𝑥, 𝐴) =
22−𝑟−𝛾 sin 𝜋𝛾

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾𝜔(𝑦)

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟 (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 𝜋𝑛(𝑡, 𝑥, 𝐴) sinΩ𝑛(𝑥, 𝑡, 𝑦)√︀

1− 2𝑦𝑡 cos𝑢+ 𝑡2𝑦2
𝑑𝑡 𝑑𝑦,

(3.2)

where

𝜔(𝑦) =
𝑛∏︁

𝑘=1

𝑦 − 𝛼𝑘

1− 𝛼𝑘𝑦
, 𝜋𝑛(𝑡, 𝑥, 𝐴) =

𝑛∏︁
𝑘=1

√︃
𝑡2 − 2𝛼𝑘𝑡 cos𝑢+ 𝛼2

𝑘

1− 2𝑡𝛼𝑘 cos𝑢+ 𝑡2𝛼2
𝑘

,

Ω𝑛(𝑥, 𝑡, 𝑦) = arg
(𝜉𝑡− 𝜉)𝑟−1𝜉𝜔(𝜉𝑡)

1− 𝑡𝑦𝜉
, 𝜉 = e𝑖𝑢, 𝑥 = cos𝑢;

2) estimate for pointwise approximations

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴)| ⩽
22−𝑟−𝛾| sin 𝜋𝛾|

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾|𝜔(𝑦)|

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟 (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 𝜋𝑛(𝑡, 𝑥, 𝐴)√︀

1− 2𝑦𝑡 cos𝑢+ 𝑡2𝑦2
𝑑𝑡 𝑑𝑦;

(3.3)

3) uniform in 𝑥 ∈ (−1, 1) estimate of approximations

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴)| ⩽ (
√
1− 𝑥2)𝑟−1𝜀*𝑛(𝜙𝛾, 𝐴), 𝑛 ∈ N, (3.4)
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where

𝜀*𝑛(𝜙𝛾, 𝐴) =
21−𝛾| sin 𝜋𝛾|
𝜋[𝜈𝑛(𝐴)]𝑟

(1 + 𝑜(1))

1∫︁
0

(1− 𝑦)2𝛾−1𝑦−𝛾|𝜔(𝑦)| 𝑑𝑦, (3.5)

𝜈𝑛(𝐴) =
𝑛∑︁

𝑘=1

1− 𝛼𝑘

1 + 𝛼𝑘

;

4) estimate of approximations for 𝑥 = 1

|𝜀𝑛(𝜙𝛾, 1, 𝐴)| ⩽
22−𝑟−𝛾| sin𝜋𝛾|| sin 𝜋𝑟|

𝜋Γ(𝑟)

1∫︁
0

(1−𝑦)2𝛾−1𝑦−𝛾|𝜔(𝑦)| 𝑑𝑦
1∫︁

0

(1−𝑡)2𝑟−2𝑡1−𝑟|𝜔(𝑡)| 𝑑𝑡. (3.6)

Proof. We employ the integral representation of approximation established in (2.14). For the
density 𝜙𝛾(𝑥) it becomes

𝜀𝑛(𝜙𝛾, 𝑥, 𝐴) =
1

2𝑟𝜋𝑖Γ(𝑟)

𝜋∫︁
−𝜋

(1− cos 𝑣)𝛾
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟

·
[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑡 𝑑𝑣, 𝜁 = e𝑖𝑣, 𝜉 = e𝑖𝑢, 𝑥 = cos𝑢.

Using the Fubini theorem, we interchange the integration order

𝜀𝑛(𝜙𝛾, 𝑥, 𝐴) =
1

2𝑟𝜋𝑖Γ(𝑟)

1∫︁
0

(1− 𝑡)𝑟−1𝑡1−𝑟𝐼𝑛(𝑡, 𝑥) 𝑑𝑡, (3.7)

where

𝐼𝑛(𝑡, 𝑥) =

𝜋∫︁
−𝜋

(1− cos 𝑣)𝛾
[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝑣, 𝜁 = e𝑖𝑣. (3.8)

