
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 17. No 2 (2025). P. 37-55.

doi:10.13108/2025-17-2-37

ON ONE APPLICATION OF

LEONTIEV INTERPOLATION FUNCTION IN THEORY

OF TRIGONOMETRICALLY CONVEX FUNCTIONS

K.G. MALYUTIN

Abstract. We study a connection between 𝜌–trigonometrically convex functions and the

class of subharmonic functions. The established connection is used to prove new inequalities

characterizing 𝜌–trigonometrically convex functions and to find integral equations of the

first kind for 𝜌–trigonometric functions. Under a detailed development of this issue, there

appears the convolution integral equation

ℎ(𝜃) =

∞∫︁
−∞

ℎ(𝜃 − 𝑢)𝑑𝜎(𝑢),

where 𝜎 is a finite compactly supported measure. The results on the theory of this equation

are exposed following A.F. Leontiev, who studied this equation in relation with the theory of

Dirichlet series. Using the Leontiev interpolating function, we propose additional conditions

ensuring that a continuous solution to the equation

ℎ(𝜃) =

∞∫︁
−∞

𝑎𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢

for a fixed 𝑅 is a 𝜌–trigonometric function.

Keywords: subharmonic function, trigonometrically convex function, integral equation of

the first kind, convolution equation, Leontiev interpolating function.

Mathematics Subject Classification: 26A51, 31A05.

1. Introduction

We study a connection between 𝜌–trigonometrically convex functions and the class of sub-
harmonic functions. The established connection is used to prove new inequalities character-
izing 𝜌–trigonometrically convex functions and to find integral equations of the first kind for
𝜌–trigonometric functions. Under a detailed development of this issue, there appears the con-
volution integral equation

ℎ(𝜃) =

∞∫︁
−∞

ℎ(𝜃 − 𝑢)𝑑𝜎(𝑢),
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where 𝜎 is a finite compactly supported measure. The results on the theory of this equation
are exposed following A.F. Leontiev, who studied this equation in relation with the theory of
Dirichlet series. Using the Leontiev interpolating function, we propose additional conditions
ensuring that a continuous solution to the equation

ℎ(𝜃) =

∞∫︁
−∞

𝑎𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢

for a fixed 𝑅 is a 𝜌–trigonometric function.
The paper is organized as follows. In Section 2 we provide preliminary facts from the theory of

subharmonic and 𝜌–trigonometrically convex functions. In Theorem 2.7 we prove that each 𝜌–
trigonometrically convex function can be approximated by a family of infinitely differentiable
𝜌–trigonometrically convex functions. In Theorem 2.8 we establish the relation between 𝜌–
trigonometrically convex functions and subharmonic functions.
In Section 3 we prove new inequalities for 𝜌–trigonometrically convex functions, see Theorems

3.1 and 3.3. As corollaries of Theorems 3.1 and 3.3 we obtain criteria for a continuous function
ℎ on the entire axis to be 𝜌–trigonometric, see Theorems 3.2 and 3.6.
Section 4 is devoted to the study of one convolution equation. The results on the theory

of this equation are presented following A.F. Leontiev, who studied it in connection with the
theory of Dirichlet series. Using the Leontiev interpolating function, we propose additional
conditions ensuring that a continuous solution to the integral equation is a 𝜌–trigonometric
function.

2. Preliminaries

By the symbol ⟨𝑎, 𝑏⟩ we denote either an interval, or a segment, or a semi–interval of one of
two types. Of course, the segment ⟨𝑎, 𝑏⟩ is well–defined; it cannot be an interval and a half–
interval simultaneously. The use of the symbol ⟨𝑎, 𝑏⟩ is justified in studying the properties of
functions t defined on an interval, a segment, or a half–interval. The use of this symbol allows
us brief formulation in some cases. For instance, instead of saying that the function 𝑓 is defined
on the interval with the endpoints 𝑎, 𝑏, which can be an interval, a segment, or a half–interval,
we can say briefly that the function 𝑓 is defined on a segment ⟨𝑎, 𝑏⟩.
We shall establish a connection between 𝜌–trigonometrically convex functions and subhar-

monic functions. The theory of subharmonic functions can be found in the books of Privalov [6],
Heyman and Kennedy [8], Tsuji [13]. We begin with the necessary definitions and exposition
of the properties of subharmonic functions, which will be used in what follows.

Definition 2.1. A function 𝑣(𝑧) defined in a planar domain 𝐷 with values from the extended
real line [−∞,∞] is called subharmonic in the domain 𝐷 if it satisfies the conditions

1) 𝑣(𝑧) <∞ for each point 𝑧 ∈ 𝐷,
2) there exists a point 𝑧 ∈ 𝐷 such that 𝑣(𝑧) > −∞,
3) the function 𝑣(𝑧) is upper–semi–continuous, that is,

lim
𝑧→𝑧0

𝑣(𝑧) ⩽ 𝑣(𝑧0)

for each point 𝑧0 ∈ 𝐷,
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4) the mean inequality holds, that is, for each point 𝑧0 ∈ 𝐷 and all 𝑅 > 0 such that the ball
|𝑧 − 𝑧0| ⩽ 𝑅 is contained in 𝐷 the inequality holds

𝑣(𝑧0) ⩽
1

2𝜋

2𝜋∫︁
0

𝑣(𝑧0 +𝑅𝑒𝑖𝜙)𝑑𝜙. (2.1)

Definition 2.2. A function 𝑣(𝑧) is called locally integrable in the domain 𝐷 if it is integrable
over each compact set embedded into the domain 𝐷.

It is proved in the theory of subharmonic functions that each subharmonic function in a
domain 𝐷 is locally integrable in this domain. In particular, a subharmonic function cannot
become −∞ on any open set. We also observe that, along with inequality (2.1), the inequality
holds

𝑣(𝑧0) ⩽
1

𝜋𝑅2

𝑅∫︁
0

2𝜋∫︁
0

𝑣(𝑧0 + 𝑟𝑒𝑖𝜙)𝑟𝑑𝑟𝑑𝜙, (2.2)

and in Definition 2.1 the inequality (2.1) can be replaced by the inequality (2.2).
Now we are in position to define our main object, the 𝜌–trigonometrically convex function,

see [3]. The prohibition to take infinite values often turns out to be inconvenient. This is, in
particular, due to the fact that the real line (−∞,∞) is not compact, unlike the extended real
line [−∞,∞]. The functions that take on only finite real values will be called finite. A priori,
we do not prohibit a function to take infinite values.

Definition 2.3. A function ℎ(𝜃) defined on a segment ⟨𝛼, 𝛽⟩ with values in the extended
real line [−∞,∞] is called 𝜌–trigonometrically convex on this segment if for all 𝜃1, 𝜃2 ∈ ⟨𝛼, 𝛽⟩,
0 < 𝜃2 − 𝜃1 < 𝜋/𝜌, and each 𝜃 ∈ (𝜃1, 𝜃2) the inequality holds

ℎ(𝜃) ⩽
sin 𝜌(𝜃2 − 𝜃)

sin 𝜌(𝜃2 − 𝜃1)
ℎ(𝜃1) +

sin 𝜌(𝜃 − 𝜃1)

sin 𝜌(𝜃2 − 𝜃1)
ℎ(𝜃2). (2.3)

To avoid the phrase “if the sum makes sense”, in this definition we adopt the convention that
the inequality 𝑥 ⩽ ∞ − ∞ holds for any 𝑥 ∈ [−∞,∞]. This convention does not make our
definition inconsistent.
It is easy to prove that the definition 2.3 is equivalent to the following one.

Definition 2.4. A function ℎ(𝜃) defined on a segment ⟨𝛼, 𝛽⟩ with the values in the extended
real line [−∞,∞] is called 𝜌–trigonometrically convex on this segment if for all 𝜃1, 𝜃2 ∈ ⟨𝛼, 𝛽⟩,
0 < 𝜃2 − 𝜃1 < 𝜋/𝜌, and each 𝜌–trigonometric function 𝐻(𝜃) the inequalities ℎ(𝜃1) ⩽ 𝐻(𝜃1),
ℎ(𝜃2) ⩽ 𝐻(𝜃2) imply the inequality ℎ(𝜃) ⩽ 𝐻(𝜃) for each 𝜃 ∈ [𝜃1, 𝜃2].

