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ON CONVERGENCE RATE IN ERGODIC THEOREM FOR

SOME STATISTICALLY AVERAGING SEQUENCES IN R

I.V. PODVIGIN

Abstract. In this work we consider two types of averaging of unitary representation of the
group R constructed by some sequences of probability measures on R. The first sequence
of measures generalizes the uniform distribution. The densities of the measures in this
sequence are convolutions of finitely many indicators of segments. The second sequence is
defined by the exponential decay of Fourier transform. For such averagings we obtain the
estimates for the convergence rate in the norm depending on the singularities of spectral
measure of the unitary representation in a neighbourhood of zero and of the asymptotics
of sequence of Fourier transforms of averaging probabilistic measures. At the same time,
the maximal possible rates are powers with the exponents 𝑚 > 1 and the exponential
rate, respectively, and this is significantly better than the maximal convergence rate in the
classical von Neumann ergodic theorem.
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1. Introduction

Let ℋ be a Hilbert space, on which the group R acts by unitary transformations 𝑈𝑡, 𝑡 ∈ R.
The von Neumann ergodic theorem (statistical ergodic theorem) states that for each vec-
tor ℎ ∈ ℋ ⃦⃦⃦⃦

⃦⃦⃦ 1

2𝑡

∫︁
[−𝑡,𝑡]

𝑈𝑠ℎ 𝑑𝑠− 𝑃ℎ

⃦⃦⃦⃦
⃦⃦⃦
ℋ

→ 0

as 𝑡→ ∞, where 𝑃 is the orthogonal projection onto the subspace of fixed vectors of group
{𝑈𝑡}𝑡∈R. The convergence rate in this theorem is well–studied: it is determined by the singularity
of spectral measure 𝜎ℎ, ℎ ∈ ℋ in a neighbourhood of zero, see the reviews [3], [4], as well as
recent works [19], [12].
The statistical ergodic theorem is generalized as follows. According to the terminology of

Tempelman [22], for a locally–compact commutative group 𝒢, the statistically averaging se-
quence is the sequence (or net) of probability measures {𝜈𝑛}𝑛⩾1 on the group 𝒢 such that for
each unitary representation {𝑈𝑔}𝑔∈𝒢 in the Hilbert space ℋ the convergence⃦⃦⃦⃦

⃦⃦∫︁
𝒢

𝑈𝑠ℎ 𝑑𝜈𝑛(𝑠)− 𝑃ℎ

⃦⃦⃦⃦
⃦⃦
ℋ

→ 0
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holds as 𝑛→ ∞ for each ℎ ∈ ℋ, where 𝑃 is the orthogonal projection onto the subspace of fixed
vectors of group {𝑈𝑔}𝑔∈𝒢. The classical von Neumann theorem considers uniform distributions
on the segment [−𝑡, 𝑡], that is, the net of absolutely continuous probability measures

𝑑𝜈𝑡(𝑠) =
1

2𝑡
𝜒[−𝑡,𝑡](𝑠) 𝑑𝑠.

By the Blum — Eisenberg criterion [13], the net of probability measures 𝜈𝑡 on locally compact
commutative group 𝒢 is statistically averaging if and only if

lim
𝑡→∞

∫︁
𝒢

𝜒(𝑔)𝑑𝜈𝑡(𝑔) = 0

for each character 𝜒 ∈ 𝒢∧, 𝜒 ̸= 1. For the group R𝑚, 𝑚 ⩾ 1, this condition is written as

lim
𝑡→∞

∫︁
R𝑚

𝑒𝑖(𝑠,𝑥)𝑑𝜈𝑡(𝑥) = 0 for each 𝑠 ̸= 0.

The integral in this identity is the Fourier transform ℱ [𝜈𝑡] of probability measure 𝜈𝑡. This
equivalence is implied by the identity⃦⃦⃦⃦

⃦⃦∫︁
𝒢

𝑈𝑠ℎ 𝑑𝜈𝑛(𝑠)− 𝑃ℎ

⃦⃦⃦⃦
⃦⃦
2

ℋ

=

∫︁
𝒢∧

|ℱ [𝜈𝑡](𝑠)|2𝑑𝜎ℎ−𝑃ℎ(𝑠), (1.1)

where 𝜎ℎ−𝑃ℎ is the spectral measure of vector ℎ−𝑃ℎ, see, for instance, [18]; at the same time,
𝜎ℎ−𝑃ℎ(1) = 0, where 1 is the unit character.
In ergodic theorem (both in individual and statistical) the following classes of statistically

averaging nets are important [20, Sect. 2.2]: measures 𝜈𝑡 absolutely continuous with respect
to the Lebesgue measure including measures 𝜈𝑡 with compact supports; singular and discrete
probability measures 𝜈𝑡 orthogonal to the Lebesgue measure.
In this note we focus on a few examples of statistically averaging sequences, which realize a

convergence rate in the ergodic theorem faster than that in the classical von Neumann theorem.
Namely, we consider examples with the maximal power rate with exponent 𝑚 > 1 and with
maximal exponential rate. We note that the maximal convergence rate in the classical von Neu-
mann theorem is 𝒪

(︀
1
𝑡

)︀
. The same slow maximal rate holds for the pointwise convergence [5].

There are also works devoted to the fast pointwise convergence rate, see, for instance, [15], [16],
[23].
The maximal power rates can be realized by means of the following construction. Let

𝜌 ∈ 𝐿2([−1, 1], 𝑑𝑥), 𝜌 ⩾ 0, ‖𝜌‖1 = 1,

then we define

𝑑𝜈𝑡(𝑠) =
1

𝑡
𝜒[−𝑡,𝑡](𝑥)𝜌

(︁𝑥
𝑡

)︁
𝑑𝑥, 𝑡 > 0. (1.2)

This net generalizes the uniform averaging in the von Neumann ergodic theorem (with 𝜌 ≡ 1
2
).