Let us transform the integral 𝐼𝑛(𝑡, 𝑥). In order to do this, we pass to the integration in the
variable 𝜁

𝐼𝑛(𝑡, 𝑥) =
(−1)𝛾

2𝛾𝑖

∮︁
Γ

(1− 𝜁)2𝛾𝜁−𝛾

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

(𝑡− 𝜁𝜉)𝜔(𝜁)
− (𝜉𝑡− 𝜉)𝑟−1𝜔(𝜁)𝜔(𝜉𝑡)

𝑡− 𝜁𝜉

]︂
𝑑𝜁

𝜁
,

where Γ = {𝜁 : |𝜁| = 1} , 𝜉 = e𝑖𝑢, 𝑡 ∈ (0, 1).
We note that in the case 𝛾 ∈ (0,+∞)∖N, the integrand has branching points at 𝜁 = 0, 𝜁 = 1

and 𝜁 = ∞. We represent the latter integral as the sum of two integrals so that

𝐼𝑛(𝑡, 𝑥) = −(−1)𝛾

2𝛾𝑖

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)𝜉𝐽 (1)

𝑛 +
(𝜉𝑡− 𝜉)𝑟−1𝜔(𝜉𝑡)

𝑡
𝐽 (2)
𝑛

]︂
, (3.9)

where

𝐽 (1)
𝑛 =

∮︁
Γ

(1− 𝜁)2𝛾𝜁−𝛾

(𝜁 − 𝜉𝑡)𝜁𝜔(𝜁)
𝑑𝜁, 𝐽 (2)

𝑛 =

∮︁
Γ

(1− 𝜁)2𝛾𝜁−𝛾

𝜁 − 𝜉/𝑡
𝜔(𝜁) 𝑑𝜁.

Applying to each of the integrals the methods similar to ones employed in the proof of Theo-
rem 2.1, we find

𝐽 (1)
𝑛 = (e−2𝜋𝑖𝛾 − 1)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾

1− 𝑡𝑦𝜉
𝜔(𝑦) 𝑑𝑦, 𝐽 (2)

𝑛 = 𝜉𝑡(1− e−2𝜋𝑖𝛾)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾

1− 𝑡𝑦𝜉
𝜔(𝑦) 𝑑𝑦.
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Relation (3.9) and the latter integral representations yield

𝐼𝑛(𝑡, 𝑥) = −21−𝛾 sin 𝜋𝛾

1∫︁
0

(1−𝑦)2𝛾𝑦−𝛾𝜔(𝑦)

[︂
(𝜉𝑡− 𝜉)𝑟−1𝜉𝜔(𝜉𝑡)

1− 𝑡𝑦𝜉
− (𝜉𝑡− 𝜉)𝑟−1𝜉𝜔(𝜉𝑡)

1− 𝑡𝑦𝜉

]︂
𝑑𝑦. (3.10)

The expressions in the square brackets are mutually complex conjugate. After appropriate
calculations we find

𝐼𝑛(𝑡, 𝑥) =− 22−𝛾𝑖 sin 𝜋𝛾

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾𝜔(𝑦)

· (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 𝜋𝑛(𝑡, 𝑥, 𝐴) sinΩ𝑛(𝑥, 𝑡, 𝑦) 𝑑𝑦√︀

1− 2𝑦𝑡 cos𝑢+ 𝑡2𝑦2
,

(3.11)

where 𝜋𝑛(𝑡, 𝑥, 𝐴) and Ω𝑛(𝑥, 𝑡, 𝑦) were defined in Theorem 2.2.
The integral representations (3.7) and (3.11) yield (3.2). The estimate (3.3) is easily implied

by (3.2).
Let us prove the estimate (3.4). In order to do this, we employ the arguing from (2.18)

𝜋𝑛(𝑡, 𝑥, 𝐴) =
𝑛∏︁

𝑘=1

√︃
𝑡2 − 2𝛼𝑘𝑡 cos𝑢+ 𝛼2

𝑘

1− 2𝑡𝛼𝑘 cos𝑢+ 𝑡2𝛼2
𝑘

⩽ e
𝑡2−1

2
𝜈𝑛(𝐴),

where 𝜈𝑛(𝐴) is from (3.5). In view of the latter inequality and the estimate (3.3) we obtain

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴)| ⩽
22−𝑟−𝛾| sin 𝜋𝛾|

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾|𝜔(𝑦)|

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡1−𝑟

1− 𝑦𝑡
(1− 2𝑡 cos 2𝑢+ 𝑡2)

𝑟−1
2 e

𝑡2−1
2

𝜈𝑛(𝐴) 𝑑𝑡 𝑑𝑦, 𝑥 = cos𝑢, 𝑥 ∈ (−1, 1).