There are certainly situations when it is more convenient to use Definition 2.4. However, we
note that if we use this definition, we need to consider two cases: the first, when there is no
function 𝐻(𝜃) for which the inequalities ℎ(𝜃1) ⩽ 𝐻(𝜃1), ℎ(𝜃2) ⩽ 𝐻(𝜃2) hold, and the second,
when such a function does exist. When using Definition 2.3, there is no need to consider these
cases. Note also that, according to the proposed definitions, the empty function, i.e. a function
with the empty domain, and any function defined on a one–point set are 𝜌–trigonometrically
convex functions.
Let us adopt the terminology. We have defined 𝜌–trigonometrically convex functions for

each 𝜌 > 0. The most frequent functions are 1–trigonometrically convex ones. Following
tradition, we call such functions trigonometrically convex. We shall use the term “general
trigonometrically convex function”, that is, a function that is 𝜌–trigonometrically convex for
some 𝜌 > 0. This term is convenient to use in cases where there is no need to fix a specific 𝜌.
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The most important result in the theory of subharmonic functions is the maximum principle.
We present a version of this principle.

Theorem 2.1. Let 𝑣(𝑧) be a subharmonic function in a bounded domain. Let 𝑀 be a real
number such that for each point 𝜁 in the boundary 𝐷 the inequality

lim
𝑧→𝜁
𝑧∈𝐷

𝑣(𝑧) ⩽𝑀

holds. Then for each point 𝑧 in the domain 𝐷 the inequality 𝑣(𝑧) ⩽ 𝑀 holds and one of the
following cases take place

1) 𝑣(𝑧) < 𝑀 for each point 𝑧 in 𝐷,
2) 𝑣(𝑧) ≡𝑀 in the domain 𝐷.

An important generalization of the maximum principle to the case of unbounded domains
is the Phragmén — Lindelöf theorem. Without dwelling on the general case, we formulate
the Phragmén — Lindelöf theorem for the most important domain for us, which an angle. To
formulate it, we need one more definition.

Definition 2.5. Let 𝐴 = 𝐴(𝜙1, 𝜙2) = {𝑧 : 𝜙1 < arg 𝑧 < 𝜙2} be an open angle and 𝜌 ⩾ 0
be some number. The number 𝜌 is called the formal order of a subharmonic inside the angle 𝐴
function 𝑣(𝑧) if there exist the numbers 𝑀1, 𝑀2 ⩾ 0 such that for 𝑧 ∈ 𝐴 the inequality holds

𝑣(𝑧) ⩽𝑀1 +𝑀2|𝑧|𝜌.

Theorem 2.2. Suppose that a subharmonic function 𝑣(𝑧) is defined inside the angle
𝐴(𝜙1, 𝜙2) and satisfies the conditions

1) there exists a number 𝑀 such that for each point 𝜁 on the boundary of the angle the
inequality holds

lim
𝑧→𝜁
𝑧∈𝐴

𝑣(𝑧) ⩽𝑀,

2) some number 𝜌 ⩾ 0 is the formal order of the function 𝑣(𝑧) inside the angle 𝐴(𝜙1, 𝜙2),

3) the inequality 𝜙2 − 𝜙1 <
𝜋

𝜌
holds.

Then for each point 𝑧 ∈ 𝐴(𝜙1, 𝜙2) the inequality 𝑣(𝑧) ⩽𝑀 holds.

The 𝜌–trigonometrically convex functions first appeared in mathematics in connection with
the following theorem, also due to Phragmén and Lindelöf.

Theorem 2.3. Let 𝑣(𝑧) be a subharmonic function of formal order 𝜌 > 0 inside the angle
𝐴(𝛼, 𝛽) and let

ℎ(𝜃) = lim
𝑟→∞

𝑣(𝑟𝑒𝑖𝜃)

𝑟𝜌

be its growth indicator (this is the definition of indicator). Then ℎ(𝜃) is a 𝜌–trigonometrically
convex function on the interval (𝛼, 𝛽).

Let us formulate without proof two more needed theorems from the theory of subharmonic
functions. The first of them is a theorem on the characterization of smooth subharmonic
functions.

Theorem 2.4. Let 𝑣(𝑥, 𝑦) be a twice–differentiable function in the domain 𝐷. It is subhar-
monic if and only if in the domain 𝐷 the inequality

∆𝑣(𝑥, 𝑦) ⩾ 0
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holds, where

∆ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

is the Laplace operator.

The second theorem is on the preservation of subharmonicity under the uniform passage to
the limit. Since subharmonic functions can become −∞ at some points, the statement “the
sequence 𝑣𝑛(𝑧) converges uniformly to 𝑣(𝑧)” means that the sequence of bounded functions
arctan 𝑣𝑛(𝑧) converges uniformly to the function arctan 𝑣(𝑧).

Theorem 2.5. Let 𝑣𝑛(𝑧) be a sequence of subharmonic functions uniformly converging on
compact sets in 𝐷. Then the function

𝑣(𝑧) = lim
𝑛→∞

𝑣𝑛(𝑧)

is a subharmonic function in 𝐷 if 𝑣(𝑧) ̸≡ −∞.

Approximation theorems are an important tool for studying various classes of functions. The
best known theorems are ones on the approximation of continuous functions by polynomials.
As we shall see below, each function from the class of 𝜌–trigonometrically convex functions
can be approximated with an arbitrary accuracy by an infinitely differentiable function from
the same class. In some cases, this statement allows one to carry out the proof only for
the class of infinitely differentiable 𝜌–trigonometrically convex functions. Before formulating
the corresponding approximation theorem, we present the notation and some facts from the
averaging theory.
We denote

𝜔(𝑥) = 𝑐

{︃
𝑒
− 1

1−𝑥2 , |𝑥| < 1;

0, |𝑥| ⩾ 1,

where the constant 𝑐 is chosen so that
∞∫︁

−∞

𝜔(𝑥)𝑑𝑥 = 1.

It is known that 𝜔(𝑥) is an infinitely differentiable function on the entire axis. We denote

𝜔𝜀(𝑥) =
1

𝜀
𝜔
(︁𝑥
𝜀

)︁
. (2.4)

We have
∞∫︁

−∞

𝜔𝜀(𝑥)𝑑𝑥 =
1

𝜀

∞∫︁
−∞

𝜔
(︁𝑥
𝜀

)︁
𝑑𝑥 =

∞∫︁
−∞

𝜔(𝑡)𝑑𝑡 = 1.

The averaging operator, which maps the function 𝑓 into the function 𝑓𝜀, is defined as

𝑓𝜀(𝑥) =

∞∫︁
−∞

𝑓(𝑥− 𝜏)𝜔𝜀(𝜏)𝑑 𝜏 =

∞∫︁
−∞

𝑓(𝑢)𝜔𝜀(𝑥− 𝑢)𝑑𝑢.

If 𝑓(𝑥) is a locally integrable function on the axis (−∞,∞), then 𝑓𝜀(𝑥) is an infinitely differ-
entiable function on this axis. If 𝑓(𝑥) is a locally integrable function in the interval (𝛼, 𝛽),
then the function 𝑓𝜀(𝑥) is well–defined only on the interval (𝛼 + 𝜀, 𝛽 − 𝜀). Here we need to
suppose that the integrand vanishes outside the support of the function 𝜔𝜀 no matter whether
the integrand is defined or not on this set.
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However, we are interesting only in continuous functions 𝑓 . For this case we provide without
the proof the known and easily provable statement.

Theorem 2.6. Let 𝑓(𝑥) be a continuous function on the interval (𝛼, 𝛽). Then 𝑓𝜀 is an in-
finitely differentiable function on the interval (𝛼+𝜀, 𝛽−𝜀). If [𝑎, 𝑏] ⊂ (𝛼, 𝛽), then the functions
𝑓𝜀(𝑥) converge to the function 𝑓(𝑥) as 𝜀→ 0 uniformly on the segment [𝑎, 𝑏].

