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INTEGRATION OF LOADED NONLINEAR SCHRODINGER
EQUATION IN CLASS OF FAST DECAYING FUNCTIONS

G.U. URAZBOEV, 1.I. BALTAEVA, I.D. RAKHIMOV

Abstract. We show that the inverse scattering transform technique can be applied to obtain
the time dependence of scattering data of the Zakharov — Shabat system, which is described
by the loaded nonlinear Schrédinger equation in the class of fast decaying functions. In
addition we prove that the Cauchy problem for the loaded nonlinear Schrodinger equation
is uniquely solvable in the class of rapidly decreasing functions. We provide the explicit
expression of a single soliton solution for the loaded nonlinear Schrédinger equation. As an
example, we find the soliton solution of the considered problem for an arbitrary non—zero
continuous function ().

Keywords: Schridinger equation, Jost solution, loaded equation, evolution of scattering
data, inverse scattering transform.
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1. INTRODUCTION

Integration nonlinear differential equations with soliton solutions is of a permanent interest
since many physical processes are described by nonlinear evolutionary differential equations.
Initially, in 1967, Green, Kruskal, and Miura integrated the Cauchy problem for the Korteweg —
de Vries equation using the method of the inverse scattering problem in the class of fast decaying
functions [1]. In 1968, Lax [2] showed that the method of the inverse scattering problem was
universal. Using this idea, in 1972, Zakharov and Shabat [3] showed the complete integrability
of the nonlinear Schrodinger equation

iuy + 200 + Uy = 0.

Apart of this method, there are several methods for finding solutions to nonlinear differential
equations: Hirota direct method [4], [5], [6], the binary Darboux transformations [7], (G'/G)-
expansion method [8], |9], [10]. The term “loaded equation" was introduced by Nakhushev |11].
After this, the interest in loaded differential equations increased [12], [13]. Many mathemati-
cians studied loaded nonlinear differential equations in the different functional classes [14], [15],

[16], [17], [18].
We consider the Cauchy problem for a loaded nonlinear Schrédinger equation
iy + 2[u)Pu + g — iy () (u(0, ) + u (0, £))u, = 0, (1.1)
u(z,0) = up(x), (1.2)

where (t) is bounded continuous non—zero real function, and the real function ug(x) possesses
the following properties:
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1. The inequality

/_00 (1 + |x|) |ug(z)| dx < oo

(e}

holds.

2. The equation

onei (G, ) () <(). een

can have N number simple eigenvalues and has no spectral singularities. Here, the function
ug(z) is a complex conjugation of wug(z).

In this work, we are consider the solutions of the above Cauchy problem in the class of
functions defined by the condition

/- <<1+|o:| ju(e

via the inverse scattering problem. Our approach allows us to find the solution of the above
Cauchy problem for an arbitrary non-zero continuous real function ().

8““'>dx<oo, t>0, (1.3)

2. UNIQUENESS
Theorem 2.1. The problem (1.1)—~(1.3) can have at most one solution.
Proof. Let u = u(x,t) and v = v(z,t) be two solutions of (1.1)—(1.3). We denote w(x,t) =
(w(z,t) —v(z,t)), and obtain
%W + 4 (ug|ul® = v o)@ — (te]ul® — v v[Hw) + 2 (Wt — v*0,)o — (@Pu, — 770, )w)
— iv(t) ((u(0, ) + (0, t))@ug, + (w(0,t) + @(0, 1)) Wiy,
— (v(0,1) 4+ 0(0,1))Wvgs — (v(0, 1) + (0, 1)) wTys) = 0
and hence,
o+ (g ) (0 = o) 3
dt v
= (U +02) (v — v)(u

+ (u® 4+ 0*)(ty — Vp)0 — (a

(
v)(a—0))w~+ (u+v)(u—v)(ty + 0y)@
) (1 — V) (uy + vp)w — (@ + 0%) (U — vy )w

+ Wpg@ + Dy — + w(0,t) + v(0,t) + 0(0,t)) (tgz — Vaz)

_ _”(?‘*_’(u(o, t) = 0(0,8) + (0, ) = 9(0,))(Uge + Va)

t)

;

KAl

iy(t)
2

w(u(0,t) +w(0,t) +v(0,t) + 9(0,t)) (Upz — Vi)

w(u(0, 1) — v(0,1) + (0, 1) — 5(0, ) (Tps + Tpe) = 0.