To study the asymptotic behavior of the inner integral as 𝑛 → ∞ we use the Laplace method
[4], [21]. We do not provide them because they literally reproduce the proof of the estimates
(2.20) and (2.21). After needed calculations we obtain (3.4).
By the integral representation (3.2) with 𝑥 = 1, that corresponds to 𝑢 = 0, we have

𝜀𝑛(𝜙𝛾, 1, 𝐴) =
22−𝑟−𝛾 sin 𝜋𝛾(± sin 𝜋𝑟)

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦−𝛾𝜔(𝑦)

1∫︁
0

(1− 𝑡)2𝑟−2𝑡1−𝑟

1− 𝑦𝑡
𝜔(𝑡) 𝑑𝑡 𝑑𝑦.

This integral representation easily implies the estimate (3.6). The proof is complete.

In Theorem 3.1 we let 𝛼𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛. In this case 𝐴 = (0, 0, . . . , 0) = 𝑂 and

the quantity 𝜀𝑛(𝜙𝛾, 𝑥, 𝑂) = 𝜀
(0)
𝑛 (𝜙𝛾, 𝑥) is the approximation for the function 𝑓𝛾(𝑥) on the

segment [−1, 1] by the image of partial sums of polynomial Fourier — Chebyshev series under
the transformation (2.2). Then Theorem 3.1 implies the following corollary.

Corollary 3.1. For the approximation for the function 𝑓𝛾(𝑥) on the segment [−1, 1] by the

image of partial sums of polynomial Fourier — Chebyshev series under the transformation (2.2)
we have
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1) the integral representation

𝜀(0)𝑛 (𝜙𝛾, 𝑥) =
22−𝑟−𝛾 sin 𝜋𝛾

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦𝑛−𝛾

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡𝑛+1−𝑟 (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2 sinΩ

(0)
𝑛 (𝑥, 𝑡, 𝑦)√︀

1− 2𝑦𝑡 cos𝑢+ 𝑡2𝑦2
𝑑𝑡 𝑑𝑦,

(3.12)

where

Ω(0)
𝑛 (𝑥, 𝑡, 𝑦) = (𝑛+ 1)𝑢+ arg

(𝜉𝑡− 𝜉)𝑟−1

1− 𝑦𝑡𝜉
, 𝜉 = e𝑖𝑢, 𝑥 = cos𝑢;

2) the estimate for pointwise approximations

|𝜀(0)𝑛 (𝜙𝛾, 𝑥)| ⩽
22−𝑟−𝛾| sin 𝜋𝛾|

𝜋Γ(𝑟)

1∫︁
0

(1− 𝑦)2𝛾𝑦𝑛−𝛾

·
1∫︁

0

(1− 𝑡)𝑟−1𝑡𝑛+1−𝑟 (1− 2𝑡 cos 2𝑢+ 𝑡2)
𝑟−1
2√︀

1− 2𝑦𝑡 cos𝑢+ 𝑡2𝑦2
𝑑𝑡 𝑑𝑦;

3) uniform in 𝑥 ∈ (−1, 1) estimate for approximations

|𝜀(0)𝑛 (𝜙𝛾, 𝑥)| ⩽
21−𝛾| sin 𝜋𝛾|(

√
1− 𝑥2)𝑟−1Γ(2𝛾)

𝜋𝑛𝑟+2𝛾
(1 + 𝑜(1)), 𝑛 ∈ N,

4) the estimate of approximations for 𝑥 = 1

|𝜀𝑛(𝜙𝛾, 1, 𝐴)| ⩽
22−𝑟−𝛾| sin 𝜋𝛾|| sin 𝜋𝑟|Γ(2𝛾)Γ(2𝑟 − 1)

𝜋Γ(𝑟)𝑛2𝑟+2𝛾−1
(1 + 𝑜(1)), 𝑛 ∈ N.

