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ON CONVERGENCE RATE IN ERGODIC THEOREM FOR
SOME STATISTICALLY AVERAGING SEQUENCES IN R

I.V. PODVIGIN

Abstract. In this work we consider two types of averaging of unitary representation of the
group R constructed by some sequences of probability measures on R. The first sequence
of measures generalizes the uniform distribution. The densities of the measures in this
sequence are convolutions of finitely many indicators of segments. The second sequence is
defined by the exponential decay of Fourier transform. For such averagings we obtain the
estimates for the convergence rate in the norm depending on the singularities of spectral
measure of the unitary representation in a neighbourhood of zero and of the asymptotics
of sequence of Fourier transforms of averaging probabilistic measures. At the same time,
the maximal possible rates are powers with the exponents m > 1 and the exponential
rate, respectively, and this is significantly better than the maximal convergence rate in the
classical von Neumann ergodic theorem.
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1. INTRODUCTION

Let H be a Hilbert space, on which the group R acts by unitary transformations U, t € R.
The von Neumann ergodic theorem (statistical ergodic theorem) states that for each vec-
tor he H

1 / Ushds — Phl| — 0
2t

[—t.] 2
as t — oo, where P is the orthogonal projection onto the subspace of fixed vectors of group
{U,; }+er- The convergence rate in this theorem is well-studied: it is determined by the singularity
of spectral measure oy, h € H in a neighbourhood of zero, see the reviews |3], |1], as well as
recent works [19], [12].

The statistical ergodic theorem is generalized as follows. According to the terminology of
Tempelman [22], for a locally-compact commutative group G, the statistically averaging se-
quence is the sequence (or net) of probability measures {v,},>; on the group G such that for

each unitary representation {U,},eg in the Hilbert space H the convergence

/Ush dv,(s) — Ph|| — 0
g H
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holds as n — oo for each h € H, where P is the orthogonal projection onto the subspace of fixed
vectors of group {U,},eg. The classical von Neumann theorem considers uniform distributions
on the segment [—t,¢], that is, the net of absolutely continuous probability measures

1
dvi(s) = Q_tXH,t](S) ds.

By the Blum — Eisenberg criterion [13], the net of probability measures v, on locally compact
commutative group G is statistically averaging if and only if

lim [ x(g)dv(g) =0

t—o00

g
for each character y € G", x # 1. For the group R™, m > 1, this condition is written as

tlim e dy,(x) =0 for each s # 0.
—00
R™
The integral in this identity is the Fourier transform F[v;] of probability measure ;. This
equivalence is implied by the identity
2

/Ush dv,(s) — Ph|| = / | Flvi(s)]Pdon_pn(s), (1.1)
g x9N

where oy,_py, is the spectral measure of vector h — Ph, see, for instance, [18]; at the same time,

on_pr(1) =0, where 1 is the unit character.

In ergodic theorem (both in individual and statistical) the following classes of statistically
averaging nets are important [20, Sect. 2.2]: measures v; absolutely continuous with respect
to the Lebesgue measure including measures v; with compact supports; singular and discrete
probability measures v; orthogonal to the Lebesgue measure.

In this note we focus on a few examples of statistically averaging sequences, which realize a
convergence rate in the ergodic theorem faster than that in the classical von Neumann theorem.
Namely, we consider examples with the maximal power rate with exponent m > 1 and with
maximal exponential rate. We note that the maximal convergence rate in the classical von Neu-
mann theorem is O (%) . The same slow maximal rate holds for the pointwise convergence [5].
There are also works devoted to the fast pointwise convergence rate, see, for instance, [15], [10],

[23].

The maximal power rates can be realized by means of the following construction. Let
p€ Lo([-1,1],dz), p=0, |plh=1,
then we define

1 x
dvy(s) = X[ (x)p (?) dr, t>0. (1.2)

This net generalizes the uniform averaging in the von Neumann ergodic theorem (with p = %)

It is easy to see that the Fourier transform satisfies the Blum — Eisenberg criterion:
1 , .
Fl(s) = n / e p (%) dx = / e Wp(y)dy := R(ts) - 0 as t— +oo
[—t,t] [—-1,1]

for each s # 0 by the Riemann — Lebesgue lemma. We are interesting in the case, when for

some m € IN
R(u) = O (im) and  R(u) # o (L)

U um
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as |u| — +o0. In particular, this condition holds for the considered below convolution of m
indicators of the segment [—% i} :

’'m

2 m
p(m): (—) X[_ivi]*”'*x[_ii](l’).

m m’m

TV
m times

We shall call such statistically averaging nets are called as type (A).