It is easy to see that the Fourier transform satisfies the Blum — Eisenberg criterion:

ℱ [𝜈𝑡](𝑠) =
1

𝑡

∫︁
[−𝑡,𝑡]

𝑒𝑖𝑠𝑥𝜌
(︁𝑥
𝑡

)︁
𝑑𝑥 =

∫︁
[−1,1]

𝑒𝑖𝑠𝑡𝑦𝜌(𝑦) 𝑑𝑦 := 𝑅(𝑡𝑠) → 0 as 𝑡→ +∞

for each 𝑠 ̸= 0 by the Riemann — Lebesgue lemma. We are interesting in the case, when for
some 𝑚 ∈ N

𝑅(𝑢) = 𝒪
(︂

1

𝑢𝑚

)︂
and 𝑅(𝑢) ̸= 𝑜

(︂
1

𝑢𝑚

)︂
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as |𝑢| → +∞. In particular, this condition holds for the considered below convolution of 𝑚
indicators of the segment

[︀
− 1

𝑚
, 1
𝑚

]︀
:

𝜌(𝑥) =

(︂
2

𝑚

)︂𝑚

𝜒[− 1
𝑚
, 1
𝑚
] * . . . * 𝜒[− 1

𝑚
, 1
𝑚
](𝑥)⏟  ⏞  

𝑚 times

.

We shall call such statistically averaging nets are called as type (𝐴).
We define probability measures with the maximal exponential rate via the Fourier transform.

Suppose that we are given a net (or sequence) of probability measures 𝜈𝑡 with the Fourier
transform

ℱ [𝜈𝑡](𝑠) = 𝑟𝑡(𝑠), 𝑡 > 0 or 𝑡 = 𝑛 ∈ N,

where 𝑟(𝑠) satisfies the conditions 𝑟(0) = 1 and |𝑟(𝑠)| < 1 for all 𝑠 ̸= 0. The definition of these
measures shows that they are statistically averaging. The measures can be recovered by the
Fourier transform by an explicit formula, see, for instance, [1, Sect. 1.6.1]. We shall call such
statistically averaging nets are called as type (𝐵). The examples of such nets are convolutions
of measures and distributions with fast decaying densities.
Let for some real numbers 𝑎, 𝑏 > 0 the averaging net 𝜈𝑡 has a dilated exponential Fourier

transform

ℱ [𝜈𝑡](𝑠) = 𝑒−𝑎𝑡|𝑠|𝑏 , 𝑡 > 0. (1.3)

As an example of measure obeying the above conditions we can consider the Gauss distribution

𝑑𝜈𝑡(𝑥) =
1√
𝜋𝑡
𝑒−

𝑥2

𝑡 𝑑𝑥, 𝑡 > 0

or the Cauchy distribution

𝑑𝜈𝑡(𝑥) =
𝑡

𝜋(𝑡2 + 𝑥2)
, 𝑡 > 0.

Their Fourier transform can be easily calculated or found in tables [7]

ℱ [𝜈𝑡](𝑠) = 𝑒−
𝑡𝑠2

4 and ℱ [𝜈𝑡](𝑠) = 𝑒−𝑡|𝑠|.

We consider another way of constructing nets of type (𝐵). Let 𝜈0 be a probability measure
in R such that its Fourier transform possesses the property |ℱ [𝜈0](𝑠)| ⩽ 1 and the identity is
attained only at 𝑠 = 0. For instance, the Dirac measures do not possess such property. We let

𝜈𝑛(𝑥) = 𝜈0 * ... * 𝜈0⏟  ⏞  
𝑛 times

:= 𝜈𝑛0 , 𝑛 ⩾ 1.

By the Borel formula for convolution we obtain

ℱ [𝜈𝑛](𝑠) = (ℱ [𝜈0](𝑠))
𝑛 → 0 as 𝑛→ +∞

for each 𝑠 ̸= 0.
Using a new recent approach to the problem [6, Sect. 3.1], in this note we obtain the

asymptotics for the integrals (1.1) for the group R and for averaging nets (𝐴) and (𝐵). Here
it is more convenient to consider a more general construction: instead of the spectral measure
𝜎𝑓−𝑃𝑓 , we take an arbitrary Borel measure 𝜇 on R continuous at zero, that is, 𝜇{0} = 0.
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2. Averaging nets with condition (𝐴)

2.1. Whittaker — Kotelnikov — Shannon theorem. We recall that the direct (inverse)
Fourier transform of a function 𝑓 ∈ 𝐿2(R, 𝑑𝑥) is the function

𝑓(𝑠) =
1√
2𝜋

∫︁
R

𝑓(𝑡)𝑒−𝑖𝑡𝑠 𝑑𝑡

⎛⎝respectively, 𝑓(𝑠) =
1√
2𝜋

∫︁
R

𝑓(𝑡)𝑒𝑖𝑡𝑠 𝑑𝑡

⎞⎠ .

The Fourier transform is invertible in 𝐿2(R, 𝑑𝑥), that is,
ˇ̂
𝑓(𝑠) = 𝑓(𝑠) = ˆ̌𝑓(𝑠) for almost each

𝑠 ∈ R. The definition shows that the Fourier transform of the measure 𝜈𝑡 in (1.2) is, up to a
multiplicative constant, the inverse Fourier transform of the function 𝜌, that is,

ℱ [𝜈𝑡](𝑠) =
√
2𝜋𝜌(𝑠𝑡) = 𝑅(𝑡𝑠).