The integral representation and the estimate of pointwise approximations follow directly from
the corresponding results of Theorem 3.1 for 𝛼𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛. The upper bounds are
implied by the corresponding results of rational approximations in Theorem 3.1 if we apply the
well–known Laplace method.

4. Asymptotics of majorant for uniform approximations

It is interesting to study the asymptotic behavior of quantity (3.5) and of the right hand side
in the estimate (3.6) as 𝑛 → ∞. In order to do this, in the corresponding integrals we make
the change of variable

𝑦 =
1− 𝑢

1 + 𝑢
, 𝑑𝑦 = − 2𝑑𝑢

(1 + 𝑢)2

and we obtain

𝜀*𝑛(𝜙𝛾, 𝐴) =
21+𝛾| sin 𝜋𝛾|
𝜋[𝑝+ 𝜈𝑚(𝐴)]𝑟

(1 + 𝑜(1))

1∫︁
0

𝑔𝛾(𝑢)

⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢

⃒⃒⃒⃒
⃒ 𝑑𝑢, 𝑛 = 𝑚+ 𝑝, (4.1)

𝑔𝛾(𝑢) =
𝑢2𝛾−1

(1 + 𝑢)(1− 𝑢2)𝛾

(︂
1− 𝑢

1 + 𝑢

)︂𝑝

, 𝜈𝑚(𝐴) =
𝑚∑︁
𝑘=1

𝛽𝑘, 𝛽𝑘 =
1− 𝛼𝑘

1 + 𝛼𝑘

.
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In the same the estimate (3.6) becomes

|𝜀𝑛(𝜙𝛾, 1, 𝐴)| ⩽
21+𝑟+𝛾| sin 𝜋𝛾|| sin 𝜋𝑟|

𝜋Γ(𝑟)

1∫︁
0

𝑔𝛾(𝑢)

⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

⃒⃒⃒⃒
⃒ 𝑑𝑢

·
1∫︁

0

𝑢2𝑟−2

(1 + 𝑢)2(1− 𝑢2)𝑟−1

(︂
1− 𝑢

1 + 𝑢

)︂𝑝
⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

⃒⃒⃒⃒
⃒ 𝑑𝑢, 𝑛 ∈ N,

(4.2)

where 𝑟 ∈ (1,+∞), 𝛾 ∈ (0,+∞).
We suppose that the parameters 𝛽𝑘, 𝑘 = 1, 2, . . . ,𝑚, are ordered as follows

0 < 𝛽𝑚 < 𝛽𝑚−1 < . . . < 𝛽1 ⩽ 1.

Moreover, for each value of 𝑛, a corresponding set of parameters 𝛽𝑘 can be chosen, 𝑘 =
1, 2 . . . ,𝑚, that is, generally speaking, 𝛽𝑘 = 𝛽𝑘(𝑛). Because of this, we suppose the conditions

𝜇𝑚(𝐴) =
𝑚∑︁
𝑘=1

1

𝛽𝑘
−→
𝑛→∞

∞, (4.3)

𝜈𝑚(𝐴) =
𝑚∑︁
𝑘=1

𝛽𝑘 −→
𝑛→∞

∞. (4.4)

The conditions (4.3) and (4.4) are not contradictory. Below we shall consider a sequence of
parameters {𝛽𝑘}𝑚𝑘=1 satisfying both relations.