We proceed to the case of trigonometrically convex functions.

Theorem 2.7. Let ℎ(𝜃) be a finite 𝜌–trigonometrically convex function on the interval (𝛼, 𝛽),
then ℎ𝜀(𝜃) is an infinitely differentiable 𝜌–trigonometrically convex function on the interval
(𝛼 + 𝜀, 𝛽 − 𝜀). If [𝑎, 𝑏] ⊂ (𝛼, 𝛽), then ℎ𝜀(𝑥) ⇒ ℎ(𝑥) on the segment [𝑎, 𝑏] as 𝜀→ +0.

Proof. In view of Theorem 2.6, we just need to prove that the function ℎ𝜀(𝜃) is 𝜌–
trigonometrically convex on the interval (𝛼 + 𝜀, 𝛽 − 𝜀). We have

ℎ𝜀(𝜃) =

∞∫︁
−∞

ℎ(𝜃 − 𝜏)𝜔𝜀(𝜏)𝑑𝜏.

We consider the function

𝐹1(𝜃) = ℎ′𝜀(𝜃) + 𝜌2
𝜃∫︁

𝜃0

ℎ𝜀(𝜙)𝑑𝜙.

In view of the definition of function ℎ𝜀 we find

𝐹1(𝜃) =

∞∫︁
−∞

(ℎ′+(𝜃 − 𝜏) + 𝜌2
𝜃∫︁

𝜃0

ℎ(𝜙− 𝜏)𝑑𝜙)𝜔𝜀(𝜏)𝑑𝜏

=

∞∫︁
−∞

⎛⎝ℎ′+(𝜃 − 𝜏) + 𝜌2
𝜃−𝜏∫︁

𝜃0−𝜏

ℎ(𝑠)𝑑𝑠

⎞⎠𝜔𝜀(𝜏)𝑑𝜏.

Since the trigonometric convexity of function ℎ implies that the function

𝐹 (𝜃) = ℎ′+(𝜃 − 𝜏) + 𝜌2
𝜃−𝜏∫︁

𝜃0−𝜏

ℎ(𝑠)𝑑𝑠

is increasing, the function 𝐹1(𝜃) is also increasing. This yields, see, for instance, [3, Sect. 16],
that the function ℎ𝜀(𝜃) is 𝜌–trigonometrically convex. The proof is complete.

Remark 2.1. Khabibullin showed [7, Prop. 1.7] that for each subspherical function ℎ of order
𝜌 ⩾ 0 in the space R𝑚 there exists a sequence of 𝑛–times continuously differentiable subspherical
functions of the same order, which monotonically decreases and tends to ℎ. In particular, this
implies that for each 𝜌–trigonometrically convex function ℎ there exists a sequence of 𝑛–times
continuously differentiable 𝜌–trigonometrically convex functions, which monotonically decreases
and tends to ℎ.

The next theorem establishes a connection between 𝜌–trigonometrically convex functions and
subharmonic functions.

Theorem 2.8. Let ℎ(𝜃) be a finite function on the interval (𝛼, 𝛽). The function ℎ is 𝜌–
trigonometrically convex, if and only if the function 𝐻(𝑟𝑒𝑖𝜃) = 𝑟𝜌ℎ(𝜃) is a subharmonic function
in the angle 𝐴(𝛼, 𝛽).
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Remark 2.2. If 𝛽 − 𝛼 > 2𝜋, then the angle 𝐴(𝛼, 𝛽) can be embedded into the plane and it
is located on the Riemann surface of logarithm.

Theorem 2.8 is well known for smooth 𝜌–trigonometrically convex functions. In the general
case, we have not found its proof. For completeness of presentation, without claiming the
authorship, we present it with our proof.

Proof. Necessity. Let ℎ be 𝜌–trigonometrically convex function. Suppose additionally that ℎ
is an infinitely differentiable function. Then the function 𝐻(𝑧) = |𝑧|𝜌ℎ(arg 𝑧) is also infinitely
differentiable in the angle 𝐴(𝛼, 𝛽). Since the Laplace operator in polar coordinates reads

∆ =
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜃2
,

we have

∆𝐻(𝑟𝑒𝑖𝜃) = 𝑟𝜌−2(ℎ′′(𝜃) + 𝜌2ℎ(𝜃)).

The inequality ∆𝐻(𝑧) ⩾ 0 holds, see [3, Sect. 16]. By Theorem 2.4 the function 𝐻 is subhar-
monic.
We proceed to the general case. Let ℎ be an arbitrary 𝜌–trigonometrically convex function.

Theorem 2.7 implies that there exists a sequence ℎ𝑛(𝜃) of infinitely differentiable 𝜌–trigono-

metrically convex functions on the interval

(︂
𝛼 +

1

𝑛
, 𝛽 − 1

𝑛

)︂
, which uniformly converges to the

function ℎ(𝜃) on each segment [𝑎, 𝑏] ⊂ (𝛼, 𝛽). As it has been proved, 𝐻𝑛(𝑧) is subharmonic in

the angle 𝐴

(︂
𝛼 +

1

𝑛
, 𝛽 − 1

𝑛

)︂
. Moreover, this sequence converges uniformly on each compact

set lying in the angle 𝐴(𝛼, 𝛽). By Theorem 2.5, the function 𝐻(𝑧) is subharmonic in the angle
𝐴(𝛼, 𝛽).

Sufficiency. Suppose that the function 𝐻(𝑟𝑒𝑖𝜃) = 𝑟𝜌ℎ(𝜃) is subharmonic in the angle 𝐴(𝛼, 𝛽).
A subharmonic function is upper–semi–continuous. Therefore, the function ℎ(𝜃) is also upper–
semi–continuous. We also note that the inequality ℎ(𝜃) <∞ holds. Let [𝛼1, 𝛽1] be an arbitrary
segment located in the interval (𝛼, 𝛽). The function ℎ(𝜃) is upper–semi–continuous on the
compact [𝛼1, 𝛽1] and does not take the value +∞. By the Weierstrass theorem, the function
ℎ(𝜃) is bounded on the segment [𝛼1, 𝛽1]. Therefore, the number 𝜌 is the formal order of the
subharmonic function 𝐻(𝑧) in the angle 𝐴(𝛼1, 𝛽1). By Theorem 2.3, the function ℎ(𝜃) is 𝜌–
trigonometrically convex on the interval (𝛼1, 𝛽1), and, therefore, on the interval (𝛼, 𝛽). The
proof is complete.

The established connection will be used to prove new inequalities characterizing 𝜌–trigono-
metrically convex functions and to find integral equations of the first kind for 𝜌–trigonometric
functions.

3. Inequalities for 𝜌–trigonometrically convex functions

Theorem 3.1. Let ℎ be an upper–semi–continuous on the interval function, which is not
identically equal to −∞ and does not take the value +∞. The function ℎ is 𝜌–trigonometrically
convex if and only if for each 𝜃 ∈ (𝛼, 𝛽) and each 𝑅 ∈ (0, 1] such that [𝜃−arcsin𝑅, 𝜃+arcsin𝑅] ⊂
(𝛼, 𝛽) the inequality

ℎ(𝜃) ⩽
1

2𝜋

2𝜋∫︁
0

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙 (3.1)
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holds, where Arg(𝑒𝑖𝜃+𝑅𝑒𝑖𝜙) is determined by the condition that it belongs to the aforementioned
segment.

Proof. Necessity. Let ℎ be a 𝜌–trigonometrically convex function. Then by Theorem 2.8 the
function𝐻(𝑧) = |𝑧|𝜌ℎ(Arg 𝑧) is subharmonic in the angle 𝐴(𝛼, 𝛽). If 𝑅 satisfies the assumptions
of the theorem, then the circle {𝑧 : |𝑧 − 𝑒𝑖𝜃| ⩽ 𝑅} lies in the angle 𝐴(𝛼, 𝛽). By the mean
inequality for a subharmonic function (see the inequality (2.1)) we have

𝐻(𝑒𝑖𝜃) ⩽
1

2𝜋

2𝜋∫︁
0

𝐻(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙)𝑑𝜙.

This inequality coincides with (3.1).