Thus, the function 𝑅 belongs to 𝐿2(R, 𝑑𝑥) ∩𝐶(R) and its Fourier transform 𝑅̂(𝑢) =
√
2𝜋𝜌(𝑢),

that is, supp 𝑅̂ = [−1, 1]. The latter means that for the function 𝑅 Whittaker — Kotelnikov —
Shannon theorem holds, which states, see, for instance, [17], [14], that

𝑅(𝑢) =
∑︁
𝑘∈Z

𝑅(𝑘𝜋)
sin(𝑘𝜋 − 𝑢)

𝑘𝜋 − 𝑢
=
∑︁
𝑘∈Z

𝑅(𝑘𝜋)
(−1)|𝑘|+1 sin𝑢

𝑘𝜋 − 𝑢
, (2.1)

and the series converges absolutely and uniformly on R and the sequence {𝑅(𝜋𝑘)}𝑘∈Z lies
in ℓ2(Z). This representation implies

𝑅(𝑢) = 𝒪
(︂
1

𝑢

)︂
as |𝑢| → +∞.

Let us provide the justification of this fact. We fix 𝑚 ⩾ 1 and partition the sum in (2.1)
into two, one for |𝑘| ⩽ 𝑚 and the other for |𝑘| > 𝑚. We estimate the second sum by means of
Cauchy — Schwarz — Bunyakovsky inequality⃒⃒⃒⃒

⃒⃒ ∑︁
|𝑘|>𝑚

𝑅(𝑘𝜋)
(−1)𝑘+1 sin𝑢

𝜋𝑘 − 𝑢

⃒⃒⃒⃒
⃒⃒ ⩽√︃∑︁

|𝑘|>𝑚

|𝑅(𝜋𝑘)|2
⃦⃦⃦⃦

sin𝑢

𝑘𝜋 − 𝑢

⃦⃦⃦⃦
ℓ2
⩽𝑀

√︃∑︁
|𝑘|>𝑚

|𝑅(𝜋𝑘)|2,

where

𝑀 = max
𝑢∈R

⃦⃦⃦⃦
sin𝑢

𝑘𝜋 − 𝑢

⃦⃦⃦⃦
ℓ2
<∞

since the function 𝜙(𝑢) =
⃦⃦

sin𝑢
𝑘𝜋−𝑢

⃦⃦
ℓ2
is everywhere finite and 𝜋–periodic. While estimating the

first sum, we take into consideration that |𝑅| ⩽ 1. For |𝑢| ⩾
√
3𝜋𝑚 we obtain⃒⃒⃒⃒

⃒⃒ ∑︁
|𝑘|⩽𝑚

𝑅(𝑘𝜋)
(−1)𝑘+1 sin𝑢

𝜋𝑘 − 𝑢

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒sin𝑢𝑢 + sin𝑢

𝑚∑︁
𝑘=1

(−1)𝑘+1

(︂
𝑅(𝑘𝜋)

𝜋𝑘 − 𝑢
− 𝑅(−𝑘𝜋)

𝜋𝑘 + 𝑢

)︂⃒⃒⃒⃒
⃒

⩽
| sin𝑢|
|𝑢|

(︃
1 + |𝑢|

𝑚∑︁
𝑘=1

1

|𝑢| − 𝜋𝑘
+

1

|𝑢|+ 𝜋𝑘

)︃

=
| sin𝑢|
|𝑢|

(︃
1 +

𝑚∑︁
𝑘=1

2𝑢2

𝑢2 − (𝜋𝑘)2

)︃

⩽
| sin𝑢|
|𝑢|

(︂
1 +

2𝑢2𝑚

𝑢2 − (𝜋𝑚)2

)︂
⩽

| sin𝑢|
|𝑢|

(1 + 3𝑚).
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Thus, for all

|𝑢| ⩾ max

{︃
√
3𝜋𝑚;𝑀−1

(︂ ∑︁
|𝑘|>𝑚

|𝑅(𝜋𝑘)|2
)︂− 1

2

}︃
the estimate

|𝑅(𝑢)| ⩽ 1

|𝑢|
(2 + 3𝑚)

holds.
We observe that the obtained estimate for 𝑅 is attained at the density 𝜌 from the statistical

ergodic von Neumann theorem. This is why the interesting densities are ones, for which the
Fourier transform decays faster.

2.2. Maximal rates. If 𝜌 is defined by the convolution (𝐴), by the Borel formula we obtain

𝑅(𝑢) = 𝑐
sin𝑚

(︀
𝑢
𝑚

)︀
𝑢𝑚

for some constant 𝑐 = 𝑐(𝑚) > 0. Then the formula (1.1) written in terms of continuous at zero
measure 𝜇 implies

𝐼𝑡(𝜇) =

∫︁
R

|𝑅(𝑡𝑠)|2 𝑑𝜇(𝑠) = 𝑐2
∫︁
R

sin2𝑚
(︀
𝑡𝑠
𝑚

)︀
(𝑡𝑠)2𝑚

𝑑𝜇(𝑠).

Let us consider the maximal rate of convergence to zero for the integral 𝐼𝑡(𝜇).

Theorem 2.1. The following equivalences hold:

𝐼𝑡(𝜇) = 𝒪(𝑡−2𝑚) as 𝑡→ +∞ ⇐⇒
∫︁
R

𝑑𝜇(𝑠)

𝑠2𝑚
<∞;

𝐼𝑡(𝜇) = 𝑜(𝑡−2𝑚) as 𝑡→ +∞ ⇐⇒ 𝜇 ≡ 0.