Integrating with this identity in = over (—oo, 00), we find

o0

/|w| d:B+/(ux~|—vx)((u—v)(u+v)+(u+v)(u—v))wdaz

—0o0
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— / (U +0z) (w—v)(@+9) + (u+v)(u—0))wdz
+ / (u+v)(u —v)(ty + V)@ + (U + 0°)(ty — V)0 d
- / (@ +0) (0 — 0)(uy + vp)w — (@ + 0% (uy — v, )w do + / (Wae® + @ypw) d
= ”(?5’ / (w(0,£) + (0, £) + 0(0, £) + (0, ) (thyy — V)
- % / (u(0,t) —v(0,t) + u(0,t) — 0(0,t)) (Uzz + V) dx
+ ”g)“ / (w(0,£) + (0, £) + 0(0, £) + (0, 1)) (T — Vo)
y Ot / (w(0,1) — (0, ) + a(0, £) — 0(0, 1)) (tign + Tya) dx = 0.
We denote
myq = max |u + v, Mo = max |ty + vy, ms3 = max |u® + v*|
My = Max |Ugy + Vaz| ms = max |u(0,t) +v(0,t) + u(0,t) + v(0,%)|.

By the Cauchy — Bunyakovsky — Schwarz inequality we obtain

1

d oo o 3
£/|w|2d;ﬂ <4dmyms max |u — v| </|w|2 d:r)
o0 5 oo
+ 2 | mymgmax |u — v| </|w|2 dx) +m3/|w|2dx

o0

+ 27y(t)my max |u — v ( / |wl|? dx)

—00

1
2

Here we have used the fact that w and its derivations tend to zero as x — +o00. It was shown
in [19] that there exists a constant k; > 0 such that

|u(0,t) — v(0,8)] < max lu(z,t) —v(x,t)],

u—v|*dr < Kk ux—vadx ,
| |

. :
max]u—v|<k2</]ux—vx]2dx> :
—00
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We hence get

d o0 o0 o0 oo
E/]wﬁdw <4m1m2k1/]wl2 dx + 2 mlmgkl/\wP dx+m3/\w\2dx

o0

+ 29(t)maky / wf? da.

—00

Denoting
Bt = [ s, C(t)= @mumahy + ms + 2y(thmils),

we rewrite the obtained inequality as
dE(t)

== <CWEQ).

This differential inequality yields

t

E(t) < E(0) eXp/C(T)dT,
0
which implies that if £(0) = 0, then E(¢) = 0 and therefore

/ |w|? dx = / Uz (2,t) — vp(,t)|* dx = 0, u(z,t) — vz, t) = c.

Letting ¢t = 0, we get ¢ = 0. [

3. SCATTERING PROBLEM

We consider the system of equations

Vig + 26V = u(x)vg,
1 '5 1= u( *) 2 (3.1)
Vog — 1§V = —u™ (x)v1,
Here u(x) satisfies the fast decay condition
/(1+ 1)) [u(@)| dz < 0o, t30. (3.2)

The present section contains an information on the direct and inverse scattering problem
for the problem (3.1)—(3.2), which is necessary for our further exposition. The condition (3.2)
ensures that the system of equations (3.1) possesses the Jost solutions p(z, ) and 9 (x,§) with
the asymptotics

o(x, &) ~ (é) e i, o(x, &) ~ (_01) e’ as T — —00, (3.3)

Y(x, &) ~ ((1)) e Y(x, &) ~ ((1)) e as T — 00;

here @ (¢) is not complex conjugation of ¢ (v).
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The Jost solutions ¢(z,¢) and ¢(z, &) admit an analytic continuation in ¢ into the upper
half-plane Im¢ > 0. For each { € (—o00,00) the pairs of functions {p(,§), @(z,§)} and
{¢(z,€), ¥(x,&)} are linearly independent solutions of (3.1), and the identities