Sufficiency. Now let ℎ satisfy the conditions formulated in the first sentence of the theorem
and the inequality (3.1). We consider the function

𝐻(𝑧) = |𝑧|𝜌ℎ(Arg 𝑧)

in the angle 𝐴(𝛼, 𝛽). This function, obviously, satisfies Conditions 1)–3) from Definition 2.1 of
the subharmonic function. Let us verify the mean inequality for this function. Let 𝑧0 ∈ 𝐴(𝛼, 𝛽),
and 𝑅1 > 0 be such that {𝑧 : |𝑧 − 𝑧0| ⩽ 𝑅1} ⊂ 𝐴(𝛼, 𝛽). The mean inequality has the form

𝐻(𝑧0) ⩽
1

2𝜋

2𝜋∫︁
0

𝐻(𝑧0 +𝑅1𝑒
𝑖𝜙)𝑑𝜙.

If 𝑧0 = 𝑟0𝑒
𝑖𝜃0 , it is also written in the form

𝑟𝜌0ℎ(𝜃0) ⩽
1

2𝜋

2𝜋∫︁
0

|𝑟0𝑒𝑖𝜃0 +𝑅1𝑒
𝑖𝜙|𝜌ℎ(Arg(𝑟0𝑒𝑖𝜃0 +𝑅1𝑒

𝑖𝜙))𝑑𝜙.

Dividing both sides by 𝑟𝜌0, we obtain the equivalent inequality

ℎ(𝜃0) ⩽
1

2𝜋

2𝜋∫︁
0

|𝑒𝑖𝜃0 +𝑅𝑒𝑖𝜙|𝜌ℎ(Arg(𝑒𝑖𝜃0 +𝑅𝑒𝑖𝜙))𝑑𝜙,

where 𝑅 =
𝑅1

𝑟0
. By our assumptions, this inequality is satisfied. Therefore, the function 𝐻

is subharmonic. By Theorem 2.8 the function ℎ is 𝜌–trigonometrically convex. The proof is
complete.

Let us prove the following corollary of this theorem.

Theorem 3.2. A continuous on the entire line function ℎ is 𝜌–trigonometrically convex if
and only if it satisfies the system of integral equations, 𝑅 ∈ (0, 1]:

ℎ(𝜃) =
1

2𝜋

2𝜋∫︁
0

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙. (3.2)

Proof. Necessity. Let ℎ be a 𝜌–trigonometric function. Then the functions ℎ and −ℎ are 𝜌–
trigonometrically convex functions. For both of these functions, by Theorem 3.1, the inequality
(3.1). This yields the identity (3.2).
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Sufficiencty. Let ℎ be a continuous on the entire axis function, for which the identity (3.2)
holds for each 𝑅 ∈ (0, 1]. By Theorem 3.1, each of the functions ℎ and −ℎ is 𝜌–trigonometrically
convex. Hence, ℎ is 𝜌–trigonometric function. The proof is complete.

We observe that the integral equation (3.2) is written in a form non–standard for the theory
of integral equations since the unknown function ℎ is involved in the integral with a rather
complex variable

𝜓 = Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙). (3.3)

We can arrive at the standard form if, instead of the integration variable 𝜙, we introduce the
variable 𝜓 related with 𝜙 by the identity (3.3). We only need to be careful since the function
𝜓(𝜙) is not one–to–one on the segment [0, 2𝜋].

Lemma 3.1. Let ℎ be a measurable function on the segment [𝜃 − arcsin𝑅, 𝜃 + arcsin𝑅],
where 𝑅 is some number from the half-interval (0, 1]. Then, if one of the integrals written below
exists, then the other also exists and the identity holds

1

2𝜋

2𝜋∫︁
0

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙

=
1

2𝜋

arcsin𝑅∫︁
− arcsin𝑅

(cos𝑢+
√︀
𝑅2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+1√︀

𝑅2 − sin2 𝑢
ℎ(𝜃 − 𝑢)𝑑𝑢.

(3.4)

Proof. We use standard notation

𝑎+ = max(𝑎, 0), 𝑎− = max(−𝑎, 0).

Here the statement “the integral
∫︀
𝑓(𝑥)𝑑𝑥 exists” means one of the following two

1) 𝑓(𝑥) ∈ 𝐿1 and the written integral is the Lebesgue integral,
2) only one of the functions 𝑓+(𝑥) and 𝑓−(𝑥) belongs to the space 𝐿1 and the integral is equal

to infinity with the appropriate sign. For instance, if 𝑓+ ∈ 𝐿1, then the integral is equal
to −∞.

Since the measurability of the function ℎ is equivalent to the measurability of two functions
ℎ+ and ℎ−, it is sufficient to prove the lemma only for positive functions. For a better clarity
of the subsequent proof we use the following figure.
The figure demonstrates the plane of 𝑤 = 𝑒𝑖𝜃 + 𝑧.
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The point 𝐸 with the affix 𝑒𝑖𝜃 is the center of a circle of radius 𝑅 ∈ (0, 1], 𝑂 is the origin,
𝑂𝐴 and 𝑂𝐵 are tangent to the circle, the line 𝑂𝐷 is an arbitrary line passing through 𝑂 and
some point 𝐷 of the circle.
We have ∠𝐴𝑂𝐸 = ∠𝐸𝑂𝐵 = arcsin𝑅. This is why for a fixed 𝑅 the quantity

𝜓 = Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙) (3.5)

ranges over the segment [𝜃 − arcsin𝑅, 𝜃 + arcsin𝑅] as 𝜙 ranges over the segment [0, 2𝜋].
Let

𝐴 = 𝑒𝑖𝜃 +𝑅𝑒𝑖𝛾1 , 𝐵 = 𝑒𝑖𝜃 +𝑅𝑒𝑖𝛾2 .

We choose the quantities 𝛾1 and 𝛾2 to satisfy the inequalities 0 < 𝛾2−𝛾1 < 2𝜋. The solution to
Equation (3.5) with respect to the variable 𝜙 in the interval (𝛾1, 𝛾2) is denoted by 𝜙2 = 𝜙2(𝜓),
while the solution of the same equation in the interval (𝛾2, 𝛾1 + 2𝜋) is denoted by 𝜙1 = 𝜙1(𝜓).
Since the integrand in the integral in the left hand side of the identity (3.4) has a period of

2𝜋, we can write

𝐼 =
1

2𝜋

2𝜋∫︁
0

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙

=
1

2𝜋

𝛾2∫︁
𝛾1

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙

+
1

2𝜋

𝛾1+2𝜋∫︁
𝛾2

(1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2)
𝜌
2ℎ(Arg(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙))𝑑𝜙.

(3.6)

In each of the integrals in the right hand side of the identity (3.6), we introduce a new integration
variable according to formula (3.5). We have

𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙 = |𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙|𝑒𝑖𝜓,
(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙)2 = (𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙)(𝑒−𝑖𝜃 +𝑅𝑒−𝑖𝜙)𝑒2𝑖𝜓,

𝑒2𝑖𝜓 =
𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙

𝑒−𝑖𝜃 +𝑅𝑒−𝑖𝜙
.

(3.7)

Differentiating the identity (3.7), we obtain

2𝑖𝑒2𝑖𝜓𝑑𝜓 =
𝑖𝑅𝑒𝑖𝜙(𝑒−𝑖𝜃 +𝑅𝑒−𝑖𝜙) + 𝑖𝑅𝑒−𝑖𝜙(𝑒𝑖𝜃 +𝑅𝑒𝑖𝜙)

(𝑒−𝑖𝜃 +𝑅𝑒−𝑖𝜙)2
𝑑𝜙.

This gives

𝑒2𝑖𝜓𝑑𝜓 =
𝑅(𝑅 + cos(𝜙− 𝜃))

(𝑒−𝑖𝜃 +𝑅𝑒−𝑖𝜙)2
𝑑𝜙.