Proof. It is sufficient to consider only the direct statements since the inverse are obvious. Let
𝐼𝑡(𝜇) ⩽ 𝐴𝑡−2𝑚 for all 𝑡 > 0. Then, for each 𝑇 > 0,

1

𝑇

𝑇∫︁
0

∫︁
R

sin2𝑚
(︀
𝑡𝑠
𝑚

)︀
𝑠2𝑚

𝑑𝜇(𝑠)𝑑𝑡 ⩽
𝐴

𝑐2
.

Since 𝑠 ̸= 0,

lim
𝑇→+∞

1

𝑇

𝑇∫︁
0

sin2𝑚

(︂
𝑡𝑠

𝑚

)︂
𝑑𝑡 = lim

𝑇→+∞

1

𝑇

𝑇∫︁
0

(︁
𝑒

𝑖𝑡𝑠
𝑚 − 𝑒−

𝑖𝑡𝑠
𝑚

)︁2𝑚
(2𝑖)2𝑚

𝑑𝑡

=
2𝑚∑︁
𝑘=0

(−1)𝑚+𝑘

4𝑚
𝐶𝑘

2𝑚 lim
𝑇→+∞

1

𝑇

𝑇∫︁
0

𝑒
𝑖2𝑡𝑠(𝑘−𝑚)

𝑚 𝑑𝑡

=
(−1)𝑚

4𝑚

2𝑚∑︁
𝑘=0

(−1)𝑘𝐶𝑘
2𝑚𝛿𝑘𝑚 =

𝐶𝑚
2𝑚

4𝑚
,

in view of the identity 𝜇{0} = 0 and by the Fubini theorem and the Fatou lemma we obtain∫︁
R

𝑑𝜇(𝑠)

𝑠2𝑚
⩽

4𝑚𝐴

𝑐2𝐶𝑚
2𝑚

<∞.
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Suppose that 𝐼𝑡(𝜇) = 𝑜(𝑡−2𝑚) as 𝑡→ +∞. By introducing the finite measure

𝑑𝜂(𝑠) =
𝑑𝜇(𝑠)

𝑠2𝑚

this relation is reduced to∫︁
R

sin2𝑚

(︂
𝑡𝑠

𝑚

)︂
𝑑𝜂(𝑠) = 𝑜(1) as 𝑡→ +∞,

that is,

lim
𝑡→+∞

⃦⃦⃦⃦
sin

(︂
𝑡𝑠

𝑚

)︂⃦⃦⃦⃦
𝐿2𝑚(R,𝑑𝜂)

= 0.

The Hölder inequality⃦⃦⃦⃦
sin

(︂
𝑡𝑠

𝑚

)︂⃦⃦⃦⃦
𝐿2(R,𝑑𝜂)

⩽

⃦⃦⃦⃦
sin

(︂
𝑡𝑠

𝑚

)︂⃦⃦⃦⃦
𝐿2𝑚(R,𝑑𝜂)

𝜂
𝑚−1
2𝑚 (R)

implies

lim
𝑡→+∞

⃦⃦⃦⃦
sin

(︂
𝑡𝑠

𝑚

)︂⃦⃦⃦⃦
𝐿2(R,𝑑𝜂)

= 0.

This relation by Lemma 4 in [19] yields 𝜂(R) = 0. Hence, 𝜇(R) = 0. The proof is complete.

2.3. Regularly varying functions. Since the maximal rate is power, it is natural to find
the criterion for the power rates with a smaller exponent. For the case 𝑚 = 1, that is, for
the classical von Neumann ergodic theorem, the Kachurovskii criterion for the power rates was
extended (for discrete time) by Gaposhkin in [2] to the class of functions of form 𝑢−𝛼𝜙(𝑢),
𝛼 ∈ [0, 2), where 𝜙 is a weakly oscillating function. We recall that a function 𝜙 : R+ → R+

is called weakly oscillating (or slowly varying in the Zygmund sense) if for each 𝜃 > 0 for
sufficiently large 𝑢 > 0 the function 𝑢𝜃𝜙(𝑢) monotonically increases, while the function 𝑢−𝜃𝜙(𝑢)
monotonically decreases. The class of weakly oscillating functions is a subclass of slowly varying
in the sense of Karamata, that is, of measurable functions, for which the identity

lim
𝑢→+∞

𝜙(𝜆𝑢)

𝜙(𝑢)
= 1

holds for each 𝜆 > 0. The function 𝜓(𝑢) = 𝑢𝜌𝜙(𝑢), where 𝜙(𝑢) is a slowly varying in the sense
of Karamata is called regularly varying at infinity of order 𝜌 ∈ R. The details on such functions
can be borrowed from the monograph [9], and also from the recent paper [21]. We are going
to show that the result by Gaposhkin can be generalized to all regularly varying functions of
order −𝛼, where 𝛼 ∈ [0, 2𝑚). Let us provide key statements.
The next lemma shows that for one side of estimates no additional conditions for the con-

vergence rate are needed.

Lemma 2.1. Let 𝜓(𝑡) → 0 as 𝑡→ +∞ and 𝐼𝑡(𝜇) ⩽ 𝐵𝜓(𝑡) for some constant 𝐵 > 0 for all

𝑡 > 0. Then for all 𝛿 > 0

𝜇([−𝛿, 𝛿]) ⩽ 𝑐−2𝐵

sin2𝑚
(︀

1
𝑚

)︀𝜓(︂1

𝛿

)︂
.