Theorem 4.1. Under the conditions (4.3) and (4.4) the upper bounds

𝜀*𝑛(𝜙𝛾, 𝐴) ⩽
21−𝛾| sin 𝜋𝛾|Γ(2𝛾)
𝜋[𝑝+ 𝜈𝑚(𝐴)]𝑟

[︃
1

(𝜇𝑚(𝐴))
2𝛾 +

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)

𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

]︃
(1 + 𝑜(1)); (4.5)

|𝜀𝑛(𝜙𝛾, 1, 𝐴)| ⩽
22−𝑟−𝛾| sin 𝜋𝛾|| sin 𝜋𝑟|Γ(2𝛾)Γ(2𝑟 − 1)

𝜋Γ(𝑟)

·

[︃
1

(𝜇𝑚(𝐴))2𝛾
+

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)

𝑛∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

]︃

·

[︃
1

(𝜇𝑚(𝐴))2𝑟−1
+

Γ(2 + 𝑝− 𝑟)

Γ(1 + 𝑝+ 𝑟)

𝑛∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

]︃
(1 + 𝑜(1)), 𝑛→ ∞.

(4.6)

hold.

Proof. We begin with the estimate (4.5). We represent (4.1) as

𝜀*𝑛(𝜙𝛾, 𝐴) =
21+𝛾| sin 𝜋𝛾|
𝜋[𝑝+ 𝜈𝑚(𝐴)]𝑟

[𝐼(1)𝑛 (𝐴) + 𝐼(2)𝑛 (𝐴)](1 + 𝑜(1)), 𝑛 ∈ N, (4.7)

where

𝐼(1)𝑛 (𝐴) =

𝛽𝑚∫︁
0

𝑔𝛾(𝑢)
𝑚∏︁
𝑘=1

𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢
𝑑𝑢, 𝐼(2)𝑛 (𝐴) =

1∫︁
𝛽𝑚

𝑔𝛾(𝑢)

⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢

⃒⃒⃒⃒
⃒ 𝑑𝑢.

Let us study the asymptotic behavior as 𝑛 → ∞ of each of the two integrals separately. We

represent the integral 𝐼
(1)
𝑛 (𝐴) as

𝐼(1)𝑛 (𝐴) =

𝛽𝑚∫︁
0

𝑔𝛾(𝑢)e
𝑆(𝑢) 𝑑𝑢, 𝑆(𝑢) =

𝑚∑︁
𝑘=1

ln
𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢
.
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The function 𝑆(𝑢) decreases on the interval [0, 𝛽𝑚] since 𝑆
′(𝑢) < 0, and therefore, it attains its

maximum value at 𝑢 = 0. In view of the expansion

𝑆(𝑢) = −2𝑢
𝑚∑︁
𝑘=1

1

𝛽𝑘
− 2

3
𝑢3

𝑚∑︁
𝑘=1

1

𝛽3
𝑘

+𝑂(𝑢5), 𝑢→ 0,

and the obvious asymptotic identity 𝑔𝛾(𝑢) ∼ 𝑢2𝛾−1, 𝑢 → 0, for some sufficiently small 𝜀 > 0
and 𝑛→ ∞ we find

𝐼(1)𝑛 (𝐴) ∼
𝜀∫︁

0

𝑢2𝛾−1e−2𝑢𝜇𝑚(𝐴) 𝑑𝑢.

In the integrals in the right hand side we make the change 2𝑢𝜇𝑚(𝐴) ↦→ 𝑡

𝐼(1)𝑛 (𝐴) =
1

(2𝜇𝑚(𝐴))
2𝛾

𝜙(𝑚,𝜀)∫︁
0

𝑡𝑠−1e−𝑡 𝑑𝑡, 𝑛→ ∞,

where 𝜙(𝑚, 𝜀) = 2𝜀𝜇𝑚(𝐴) → ∞ as 𝑛 → ∞ by the condition (4.3). Taking into consideration
the identity

+∞∫︁
0

𝑢𝑠−1e−𝑢 𝑑𝑢 = Γ(𝑠), 𝑠 > 0,

by the latter asymptotic identity we obtain

𝐼(1)𝑛 (𝐴) =
Γ(2𝛾)

(2𝜇𝑚(𝐴))
2𝛾 (1 + 𝑜(1)), 𝑛→ ∞. (4.8)

We proceed to studying the integral 𝐼
(2)
𝑛 (𝐴). It is obvious that

𝐼(2)𝑛 (𝐴) ⩽ max
𝑢∈[0,1]

⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢

⃒⃒⃒⃒
⃒

1∫︁
𝛽𝑚

𝑔𝛾(𝑢) 𝑑𝑢.