Substituting the quantity 𝑒2𝑖𝜓 from the formula (3.7) into the above formula, we find

𝑑𝜙 =
1 + 2𝑅 cos(𝜙− 𝜃) +𝑅2

𝑅(𝑅 + cos(𝜙− 𝜃))
𝑑𝜓. (3.8)
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After the introduction of the new variable 𝜓 the identity (3.6) becomes

𝐼 =
1

2𝜋

𝜃+arcsin𝑅∫︁
𝜃−arcsin𝑅

[︂
(1 + 2𝑅 cos(𝜙2 − 𝜃) +𝑅2)

𝜌
2
+1

𝑅(𝑅 + cos(𝜙2 − 𝜃))

− (1 + 2𝑅 cos(𝜙1 − 𝜃) +𝑅2)
𝜌
2
+1

𝑅(𝑅 + cos(𝜙1 − 𝜃))

]︂
ℎ(𝜓)𝑑𝜓.

(3.9)

Now our aim is to simplify the integrand in the formula (3.9). The identity (3.7) implies

𝑅𝑒2𝑖(𝜙−𝜃) − (𝑒2𝑖(𝜓−𝜃) − 1)𝑒𝑖(𝜙−𝜃) −𝑅𝑒2𝑖(𝜓−𝜃) = 0.

This yields

𝑒𝑖(𝜙−𝜃) =
𝑒2𝑖(𝜓−𝜃) − 1±

√︀
(𝑒2𝑖(𝜓−𝜃) − 1)2 + 4𝑅2𝑒2𝑖(𝜓−𝜃)

2𝑅

=
𝑒2𝑖(𝜓−𝜃) − 1± 2𝑒𝑖(𝜓−𝜃)

√︀
𝑅2 − sin2(𝜓 − 𝜃)

2𝑅
.

(3.10)

We observe that the quantity 𝑅2− sin2(𝜓− 𝜃) does not vanish on the interval [𝜃− arcsin𝑅, 𝜃+
arcsin𝑅]. The choice of the sign + or − in the right hand side of the formula (3.10) provides the
quantities 𝑒𝑖(𝜙1−𝜃) and 𝑒𝑖(𝜙2−𝜃) in the left hand side of this formula. Continuity reasoning shows
that each of the quantities 𝑒𝑖(𝜙1−𝜃), 𝑒𝑖(𝜙2−𝜃) on the entire interval (𝜃 − arcsin𝑅, 𝜃 + arcsin𝑅)
corresponds to the same sign + or −. If 𝜓 = 0, then 𝑒𝑖(𝜙−𝜃) = ±1. For the value |𝑒𝑖𝜃 + 𝑅𝐸𝑖𝜙|
we obtain the values 1 +𝑅 and 1−𝑅. Since the point 𝐷 is located further from zero than the
point 𝐶, we find

𝑒𝑖(𝜙2−𝜃) = 𝑒𝑖(𝜓−𝜃)
𝑖 sin(𝜓 − 𝜃) +

√︀
𝑅2 − sin2(𝜓 − 𝜃)

𝑅
, (3.11)

𝑒𝑖(𝜙1−𝜃) = 𝑒𝑖(𝜓−𝜃)
𝑖 sin(𝜓 − 𝜃)−

√︀
𝑅2 − sin2(𝜓 − 𝜃)

𝑅
. (3.12)

It follows from the formulas (3.11), (3.12) that

𝑅 cos(𝜙2 − 𝜃) = − sin2(𝜓 − 𝜃) + cos(𝜓 − 𝜃)
√︁
𝑅2 − sin2(𝜓 − 𝜃),

𝑅 cos(𝜙1 − 𝜃) = − sin2(𝜓 − 𝜃)− cos(𝜓 − 𝜃)
√︁
𝑅2 − sin2(𝜓 − 𝜃),

1 + 2𝑅 cos(𝜙2 − 𝜃) +𝑅2 =

(︂
cos(𝜓 − 𝜃) +

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂2

,

1 + 2𝑅 cos(𝜙1 − 𝜃) +𝑅2 =

(︂
cos(𝜓 − 𝜃)−

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂2

,

𝑅2 +𝑅 cos(𝜙2 − 𝜃) =
√︁
𝑅2 − sin2(𝜓 − 𝜃)

(︂
cos(𝜓 − 𝜃) +

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂
,

𝑅2 +𝑅 cos(𝜙1 − 𝜃) = −
√︁
𝑅2 − sin2(𝜓 − 𝜃)

(︂
cos(𝜓 − 𝜃)−

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂
.

We note that for 𝜓 ∈ (𝜃 − arcsin𝑅, 𝜃 + arcsin𝑅) the inequality

cos(𝜓 − 𝜃)−
√︁
𝑅2 − sin2(𝜓 − 𝜃) > 0
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holds. Substituting the obtained quantities into (3.9), we finally obtain

𝐼 =
1

2𝜋

𝜃+arcsin𝑅∫︁
𝜃−arcsin𝑅

[︃(︂
cos(𝜓 − 𝜃) +

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂𝜌+1

+

(︂
cos(𝜓 − 𝜃)−

√︁
𝑅2 − sin2(𝜓 − 𝜃)

)︂𝜌+1
]︃

ℎ(𝜓)√︀
𝑅2 − sin2(𝜓 − 𝜃)

𝑑𝜓

=
1

2𝜋

arcsin𝑅∫︁
− arcsin𝑅

(cos𝑢+
√︀
𝑅2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+1√︀

𝑅2 − sin2 𝑢
ℎ(𝜃 − 𝑢)𝑑𝑢.

The application of the theorem on the change of variable gives the identity (3.4). The proof is
complete.

We denote

𝑎𝑅(𝑢) =

⎧⎪⎨⎪⎩
1

2𝜋

(cos𝑢+
√︀
𝑅2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+1√︀

𝑅2 − sin2 𝑢
, if |𝑢| < arcsin𝑅;

0, if |𝑢| ⩾ arcsin𝑅.

By means of Lemma 3.1, Theorems 3.1 and 3.2 can be reformulated as follows.

Theorem 3.3. Let ℎ be an upper–semi–continuous function on the interval (𝛼, 𝛽) not identi-
cally equaling to −∞ and not taking the value +∞. Then ℎ is 𝜌–trigonometrically convex if and
only if for each 𝜃 ∈ (𝛼, 𝛽) and for each 𝑅 ∈ (0, 1] such that [𝜃− arcsin𝑅, 𝜃+arcsin𝑅] ⊂ (𝛼, 𝛽),
the inequality holds

ℎ(𝜃) ⩽
1

2𝜋

arcsin𝑅∫︁
− arcsin𝑅

𝑎𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢.

Theorem 3.4. A continuous on the entire axis function ℎ 𝜌–trigonometrically convex if and
only if it satisfies the system of integral equations, 𝑅 ∈ (0, 1]:

ℎ(𝜃) =

∞∫︁
−∞

𝑎𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢. (3.13)

In what follows we shall see that the versions of Theorems 3.3 and 3.4 with the kernel 𝑎𝑅(𝑢)
replaced by another kernel are valid. For 𝑅 ∈ (0, 1] we denote

𝑏𝑅(𝑢) =

⎧⎪⎨⎪⎩
(cos𝑢+

√︀
𝑅2 − sin2 𝑢)𝜌+2 − (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+2

𝜋(𝜌+ 2)𝑅2
, if |𝑢| ⩽ arcsin𝑅;

0, if |𝑢| > arcsin𝑅.