Proof. We represent an arbitrary 𝛿 > 0 as 𝛿 = 1
𝑡
. Then

𝜇([−𝛿, 𝛿]) =
∫︁

[− 1
𝑡
, 1
𝑡
]

𝑑𝜇(𝑠) ⩽
( 1
𝑚
)2𝑚

sin2𝑚( 1
𝑚
)

∫︁
[− 1

𝑡
, 1
𝑡
]

sin2𝑚( 𝑡𝑠
𝑚
)

( 𝑡𝑠
𝑚
)2𝑚

𝑑𝜇(𝑠)

⩽
𝑐−2

sin2𝑚( 1
𝑚
)
𝐼𝑡(𝜇) ⩽

𝑐−2𝐵

sin2𝑚( 1
𝑚
)
𝜓(𝑡) =

𝑐−2𝐵

sin2𝑚( 1
𝑚
)
𝜓

(︂
1

𝛿

)︂
.
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The proof is complete.

The next theorem by Aljančić, Bojanic and Tomić [11, Thm. 1] (see also [9, Thm. 2.7]) is a
key ingredient for proving other side of estimates.

Theorem 2.2. Let 𝑓 : (0,+∞) → R and 𝜃 > 0 be such that the integral
𝑎∫︀
0

𝑢−𝜃𝑓(𝑢) 𝑑𝑢 con-

verges for some 𝑎 ∈ (0,+∞). Then for each slowly varying in the sense of Karamata function 𝜙
bounded on each finite interval in (0,+∞) the relation

𝑎∫︁
0

𝑓(𝑢)𝜙(𝑡𝑢) 𝑑𝑢 ∼ 𝜙(𝑡)

𝑎∫︁
0

𝑓(𝑢) 𝑑𝑢 as 𝑡→ +∞.

holds.

Now we formulate the criterion for all possible regular convergence rates.

Theorem 2.3. Let 𝜓(𝑢) = 𝑢−𝛼𝜙(𝑢), where 𝛼 ∈ [0, 2𝑚) and 𝜙 is a slowly varying in the

Karamata sense function bounded on each finite interval in (0,+∞). Then the equivalence

𝜇([−𝛿, 𝛿]) = 𝒪
(︂
𝜓

(︂
1

𝛿

)︂)︂
as 𝛿 → +0 ⇔ 𝐼𝑡(𝜇) = 𝒪(𝜓(𝑡)) as 𝑡→ +∞.

holds.

Proof. The inverse implication follows from Lemma 2.1. For the direct implication first we are
going to obtain the estimate

𝐼𝑡(𝜇) = 𝑐2
∫︁
R

sin2𝑚( 𝑡𝑠
𝑚
)

(𝑡𝑠)2𝑚
𝑑𝜇(𝑠) = 2𝑚𝑐2

∞∫︁
0

𝑢2𝑚−1𝜇

(︂{︂
𝑠 ∈ R :

| sin( 𝑡𝑠
𝑚
)|

|𝑡𝑠|
> 𝑢

}︂)︂
𝑑𝑢

= 2𝑚𝑐2

1
𝑚∫︁

0

𝑢2𝑚−1𝜇

(︂{︂
𝑠 ∈ R :

| sin( 𝑡𝑠
𝑚
)|

|𝑡𝑠|
> 𝑢

}︂)︂
𝑑𝑢

⩽ 2𝑚𝑐2

1
𝑚∫︁

0

𝑢2𝑚−1𝜇

(︂{︂
𝑠 ∈ R : |𝑠| ⩽ 1

𝑡𝑢

}︂)︂
𝑑𝑢

⩽ 2𝑚𝑐2𝐴

1
𝑚∫︁

0

𝑢2𝑚−1(𝑡𝑢)−𝛼𝜙(𝑢𝑡) 𝑑𝑢

for all 𝑡 > 0. Here and later in Remark 2.1 the constant 𝐴 > 0 is determined by the assumptions
of the theorem: 𝜇([−𝛿, 𝛿]) ⩽ 𝐴𝜓

(︀
1
𝛿

)︀
for all 𝛿 > 0. Thus,

𝐼𝑡(𝜇) = 𝒪

⎛⎜⎝𝑡−𝛼

1
𝑚∫︁

0

𝑢2𝑚−𝛼−1𝜙(𝑢𝑡) 𝑑𝑢

⎞⎟⎠ as 𝑡→ +∞.

It remains to apply Theorem 2.2 for the function 𝑓(𝑢) = 𝑢2𝑚−𝛼−1 on the interval (0, 1
𝑚
). As 𝜃

we can take an arbitrary number in the interval (0, 2𝑚− 𝛼). The proof is complete.

Remark 2.1. For power rates 𝜓(𝑢) = 𝑢−𝛼, 𝛼 ∈ [0, 2𝑚) the estimate holds:

𝐼𝑡(𝜇) ⩽ 2𝑚𝑐2𝐴𝑡−𝛼

1
𝑚∫︁

0

𝑢2𝑚−𝛼−1 𝑑𝑢 =
2𝑐2𝐴

(2𝑚− 𝛼)𝑚2𝑚−𝛼−1
𝑡−𝛼.
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3. Estimates for rates of averaging nets of type (𝐵)

3.1. Maximal rates. We let 𝑅(𝑠) = |𝑟(𝑠)|2; in the case of averagings (1.3) we have

𝑅(𝑠) = 𝑒−2𝑎|𝑠|𝑏 . Thus, we are interesting in the asymptotics of integrals

𝐼𝑛(𝜇) =

∫︁
R

𝑅𝑛(𝑠)𝑑𝜇(𝑠), and, respectively, 𝐼𝑡(𝜇) =

∫︁
R

𝑅𝑡(𝑠)𝑑𝜇(𝑠)

as 𝑛→ ∞ or as 𝑡→ +∞.
First we consider maximal possible convergence rates.