We define probability measures with the maximal exponential rate via the Fourier transform.
Suppose that we are given a net (or sequence) of probability measures v; with the Fourier
transform

Flul(s)=7r'(s), t>0 or t=necN,

where 7(s) satisfies the conditions 7(0) = 1 and |r(s)| < 1 for all s # 0. The definition of these
measures shows that they are statistically averaging. The measures can be recovered by the
Fourier transform by an explicit formula, see, for instance, |1, Sect. 1.6.1]. We shall call such
statistically averaging nets are called as type (B). The examples of such nets are convolutions
of measures and distributions with fast decaying densities.

Let for some real numbers a, b > 0 the averaging net 1, has a dilated exponential Fourier
transform
|b

Flu](s) = e7atls t>0. (1.3)

As an example of measure obeying the above conditions we can consider the Gauss distribution

1 22
dv(z) = ﬁe_T de, t>0
or the Cauchy distribution
t
th(fL') = m, t> 0.

Their Fourier transform can be easily calculated or found in tables |7]

t32

Flul(s)=e*  and  Fly(s) = e .

We consider another way of constructing nets of type (B). Let 1y be a probability measure
in R such that its Fourier transform possesses the property |F|[vo)(s)] < 1 and the identity is
attained only at s = 0. For instance, the Dirac measures do not possess such property. We let

V() = v * .ok =1, n > 1.
————

n times

By the Borel formula for convolution we obtain
Flvnl(s) = (Flwo)(s))" =0 as n— +o0

for each s # 0.

Using a new recent approach to the problem [6, Sect. 3.1], in this note we obtain the
asymptotics for the integrals (1.1) for the group R and for averaging nets (A) and (B). Here
it is more convenient to consider a more general construction: instead of the spectral measure
os_pf, we take an arbitrary Borel measure 1 on R continuous at zero, that is, {0} = 0.
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2. AVERAGING NETS WITH CONDITION (A)

2.1. Whittaker — Kotelnikov — Shannon theorem. We recall that the direct (inverse)
Fourier transform of a function f € Lo(R, dz) is the function

f(s) = \/%_W]R/f(t)@”s dt respectively, f(s) = \/%_WR/f(t)eits dt

A

The Fourier transform is invertible in Ly(R, dz), that is, f(s) = f(s) = f(s) for almost each
s € R. The definition shows that the Fourier transform of the measure v; in (1.2) is, up to a
multiplicative constant, the inverse Fourier transform of the function p, that is,

Flui](s) = V2rp(st) = Rlts).

Thus, the function R belongs to Ly(R, dz) N C(R) and its Fourier transform R(u) = v/2mp(u),
that is, supp R = [—1, 1]. The latter means that for the function R Whittaker — Kotelnikov —

Shannon theorem holds, which states, see, for instance, [17], [11], that
sm (km — 1)/k+1 sin o
=D R(km)— —— Zle ) (2.1)
kEZ kEZ

and the series converges absolutely and uniformly on R and the sequence {R(7k)}rez lies
in ¢*(Z). This representation implies

1

R(u)=0 (—) as |u| = +oo.

u
Let us provide the justification of this fact. We fix m > 1 and partition the sum in (2.1)
into two, one for |k| < m and the other for |k| > m. We estimate the second sum by means of
Cauchy — Schwarz — Bunyakovsky inequality

(=) sinu sinu
> R(’”)ﬂ < [ IRk | sM > |R(xk),
k|>m |k|>m & |k|>m
where
M = max Y < 00
weR || km — u 2

_ || sinu H
km—u |l g2

first sum, we take into consuieration that |R| < 1. For |u| > v/3mm we obtain

sinu 1)+ (k)  R(—km)
" +sinu Z (

tk—u 7wk+u

| sin u| = 1 1
< 1
- \ 21 e

k=1

| sin u| = 20
p— 1 —
a2

sin u 2um sin u
<%(1+u2 )<| |(1+3m).

since the function p(u is everywhere finite and mperiodic. While estimating the

Z Rikn) (—=1)kLsinu _

7k —u

|k|<m
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Thus, for all

N[

| > max {\/gwm; M- ( k; |R(7rk)|2> :

}

the estimate
1

| B(u)| < m@ +3m)
holds.
We observe that the obtained estimate for R is attained at the density p from the statistical
ergodic von Neumann theorem. This is why the interesting densities are ones, for which the

Fourier transform decays faster.