Theorem 3.5. Let ℎ be an upper–semi–continuous function on the interval (𝛼, 𝛽) not iden-
tically equaling to −∞ and not taking the value +∞. Then ℎ is 𝜌–trigonometrically convex if
and only if for each 𝜃 ∈ (𝛼, 𝛽) and each 𝑅 ∈ (0, 1] such that [𝜃− arcsin𝑅, 𝜃+arcsin𝑅] ⊂ (𝛼, 𝛽)
the inequality holds

ℎ(𝜃) ⩽

arcsin𝑅∫︁
− arcsin𝑅

𝑏𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢. (3.14)
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Proof. Necessity. Let ℎ be a 𝜌–trigonometrically convex function, and let 𝑅 be from the for-
mulation of the theorem. By Theorem 3.3, for each 𝑟 ∈ (0, 𝑅] the inequality

ℎ(𝜃) ⩽
1

2𝜋

arcsin 𝑟∫︁
− arcsin 𝑟

(cos𝑢+
√︀
𝑟2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑟2 − sin2 𝑢)𝜌+1√︀

𝑟2 − sin2 𝑢
ℎ(𝜃 − 𝑢)𝑑𝑢

holds. We multiply both sides of the inequality by 𝑟 and integrate in 𝑟 over the segment [0, 𝑅].
Taking into consideration the identity

𝑅∫︁
0

𝑟𝑑𝑟 =
1

2
𝑅2

and interchanging the integration order in the right hand side, we obtain

ℎ(𝜃) ⩽
1

𝜋𝑅2

arcsin𝑅∫︁
0

𝑅∫︁
sin𝑢

𝑟

(︃
(cos𝑢+

√︀
𝑟2 − sin2 𝑢)𝜌+1√︀

𝑟2 − sin2 𝑢

+
(cos𝑢−

√︀
𝑟2 − sin2 𝑢)𝜌+1√︀

𝑟2 − sin2 𝑢

)︃
𝑑𝑟ℎ(𝜃 − 𝑢)𝑑𝑢

+
1

𝜋𝑅2

0∫︁
− arcsin𝑅

𝑅∫︁
− sin𝑢

𝑟

(︃
(cos𝑢+

√︀
𝑟2 − sin2 𝑢)𝜌+1√︀

𝑟2 − sin2 𝑢

+
(cos𝑢−

√︀
𝑟2 − sin2 𝑢)𝜌+1√︀

𝑟2 − sin2 𝑢

)︃
𝑑𝑟ℎ(𝜃 − 𝑢)𝑑𝑢

=
1

𝜋(𝜌+ 2)𝑅2

arcsin𝑅∫︁
0

(︁
(cos𝑢+

√︀
𝑟2 − sin2 𝑢)𝜌+2

− (cos𝑢−
√︀
𝑟2 − sin2 𝑢)𝜌+2

)︁⃒⃒⃒𝑅
sin𝑢

ℎ(𝜃 − 𝑢)𝑑𝑢

+
1

𝜋(𝜌+ 2)𝑅2

0∫︁
− arcsin𝑅

(︁
(cos𝑢+

√︀
𝑟2 − sin2 𝑢)𝜌+2

− (cos𝑢−
√︀
𝑟2 − sin2 𝑢)𝜌+2

)︁⃒⃒⃒𝑅
− sin𝑢

ℎ(𝜃 − 𝑢)𝑑𝑢

=

arcsin𝑅∫︁
− arcsin𝑅

𝑏𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢.

Sufficiency. Let a function ℎ possess the properties counted in the first sentence of the theorem
and also satisfy the inequality (3.14). We denote 𝐻(𝑧) = |𝑧|𝜌ℎ(arg𝑧). Then the function 𝐻
satisfies the Condition 1)–3) in Definition 2.1 of the subharmonic function. As it follows from
the remark to Definition 2.1, in order to prove the subharmonicity of the function 𝐻(𝑧), it
remains to verify the inequality

𝐻(𝑧0) ⩽
1

𝜋𝑅2
1

𝑅1∫︁
0

2𝜋∫︁
0

𝐻(𝑧0 + 𝑟1𝑒
𝑖𝜙)𝑟1𝑑𝑟1𝑑𝜙 (3.15)
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for all 𝑧0 and 𝑅1 such that the disk {𝑧 : |𝑧− 𝑧0| ⩽ 𝑅1} lies in the angle 𝐴(𝛼, 𝛽). Let 𝑧0 = 𝑟0𝑒
𝑖𝜃0 .

In view of the definition of function 𝐻 the inequality (3.15) is rewritten as

𝑟𝜌0ℎ(𝜃0) ⩽
1

𝜋𝑅2
1

𝑅1∫︁
0

2𝜋∫︁
0

|𝑟0𝑒𝑖𝜃0 + 𝑟1𝑒
𝑖𝜙|𝜌ℎ(arg(𝑟0𝑒𝑖𝜃0 + 𝑟1𝑒

𝑖𝜙))𝑟1𝑑𝑟1𝑑𝜙.

We denote 𝑅 =
𝑅1

𝑟0
. We replace the variable 𝑟1 in the integral by a new variable 𝑟 =

𝑟1
𝑟0

and

we arrive at the equivalent inequality

ℎ(𝜃0) ⩽
1

𝜋𝑅2

𝑅∫︁
0

2𝜋∫︁
0

|𝑒𝑖𝜃0 + 𝑟𝑒𝑖𝜙|𝜌ℎ(arg(𝑒𝑖𝜃0 + 𝑟𝑒𝑖𝜙))𝑟𝑑𝑟𝑑𝜙. (3.16)

It follows from Lemma 3.1 that this inequality is equivalent to

ℎ(𝜃0) ⩽
2

𝑅2

𝑅∫︁
0

arcsin 𝑟∫︁
− arcsin 𝑟

𝑎𝑟(𝑢)ℎ(𝜃 − 𝑢)𝑟𝑑𝑢𝑑𝑟.

Now we reproduce the arguing from the first part of the proof and we see that the written
inequality is equivalent to the inequality (3.14). This proves the subharmonicity of the function
𝐻. Let [𝛼1, 𝛽1] be an arbitrary segment such that [𝛼1, 𝛽1] ⊂ (𝛼, 𝛽). It follows from the semi-
continuity of the function ℎ that this function is bounded from above on the segment [𝛼1, 𝛽1].
This implies that the number 𝜌 is the formal order of the function 𝐻 in the angle 𝐴(𝛼1, 𝛽1).
Theorem 2.3 yields that the function ℎ is 𝜌–trigonometrically convex on the interval (𝛼1, 𝛽1)
and, consequently, on the interval (𝛼, 𝛽). The proof is complete.

Theorem 3.6. A continuous on the entire function ℎ is 𝜌–trigonometric if and only if it
satisfies the system of integral equations, 𝑅 ∈ (0, 1]:

ℎ(𝜃) =

∞∫︁
−∞

𝑏𝑅(𝑢)ℎ(𝜃 − 𝑢)𝑑𝑢. (3.17)

The proof of this theorem reproduces literally the proof of Theorem 3.2, just the reference
to Theorem 3.1 should be replaced by a reference to Theorem 3.5.
The identities (3.13), (3.17) allow us to calculate some integrals. Let us dwell on this in more

detail. We take ℎ(𝜃) = cos 𝜌𝜃 in these identities and we obtain

cos 𝜌𝜃 =
1

2𝜋

arcsin𝑅∫︁
− arcsin𝑅

(cos𝑢+
√︀
𝑅2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+1√︀

𝑅2 − sin2 𝑢
cos 𝜌(𝜃 − 𝑢)𝑑𝑢,

cos 𝜌𝜃 =
1

𝜋(𝜌+ 2)𝑅2

arcsin𝑅∫︁
− arcsin𝑅

[︁
(cos𝑢+

√︀
𝑅2 − sin2 𝑢)𝜌+2

−(cos𝑢−
√︀
𝑅2 − sin2 𝑢)𝜌+2

]︁
cos 𝜌(𝜃 − 𝑢)𝑑𝑢.

By means of the identity

cos 𝜌(𝜃 − 𝑢) = cos 𝜌𝜃 cos 𝜌𝑢+ sin 𝜌𝜃 sin 𝜌𝑢
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we find

1

𝜋

arcsin𝑅∫︁
0

(cos𝑢+
√︀
𝑅2 − sin2 𝑢)𝜌+1 + (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+1√︀

𝑅2 − sin2 𝑢
cos 𝜌𝑢𝑑𝑢 = 1,

2

𝜋(𝜌+ 2)𝑅2

arcsin𝑅∫︁
0

[︁
(cos𝑢+

√︀
𝑅2 − sin2 𝑢)𝜌+2 − (cos𝑢−

√︀
𝑅2 − sin2 𝑢)𝜌+2

]︁
cos 𝜌𝑢𝑑𝑢 = 1.