{so = a(§)Y +b(E),
P = —a(E)y + by
hold, where the functions a(§) and b(€) are independent of x and
a(§) = W{p, v} = p1bs — ot (3.4)

Moreover, for real £ we have

a(€)a(§) +b(€)b(¢) = 1.
Hence, the function a(§) can be analytically continued in the upper half-plane Im¢ > 0. The
function a(€) has the asymptotic a(§) = 14+ 0O (\?ﬂ) as |{] — oo, Im& > 0. Besides, in the half-
plane Im ¢ > 0 the function a(&) has finitely many zeroes at the points & (K =1, 2, ..., N),

and these points are the eigenvalues of the operator

L(t) =i (_u% ) —zi(zt))

in upper half-plane. We observe that the operator L can have spectral singularities in the
continuous spectrum. However, we suppose that, the operator L has no spectral singularities,
and the zeroes of the function a(k) are simple:

§0<$75]{;) :Ck¢($75k)7 k:17277N

Definition 3.1. The set {r(§) = %, &, Crkt, € € R, Im&, > 0, k = 1, N, is called the

scattering data of the system of equations (3.1).

The solution ¥ (z, &) can be represented as

Y = (?) e’fx—l—/K (z,5) e *ds,

_ Kl (l’? 8)
K(z,s) = (Kg(x,s)>
is independent of £ and is related with the potential function u(z) by the identity
u(z) = —2K(z,x)

The components of the kernel K;(z,y) in y > x are the solutions of the Gelfand — Levitan —
Marchenko system of equation

where

Ky (z,y) — F*(x +y) + //Kl(:c,z)F(z + ) F* (s +y)dsdz = 0,

where
1 [ be) . R
F(z)=— / 2Ll e C.eti,
(@) 27r_ a(€) 321 ’
It is easy to verify that the vector functions
d
hn(x)zdf( ) le= n=12..0N, (3.5)

a (&n) ’
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are solutions to the equations Lh,, = &,h,. By the identity (3.4) we obtain the asymptotics
W~ a(é) ((1)) ST as 1 — —oo,

o ~a(f) ((1)) e %" as 1 — oo,

which are valid for Im ¢ > 0. By these estimates and the identity (3.5) we obtain the asymptotics

h, ~—C, ((1)) et as 1 — —o0, hy, ~ ((1)) e a4 x — 00. (3.6)

In particular,
w {Sona hn} = Spnlth - QDthnl = _Cna
where ¢, = ¢ (2,&,), n=1,2,...,N.

4. EVOLUTION OF SCATTERING DATA
Let the function u(z,t) in (3.1) be a solution to the loaded nonlinear Schrédinger equation
iy 4 2|u*u 4 uge = Gz, t), (4.1)

where the function G(z,t) is sufficiently smooth and G(z,t) = o(1) as * — +oo, t > 0. The
following main lemma [20] is valid for Equation (4.1) and initial condition (1.2).

Lemma 4.1. If the function u(z,t) is a solution of Fquation (4.1) in the class of functions
(1.3), then the scattering data of the system (3.1) with the function u(x,t) depend on t as
follows:

oo

ort L2+ 1 2 * 2

s = 4i&°r - (Gy; + G*7) dz, Im¢é =0,
dc, T

o g - / (Ghuathus + G hontbun) dz | C,

de —1 f (Gpig +G*p2y) do
LU , n=1,2,3,...,N.
dt

2 f PnlPn2 dx

Here pn(x,t) are normalized eigenfunctions, which correspond to the eigenvalue &, of the system
of equations (3.1).
We apply Lemma (4.1) with
G(z,t) = —iy(t)(u(0,t) + u*(0,t))u, (4.2)

and we get the representation

dr™ , iy (t)(u(0,t) +u*(0,t r .
E:4z§2r+— () (1)2 ( ))/(uz%%—uxgpf)dm, Imé = 0.

Using the system (3.1) and asymptotic formulas (3.3), we find
Ot _ e DOW0.0 + 0 (0.0)
ot a?