Theorem 3.1. Let 𝑞 ∈ (0, 1), then

𝐼𝑡(𝜇) = 𝒪(𝑞𝑡) as 𝑡→ +∞ ⇔ there exists 𝛿 > 0 such that 𝜇([−𝛿, 𝛿]) = 0.

If for each 𝑞 ∈ (0, 1) the asymptotic relation 𝐼𝑡(𝜇) = 𝑜(𝑞𝑡) holds as 𝑡 → +∞, then 𝐼𝑡(𝜇) ≡ 0.
Similar statements are true for the integrals 𝐼𝑛(𝜇).

Proof. If 𝜇([−𝛿, 𝛿]) = 0 for some 𝛿 > 0, then∫︁
R

𝑅𝑡(𝑠)𝑑𝜇(𝑠) =

∫︁
|𝑠|>𝛿

𝑅𝑡(𝑠)𝑑𝜇(𝑠) ⩽ max
|𝑠|⩾𝛿

𝑅𝑡(𝑠)𝜇{|𝑠| ⩾ 𝛿} = 𝜇(R)𝑞𝑡,

where 𝑞 = max|𝑠|⩾𝛿 𝑅(𝑠) < 1. And vice versa, let for some constants 𝐴 > 0 and 𝑞 ∈ (0, 1) we
have 𝐼𝑡(𝜇) ⩽ 𝐴𝑞𝑡 for all 𝑡 > 0. Then

1

𝑇

𝑇∫︁
0

∫︁
R

(︂
𝑅(𝑠)

𝑞

)︂𝑡

𝑑𝜇(𝑠)𝑑𝑡 ⩽ 𝐴.

Letting

𝑔(𝑠) = lim
𝑇→+∞

1

𝑇

𝑇∫︁
0

(︂
𝑅(𝑠)

𝑞

)︂𝑡

𝑑𝑡 =

⎧⎪⎨⎪⎩
+∞, 𝑅(𝑠) > 𝑞,

1, 𝑅(𝑠) = 𝑞,

0, 𝑅(𝑠) < 𝑞,

interchanging the integration order by the Tonelli theorem and applying the Fatou lemma, we
obtain ∫︁

R

𝑔(𝑠)𝑑𝜇(𝑠) ⩽ 𝐴.

We hence conclude that 𝜇({𝑅(𝑠) > 𝑞}) = 0. Since 𝑅 is a continuous function 𝑅(0) = 1, the open
set {𝑅(𝑠) > 𝑞} contains some neighbourhood of zero of form [−𝛿, 𝛿]. Therefore, 𝜇([−𝛿, 𝛿]) = 0.
Suppose that 𝐼𝑡(𝜇) = 𝑜(𝑞𝑡) as 𝑡→ +∞ for each 𝑞 ∈ (0, 1). Then, as it has been proved,

𝜇({𝑅(𝑠) > 𝑞}) = 0. Letting 𝑞 → +0, we obtain the identity 𝜇({𝑅(𝑠) > 0}) = 0, that is, the
measure 𝜇 is concentrated on the zeroes of function 𝑅. In this case we obtain 𝐼𝑡(𝜇) ≡ 0.
For the integrals 𝐼𝑛(𝜇) the proof is similar. The only difference is that instead of the inte-

gration 1
𝑇

𝑇∫︀
0

we need to make the summation 1
𝑁

𝑁∑︀
𝑘=1

. The proof is complete.

Let us discuss the way of obtaining the estimates for the integral 𝐼𝑡(𝜇) over the singular-
ity of measure 𝜇 near the origin. In further arguing we suppose that 𝑅 is an even function
monotonically decaying to zero at infinity. Suppose that for some 𝐴 > 0 the estimate

𝜇([−𝛿, 𝛿]) ⩽ 𝐴𝜙(𝛿)
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holds for all 𝛿 > 0, where 𝜙→ 0 as 𝛿 → +0. Then

𝐼𝑡(𝜇) =

∫︁
R

𝑅𝑡(𝑠)𝑑𝜇(𝑠) =

1∫︁
0

𝜇{𝑅𝑡(𝑠) > 𝑢} 𝑑𝑢

=

1∫︁
0

𝜇{|𝑠| < 𝑅−1(𝑢
1
𝑡 )} 𝑑𝑢 ⩽ 𝐴

1∫︁
0

𝜙(𝑅−1(𝑢
1
𝑡 )) 𝑑𝑢.

Now suppose that the estimate

𝐼𝑡(𝜇) ⩽ 𝐵𝜓(𝑡)

is true for all 𝑡 > 0 with some constant 𝐵 > 0, where 𝜓 is a positive differentiable monotonically
increasing function. Then

𝜇([−𝛿, 𝛿]) =
∫︁

[−𝛿,𝛿]

𝑑𝜇(𝑠) = 𝑅−𝑡(𝛿)

∫︁
[−𝛿,𝛿]

𝑅𝑡(𝛿)𝑑𝜇(𝑠)

⩽ 𝑅−𝑡(𝛿)

∫︁
[−𝛿,𝛿]

𝑅𝑡(𝑠)𝑑𝜇(𝑠) ⩽ 𝑅−𝑡(𝛿)

∫︁
R

𝑅𝑡(𝑠)𝑑𝜇(𝑠) ⩽ 𝐵𝑅−𝑡(𝛿)𝜓(𝑡).