The integral in the right hand side is well–defined. Its integrand is non–negative. Hence, its
value is majorized by the integral with the same integrand over the segment [0, 1]. It is known
[27] that

max
𝑢∈[0,1]

⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

𝛽𝑘 − 𝑢

𝛽𝑘 + 𝑢

⃒⃒⃒⃒
⃒ ⩽

𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

.

In view of this relation we arrive at the estimate

𝐼(2)𝑛 (𝐴) ⩽ 𝑐(𝛾)
𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

, 𝑛→ ∞, (4.9)

where

𝑐(𝛾) =

1∫︁
0

𝑢2𝛾−1

(1 + 𝑢)(1− 𝑢2)𝛾

(︂
1− 𝑢

1 + 𝑢

)︂𝑝

𝑑𝑢 =
Γ(2𝛾)Γ(1 + 𝑝− 𝛾)

22𝛾Γ(1 + 𝑝+ 𝛾)
.

Substituting the estimates (4.8) and (4.9) into the representation (4.7), we arrive at the in-
equality (4.5).
We proceed to the estimate (4.6). The estimate of the first integral in the right hand side

in (4.2) is essentially contained in the asymptotic identity (4.8). Applying similar reasoning to
the second integral, we arrive at (4.6). The proof is complete.

Letting 𝛼𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛, in Theorem 4.1 in view of the inequality (3.4) we arrive at
the third and fourth estimates in Corollary 3.1.
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5. Case of Newman parameters of approximating function

We study the asymptotic expression of majorant of uniform approximations (4.5) and the
upper bound for the approximations at the point 𝑥 = 1 (4.6) in the case when the values taken
by the parameters 𝛽𝑘, 𝑘 = 1, 2, . . . ,𝑚,, are some modification of the parameters introduced by
Newman in the work [27]. We study this problem below. Let 𝐴𝑁 be a set of parameters 𝛼𝑘,
𝑘 = 1, 2, . . . , 𝑛, which for each fixed 𝑛 ∈ N, satisfies the conditions

𝛼1 = 𝛼2 = . . . = 𝛼𝑝 = 0, 𝑝 = max {[𝛾] , [𝑟 − 1]} ;

𝛼𝑝+𝑘 =
1− 𝛽𝑘
1 + 𝛽𝑘

, 𝛽𝑘 = e
− 𝑐𝑘√

𝑚 , 𝑘 = 1, 2, . . . ,𝑚,
(5.1)

𝑐 is some positive constant independent of 𝑛, 𝑛 = 𝑚+ 𝑝 as 𝑛 > 𝑝.

Theorem 5.1. For all 𝛾 ∈ (0,+∞) and 𝑟 ∈ (1,+∞) the approximations for the function

𝑓𝛾(𝑥) on the segment [−1, 1] by the rational integral operator (2.2) with the parameters (5.1)
satisfy the upper bound

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴𝑁)| ⩽ (
√
1− 𝑥2)𝑟−1𝜀*𝑛(𝜙𝛾, 𝐴𝑁), 𝑛 ∈ N, 𝑥 ∈ (−1, 1), (5.2)

where

𝜀*𝑛(𝜙𝛾, 𝐴𝑁) ⩽
21−𝛾| sin 𝜋𝛾|Γ(2𝛾)𝑐𝑟

𝜋𝑛
𝑟
2

[︂
𝑐2𝛾

𝑛𝛾
e−2𝛾𝑐

√
𝑛 +

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)

√
𝑛e−

𝜋2

4𝑐

√
𝑛

]︂
(1 + 𝑜(1));

|𝜀𝑛(𝜙𝛾, 1, 𝐴𝑁)| ⩽
22−𝑟−𝛾| sin𝜋𝛾|| sin 𝜋𝑟|Γ(2𝛾)Γ(2𝑟 − 1)

𝜋Γ(𝑟)

·
[︂
𝑐2𝛾

𝑛𝛾
e−2𝛾𝑐

√
𝑛 +

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)

√
𝑛e−

𝜋2

4𝑐

√
𝑛

]︂
·
[︂
𝑐2𝑟−1

𝑛
2𝑟−1

2

e−(2𝑟−1)𝑐
√
𝑛 +

Γ(2 + 𝑝− 𝑟)

Γ(1 + 𝑝+ 𝑟)

√
𝑛e−

𝜋2

4𝑐

√
𝑛

]︂
(1 + 𝑜(1)), 𝑛→ ∞.