2.2. Maximal rates. If p is defined by the convolution (A), by the Borel formula we obtain

sin™ (=
R(u) = c—(m)
um
for some constant ¢ = ¢(m) > 0. Then the formula (1.1) written in terms of continuous at zero
measure j, implies
sin®™ (£)

H) = [ IR duts) = @ [ T auts)

Let us consider the maximal rate of convergence to zero for the integral I;(ju).

Theorem 2.1. The following equivalences hold:

d
Li(p) =0 as t— +o0 = / 52(7:) < 00;
R
L) =o(t™®™) as t— +o0 — =

Proof. 1t is sufficient to consider only the direct statements since the inverse are obvious. Let
Li(p) < At for all ¢t > 0. Then, for each T' > 0,

T
1 sin?™ (ﬁ—fl) A
0 R

Since s # 0,

T—+o00 / m T—4o0 T / (2¢)2m
D ey L /T S
k=0 4m M T oto0 T )
2m
= O (1)l = B
k=0

in view of the identity {0} = 0 and by the Fubini theorem and the Fatou lemma we obtain

/du(s) o 4™ A

~
§2m oy

< 00.

R
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Suppose that I;(u) = o(t™2™) as t — 4o00. By introducing the finite measure

dn(s) = dgg&;g)

this relation is reduced to

R
that is,
t
lim ||sin <—S> =0.
t——4o00 m Lzm(R,dn)
The Holder inequality
t t —
Sin (_S) < Sin (—S) ’]7 2m1 (R)
m Lo(R,dn) m Lam (R,dn)
implies
t
lim ||sin (—S> — 0.
t—+o0 m Lo (]Rydﬁ)

This relation by Lemma 4 in [19] yields n(R) = 0. Hence, p(R) = 0. The proof is complete. []

2.3. Regularly varying functions. Since the maximal rate is power, it is natural to find
the criterion for the power rates with a smaller exponent. For the case m = 1, that is, for
the classical von Neumann ergodic theorem, the Kachurovskii criterion for the power rates was
extended (for discrete time) by Gaposhkin in [2] to the class of functions of form u=%p(u),
a € [0,2), where ¢ is a weakly oscillating function. We recall that a function ¢ : R, — R,
is called weakly oscillating (or slowly varying in the Zygmund sense) if for each 6 > 0 for
sufficiently large u > 0 the function u’¢(u) monotonically increases, while the function u=%¢(u)
monotonically decreases. The class of weakly oscillating functions is a subclass of slowly varying
in the sense of Karamata, that is, of measurable functions, for which the identity

lim p(Au) =
U—r—+00 (p(u)

holds for each A\ > 0. The function ¥ (u) = u”p(u), where p(u) is a slowly varying in the sense
of Karamata is called regularly varying at infinity of order p € R. The details on such functions
can be borrowed from the monograph [9], and also from the recent paper [21]. We are going
to show that the result by Gaposhkin can be generalized to all regularly varying functions of
order —c, where a € [0,2m). Let us provide key statements.

The next lemma shows that for one side of estimates no additional conditions for the con-
vergence rate are needed.

Lemma 2.1. Let 1(t) — 0 as t — +o0 and I;(;n) < B(t) for some constant B > 0 for all
t > 0. Then for all 6 >0

p([=0,4]) < %w (%) '

S1n
m

=

Proof. We represent an arbitrary 6 > 0 as 6 = . Then

u=adh = [ < Sm [ Sl

[7%7%} [7%> ]

—2 ¢ ’B c’B 1
< WL(M) < sinT(%)w(t) = ml/) (5) :

N o~

o+
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The proof is complete. O
The next theorem by Aljanc¢i¢, Bojanic and Tomi¢ [11, Thm. 1] (see also [9, Thm. 2.7]) is a
key ingredient for proving other side of estimates.

Theorem 2.2. Let f: (0,400) — R and 6 > 0 be such that the integral [ v f(u)du con-
0

verges for some a € (0, +00). Then for each slowly varying in the sense of Karamata function ¢
bounded on each finite interval in (0,4+00) the relation

/f(u)go(tu)du ~ cp(t)/f(u)du as t— +oo.

holds.
Now we formulate the criterion for all possible regular convergence rates.

Theorem 2.3. Let ¢(u) = u=%¢(u), where a € [0,2m) and ¢ is a slowly varying in the

Karamata sense function bounded on each finite interval in (0,+00). Then the equivalence
1
u([=4,6]) = O (1/1 (5>> as 6 —>+0 <  L(p)=0((t) as t— +oo.

holds.