This yields

𝜇([−𝛿, 𝛿]) ⩽ 𝐵 inf
𝑡>0

𝑅−𝑡(𝛿)𝜓(𝑡) = 𝐵𝑅−𝑡0(𝛿)𝜓(𝑡0),

where 𝑡0 is the unique stationary point satisfying the equation

(ln𝜓)′(𝑡0) = ln𝑅(𝛿). (3.1)

3.2. Power estimates. We apply the described method to obtain the criterion of power
convergence.

Theorem 3.2. Let 𝑅 be an even function monotonically decaying to zero at infinity and

𝐴, 𝐵, 𝛼 > 0 be some constants.

(1) If 𝐼𝑡(𝜇) ⩽ 𝐵𝑡−𝛼 for all 𝑡 > 0, then

𝜇([−𝛿, 𝛿]) ⩽ 𝐵
(︁ 𝑒
𝛼

)︁𝛼
ln𝛼 1

𝑅(𝛿)
for all 𝛿 > 0.

(2) If 𝜇([−𝛿, 𝛿]) ⩽ 𝐴 ln𝛼 1
𝑅(𝛿)

for all 𝛿 > 0, then

𝐼𝑡(𝜇) ⩽ 𝐴Γ(𝛼 + 1)𝑡−𝛼 for all 𝑡 > 0.

Proof. (1) We have 𝜓(𝑡) = 𝑡−𝛼. By Equation (3.1) we find 𝑡0 = 𝑡0(𝛿) and we get

𝑡0 = − 𝛼

ln(𝑅(𝛿))
.

This implies the sought estimate

𝜇([−𝛿, 𝛿]) ⩽ 𝐵𝑅−𝑡0(𝛿)𝜓(𝑡0) = 𝐵𝑅−𝑡0(𝛿)𝑡−𝛼
0 = 𝐵

(︁ 𝑒
𝛼

)︁𝛼
ln𝛼 1

𝑅(𝛿)

for all 𝛿 > 0.

(2) We have 𝜙(𝛿) = ln𝛼 1
𝑅(𝛿)

. Then for all 𝑡 > 0 we obtain

𝐼𝑡(𝜇) ⩽ 𝐴

1∫︁
0

𝜙(𝑅−1(𝑢
1
𝑡 )) 𝑑𝑢 = 𝐴

1∫︁
0

ln𝛼(𝑢−
1
𝑡 ) 𝑑𝑢 = 𝐴𝑡−𝛼

1∫︁
0

ln𝛼

(︂
1

𝑢

)︂
𝑑𝑢.
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Using the substitution ln
(︀
1
𝑢

)︀
= 𝑠, we arrive at the sought estimate

𝐼𝑡(𝜇) ⩽ 𝐴𝑡−𝛼

∞∫︁
0

𝑠𝛼𝑒−𝑠 𝑑𝑠 = 𝐴Γ(𝛼 + 1)𝑡−𝛼.

The proof is complete.

The constant 𝐴Γ(𝛼+1) in Assertion (2) of Theorem 3.2 is sharp in the class of all Borel mea-
sures 𝜇 on R. Moreover, it is sharp in the class of spectral measures of unitary representations
of group R.
Indeed, we consider the sequence of measures 𝜇𝑛 with supports on the segments [0, 𝑛] :

𝑑𝜇𝑛(𝑠) = 𝜒[0,𝑛](𝑠)
𝑑

𝑑𝑠

(︂
ln𝛼 1

𝑅(𝑠)

)︂
𝑑𝑠.

In view of the monotonicity 𝑅, on the positive semi–axis the derivative is well–defined every-
where except for a countable set of points (of zero measure). For each 𝛿 ∈ (0, 𝑛] we have

𝜇𝑛([−𝛿, 𝛿]) =
𝛿∫︁

0

𝑑

𝑑𝑠
ln𝛼 1

𝑅(𝑠)
𝑑𝑠 = ln𝛼 1

𝑅(𝛿)
,

that is, 𝐴 = 1. For the integral we obtain the identity

𝐼𝑡(𝜇𝑛) =

𝑛∫︁
0

𝑅𝑡(𝑠)
𝑑

𝑑𝑠
ln𝛼 1

𝑅(𝑠)
𝑑𝑠 = 𝑅𝑡(𝑛) ln𝛼 1

𝑅(𝑛)
−

𝑛∫︁
0

ln𝛼 1

𝑅(𝑠)
𝑑𝑅𝑡(𝑠).

We let 𝑦 = ln 1
𝑅𝑡(𝑛)

, then we obtain

𝐼𝑡(𝜇) = 𝑡−𝛼

⎛⎝𝑦𝛼𝑒−𝑦 +

𝑦∫︁
0

𝑠𝛼𝑒−𝑠 𝑑𝑠

⎞⎠ .

It is easy to confirm that the expression in brackets monotonically increases to Γ(𝛼 + 1) as
𝑦 → +∞ (this occurs as 𝑛→ ∞).
Let us show that the measures 𝜇𝑛 can be realized as spectral measures. In order to do this,

it is sufficient to consider the group of unitary multiplication operators

𝑈𝑡𝑓(𝑠) = 𝑒𝑖𝑡𝑠𝑓(𝑠)

in the Hilbert space ℋ = 𝐿2(R). It is easy to verify that the only fixed point of this group is
the zero function and the spectral measure reads 𝑑𝜎𝑓 (𝑠) = |𝑓(𝑠)|2 𝑑𝑠. Thus, it is sufficient to
take the functions

𝑓𝑛(𝑠) = 𝜒[0,𝑛](𝑠)

√︃
𝑑

𝑑𝑠

(︂
ln𝛼 1

𝑅(𝑠)

)︂
, 𝑛 ⩾ 1.

We note that by means of the same group of unitary operators the sharpness of constants was
proved for the estimates in the classical von Neumann theorem, see [19, Sect. 3.4].