(4.3)
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where

oo [e.9] o0

P = / uwgog dr + / u*zgof dr = =2 / (upa'y + upr’y) dz
=—2 / [¢'2(¢1 +16p1) + 1 (182 — ¢y)] dx (4.4)

= —2i¢ / (9201 + @' 14p2) dv = —2i€ / dpripy = —2i€a(&)b(E).

We substitute the expression (4.4) into the expression (4.3) and we get

dr™

—r = (4 =20y (u(0,) + w(0,)) r*, Img=0. (4.5)

Using Lemma(4.1) and (4.2), we obtain

d&,  (D)(w(0.1) + u*(0.1)Q

at Q_Z Pn1Pn2 dx
where
Q= 7 (Uopny + U sphy) do = —2 7 (U2 na + W' om¢ 1) d
=2 7 [0 2(@ 1+ i&nn1) + @1 (1npnz + ¢ y0)] do = —2i€,, 7 dipn1pns = 0.
Now we know that
%:o, n=1,2,3,...,N. (4.6)

Using the system (3.1) and asymptotic formulas (3.6), we arrive at

o0

= (4i€2 + iy (t)(w(0,t) + u*(0,¢))H) Cy

ac,
dt
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where
o0

H= / [Ghn2¢n2 + G*hn1¢n1] dx

o)

- / [uxhn2¢n2 + U*mhnld)nl] dx
- / b s + gt v+ W s+ 0 B g d s
= / [h,nQ(@Z);Ll + i£n¢n1) + ¢1/12(h;1 + ifnhnl)
+ h;n(zfnl/}m - ¢;L2) + %1 (Zgnhrﬂ - h,n2>] dx
- - an / [(hn2¢n1)l + (hnlan)/] dr = —an
Using (4.7) and (4.8), we find
ddct” = (4i&2 + 2i&y(t) (w(0,t) + u*(0,t))) Cy, n=1,23,...,N. (4.9)

By identities (4.5), (4.6) and (4.9), we have the following theorem.

Theorem 4.1. If the function u(z,t) is a solution of the problem (1.1)—(1.3), then the scat-
tering data of the system (3.1) with the function u(x,t) depend on t as follows:

67‘+ ) * +

= (€ =26y ((0,1) +u(0,1)) ", Im¢ =0,
di” = (4i&} + 2i& () (u(0, 1) + u*(0,1))) Cn,

%:0, n=123,...,N.

The obtained relations determine completely the evolution of the scattering data for the
system (3.1), which allows us to find the solution of the problem (1.1)-(1.3) by using the
inverse scattering problem method.

5. EXAMPLE

We consider the Cauchy problem
2
cosh 2z

iy + 2\u|2u + Uge — i7y(t)(w(0, 1) + u*(0,1))u, = 0, u(z,0) =

In order to find its general solution, we use the inverse scattering problem method. First of all,
we find a solution of the direct problem for the system of equations

L0y = (_u%(x) _ﬁogj)) (22) =¢ <22) '

In this case, we have the scattering data

r(0) =0,6(0) =4,  C,(0) =2
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According to the theorem, we find the evolution of scattering data depending on t:
rH(&,t) =0, £i(t) =0, Ci(t) = —4i — 2v(t)(u(0,t) + u*(0,t)), € €R.
We find a solution of inverse scattering problem using this scattering data.
rH(& ) =0,  &t)=0,  Ci(t) = —4i —2y(t)(u(0,t) + u"(0,1)).

Solving the Gelfand — Levitan — Marchenko integral equations, we find

264it

u(z,t) = - :
cosh(2z + 2 of () (w(0,7) + u*(0,7))dr)

Letting x = 0 and denoting

t

f(t) =2 / (1) (0, 7) + u*(0,7))dr,

0

we obtain the Cauchy problem

f(t) _ 4 cos(4t)
y(t)  cosh(f)”
f(0) =

Solving this problem, we get

t

ft) = arcsinh(ll/’y(t) cos(4r)dr).

0

As a result, the solution of the considering problem reads

264it
t

cosh(2z + arcsinh(4 bf v(t) cos(47)dT)) |

u(z,t) =
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