Proof. The inverse implication follows from Lemma 2.1. For the direct implication first we are
going to obtain the estimate

i = [ e o [ ({nem: L o)

. (ts
u?m SGR:M>U du
|£s]

1
< 2mc2A/u2m1(tu)°‘g0(ut) du
0

for all ¢ > 0. Here and later in Remark 2.1 the constant A > 0 is determined by the assumptions
of the theorem: p([—4,6]) < Av (3) for all § > 0. Thus,

Li(n) =0 t‘“/uQm_o‘_lgo(ut) du as t— 4o0.
0

It remains to apply Theorem 2.2 for the function f(u) = u?*™ ! on the interval (0,1). As 6
we can take an arbitrary number in the interval (0,2m — «). The proof is complete. O]

Remark 2.1. For power rates ¥(u) = u=%, o € [0,2m) the estimate holds:

m 202A
2 -« 2m—a—1 _ —«
Ii(p) < 2me At /u du = om = a)QO_a_lt :

0
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3. ESTIMATES FOR RATES OF AVERAGING NETS OF TYPE (B)

3.1. Maximal rates. We let R(s) = |r(s)|?; in the case of averagings (1.3) we have
R(s) = e~2alsI” Thus, we are interesting in the asymptotics of integrals

I,(pn) = /R”(s)d,u(s), and, respectively, [;(u) = /Rt(s)d,u(s)

asn — oo or as t — +oo.
First we consider maximal possible convergence rates.

Theorem 3.1. Let g € (0,1), then
I(n) =0O(q") as t— +oo <&  there exists 0 >0 such that p([—6,6]) =0.

If for each q € (0,1) the asymptotic relation I;(u) = o(q") holds as t — +o0, then I;(1) = 0.
Similar statements are true for the integrals I,(1).

Proof. It pu(|—6,0]) = 0 for some § > 0, then
[ Bt = [ B)n(s) < max R fls] > 6) = w(R
R |s|>6 B

where ¢ = max,>5; R(s) < 1. And vice versa, let for some constants A > 0 and ¢ € (0,1) we
have I,(1) < Ag¢' for all ¢ > 0. Then

[ [ () o<

+00, R(s) > q,

o [y

interchanging the integration order by the Tonelli theorem and applying the Fatou lemma, we
obtain

Letting

/ 9(5)dp(s) < A,

We hence conclude that u({R(s) > ¢q}) = 0. Since R is a continuous function R(0) = 1, the open
set {R(s) > ¢} contains some neighbourhood of zero of form [—d, §]. Therefore, u([—6,0]) = 0.
Suppose that I;(1) = o(q") as t — +oo for each g € (0,1). Then, as it has been proved,
p({R(s) > q}) = 0. Letting ¢ — 40, we obtain the identity u({R(s) > 0}) =0, that is, the
measure f is concentrated on the zeroes of function R. In this case we obtain I;(u) = 0.
For the integrals I,,(x) the proof is similar. The only difference is that instead of the inte-

T N
gration %of we need to make the summation % 1;1 The proof is complete. O
Let us discuss the way of obtaining the estimates for the integral I,(u) over the singular-

ity of measure p near the origin. In further arguing we suppose that R is an even function
monotonically decaying to zero at infinity. Suppose that for some A > 0 the estimate

p([=9,6]) < Ap(9)
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holds for all § > 0, where ¢ — 0 as § — +0. Then
1

1) = / R(s)du(s) = / W{Ri(s) > u} du

R 0
= [ ullsl < R du< 4 [ o(R )

Now suppose that the estimate
Ii(p) < Bi(t)

is true for all ¢ > 0 with some constant B > 0, where 1) is a positive differentiable monotonically
increasing function. Then

u(=6) = [ duts) =RG) [ R@duts)
[—5,6] [—5,0]
SR [ R)duls) < B6) [ R()duls) < BRG0(0),
[—5,0] R
This yields
u([=6,8]) < Binf R™(5)(t) = BR™(5) (1)
where g is the unique stationary point satisfying the equation

(Ine) (to) = n R(6). (3.1)

3.2. Power estimates. We apply the described method to obtain the criterion of power
convergence.

Theorem 3.2. Let R be an even function monotonically decaying to zero at infinity and
A, B, a > 0 be some constants.

(1) If (1) < Bt= for all t > 0, then

u([~6,0]) < B <§>alna %) for all 6> 0.

(2) If u([-9,6]) < Aln” % for all 6 > 0, then
L(p) < AT'(a+ 1)t7*  forall t>0.
Proof. (1) We have ¢ (t) = t~*. By Equation (3.1) we find ¢y = t¢(d) and we get

b
" In(RO)
This implies the sought estimate
a 1
_ < —to — —to —o E o
u([=6.9)) < BR™(0)(to) = BR(0)t5" = B(=) In 70

for all 6 > 0.