(5.3)

Proof. Let us study the asymptotic behavior of the right hand side of identity (4.5), when the
parameters 𝛽𝑘, 𝑘 = 1, 2, . . . ,𝑚, are given by the formulas (5.1). It is known [7] that in this case
the asymptotic identities

𝑚∏︁
𝑘=1

1− 𝛽𝑘
1 + 𝛽𝑘

∼
√
𝑚e−

𝜋2

4𝑐

√
𝑚, 𝑛→ ∞,

𝜇𝑚(𝐴𝑁) =
𝑚∑︁
𝑘=1

1

𝛽𝑘
∼

√
𝑚

𝑐
e𝑐

√
𝑚, 𝑛→ ∞,

hold. Let us establish the asymptotic identity for the quantity 𝜈𝑚(𝐴𝑁), see (4.4). We use the
methods of studying the asymptotic behavior of similar sums described in [15]:

𝜈𝑚(𝐴𝑁) =
𝑚∑︁
𝑘=1

𝛽𝑘 =

𝑚∫︁
1

e
− 𝑐𝑡√

𝑚 𝑑𝑡+𝑂
(︁
e−𝑐

√
𝑚
)︁
+𝑂(1), 𝑛→ ∞.

After appropriate calculations we find

𝜈𝑚(𝐴𝑁) ∼
√
𝑚

𝑐
, 𝑛→ ∞.

In view of the above asymptotic identities and the inequality (4.5) we obtain

𝜀*𝑛(𝜙𝛾, 𝐴𝑁) ⩽
21−𝛾| sin 𝜋𝛾|Γ(2𝛾)𝑐𝑟

𝜋𝑚
𝑟
2

[︂
𝑐2𝛾

𝑚𝛾
e−2𝛾𝑐

√
𝑚 +

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)

√
𝑚e−

𝜋2

4𝑐

√
𝑚

]︂
(1 + 𝑜(1)).

Taking into consideration that 𝑛 = 𝑚+ 𝑝 by the latter identity we arrive at the estimate (5.2).
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In order to obtain the estimate (5.3), it is necessary to apply the above arguing to the estimate
(4.6). The proof is complete.

It is of interest to minimize the majorant in the estimate (5.2) and the right hand side of the
estimate (5.3) by choosing the optimal parameter 𝑐 for each of these problems; in other words,
to find the best estimates of the approximations with parameters (5.1). We let

𝜀*𝑛(𝜙𝛾) = inf
𝑐
𝜀*𝑛(𝜙𝛾, 𝐴𝑁).

Theorem 5.2. For each 𝛾 ∈ (0,+∞) and 𝑟 ∈ (1,+∞) for the approximations of the function

𝑓𝛾(𝑥) on the interval (−1, 1) by the rational integral operator (2.2) with the parameters (5.1)
as 𝑛→ ∞ the upper bounds

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴𝑁)| ⩽

⎧⎪⎨⎪⎩
(
√
1− 𝑥2)𝑟−1𝑐1(𝛾, 𝑟)

e−𝜋
2
√
2𝛾𝑛

𝑛
𝑟−1
2

(1 + 𝑜(1)), 𝑥 ∈ (−1, 1),

𝑐2(𝛾, 𝑟)𝑛e
−𝜋
√

(𝑟+𝛾− 1
2
)𝑛(1 + 𝑜(1)), 𝑥 = 1,

(5.4)

hold, where

𝑐1(𝛾, 𝑟) =
21−𝑟−𝛾𝜋𝑟−1| sin 𝜋𝛾|Γ(2𝛾)Γ(1 + 𝑝− 𝛾)

(
√
2𝛾)𝑟Γ(1 + 𝑝+ 𝛾)

,

𝑐2(𝛾, 𝑟) =
22−𝑟−𝛾| sin𝜋𝛾|| sin 𝜋𝑟|Γ(2𝛾)Γ(2𝑟 − 1)Γ(1 + 𝑝− 𝛾)Γ(1 + 𝑝+ 𝛾)

𝜋Γ(𝑟)Γ(2 + 𝑝− 𝑟)Γ(1 + 𝑝+ 𝑟)
.