We also note that we have proved the formulas under the assumption that 𝜌 > 0. However,
the uniqueness theorem for analytic functions yields that these formulas are valid for all complex
𝜌. In this case, of course, the last integral for 𝜌 = −2 must be understood in an appropriate
way.

4. Application of Leontiev interpolation function

Theorems 3.4, 3.6 state that every 𝜌–trigonometric function satisfies the integral equations
(3.13), (3.17) for each 𝑅 ∈ (0, 1]. The converse statement is also true. If a continuous function
ℎ satisfies the integral equation (3.13) or (3.17) for each 𝑅 ∈ (0, 1], then ℎ is a 𝜌–trigonometric
function.
Let a continuous on the entire axis function ℎ satisfy the integral equation (3.13) or (3.17)

for some 𝑅 ∈ (0, 1]. Does this implies that ℎ is a 𝜌–trigonometric function? As we shall see,
the answer is negative. Therefore, the following question naturally arises: what additional
conditions on the function ℎ guarantee that this function is 𝜌–trigonometric? We present two
types of such conditions.
Equations (3.13), (3.17) are representatives of convolution equations. Therefore, we present,

partly without proof, several results related to the theory of such equations. First, we note
that if the function ℎ is a continuous solution of the equation

∞∫︁
−∞

ℎ(𝜃 − 𝑢)𝑑𝜎(𝑢) = ℎ(𝜃), (4.1)

then ℎ solves the equation
∞∫︁

−∞

ℎ(𝜃 − 𝑢)𝑑𝜎1(𝑢) = 0, (4.2)

where 𝜎1 = 𝜎 − 𝛿, 𝛿 is the Dirac measure. This motivates us to restrict ourselves by the study
of equation

𝑞∫︁
−𝑞

𝐹 (𝜃 − 𝑢)𝑑𝜎(𝑢) = 0, (4.3)

where 𝜎 is a finite (sign–changing) measure, the support of which contains the points −𝑞 and
𝑞. The fact that we consider the symmetric segment [−𝑞, 𝑞] is an essential restriction. The
case, when the measure 𝜎 is not finite, also attracts many studies. The results are applied, in
particular, for studying the Wiener — Hopf equation. But this is not related with the subject
of our work. This is why we restrict ourselves by citing the works [1], [2].
The first basic results for Equation (4.3) were obtained by Schwartz [12]. On these results

one can be read in the comments to Section 40 in the book [9]. The authors of this book also
refer to the works by Kahane [10], [11]. We shall present the needed results on the theory of
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Equation (4.3) following Leontiev [4], [5], who studied Equation (4.3) in connection with the
theory of Dirichlet series. We note that in Theorem 6.4.1 in the book [4], the main result of
Schwartz is presented. In connection with Equation (4.3), we consider the function

𝐿(𝜆) =

𝑞∫︁
−𝑞

𝑒−𝑖𝜆𝑡𝑑𝜎(𝑡),

which is called the characteristic function of Equation (4.3). This notion is justified by the fact
that if 𝜆𝑘 is a root of the function 𝐿(𝜆) of multiplicity 𝑛𝑘, then, as is easy to verify, the function

ℎ𝑘(𝜃) = 𝑃𝑘(𝜃)𝑒
𝑖𝜆𝑘𝜃, (4.4)

where 𝑃𝑘 is an arbitrary polynomial of degree at most 𝑛𝑘 − 1, solves Equation (4.3). Solutions
of the form 𝑃 (𝜃)𝑒𝑖𝜆𝜃 are called primitive solutions of Equation (4.3). It is easy to see that the
identity (4.4) defines the general form of primitive solutions. L. Schwartz proved that the set of
all continuous solutions of Equation (4.3) coincides with the closure in the topology of uniform
convergence on compact sets of the linear hull of elementary solutions. It is known [4, Ch. 1,
Sect. 4, Subsect. 3] that the function 𝐿(𝜆) has infinitely many roots. Thus, the linear space of
continuous solutions of Equation (4.3), and, consequently, taking into account (4.1) and (4.2),
the space of solutions of Equation (3.13) is infinite–dimensional. This proves the previously
announced statement that among the solutions of Equation (3.13) for each 𝑅 ∈ (0, 1] there
are functions that cannot be represented as 𝐴 cos 𝜌𝜃 + 𝐵 sin 𝜌𝜃, that is, non 𝜌–trigonometric
functions.
In connection with Equation (4.3), A.F. Leontiev, for an arbitrary continuous function 𝐹 ,

constructs the function

𝜔(𝜇, 𝛼, 𝐹 ) = −𝑖𝑒−𝑖𝛼𝜇
𝑞∫︁

−𝑞

𝑡∫︁
0

𝐹 (𝜉 + 𝛼− 𝑡)𝑒−𝑖𝜇𝜉𝑑𝜉𝑑𝜎(𝑡),

which he calls interpolating. If 𝜆𝑘 is a root of multiplicity 𝑛𝑘 of the function 𝐿(𝜆) , then for
each function 𝐹 the identity

𝑃𝑘(𝑧)𝑒
𝑖𝜆𝑘𝑧 =

1

2𝜋𝑖

∫︁
𝐶𝑘

𝜔(𝜇, 𝛼, 𝐹 )

𝐿(𝜇)
𝑒−𝑖𝜇𝑧𝑑𝜇 (4.5)

holds, where 𝑃𝑘(𝑧) is some polynomial of degree no greater than 𝑛𝑘 − 1, 𝐶𝑘 is a circumference
with center at point 𝜆𝑘 such that the closed disk bounded by this circumference contains no
other roots of the function 𝐿(𝜆). The quantity 𝑃𝑘(𝑧) is called the Fourier coefficient of function
𝐹 corresponding to the root 𝜆𝑘 of the characteristic equation. If

𝐹 (𝑡) =
𝑛∑︁
𝑘=1

𝑄𝑘(𝑡)𝑒
𝑖𝜆𝑘𝑡, deg𝑄𝑘 ⩽ 𝑛𝑘 − 1,

then the Fourier coefficient 𝑃𝑘(𝑧) of the function 𝐹 is equal to 𝑄𝑘(𝑧). This justifies the term
“interpolating function” for the function 𝜔(𝜇, 𝛼, 𝐹 ). Below we provide two facts from the books
of A.F. Leontiev, to which we shall refer in the future. The first of them in the book [4] is
formulated as Theorem 4.3.3.

Theorem 4.1. Let 𝐹 (𝑡) be a continuous function on the axis (−∞,∞). If all Fourier coef-
ficients of the function 𝐹 are equal to zero, then the function 𝐹 is identically zero.
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The next statement is as follows. The function 𝜔(𝜇, 𝛼, 𝐹 ) depends on an arbitrary real
parameter 𝛼. However, the Fourier coefficient for solutions of Equation (4.3) is independent on
𝛼. Indeed,

𝜔(𝜇, 𝛼, 𝐹 ) = −𝑖
𝑞∫︁

−𝑞

𝛼∫︁
𝛼−𝑡

𝐹 (𝜂)𝑒−𝑖𝜇(𝜂+𝑡)𝑑𝜂𝑑𝜎(𝑡),

𝜕𝜔(𝜇, 𝛼, 𝐹 )

𝜕𝛼
= −𝑖

𝑞∫︁
−𝑞

𝐹 (𝛼)𝑒−𝑖𝜇(𝛼+𝑡)𝑑𝜎(𝑡)− 𝑒−𝑖𝜇𝛼
𝑞∫︁

−𝑞

𝐹 (𝛼− 𝑡)𝑑𝜎(𝑡) = −𝑖𝑒−𝑖𝜇𝛼𝐹 (𝛼)𝐿(𝜇),

since the latter of written integrals vanishes. If now we substitute 𝜕𝜔(𝜇,𝛼,𝐹 )
𝜕𝛼

instead of 𝜔(𝜇, 𝛼, 𝐹 )
into the integral (4.5), we obtain zero. This implies that 𝑃𝑘(𝑧) is independent of 𝛼.
In addition to the above, we prove the statement that can be called the theorem on the

vanishing of Fourier coefficient.