(2) We have p(d) = In® ﬁ. Then for all ¢ > 0 we obtain

1

L) < A/lgp(Rl(ui))du - A/lna(ui)du _ Ata/llna (1) du.

u
0
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Using the substitution In (%) = s, we arrive at the sought estimate

oo

Ii(p) < At / s%e™?ds = Al'(a + 1)t
0

The proof is complete. 0

The constant AI'(a+1) in Assertion (2) of Theorem 3.2 is sharp in the class of all Borel mea-
sures 1 on R. Moreover, it is sharp in the class of spectral measures of unitary representations
of group R.

Indeed, we consider the sequence of measures p, with supports on the segments [0, n] :

dia(s) = x93 (10" ) s

In view of the monotonicity R, on the positive semi—axis the derivative is well-defined every-
where except for a countable set of points (of zero measure). For each § € (0,n] we have

1
/d 1 Lo
R = |n
d ds R(5)’
0

that is, A = 1. For the integral we obtain the identity

n n

Li(w,) = /Rt(s)% In® Ris) ds = R'(n)In® % - /lna % dR'(s).

0

We let y = In 77—~ ( , then we obtain

y
Li(p) =t y%e ¥ + /so‘e_S ds

0

It is easy to confirm that the expression in brackets monotonically increases to I'(aw+ 1) as
y — +oo (this occurs as n — 00).

Let us show that the measures pu, can be realized as spectral measures. In order to do this,
it is sufficient to consider the group of unitary multiplication operators

Uif(s) = eitsﬂs)

in the Hilbert space H = Ly(R). It is easy to verify that the only fixed point of this group is
the zero function and the spectral measure reads dos(s) = |f(s)|? ds. Thus, it is sufficient to

take the functions
d 1
In® > 1.

We note that by means of the same group of unitary operators the sharpness of constants was
proved for the estimates in the classical von Neumann theorem, see [19, Sect. 3.4].

Remark 3.1. For averagings of type (1.3) the criterion of power convergence reads

u([=0,0]) = 0(6™) = IL(n) = O(t™).
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3.3. Dilated exponential rates. As Theorem 3.1 shows, the integrals I;(y) admit arbitrary
rates up to exponential one. We are going to obtain the conditions for dilated exponential rates.

Theorem 3.3. Let R be an even function monotonically decaying to zero at infinite and
A,B >0 and a € (0,1) be some constants.

(1) If I;(n) < Bg" for allt > 0 and some q € (0,1), then

uwﬁﬂnu%m<_(ﬁ%%y;)

— A 11—« 1
Jor all 6 >0, where Q@ = a®(1 — a) " In(y).

@) If 1
Q T—a
([6.5]) < Aex (— . )

r b QHWJ

for all 6 > 0 and some Q > 0, then
L(p) < AV2rQ(1 — a)*al—t2¢!"

for all sufficiently large t > 0, where ¢ = exp <—W> )

Proof. (1) We follow the lines of proof of Theorem 3.2 on power rates. We have ¢ (t) = ¢*". By
Equation (3.1) we find ¢y = #(0) :

aln(g) \ 7=

to=(—2t) .

In(R(9))

For all 6 > 0 we then obtain
=
p([—0,0]) < BR™™(6)i(ty) = BR™"(6)¢"" = Bexp (— (#) >

(2) We have 1
M@Z@@(-(Mg%)Hj-

1 1
Q \7=
))du=A exp(—( ozL) >du.
0/ e

Using the substitution In (%) = s, we arrive at the integral

Ii(p) < A7eXp (— <s+ (%))) ds.

We let T' = Qt%, f = %= and make the change s = T'u in the integral

Li(p) < AT]oeXp (-T (u + u—é)) du.

To find the asymptotics of obtained integral, we apply the Laplace method [10, Ch. 2], [8].
Since the smooth function f(u) = —u — 25 has the unique maximum at the point

l—«
Uozﬁﬁ: “ )
11—«

Then for all ¢ > 0 we obtain

N

zmosA/wmlw
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as T — oo, the asymptotic identity

i o [ 1 _ Tfo) [ 2T (el -
O/e p( T(u+uﬁ>) du = e’ = 7 (an) <T +O(T 1))

holds. Substituting the values
1 1

f(uo) = —m7

for sufficiently large t > 0 we obtain

Ii(n) < AQ=t% exp (—L) V271(1 — a)eal-e,

a®(l —a)l-«

The proof is complete. O

Remark 3.2. Theorems 3.2 and 3.5 are also true for a discrete sequence of measures v,
probably with slightly different constants.
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