Proof. We choose the constant 𝑐 in (5.2) by the identity 2𝛾𝑐 = 𝜋2

4𝑐
, that is,

𝑐 =
𝜋

2
√
2𝛾
. (5.5)

Then, after some transformations, it follows from (5.2) that

|𝜀𝑛(𝜙𝛾, 𝑥, 𝐴𝑁)| ⩽
21−𝑟−𝛾𝜋𝑟−1| sin 𝜋𝛾|(

√
1− 𝑥2)𝑟−1Γ(2𝛾)

𝑛
𝑟−1
2 (

√
2𝛾)𝑟

Γ(1 + 𝑝− 𝛾)

Γ(1 + 𝑝+ 𝛾)
e−

𝜋
2

√
2𝛾𝑛

+𝑂

(︃
(
√
1− 𝑥2)𝑟−1e−

𝜋
2

√
2𝛾𝑛

𝑛
𝑟
2
+𝛾

)︃
, 𝑛 ∈ N, 𝑥 ∈ (−1, 1).

In order to prove that the constant 𝑐 defined in (5.5) does provide the asymptotically minimal
value for right hand side of (5.2), it is sufficient to use the method described in [7]. Therefore,

𝜀*𝑛(𝜙𝛾, 𝐴
*
𝑁) = inf

𝑐
𝜀*𝑛(𝜙𝛾, 𝐴𝑁) = 𝜀*𝑛(𝜙𝛾)

and we arrive at (5.4).
We proceed to proving the second estimate in (5.4). We consider the relation (5.3). The

expression in its right hand side consists of the four terms, the decay rate of which is expressed by
an exponential and some power of 𝑛.We seek the optimal parameter 𝑐 we seek by the condition
of coincidence of powers of the exponentials in the terms with the smallest and largest decay
rate. That is,

(2𝛾 + 2𝑟 − 1)𝑐 =
𝜋2

2𝑐
, 𝑐 =

𝜋√︀
2(2𝛾 + 2𝑟 − 1)

.

In order to prove that the found constant 𝑐 provides the asymptotically minimal value for the
right hand side in the estimate (5.3), we again need to use the method described in [7]. This
leads us to the second estimate in (5.4). The proof is complete.
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6. Conclusion

In the work we study the approximations of the Riemann — Liouville integral on the interval
[−1, 1] by the Riemann — Liouville integral with a density being a rational Fourier — Chebyshev
integral operator.
We find the estimate is found for the approximations of Riemann — Liouville integral with a

bounded density depending on the poles of the approximating rational function. This estimate
depends significantly on the position of point on the interval [−1, 1]. We establish that the
approximation rate at the ends of the interval is higher than on the entire interval.
We study the rational approximations of the Riemann — Liouville integral with a density

being a function with a power singularity. The integral representation and approximation
estimates depending on the poles of the approximating function are established. The consider
the case, when the poles are some modifications of the Newman parameters. We find their
optimal values, at which the uniform rational approximations have the greatest decay rate.
As a corollary, we find estimates for approximations of the integral of Riemann— Liouville

type by the polynomial analogue of considered rational integral operator.
The made research allows us to conclude that the class of functions defined by the Riemann —

Liouville integrals with a density having a power singularity on the interval [−1, 1] reflects the
features of rational approximation by the introduced method in the sense that, for a certain
choice of parameters of the approximating function, the rate of uniform rational approximations
(Theorem 5.2) is higher in comparison with their polynomial analogues (Corollary 3.1).
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