Remark 3.1. For averagings of type (1.3) the criterion of power convergence reads

𝜇([−𝛿, 𝛿]) = 𝒪(𝛿𝛼𝑏) ⇐⇒ 𝐼𝑡(𝜇) = 𝒪(𝑡−𝛼).
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3.3. Dilated exponential rates. As Theorem 3.1 shows, the integrals 𝐼𝑡(𝜇) admit arbitrary
rates up to exponential one. We are going to obtain the conditions for dilated exponential rates.

Theorem 3.3. Let 𝑅 be an even function monotonically decaying to zero at infinite and

𝐴 ,𝐵 > 0 and 𝛼 ∈ (0, 1) be some constants.

(1) If 𝐼𝑡(𝜇) ⩽ 𝐵𝑞𝑡
𝛼
for all 𝑡 > 0 and some 𝑞 ∈ (0, 1), then

𝜇([−𝛿, 𝛿]) ⩽ 𝐵 exp

(︃
−
(︂

𝑄

ln𝛼 1
𝑅(𝛿)

)︂ 1
1−𝛼

)︃
for all 𝛿 > 0, where 𝑄 = 𝛼𝛼(1− 𝛼)1−𝛼 ln(1

𝑞
).

(2) If

𝜇([−𝛿, 𝛿]) ⩽ 𝐴 exp

(︃
−
(︂

𝑄

ln𝛼 1
𝑅(𝛿)

)︂ 1
1−𝛼

)︃
for all 𝛿 > 0 and some 𝑄 > 0, then

𝐼𝑡(𝜇) ⩽ 𝐴
√︀

2𝜋𝑄(1− 𝛼)𝛼𝛼1−𝛼 𝑡
𝛼
2 𝑞𝑡

𝛼

for all sufficiently large 𝑡 > 0, where 𝑞 = exp
(︁
− 𝑄

𝛼𝛼(1−𝛼)1−𝛼

)︁
.

Proof. (1) We follow the lines of proof of Theorem 3.2 on power rates. We have 𝜓(𝑡) = 𝑞𝑡
𝛼
. By

Equation (3.1) we find 𝑡0 = 𝑡0(𝛿) :

𝑡0 =

(︂
𝛼 ln(𝑞)

ln(𝑅(𝛿))

)︂ 1
1−𝛼

.

For all 𝛿 > 0 we then obtain

𝜇([−𝛿, 𝛿]) ⩽ 𝐵𝑅−𝑡0(𝛿)𝜓(𝑡0) = 𝐵𝑅−𝑡0(𝛿)𝑞𝑡
𝛼
0 = 𝐵 exp

(︃
−
(︂

𝑄

ln𝛼 1
𝑅(𝛿)

)︂ 1
1−𝛼

)︃
.

(2) We have

𝜙(𝛿) = exp

(︃
−
(︂

𝑄

ln𝛼 1
𝑅(𝛿)

)︂ 1
1−𝛼

)︃
.

Then for all 𝑡 > 0 we obtain

𝐼𝑡(𝜇) ⩽ 𝐴

1∫︁
0

𝜙(𝑅−1(𝑢
1
𝑡 )) 𝑑𝑢 = 𝐴

1∫︁
0

exp

(︃
−
(︂

𝑄

ln𝛼 1

𝑢
1
𝑡

)︂ 1
1−𝛼

)︃
𝑑𝑢.

Using the substitution ln
(︀
1
𝑢

)︀
= 𝑠, we arrive at the integral

𝐼𝑡(𝜇) ⩽ 𝐴

∞∫︁
0

exp

(︃
−

(︃
𝑠+

(︂
𝑄𝑡𝛼

𝑠𝛼

)︂ 1
1−𝛼

)︃)︃
𝑑𝑠.

We let 𝑇 = 𝑄𝑡𝛼, 𝛽 = 𝛼
1−𝛼

and make the change 𝑠 = 𝑇𝑢 in the integral

𝐼𝑡(𝜇) ⩽ 𝐴𝑇

∞∫︁
0

exp

(︂
−𝑇

(︂
𝑢+

1

𝑢𝛽

)︂)︂
𝑑𝑢.

To find the asymptotics of obtained integral, we apply the Laplace method [10, Ch. 2], [8].
Since the smooth function 𝑓(𝑢) = −𝑢− 1

𝑢𝛽 has the unique maximum at the point

𝑢0 = 𝛽
1

𝛽+1 =

(︂
𝛼

1− 𝛼

)︂1−𝛼

,
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as 𝑇 → ∞, the asymptotic identity
∞∫︁
0

exp

(︂
−𝑇

(︂
𝑢+

1

𝑢𝛽

)︂)︂
𝑑𝑢 = 𝑒𝑇𝑓(𝑢0)

√︃
2𝜋

−𝑓 ′′(𝑢0)

(︁
𝑇− 1

2 +𝒪(𝑇−1)
)︁

holds. Substituting the values

𝑓(𝑢0) = − 1

(1− 𝛼)1−𝛼𝛼𝛼
, 𝑓 ′′(𝑢0) = − 1

(1− 𝛼)𝛼𝛼1−𝛼
,

for sufficiently large 𝑡 > 0 we obtain

𝐼𝑡(𝜇) ⩽ 𝐴𝑄
1
2 𝑡

𝛼
2 exp

(︂
− 𝑄𝑡𝛼

𝛼𝛼(1− 𝛼)1−𝛼

)︂√︀
2𝜋(1− 𝛼)𝛼𝛼1−𝛼.

The proof is complete.

Remark 3.2. Theorems 3.2 and 3.3 are also true for a discrete sequence of measures 𝜈𝑛,
probably with slightly different constants.
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