Theorem 4.2. Let 𝐹 be a continuous on the entire axis solution of Equation (4.3), 𝐿(𝜆) be
the characteristic function of this equation, 𝜆𝑘 be its root. Let for some real 𝜏 the inequality

|𝐹 (𝑡)| ⩽𝑀(𝜏)𝑒𝜏 |𝑡|, 𝑡 ∈ (−∞, 0) (𝑡 ∈ (0,∞)),

holds. If, in addition, Im𝜆𝑘 > 𝜏 (Im𝜆𝑘 < −𝜏), then the Fourier coefficient 𝑃𝑘(𝑧) of the function
𝐹 vanishes.

Proof. We have

𝑃𝑘(𝑧)𝑒
𝑖𝜆𝑘𝑧 =

1

2𝜋𝑖

∫︁
𝐶𝑘

𝜔(𝜇, 𝛼, 𝐹 )

𝐿(𝜇)
𝑒−𝑖𝜇𝑧𝑑𝜇

=− 𝑖

𝑞∫︁
−𝑞

𝑡∫︁
0

1

2𝜋𝑖

∫︁
𝐶𝑘

𝑒𝑖𝜇(𝑧−𝜉−𝛼)

𝐿(𝜇)
𝑑𝜇𝐹 (𝜉 + 𝛼− 𝑡)𝑑𝜉𝑑𝜎(𝑡).

(4.6)

Applying the formula for calculating the residue at the pole of multiplicity 𝑛𝑘, we obtain

𝐼 =
1

2𝜋𝑖

∫︁
𝐶𝑘

𝑒−𝑖𝜇(𝑧−𝜉−𝛼)

𝐿(𝜇)
𝑑𝜇 =

1

(𝑛𝑘 − 1)!

𝑑𝑛𝑘−1

𝑑𝜇𝑛𝑘−1

(𝜇− 𝜆𝑘)
𝑛𝑘𝑒𝑖𝜇(𝑧−𝜉−𝛼)

𝐿(𝜇)

⃒⃒⃒⃒
𝜇=𝜆𝑘

.

Let
(𝜇− 𝜆𝑘)

𝑛𝑘

𝐿(𝜇)
=

∞∑︁
𝑚=0

𝑎𝑚(𝜇− 𝜆𝑘)
𝑚

be the expansion in a Taylor series in the vicinity of the point 𝜆𝑘 of the function in the left
hand side of the identity. Then

𝐼 =
1

(𝑛𝑘 − 1)!

𝑛𝑘−1∑︁
𝑚=0

𝑚!𝐶𝑚
𝑛𝑘−1𝑎𝑚(𝑖(𝑧 − 𝜉 − 𝛼))𝑛𝑘−1−𝑚𝑒𝑖𝜆𝑘(𝑧−𝜉−𝛼)

=𝑄𝑘(𝑧 − 𝜉 − 𝛼)𝑒𝑖𝜆𝑘(𝑧−𝜉−𝛼),

where 𝑄𝑘 is some polynomial of degree 𝑛𝑘− 1. Substituting the found value 𝐼 into the formula
(4.6), we obtain

𝑃𝑘(𝑧) = −𝑖
𝑞∫︁

−𝑞

𝑡∫︁
0

𝑄𝑘(𝑧 − 𝜉 − 𝛼)𝐹 (𝜉 + 𝛼− 𝑡)𝑒−𝑖𝜆𝑘(𝜉+𝛼)𝑑𝜉𝑑𝜎(𝑡).
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Making the change 𝜉 + 𝛼− 𝑡 = 𝜂 in the inner integral, we find

𝑃𝑘(𝑧) = −𝑖
𝑞∫︁

−𝑞

𝛼∫︁
𝛼−𝑡

𝑄𝑘(𝑧 − 𝜂 − 𝑡)𝐹 (𝜂)𝑒−𝑖𝜆𝑘𝜂𝑑𝜂𝑒−𝑖𝜆𝑘𝑡𝑑𝜎(𝑡). (4.7)

Let 𝜆𝑘 = 𝛼𝑘 + 𝑖𝛽𝑘, ̃︀𝑄𝑘 be the polynomial, the coefficients of which are equal to the absolute
value of the coefficients of polynomial 𝑄𝑘. Then the inequality holds

|𝑃𝑘(𝑧)| ⩽𝑀(𝜎)𝑒𝑞𝛽𝑘 ̃︀𝑄𝑘(|𝑧|+ |𝛼|+ 2𝑞)

𝑞∫︁
−𝑞

⃒⃒⃒⃒
⃒⃒

𝛼∫︁
𝛼−𝑡

𝑒𝛽𝑘𝜂+𝜏 |𝜂|𝑑𝜂

⃒⃒⃒⃒
⃒⃒ 𝑑|𝜎|(𝑡).

In the first version of the theorem, when 𝑡 ∈ (−∞, 0), we need to pass to the limit at
𝛼 → −∞. In the second version of the theorem, when 𝑡 ∈ (0,∞), we need to pass to the limit
at 𝛼 → +∞. In each case, we get 𝑃𝑘(𝑧) = 0. The proof is complete.

As a simple exercise, the proven theorem implies the next statement.

Theorem 4.3. Let 𝐹 (𝜃) be a continuous solution of Equation (4.3) and let along one of the
directions 𝜃 → +∞ or 𝜃 → −∞ we have

lim𝐹 (𝜃)𝑒𝜎𝜃 = 0

for each 𝜎 ∈ (−∞,∞). Then 𝐹 (𝜃) ≡ 0.

Proof. By Theorem 4.2 all Fourier coefficients of the function 𝐹 are zero. By Theorem 4.1 the
function 𝐹 is zero. The proof is complete.

Below we propose an additional condition that ensures that the continuous solution of equa-
tion (3.13) or (3.17) for a fixed 𝑅 is a 𝜌–trigonometric function.

Theorem 4.4. Let 𝐹 (𝜃) be a continuous solution on the entire axis of one of Equa-
tions (3.13) or (3.17) for some fixed 𝑅 ∈ (0, 1]. Let there exist real numbers 𝐴 and 𝐵 such that
for one of the directions 𝜃 → +∞ or 𝜃 → −∞ the relation

lim(𝐹 (𝜃)− 𝐴 cos 𝜌𝜃 −𝐵 sin 𝜌𝜃)𝑒𝜏𝜃 = 0

holds for each real 𝜏 . Then

𝐹 (𝜃) = 𝐴 cos 𝜌𝜃 −𝐵 sin 𝜌𝜃.

Proof. We consider the function

𝐹1(𝜃) = 𝐹 (𝜃)− 𝐴 cos 𝜌𝜃 −𝐵 sin 𝜌𝜃.

Then the function 𝐹1(𝜃) solves the same equation as the function 𝐹 (𝜃). The relations (4.1),
(4.2) yield that the function 𝐹1(𝜃) is a solution to Equation (4.3) with some measure 𝜎. By
Theorem 4.3, 𝐹1(𝜃) ≡ 0. The proof is complete.

In the next theorem we give another additional condition that guarantees that a continuous
solution of Equation (3.13) or (3.17) for a fixed 𝑅 is a 𝜌–trigonometric function.

Theorem 4.5. Let 𝐹 (𝜃) be a continuous solution on the entire axis of one of Equations
(3.13) or (3.17) with some fixed 𝑅 ∈ (0, 1]. If the function 𝐹 (𝜃) is 𝜌–trigonometric on some
segment of length 2 arcsin𝑅, then it is 𝜌–trigonometric everywhere.
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Proof. We again consider the function

𝐹1(𝜃) = 𝐹 (𝜃)− 𝐴 cos 𝜌𝜃 −𝐵 sin 𝜌𝜃,

write the equation of form (4.3) for this function and apply the formula (4.7), taking as 𝛼 the
center of the segment, on which the function 𝐹1(𝜃) vanishes. We then obtain that all Fourier
coefficients of the function 𝐹1 vanish. Then 𝐹1 = 0. The proof is complete.
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prochables par des sommes d’exponentielles // Ann. Inst. Fourier 5, 39–130 (1953/54).

11. J.–P. Kahane. Sur les fonctions moyenne–périodiques bornées // Ann. Inst. Fourier. 7, 293–314

(1957).
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